Torrent Info
Title Udemy-Deep-Learning-A-Z-2025
Category
Size 4.65GB

Files List
Please note that this page does not hosts or makes available any of the listed filenames. You cannot download any of those files from here.
001 Annex - Get the Machine Learning Basics.html 3.10KB
001 Data Preprocessing.html 2.69KB
001 Deep Learning Autoencoders Types, Architecture, and Training Explained.mp4 8.34MB
001 Deep Learning Autoencoders Types, Architecture, and Training Explained.srt 3.77KB
001 Evaluating the RNN.html 3.97KB
001 Get the code and dataset ready.html 4.01KB
001 Get the code and dataset ready.html 3.79KB
001 Get the code and dataset ready.html 4.51KB
001 Get the code and dataset ready.html 4.40KB
001 Get the code and dataset ready.html 4.41KB
001 Get the code and dataset ready.html 4.83KB
001 Get the code and dataset ready.html 4.83KB
001 How Do Self-Organizing Maps Work Understanding SOM in Deep Learning.mp4 9.50MB
001 How Do Self-Organizing Maps Work Understanding SOM in Deep Learning.srt 5.31KB
001 Huge Congrats for completing the challenge!.html 6.99KB
001 Step 1 - Data Preprocessing in Python Essential Tools for ML Models.mp4 18.40MB
001 Step 1 - Data Preprocessing in Python Essential Tools for ML Models.srt 8.98KB
001 Understanding Boltzmann Machines Deep Learning Fundamentals for AI Enthusiasts.mp4 6.50MB
001 Understanding Boltzmann Machines Deep Learning Fundamentals for AI Enthusiasts.srt 4.60KB
001 Understanding the Logistic Regression Equation A Step-by-Step Guide.mp4 16.91MB
001 Understanding the Logistic Regression Equation A Step-by-Step Guide.srt 8.15KB
001 Welcome Challenge!.html 5.80KB
001 Welcome to Part 1 - Artificial Neural Networks.html 2.53KB
001 Welcome to Part 2 - Convolutional Neural Networks.html 2.51KB
001 Welcome to Part 3 - Recurrent Neural Networks.html 2.71KB
001 Welcome to Part 4 - Self Organizing Maps.html 2.59KB
001 Welcome to Part 5 - Boltzmann Machines.html 3.62KB
001 Welcome to Part 6 - AutoEncoders.html 3.17KB
001 What You'll Need for ANN.html 2.55KB
001 What You'll Need for CNN.html 2.56KB
001 What You'll Need for RNN.html 2.55KB
001 What You Need for Regression & Classification.html 2.57KB
002 Autoencoders in Machine Learning Applications and Architecture Overview.mp4 25.64MB
002 Autoencoders in Machine Learning Applications and Architecture Overview.srt 19.46KB
002 Boltzmann Machines vs. Neural Networks Key Differences in Deep Learning.mp4 54.47MB
002 Boltzmann Machines vs. Neural Networks Key Differences in Deep Learning.srt 24.33KB
002 Bonus How To UNLOCK Top Salaries (Live Training).html 4.00KB
002 How Do Recurrent Neural Networks --(RNNs--) Work Deep Learning Explained.mp4 6.88MB
002 How Do Recurrent Neural Networks --(RNNs--) Work Deep Learning Explained.srt 4.00KB
002 How Neural Networks Learn Gradient Descent and Backpropagation Explained.mp4 8.10MB
002 How Neural Networks Learn Gradient Descent and Backpropagation Explained.srt 4.51KB
002 How to Calculate Maximum Likelihood in Logistic Regression Step-by-Step Guide.mp4 9.66MB
002 How to Calculate Maximum Likelihood in Logistic Regression Step-by-Step Guide.srt 6.04KB
002 How to Scale Features in Machine Learning Normalization vs Standardization.mp4 5.29MB
002 How to Scale Features in Machine Learning Normalization vs Standardization.srt 2.74KB
002 Improving the RNN.html 3.48KB
002 Introduction to Deep Learning From Historical Context to Modern Applications.mp4 34.64MB
002 Introduction to Deep Learning From Historical Context to Modern Applications.srt 21.27KB
002 Same Data Preprocessing in Parts 5 and 6.html 2.58KB
002 Self-Organizing Maps --(SOM--) Unsupervised Deep Learning for Dimensionality Reduct.mp4 32.54MB
002 Self-Organizing Maps --(SOM--) Unsupervised Deep Learning for Dimensionality Reduct.srt 14.81KB
002 Simple Linear Regression Understanding Y = B0 + B1X in Machine Learning.mp4 16.29MB
002 Simple Linear Regression Understanding Y = B0 + B1X in Machine Learning.srt 9.57KB
002 Step 0 - Building a Movie Recommender System with RBMs Data Preprocessing Guide.mp4 34.79MB
002 Step 0 - Building a Movie Recommender System with RBMs Data Preprocessing Guide.srt 16.74KB
002 Step 1 - Building a Hybrid Deep Learning Model for Credit Card Fraud Detection.mp4 10.74MB
002 Step 1 - Building a Hybrid Deep Learning Model for Credit Card Fraud Detection.srt 5.18KB
002 Step 1 - Building a Robust LSTM Neural Network for Stock Price Trend Prediction.mp4 24.65MB
002 Step 1 - Building a Robust LSTM Neural Network for Stock Price Trend Prediction.srt 12.82KB
002 Step 1 - Convolutional Neural Networks Explained Image Classification Tutorial.mp4 27.80MB
002 Step 1 - Convolutional Neural Networks Explained Image Classification Tutorial.srt 13.60KB
002 Step 1 - Data Preprocessing for Deep Learning Preparing Neural Network Dataset.mp4 36.33MB
002 Step 1 - Data Preprocessing for Deep Learning Preparing Neural Network Dataset.srt 18.73KB
002 Step 1 - Implementing Self-Organizing Maps --(SOMs--) for Fraud Detection in Python.mp4 52.00MB
002 Step 1 - Implementing Self-Organizing Maps --(SOMs--) for Fraud Detection in Python.srt 27.72KB
002 Step 2 - How to Handle Missing Data in Python Data Preprocessing Techniques.mp4 18.44MB
002 Step 2 - How to Handle Missing Data in Python Data Preprocessing Techniques.srt 11.38KB
002 Understanding CNN Architecture From Convolution to Fully Connected Layers.mp4 10.68MB
002 Understanding CNN Architecture From Convolution to Fully Connected Layers.srt 6.03KB
003 Autoencoder Bias in Deep Learning Improving Neural Network Performance.mp4 4.80MB
003 Autoencoder Bias in Deep Learning Improving Neural Network Performance.srt 2.33KB
003 Check out our free course on ANN for Regression.html 2.78KB
003 Deep Learning Fundamentals Energy-Based Models --& Their Role in Neural Networks.mp4 40.46MB
003 Deep Learning Fundamentals Energy-Based Models --& Their Role in Neural Networks.srt 17.87KB
003 Get the codes, datasets and slides here.html 2.75KB
003 How Do Convolutional Neural Networks Work Understanding CNN Architecture.mp4 54.97MB
003 How Do Convolutional Neural Networks Work Understanding CNN Architecture.srt 26.34KB
003 Linear Regression Explained Finding the Best Fitting Line for Data Analysis.mp4 10.86MB
003 Linear Regression Explained Finding the Best Fitting Line for Data Analysis.srt 4.95KB
003 Machine Learning Basics Using Train-Test Split to Evaluate Model Performance.mp4 7.02MB
003 Machine Learning Basics Using Train-Test Split to Evaluate Model Performance.srt 3.30KB
003 Same Data Preprocessing in Parts 5 and 6.html 2.59KB
003 Step 1a - Machine Learning Classification Logistic Regression in Python.mp4 19.65MB
003 Step 1a - Machine Learning Classification Logistic Regression in Python.srt 9.08KB
003 Step 1 - Building a Movie Recommendation System with AutoEncoders Data Import.mp4 41.61MB
003 Step 1 - Building a Movie Recommendation System with AutoEncoders Data Import.srt 20.91KB
003 Step 1 - Importing Essential Python Libraries for Data Preprocessing --& Analysis.mp4 12.25MB
003 Step 1 - Importing Essential Python Libraries for Data Preprocessing --& Analysis.srt 6.20KB
003 Step 2 - Deep Learning Preprocessing Scaling --& Transforming Images for CNNs.mp4 67.42MB
003 Step 2 - Deep Learning Preprocessing Scaling --& Transforming Images for CNNs.srt 30.55KB
003 Step 2 - Developing a Fraud Detection System Using Self-Organizing Maps.mp4 17.78MB
003 Step 2 - Developing a Fraud Detection System Using Self-Organizing Maps.srt 7.40KB
003 Step 2 - Importing Training Data for LSTM Stock Price Prediction Model.mp4 26.81MB
003 Step 2 - Importing Training Data for LSTM Stock Price Prediction Model.srt 11.25KB
003 Step 2 - SOM Weight Initialization and Training Tutorial for Anomaly Detection.mp4 36.64MB
003 Step 2 - SOM Weight Initialization and Training Tutorial for Anomaly Detection.srt 16.01KB
003 Understanding Neurons The Building Blocks of Artificial Neural Networks.mp4 56.61MB
003 Understanding Neurons The Building Blocks of Artificial Neural Networks.srt 29.50KB
003 What is a Recurrent Neural Network --(RNN--) Deep Learning for Sequential Data.mp4 43.59MB
003 What is a Recurrent Neural Network --(RNN--) Deep Learning for Sequential Data.srt 27.88KB
003 Why K-Means Clustering is Essential for Understanding Self-Organizing Maps.mp4 7.14MB
003 Why K-Means Clustering is Essential for Understanding Self-Organizing Maps.srt 3.90KB
004 EXTRA Use ChatGPT to Boost your Deep Learning Skills.html 3.26KB
004 How to Apply Convolution Filters in Neural Networks Feature Detection Explained.mp4 44.40MB
004 How to Apply Convolution Filters in Neural Networks Feature Detection Explained.srt 28.06KB
004 How to Edit Wikipedia Adding Boltzmann Distribution in Deep Learning.mp4 13.32MB
004 How to Edit Wikipedia Adding Boltzmann Distribution in Deep Learning.srt 6.43KB
004 How to Train an Autoencoder Step-by-Step Guide for Deep Learning Beginners.mp4 23.48MB
004 How to Train an Autoencoder Step-by-Step Guide for Deep Learning Beginners.srt 11.23KB
004 Machine Learning Workflow Data Splitting, Feature Scaling, and Model Training.mp4 16.54MB
004 Machine Learning Workflow Data Splitting, Feature Scaling, and Model Training.srt 10.73KB
004 Multiple Linear Regression - Understanding Dependent --& Independent Variables.mp4 3.33MB
004 Multiple Linear Regression - Understanding Dependent --& Independent Variables.srt 1.70KB
004 Self-Organizing Maps Tutorial Dimensionality Reduction in Machine Learning.mp4 53.79MB
004 Self-Organizing Maps Tutorial Dimensionality Reduction in Machine Learning.srt 26.03KB
004 Step 1b - Logistic Regression Analysis Importing Libraries and Splitting Data.mp4 13.71MB
004 Step 1b - Logistic Regression Analysis Importing Libraries and Splitting Data.srt 7.07KB
004 Step 1 - Creating a DataFrame from CSV Python Data Preprocessing Basics.mp4 17.97MB
004 Step 1 - Creating a DataFrame from CSV Python Data Preprocessing Basics.srt 8.81KB
004 Step 1 - Importing Movie Datasets for RBM-Based Recommender Systems in Python.mp4 35.10MB
004 Step 1 - Importing Movie Datasets for RBM-Based Recommender Systems in Python.srt 15.92KB
004 Step 2 - Data Preprocessing for Neural Networks Essential Steps and Techniques.mp4 69.12MB
004 Step 2 - Data Preprocessing for Neural Networks Essential Steps and Techniques.srt 30.87KB
004 Step 2 - Preparing Training and Test Sets for Autoencoder Recommendation System.mp4 40.63MB
004 Step 2 - Preparing Training and Test Sets for Autoencoder Recommendation System.srt 19.99KB
004 Step 3 - Applying Min-Max Normalization for Time Series Data in Neural Networks.mp4 22.62MB
004 Step 3 - Applying Min-Max Normalization for Time Series Data in Neural Networks.srt 9.45KB
004 Step 3 - Building a Hybrid Model From Unsupervised to Supervised Deep Learning.mp4 55.65MB
004 Step 3 - Building a Hybrid Model From Unsupervised to Supervised Deep Learning.srt 30.19KB
004 Step 3 - Building CNN Architecture Convolutional Layers --& Max Pooling Explained.mp4 68.02MB
004 Step 3 - Building CNN Architecture Convolutional Layers --& Max Pooling Explained.srt 36.66KB
004 Step 3 - SOM Visualization Techniques Colorbar --& Markers for Outlier Detection.mp4 64.29MB
004 Step 3 - SOM Visualization Techniques Colorbar --& Markers for Outlier Detection.srt 29.15KB
004 Understanding Activation Functions in Neural Networks Sigmoid, ReLU, and More.mp4 31.51MB
004 Understanding Activation Functions in Neural Networks Sigmoid, ReLU, and More.srt 14.14KB
004 Understanding the Vanishing Gradient Problem in Recurrent Neural Networks --(RNNs--).mp4 54.89MB
004 Understanding the Vanishing Gradient Problem in Recurrent Neural Networks --(RNNs--).srt 26.54KB
005 How Do Neural Networks Work Step-by-Step Guide to Property Valuation Example.mp4 29.68MB
005 How Do Neural Networks Work Step-by-Step Guide to Property Valuation Example.srt 22.97KB
005 How Restricted Boltzmann Machines Work Deep Learning for Recommender Systems.mp4 47.56MB
005 How Restricted Boltzmann Machines Work Deep Learning for Recommender Systems.srt 31.55KB
005 How Self-Organizing Maps --(SOMs--) Learn Unsupervised Deep Learning Explained.mp4 38.91MB
005 How Self-Organizing Maps --(SOMs--) Learn Unsupervised Deep Learning Explained.srt 24.78KB
005 How to Use Overcomplete Hidden Layers in Autoencoders for Feature Extraction.mp4 14.77MB
005 How to Use Overcomplete Hidden Layers in Autoencoders for Feature Extraction.srt 6.53KB
005 Rectified Linear Units --(ReLU--) in Deep Learning Optimizing CNN Performance.mp4 25.18MB
005 Rectified Linear Units --(ReLU--) in Deep Learning Optimizing CNN Performance.srt 10.99KB
005 Step 2a - Data Preprocessing for Logistic Regression Importing and Splitting.mp4 20.11MB
005 Step 2a - Data Preprocessing for Logistic Regression Importing and Splitting.srt 9.98KB
005 Step 2 - Pandas DataFrame Indexing Building Feature Matrix X with iloc Method.mp4 16.19MB
005 Step 2 - Pandas DataFrame Indexing Building Feature Matrix X with iloc Method.srt 8.01KB
005 Step 2 - Preparing Training and Test Sets for Restricted Boltzmann Machine.mp4 36.67MB
005 Step 2 - Preparing Training and Test Sets for Restricted Boltzmann Machine.srt 16.23KB
005 Step 3 - Constructing an Artificial Neural Network Adding Input --& Hidden Layers.mp4 54.85MB
005 Step 3 - Constructing an Artificial Neural Network Adding Input --& Hidden Layers.srt 24.56KB
005 Step 3 - Preparing Data for Recommendation Systems User --& Movie Count in Python.mp4 28.89MB
005 Step 3 - Preparing Data for Recommendation Systems User --& Movie Count in Python.srt 16.44KB
005 Step 4 - Building X_train and y_train Arrays for LSTM Time Series Forecasting.mp4 57.77MB
005 Step 4 - Building X_train and y_train Arrays for LSTM Time Series Forecasting.srt 24.32KB
005 Step 4 - Catching Cheaters with SOMs Mapping Winning Nodes to Customer Data.mp4 44.87MB
005 Step 4 - Catching Cheaters with SOMs Mapping Winning Nodes to Customer Data.srt 21.78KB
005 Step 4 - Implementing Fraud Detection with SOM A Deep Learning Approach.mp4 35.35MB
005 Step 4 - Implementing Fraud Detection with SOM A Deep Learning Approach.srt 18.90KB
005 Step 4 - Train CNN for Image Classification Optimize with Keras --& TensorFlow.mp4 27.99MB
005 Step 4 - Train CNN for Image Classification Optimize with Keras --& TensorFlow.srt 12.28KB
005 Understanding Logistic Regression Intuition and Probability in Classification.mp4 58.02MB
005 Understanding Logistic Regression Intuition and Probability in Classification.srt 28.27KB
005 Understanding Long Short-Term Memory --(LSTM--) Architecture for Deep Learning.mp4 75.06MB
005 Understanding Long Short-Term Memory --(LSTM--) Architecture for Deep Learning.srt 33.60KB
006 Homework Challenge - Coding Exercise.html 3.85KB
006 How Do Neural Networks Learn Understanding Backpropagation and Cost Functions.mp4 49.23MB
006 How Do Neural Networks Learn Understanding Backpropagation and Cost Functions.srt 21.74KB
006 How Energy-Based Models Work Deep Dive into Contrastive Divergence Algorithm.mp4 59.23MB
006 How Energy-Based Models Work Deep Dive into Contrastive Divergence Algorithm.srt 28.88KB
006 How LSTMs Work in Practice Visualizing Neural Network Predictions.mp4 64.06MB
006 How LSTMs Work in Practice Visualizing Neural Network Predictions.srt 24.86KB
006 How to Create a Self-Organizing Map --(SOM--) in DL Step-by-Step Tutorial.mp4 25.35MB
006 How to Create a Self-Organizing Map --(SOM--) in DL Step-by-Step Tutorial.srt 16.38KB
006 Sparse Autoencoders in Deep Learning Preventing Overfitting in Neural Networks.mp4 23.69MB
006 Sparse Autoencoders in Deep Learning Preventing Overfitting in Neural Networks.srt 10.19KB
006 Step 2b - Data Preprocessing Feature Scaling for Machine Learning in Python.mp4 20.46MB
006 Step 2b - Data Preprocessing Feature Scaling for Machine Learning in Python.srt 10.08KB
006 Step 3 - Preparing Data for RBM Calculating Total Users and Movies in Python.mp4 31.89MB
006 Step 3 - Preparing Data for RBM Calculating Total Users and Movies in Python.srt 16.44KB
006 Step 3 - Preprocessing Data Extracting Features and Target Variables in Python.mp4 19.83MB
006 Step 3 - Preprocessing Data Extracting Features and Target Variables in Python.srt 10.01KB
006 Step 4 - Compile and Train Neural Network Optimizers, Loss Functions --& Metrics.mp4 45.41MB
006 Step 4 - Compile and Train Neural Network Optimizers, Loss Functions --& Metrics.srt 20.31KB
006 Step 5 - Deploying a CNN for Real-World Image Recognition.mp4 56.64MB
006 Step 5 - Deploying a CNN for Real-World Image Recognition.srt 29.46KB
006 Step 5 - Preparing Time Series Data for LSTM Neural Network in Stock Forecasting.mp4 41.40MB
006 Step 5 - Preparing Time Series Data for LSTM Neural Network in Stock Forecasting.srt 19.96KB
006 Understanding Spatial Invariance in CNNs Max Pooling Explained for Beginners.mp4 55.67MB
006 Understanding Spatial Invariance in CNNs Max Pooling Explained for Beginners.srt 25.27KB
007 Deep Belief Networks Understanding RBM Stacking in Deep Learning Models.mp4 20.47MB
007 Deep Belief Networks Understanding RBM Stacking in Deep Learning Models.srt 8.77KB
007 Denoising Autoencoders Deep Learning Regularization Technique Explained.mp4 9.65MB
007 Denoising Autoencoders Deep Learning Regularization Technique Explained.srt 4.25KB
007 Develop an Image Recognition System Using Convolutional Neural Networks.mp4 87.16MB
007 Develop an Image Recognition System Using Convolutional Neural Networks.srt 36.53KB
007 For Python learners, summary of Object-oriented programming classes & objects.html 3.71KB
007 How to Flatten Pooled Feature Maps in Convolutional Neural Networks --(CNNs--).mp4 6.14MB
007 How to Flatten Pooled Feature Maps in Convolutional Neural Networks --(CNNs--).srt 3.23KB
007 Interpreting SOM Clusters Unsupervised Learning Techniques for Data Analysis.mp4 16.99MB
007 Interpreting SOM Clusters Unsupervised Learning Techniques for Data Analysis.srt 7.57KB
007 LSTM Variations Peepholes, Combined Gates, and GRUs in Deep Learning.mp4 13.76MB
007 LSTM Variations Peepholes, Combined Gates, and GRUs in Deep Learning.srt 5.87KB
007 Mastering Gradient Descent Key to Efficient Neural Network Training.mp4 34.24MB
007 Mastering Gradient Descent Key to Efficient Neural Network Training.srt 17.55KB
007 Step 3a - Implementing Logistic Regression for Classification with Scikit-Learn.mp4 13.67MB
007 Step 3a - Implementing Logistic Regression for Classification with Scikit-Learn.srt 6.62KB
007 Step 4 - Convert Training --& Test Sets to RBM-Ready Arrays in Python.mp4 79.37MB
007 Step 4 - Convert Training --& Test Sets to RBM-Ready Arrays in Python.srt 35.14KB
007 Step 4 - Prepare Data for Autoencoder Creating User-Movie Rating Matrices.mp4 72.17MB
007 Step 4 - Prepare Data for Autoencoder Creating User-Movie Rating Matrices.srt 35.07KB
007 Step 5 - How to Make Predictions and Evaluate Neural Network Model in Python.mp4 61.64MB
007 Step 5 - How to Make Predictions and Evaluate Neural Network Model in Python.srt 26.57KB
007 Step 6 - Create RNN Architecture Sequential Layers vs Computational Graphs.mp4 10.81MB
007 Step 6 - Create RNN Architecture Sequential Layers vs Computational Graphs.srt 4.71KB
008 Deep Boltzmann Machines vs Deep Belief Networks Key Differences Explained.mp4 11.20MB
008 Deep Boltzmann Machines vs Deep Belief Networks Key Differences Explained.srt 4.94KB
008 How Do Fully Connected Layers Work in Convolutional Neural Networks --(CNNs--).mp4 52.78MB
008 How Do Fully Connected Layers Work in Convolutional Neural Networks --(CNNs--).srt 37.50KB
008 How to Use Stochastic Gradient Descent for Deep Learning Optimization.mp4 33.18MB
008 How to Use Stochastic Gradient Descent for Deep Learning Optimization.srt 14.87KB
008 Step 1 - Handling Missing Data in Python SimpleImputer for Data Preprocessing.mp4 20.39MB
008 Step 1 - Handling Missing Data in Python SimpleImputer for Data Preprocessing.srt 9.80KB
008 Step 3b - Predicting Purchase Decisions with Logistic Regression in Python.mp4 12.03MB
008 Step 3b - Predicting Purchase Decisions with Logistic Regression in Python.srt 5.61KB
008 Step 5 - Converting NumPy Arrays to PyTorch Tensors for Deep Learning Models.mp4 19.37MB
008 Step 5 - Converting NumPy Arrays to PyTorch Tensors for Deep Learning Models.srt 8.85KB
008 Step 5 - Convert Training and Test Sets to PyTorch Tensors for Deep Learning.mp4 17.56MB
008 Step 5 - Convert Training and Test Sets to PyTorch Tensors for Deep Learning.srt 8.88KB
008 Step 7 - Adding First LSTM Layer Key Components for Stock Market Prediction.mp4 33.05MB
008 Step 7 - Adding First LSTM Layer Key Components for Stock Market Prediction.srt 14.13KB
008 Understanding K-Means Clustering Intuitive Explanation with Visual Examples.mp4 54.69MB
008 Understanding K-Means Clustering Intuitive Explanation with Visual Examples.srt 24.42KB
008 What are Contractive Autoencoders Deep Learning Regularization Techniques.mp4 9.08MB
008 What are Contractive Autoencoders Deep Learning Regularization Techniques.srt 3.95KB
009 CNN Building Blocks Feature Maps, ReLU, Pooling, and Fully Connected Layers.mp4 16.40MB
009 CNN Building Blocks Feature Maps, ReLU, Pooling, and Fully Connected Layers.srt 6.83KB
009 K-Means Clustering Avoiding the Random Initialization Trap in Machine Learning.mp4 29.66MB
009 K-Means Clustering Avoiding the Random Initialization Trap in Machine Learning.srt 14.04KB
009 Step 2 - Preprocessing Datasets Fit and Transform to Handle Missing Values.mp4 20.54MB
009 Step 2 - Preprocessing Datasets Fit and Transform to Handle Missing Values.srt 9.50KB
009 Step 4a - Using Classifier Objects to Make Predictions in Machine Learning.mp4 20.56MB
009 Step 4a - Using Classifier Objects to Make Predictions in Machine Learning.srt 9.21KB
009 Step 6 - Building Autoencoder Architecture Class Creation for Neural Networks.mp4 58.44MB
009 Step 6 - Building Autoencoder Architecture Class Creation for Neural Networks.srt 29.39KB
009 Step 6 - RBM Data Preprocessing Transforming Movie Ratings for Neural Networks.mp4 29.11MB
009 Step 6 - RBM Data Preprocessing Transforming Movie Ratings for Neural Networks.srt 13.00KB
009 Step 8 - Implementing Dropout Regularization in LSTM Networks for Forecasting.mp4 20.26MB
009 Step 8 - Implementing Dropout Regularization in LSTM Networks for Forecasting.srt 8.53KB
009 Understanding Backpropagation Algorithm Key to Optimizing Deep Learning Models.mp4 20.35MB
009 Understanding Backpropagation Algorithm Key to Optimizing Deep Learning Models.srt 8.60KB
009 What are Stacked Autoencoders in Deep Learning Architecture and Applications.mp4 7.21MB
009 What are Stacked Autoencoders in Deep Learning Architecture and Applications.srt 2.85KB
010 Deep Autoencoders vs Stacked Autoencoders Key Differences in Neural Networks.mp4 7.07MB
010 Deep Autoencoders vs Stacked Autoencoders Key Differences in Neural Networks.srt 3.04KB
010 How to Find the Optimal Number of Clusters in K-Means WCSS and Elbow Method.mp4 43.17MB
010 How to Find the Optimal Number of Clusters in K-Means WCSS and Elbow Method.srt 20.40KB
010 Step 1 - Preprocessing Categorical Variables One-Hot Encoding in Python.mp4 15.17MB
010 Step 1 - Preprocessing Categorical Variables One-Hot Encoding in Python.srt 7.04KB
010 Step 4b - Evaluating Logistic Regression Model Predicted vs Real Outcomes.mp4 6.27MB
010 Step 4b - Evaluating Logistic Regression Model Predicted vs Real Outcomes.srt 3.09KB
010 Step 7 - Implementing Restricted Boltzmann Machine Class Structure in PyTorch.mp4 38.87MB
010 Step 7 - Implementing Restricted Boltzmann Machine Class Structure in PyTorch.srt 17.63KB
010 Step 7 - Python Autoencoder Tutorial Implementing Activation Functions --& Layers.mp4 47.82MB
010 Step 7 - Python Autoencoder Tutorial Implementing Activation Functions --& Layers.srt 27.41KB
010 Step 9 - Finalizing RNN Architecture Dense Layer for Stock Price Forecasting.mp4 12.68MB
010 Step 9 - Finalizing RNN Architecture Dense Layer for Stock Price Forecasting.srt 5.39KB
010 Understanding Softmax Activation and Cross-Entropy Loss in Deep Learning.mp4 67.30MB
010 Understanding Softmax Activation and Cross-Entropy Loss in Deep Learning.srt 32.01KB
011 Step 10 - Compile RNN with Adam Optimizer for Stock Price Prediction in Python.mp4 16.56MB
011 Step 10 - Compile RNN with Adam Optimizer for Stock Price Prediction in Python.srt 7.02KB
011 Step 2 - Using fit_transform Method for Efficient Data Preprocessing in Python.mp4 20.27MB
011 Step 2 - Using fit_transform Method for Efficient Data Preprocessing in Python.srt 10.10KB
011 Step 5 - Evaluating Machine Learning Models Confusion Matrix and Accuracy.mp4 20.42MB
011 Step 5 - Evaluating Machine Learning Models Confusion Matrix and Accuracy.srt 12.19KB
011 Step 8 - PyTorch Techniques for Efficient Autoencoder Training on Large Datasets.mp4 51.87MB
011 Step 8 - PyTorch Techniques for Efficient Autoencoder Training on Large Datasets.srt 32.05KB
011 Step 8 - RBM Hidden Layer Sampling Bernoulli Distribution in PyTorch Tutorial.mp4 48.35MB
011 Step 8 - RBM Hidden Layer Sampling Bernoulli Distribution in PyTorch Tutorial.srt 24.10KB
012 Step 11 - Optimizing Epochs and Batch Size for LSTM Stock Price Forecasting.mp4 41.48MB
012 Step 11 - Optimizing Epochs and Batch Size for LSTM Stock Price Forecasting.srt 14.28KB
012 Step 3 - Preprocessing Categorical Data One-Hot and Label Encoding Techniques.mp4 16.03MB
012 Step 3 - Preprocessing Categorical Data One-Hot and Label Encoding Techniques.srt 7.70KB
012 Step 6a - Creating a Confusion Matrix for Machine Learning Model Evaluation.mp4 20.20MB
012 Step 6a - Creating a Confusion Matrix for Machine Learning Model Evaluation.srt 9.91KB
012 Step 9 - Implementing Stochastic Gradient Descent in Autoencoder Architecture.mp4 46.64MB
012 Step 9 - Implementing Stochastic Gradient Descent in Autoencoder Architecture.srt 27.67KB
012 Step 9 - RBM Visible Node Sampling Bernoulli Distribution in Deep Learning.mp4 23.88MB
012 Step 9 - RBM Visible Node Sampling Bernoulli Distribution in Deep Learning.srt 10.60KB
013 Step 10 - Machine Learning Metrics Interpreting Loss in Autoencoder Training.mp4 15.25MB
013 Step 10 - Machine Learning Metrics Interpreting Loss in Autoencoder Training.srt 8.09KB
013 Step 10 - RBM Training Function Updating Weights and Biases with Gibbs Sampling.mp4 44.32MB
013 Step 10 - RBM Training Function Updating Weights and Biases with Gibbs Sampling.srt 18.91KB
013 Step 12 - Visualizing LSTM Predictions Real vs Forecasted Google Stock Prices.mp4 21.26MB
013 Step 12 - Visualizing LSTM Predictions Real vs Forecasted Google Stock Prices.srt 8.36KB
013 Step 1 - Machine Learning Data Prep Splitting Dataset Before Feature Scaling.mp4 13.46MB
013 Step 1 - Machine Learning Data Prep Splitting Dataset Before Feature Scaling.srt 6.25KB
013 Step 6b - Visualizing Machine Learning Results Training vs Test Set Comparison.mp4 11.46MB
013 Step 6b - Visualizing Machine Learning Results Training vs Test Set Comparison.srt 5.65KB
014 Step 11 - How to Evaluate Recommender System Performance Using Test Set Loss.mp4 40.13MB
014 Step 11 - How to Evaluate Recommender System Performance Using Test Set Loss.srt 20.32KB
014 Step 11 - How to Set Up an RBM Model Choosing NV, NH, and Batch Size Parameters.mp4 27.04MB
014 Step 11 - How to Set Up an RBM Model Choosing NV, NH, and Batch Size Parameters.srt 11.63KB
014 Step 13 - Preparing Historical Stock Data for LSTM Model Scaling and Reshaping.mp4 64.10MB
014 Step 13 - Preparing Historical Stock Data for LSTM Model Scaling and Reshaping.srt 25.71KB
014 Step 2 - Split Data into Train --& Test Sets with Scikit-learn--'s train_test_split.mp4 20.58MB
014 Step 2 - Split Data into Train --& Test Sets with Scikit-learn--'s train_test_split.srt 9.90KB
014 Step 7a - Visualizing Logistic Regression 2D Plots for Classification Models.mp4 20.29MB
014 Step 7a - Visualizing Logistic Regression 2D Plots for Classification Models.srt 9.17KB
015 Step 12 - RBM Training Loop Epoch Setup and Loss Function Implementation.mp4 51.02MB
015 Step 12 - RBM Training Loop Epoch Setup and Loss Function Implementation.srt 21.33KB
015 Step 14 - Creating 3D Input Structure for LSTM Stock Price Prediction in Python.mp4 31.64MB
015 Step 14 - Creating 3D Input Structure for LSTM Stock Price Prediction in Python.srt 12.69KB
015 Step 3 - Preparing Data for ML Splitting Datasets with Python and Scikit-learn.mp4 13.33MB
015 Step 3 - Preparing Data for ML Splitting Datasets with Python and Scikit-learn.srt 6.01KB
015 Step 7b - Visualizing Logistic Regression Interpreting Classification Results.mp4 12.84MB
015 Step 7b - Visualizing Logistic Regression Interpreting Classification Results.srt 6.01KB
015 THANK YOU Video.mp4 9.18MB
015 THANK YOU Video.srt 2.86KB
016 Step 13 - RBM Training Updating Weights and Biases with Contrastive Divergence.mp4 73.76MB
016 Step 13 - RBM Training Updating Weights and Biases with Contrastive Divergence.srt 29.86KB
016 Step 15 - Visualizing LSTM Predictions Plotting Real vs Predicted Stock Prices.mp4 34.33MB
016 Step 15 - Visualizing LSTM Predictions Plotting Real vs Predicted Stock Prices.srt 15.23KB
016 Step 1 - How to Apply Feature Scaling for Preprocessing Machine Learning Data.mp4 20.45MB
016 Step 1 - How to Apply Feature Scaling for Preprocessing Machine Learning Data.srt 10.06KB
016 Step 7c - Visualizing Test Results Assessing Machine Learning Model Accuracy.mp4 11.48MB
016 Step 7c - Visualizing Test Results Assessing Machine Learning Model Accuracy.srt 5.38KB
017 Logistic Regression in Python - Step 7 (Colour-blind friendly image).html 2.95KB
017 Step 14 - Optimizing RBM Models From Training to Test Set Performance Analysis.mp4 65.13MB
017 Step 14 - Optimizing RBM Models From Training to Test Set Performance Analysis.srt 29.49KB
017 Step 2 - Feature Scaling in Machine Learning When to Apply StandardScaler.mp4 16.34MB
017 Step 2 - Feature Scaling in Machine Learning When to Apply StandardScaler.srt 7.90KB
018 Evaluating the Boltzmann Machine.html 6.06KB
018 Machine Learning Regression and Classification EXTRA.html 3.04KB
018 Step 3 - Normalizing Data with Fit and Transform Methods in Scikit-learn.mp4 13.10MB
018 Step 3 - Normalizing Data with Fit and Transform Methods in Scikit-learn.srt 6.30KB
019 EXTRA CONTENT Logistic Regression Practical Case Study.html 2.85KB
019 Step 4 - How to Apply Feature Scaling to Training --& Test Sets in ML.mp4 20.17MB
019 Step 4 - How to Apply Feature Scaling to Training --& Test Sets in ML.srt 10.03KB
Distribution statistics by country
Russia (RU) 7
United States (US) 3
Vietnam (VN) 2
Netherlands (NL) 2
United Arab Emirates (AE) 2
France (FR) 1
United Kingdom (GB) 1
Kazakhstan (KZ) 1
Belgium (BE) 1
Total 20
IP List List of IP addresses which were distributed this torrent