Please note that this page does not hosts or makes available any of the listed filenames. You
cannot download any of those files from here.
|
[TGx]Downloaded from torrentgalaxy.org.txt |
524B |
007. When do MLPs (not) work well .html |
7.39KB |
008. Mini Project Training an MLP on MNIST.html |
10.34KB |
01. Additional NLP Lessons.html |
5.28KB |
01. AIND NLP L2 HS 04 Modeling V2-RGrGi-eKhOQ.en.vtt |
1.14KB |
01. AIND NLP L2 HS 04 Modeling V2-RGrGi-eKhOQ.mp4 |
2.86MB |
01. AIND NLP L2 HS 04 Modeling V2-RGrGi-eKhOQ.zh-CN.vtt |
1.03KB |
01. Feature Extraction.html |
4.72KB |
01. Feature Extraction-Bd6TJB8eVLQ.en.vtt |
1.10KB |
01. Feature Extraction-Bd6TJB8eVLQ.mp4 |
2.26MB |
01. Feature Extraction-Bd6TJB8eVLQ.zh-CN.vtt |
970B |
01. Intro.html |
7.64KB |
01. Intro.html |
5.69KB |
01. Intro.html |
6.15KB |
01. Introducing Alexis.html |
7.24KB |
01. Introducing Alexis-38ExGpdyvJI.en.vtt |
694B |
01. Introducing Alexis-38ExGpdyvJI.mp4 |
2.05MB |
01. Introducing Alexis-38ExGpdyvJI.pt-BR.vtt |
599B |
01. Introducing Alexis-38ExGpdyvJI.zh-CN.vtt |
615B |
01. Introducing Jay.html |
5.29KB |
01. Introducing Jay Alammar.html |
5.86KB |
01. Introducing Jeremy.html |
8.53KB |
01. Introducing Jeremy-U7RmFpVevis.en.vtt |
875B |
01. Introducing Jeremy-U7RmFpVevis.mp4 |
2.52MB |
01. Introducing Jeremy-U7RmFpVevis.zh-CN.vtt |
804B |
01. Introduction.html |
9.15KB |
01. Introduction-ZWRZvOXiC28.en.vtt |
3.53KB |
01. Introduction-ZWRZvOXiC28.mp4 |
12.77MB |
01. Introduction-ZWRZvOXiC28.zh-CN.vtt |
3.10KB |
01. Intro to LSTM.html |
5.90KB |
01. Modeling.html |
4.67KB |
01. Natural Language Processing-UQBxJzoCp-I.en.vtt |
1.17KB |
01. Natural Language Processing-UQBxJzoCp-I.mp4 |
3.39MB |
01. Natural Language Processing-UQBxJzoCp-I.zh-CN.vtt |
1.03KB |
01. NLP and Pipelines.html |
4.44KB |
01. NLP Overview.html |
5.34KB |
01. Overview.html |
4.84KB |
01. Overview.html |
5.07KB |
01. Text Processing.html |
5.17KB |
01. Text Processing-6LO6I5M18PQ.en.vtt |
1.18KB |
01. Text Processing-6LO6I5M18PQ.mp4 |
1.77MB |
01. Text Processing-6LO6I5M18PQ.zh-CN.vtt |
1.06KB |
01. Welcome to NLP-g-AlFF61p0I.en.vtt |
1.64KB |
01. Welcome to NLP-g-AlFF61p0I.mp4 |
4.97MB |
01. Welcome to NLP-g-AlFF61p0I.zh-CN.vtt |
1.49KB |
02. Applications of CNNs.html |
12.37KB |
02. Applications of CNNs-HrYNL_1SV2Y.en.vtt |
5.37KB |
02. Applications of CNNs-HrYNL_1SV2Y.mp4 |
17.70MB |
02. Applications of CNNs-HrYNL_1SV2Y.pt-BR.vtt |
5.66KB |
02. Applications of CNNs-HrYNL_1SV2Y.zh-CN.vtt |
4.70KB |
02. Bag of Words.html |
4.69KB |
02. Bag Of Words-A7M1z8yLl0w.en.vtt |
4.72KB |
02. Bag Of Words-A7M1z8yLl0w.mp4 |
4.01MB |
02. Bag Of Words-A7M1z8yLl0w.zh-CN.vtt |
4.13KB |
02. Classification Problems 1.html |
10.51KB |
02. Classsification Example-Dh625piH7Z0.en.vtt |
2.70KB |
02. Classsification Example-Dh625piH7Z0.mp4 |
2.07MB |
02. Classsification Example-Dh625piH7Z0.pt-BR.vtt |
2.51KB |
02. Classsification Example-Dh625piH7Z0.zh-CN.vtt |
2.37KB |
02. Coding Exercises.html |
5.57KB |
02. Embeddings Intro.html |
6.56KB |
02. Getting Started.html |
4.58KB |
02. How NLP Pipelines Work.html |
4.44KB |
02. Installing TensorFlow.html |
8.10KB |
02. Introduction.html |
5.03KB |
02. Introduction-erwnzFD7AeE.en.vtt |
2.34KB |
02. Introduction-erwnzFD7AeE.mp4 |
2.22MB |
02. Introduction-erwnzFD7AeE.pt-BR.vtt |
2.17KB |
02. Introduction-erwnzFD7AeE.zh-CN.vtt |
2.01KB |
02. Introduction to GPU Workspaces.html |
15.13KB |
02. IntroToRNNs Render-64HSG6HAfEI.en-US.vtt |
4.46KB |
02. IntroToRNNs Render-64HSG6HAfEI.mp4 |
3.99MB |
02. IntroToRNNs Render-64HSG6HAfEI.pt.vtt |
4.38KB |
02. IntroToRNNs Render-64HSG6HAfEI.zh-CN.vtt |
3.88KB |
02. Jay's Introduction-HPOzAlXhuxQ.en.vtt |
5.72KB |
02. Jay's Introduction-HPOzAlXhuxQ.mp4 |
5.81MB |
02. Jay's Introduction-HPOzAlXhuxQ.pt-BR.vtt |
5.58KB |
02. Jay's Introduction-HPOzAlXhuxQ.zh-CN.vtt |
5.15KB |
02. Jay Introduction.html |
5.08KB |
02. Language Model.html |
173.52KB |
02. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.en.vtt |
1.74KB |
02. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.mp4 |
1.28MB |
02. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.zh-CN.vtt |
1.53KB |
02. Review of RNNs.html |
5.87KB |
02. RNN vs LSTM.html |
5.12KB |
02. RNN Vs LSTM-70MgF-IwAr8.en.vtt |
4.71KB |
02. RNN Vs LSTM-70MgF-IwAr8.mp4 |
3.58MB |
02. RNN Vs LSTM-70MgF-IwAr8.pt-BR.vtt |
4.24KB |
02. RNN Vs LSTM-70MgF-IwAr8.zh-CN.vtt |
4.22KB |
02. Section 1 Introduction-_zo6RiwmDCk.en.vtt |
2.16KB |
02. Section 1 Introduction-_zo6RiwmDCk.mp4 |
4.72MB |
02. Section 1 Introduction-_zo6RiwmDCk.zh-CN.vtt |
1.78KB |
02. Section 1 Motivation for RNNs.html |
8.35KB |
02. Sentiment Prediction-uGN3rZJRiMY.en.vtt |
8.66KB |
02. Sentiment Prediction-uGN3rZJRiMY.mp4 |
11.25MB |
02. Sentiment Prediction-uGN3rZJRiMY.pt-BR.vtt |
7.33KB |
02. Sentiment Prediction-uGN3rZJRiMY.zh-CN.vtt |
8.00KB |
02. Sentiment RNN.html |
4.70KB |
02. Structured Languages.html |
8.40KB |
02. Structured Languages-NsmqUIHlk6U.en.vtt |
1.79KB |
02. Structured Languages-NsmqUIHlk6U.mp4 |
5.36MB |
02. Structured Languages-NsmqUIHlk6U.zh-CN.vtt |
1.51KB |
02-guide-how-transfer-learning-v3-01.png |
251.26KB |
02-guide-how-transfer-learning-v3-02.png |
219.27KB |
02-guide-how-transfer-learning-v3-03.png |
228.93KB |
02-guide-how-transfer-learning-v3-04.png |
255.16KB |
02-guide-how-transfer-learning-v3-05.png |
232.52KB |
02-guide-how-transfer-learning-v3-06.png |
259.12KB |
02-guide-how-transfer-learning-v3-07.png |
233.30KB |
02-guide-how-transfer-learning-v3-08.png |
241.57KB |
02-guide-how-transfer-learning-v3-09.png |
228.05KB |
02-guide-how-transfer-learning-v3-10.png |
241.76KB |
03. Applications.html |
5.06KB |
03. Applications seq2seq-tDJBDwriJYQ.en.vtt |
2.63KB |
03. Applications seq2seq-tDJBDwriJYQ.mp4 |
2.48MB |
03. Applications seq2seq-tDJBDwriJYQ.pt-BR.vtt |
2.50KB |
03. Applications seq2seq-tDJBDwriJYQ.zh-CN.vtt |
2.41KB |
03. Basics of LSTM.html |
5.13KB |
03. Capturing Text Data.html |
5.84KB |
03. Capturing Text Data-Z4mnMN1ApG4.en.vtt |
1.77KB |
03. Capturing Text Data-Z4mnMN1ApG4.mp4 |
2.37MB |
03. Capturing Text Data-Z4mnMN1ApG4.zh-CN.vtt |
1.57KB |
03. Classification Example-46PywnGa_cQ.en.vtt |
1.76KB |
03. Classification Example-46PywnGa_cQ.mp4 |
1.62MB |
03. Classification Example-46PywnGa_cQ.pt-BR.vtt |
1.60KB |
03. Classification Example-46PywnGa_cQ.zh-CN.vtt |
1.65KB |
03. Classification Problems 2.html |
9.34KB |
03. Data Preprocessing.html |
4.70KB |
03. Data Preprocessing-h4-LwZU9_k8.en.vtt |
5.33KB |
03. Data Preprocessing-h4-LwZU9_k8.mp4 |
6.86MB |
03. Data Preprocessing-h4-LwZU9_k8.pt-BR.vtt |
4.56KB |
03. Data Preprocessing-h4-LwZU9_k8.zh-CN.vtt |
4.45KB |
03. Grammar.html |
7.11KB |
03. Grammar-Jw3dA7xmoQ4.en.vtt |
727B |
03. Grammar-Jw3dA7xmoQ4.mp4 |
2.14MB |
03. Grammar-Jw3dA7xmoQ4.zh-CN.vtt |
617B |
03. Hello, Tensor World!.html |
8.23KB |
03. How Computers Interpret Images.html |
8.48KB |
03. How Computers Interpret Images-V4f6p6uRhu8.en.vtt |
5.52KB |
03. How Computers Interpret Images-V4f6p6uRhu8.mp4 |
6.18MB |
03. How Computers Interpret Images-V4f6p6uRhu8.pt-BR.vtt |
5.95KB |
03. How Computers Interpret Images-V4f6p6uRhu8.zh-CN.vtt |
4.91KB |
03. Implementing Word2Vec.html |
5.08KB |
03. Implementing Word2Vec-7M431_f9HgE.en.vtt |
16.86KB |
03. Implementing Word2Vec-7M431_f9HgE.mp4 |
23.33MB |
03. Implementing Word2Vec-7M431_f9HgE.pt-BR.vtt |
17.23KB |
03. Implementing Word2Vec-7M431_f9HgE.zh-CN.vtt |
14.27KB |
03. Learning Rate.html |
5.58KB |
03. Learning Rate-HLMjeDez7ps.en.vtt |
11.68KB |
03. Learning Rate-HLMjeDez7ps.mp4 |
9.62MB |
03. Learning Rate-HLMjeDez7ps.pt-BR.vtt |
10.29KB |
03. Learning Rate-HLMjeDez7ps.zh-CN.vtt |
10.11KB |
03. LSTM Basics-gjb68a4XsqE.en.vtt |
5.21KB |
03. LSTM Basics-gjb68a4XsqE.mp4 |
4.03MB |
03. LSTM Basics-gjb68a4XsqE.pt-BR.vtt |
5.06KB |
03. LSTM Basics-gjb68a4XsqE.zh-CN.vtt |
4.59KB |
03. LSTMs-RYbSHogZetc.en.vtt |
7.07KB |
03. LSTMs-RYbSHogZetc.mp4 |
6.87MB |
03. LSTMs-RYbSHogZetc.pt.vtt |
7.39KB |
03. LSTMs-RYbSHogZetc.zh-CN.vtt |
6.46KB |
03. Motivation for RNNs.html |
9.36KB |
03. Motivation for RNNs-vPhD02WxMk8.en.vtt |
6.16KB |
03. Motivation for RNNs-vPhD02WxMk8.mp4 |
5.73MB |
03. Motivation for RNNs-vPhD02WxMk8.zh-CN.vtt |
5.51KB |
03. NLP Machine Translation Workspace.html |
5.07KB |
03. Review of LSTMs.html |
5.55KB |
03. Sentiment Analysis.html |
8.35KB |
03. Tasks.html |
7.34KB |
03. Text Processing.html |
4.63KB |
03. Text Processing-pqheVyctkNQ.en.vtt |
2.63KB |
03. Text Processing-pqheVyctkNQ.mp4 |
2.96MB |
03. Text Processing-pqheVyctkNQ.zh-CN.vtt |
2.30KB |
03. TF-IDF.html |
4.65KB |
03. TF-IDF-XZBiBIRcACE.en.vtt |
2.38KB |
03. TF-IDF-XZBiBIRcACE.mp4 |
2.05MB |
03. TF-IDF-XZBiBIRcACE.zh-CN.vtt |
2.07KB |
04. Architecture encoder decoder-dkHdEAJnV_w.en.vtt |
5.45KB |
04. Architecture encoder decoder-dkHdEAJnV_w.mp4 |
4.49MB |
04. Architecture encoder decoder-dkHdEAJnV_w.pt-BR.vtt |
4.92KB |
04. Architecture encoder decoder-dkHdEAJnV_w.zh-CN.vtt |
4.82KB |
04. Architecture of LSTM.html |
5.17KB |
04. Architectures.html |
5.10KB |
04. Bookworm (Optional).html |
4.37KB |
04. Character-Wise RNN-dXl3eWCGLdU.en.vtt |
3.33KB |
04. Character-Wise RNN-dXl3eWCGLdU.mp4 |
2.88MB |
04. Character-Wise RNN-dXl3eWCGLdU.pt-BR.vtt |
3.66KB |
04. Character-Wise RNN-dXl3eWCGLdU.zh-CN.vtt |
3.04KB |
04. Character-wise RNNs.html |
5.63KB |
04. Creating Testing Sets.html |
5.04KB |
04. Creating Testing Sets-BRBbrNLz1ho.en.vtt |
2.02KB |
04. Creating Testing Sets-BRBbrNLz1ho.mp4 |
2.13MB |
04. Creating Testing Sets-BRBbrNLz1ho.pt-BR.vtt |
1.74KB |
04. Creating Testing Sets-BRBbrNLz1ho.zh-CN.vtt |
1.68KB |
04. Feature Extraction.html |
4.68KB |
04. Feature Extraction-UgENzCmfFWE.en.vtt |
3.82KB |
04. Feature Extraction-UgENzCmfFWE.mp4 |
3.47MB |
04. Feature Extraction-UgENzCmfFWE.zh-CN.vtt |
3.34KB |
04. Learning Rate.html |
7.09KB |
04. Linear Boundaries.html |
10.04KB |
04. Linear Boundaries-X-uMlsBi07k.en.vtt |
3.85KB |
04. Linear Boundaries-X-uMlsBi07k.mp4 |
3.85MB |
04. Linear Boundaries-X-uMlsBi07k.pt-BR.vtt |
3.67KB |
04. Linear Boundaries-X-uMlsBi07k.zh-CN.vtt |
3.36KB |
04. LSTM Architecture-ycwthhdx8ws.en.vtt |
1.49KB |
04. LSTM Architecture-ycwthhdx8ws.mp4 |
1.07MB |
04. LSTM Architecture-ycwthhdx8ws.pt-BR.vtt |
1.46KB |
04. LSTM Architecture-ycwthhdx8ws.zh-CN.vtt |
1.34KB |
04. MLPs for Image Classification.html |
7.75KB |
04. MLPs For Image Classification-TIFStebu530.en.vtt |
3.82KB |
04. MLPs For Image Classification-TIFStebu530.mp4 |
4.40MB |
04. MLPs For Image Classification-TIFStebu530.pt-BR.vtt |
4.06KB |
04. MLPs For Image Classification-TIFStebu530.zh-CN.vtt |
3.42KB |
04. One-Hot Encoding.html |
4.71KB |
04. One-Hot Encoding-a0j1CDXFYZI.en.vtt |
1.40KB |
04. One-Hot Encoding-a0j1CDXFYZI.mp4 |
1.08MB |
04. One-Hot Encoding-a0j1CDXFYZI.zh-CN.vtt |
1.21KB |
04. Quiz Read Text Files.html |
7.32KB |
04. Quiz TensorFlow Linear Function.html |
21.13KB |
04. Subsampling Solution.html |
5.08KB |
04. Subsampling Solution-MAUM_mV_lj8.en.vtt |
5.99KB |
04. Subsampling Solution-MAUM_mV_lj8.mp4 |
9.65MB |
04. Subsampling Solution-MAUM_mV_lj8.pt-BR.vtt |
6.27KB |
04. Subsampling Solution-MAUM_mV_lj8.zh-CN.vtt |
5.04KB |
04. Topic Modeling.html |
17.52KB |
04. Unstructured Text.html |
7.66KB |
04. Unstructured Text-OmwSdaec5vU.en.vtt |
1.74KB |
04. Unstructured Text-OmwSdaec5vU.mp4 |
4.63MB |
04. Unstructured Text-OmwSdaec5vU.zh-CN.vtt |
1.55KB |
04. Vanilla learning and structured input-oAt0eYD5_Tc.en.vtt |
6.63KB |
04. Vanilla learning and structured input-oAt0eYD5_Tc.mp4 |
5.78MB |
04. Vanilla learning and structured input-oAt0eYD5_Tc.zh-CN.vtt |
5.92KB |
04. Vanilla supervised learners and structured input.html |
8.44KB |
05. 09 Higher Dimensions-eBHunImDmWw.en.vtt |
2.95KB |
05. 09 Higher Dimensions-eBHunImDmWw.mp4 |
2.59MB |
05. 09 Higher Dimensions-eBHunImDmWw.pt-BR.vtt |
2.66KB |
05. 09 Higher Dimensions-eBHunImDmWw.zh-CN.vtt |
2.38KB |
05. Architecture in More Depth-rdAo4MqLbEk.en.vtt |
5.17KB |
05. Architecture in More Depth-rdAo4MqLbEk.mp4 |
5.35MB |
05. Architecture in More Depth-rdAo4MqLbEk.pt-BR.vtt |
5.02KB |
05. Architecture in More Depth-rdAo4MqLbEk.zh-CN.vtt |
4.56KB |
05. Architectures in More Depth.html |
5.12KB |
05. Building the RNN.html |
4.89KB |
05. Building The RNN 1-XTD6slf64fM.en.vtt |
13.87KB |
05. Building The RNN 1-XTD6slf64fM.mp4 |
19.11MB |
05. Building The RNN 1-XTD6slf64fM.pt-BR.vtt |
12.30KB |
05. Building The RNN 1-XTD6slf64fM.zh-CN.vtt |
12.07KB |
05. Categorical Cross-Entropy.html |
8.57KB |
05. Categorical Cross-Entropy-3sDYifgjFck.en.vtt |
4.82KB |
05. Categorical Cross-Entropy-3sDYifgjFck.mp4 |
5.42MB |
05. Categorical Cross-Entropy-3sDYifgjFck.pt-BR.vtt |
5.13KB |
05. Categorical Cross-Entropy-3sDYifgjFck.zh-CN.vtt |
4.24KB |
05. Cleaning.html |
5.62KB |
05. Cleaning-qawXp9DPV6I.en.vtt |
8.29KB |
05. Cleaning-qawXp9DPV6I.mp4 |
19.59MB |
05. Cleaning-qawXp9DPV6I.zh-CN.vtt |
7.47KB |
05. Counting Words.html |
8.85KB |
05. Higher Dimensions.html |
10.51KB |
05. Learn Gate-aVHVI7ovbHY.en.vtt |
2.63KB |
05. Learn Gate-aVHVI7ovbHY.mp4 |
2.22MB |
05. Learn Gate-aVHVI7ovbHY.pt-BR.vtt |
2.66KB |
05. Learn Gate-aVHVI7ovbHY.zh-CN.vtt |
2.51KB |
05. Making Batches.html |
5.04KB |
05. Making Batches-jx7qwdw-94k.en.vtt |
4.50KB |
05. Making Batches-jx7qwdw-94k.mp4 |
7.73MB |
05. Making Batches-jx7qwdw-94k.pt-BR.vtt |
4.51KB |
05. Making Batches-jx7qwdw-94k.zh-CN.vtt |
3.77KB |
05. Minibatch Size.html |
5.30KB |
05. Minibatch Size-GrrO1NFxaW8.en.vtt |
5.36KB |
05. Minibatch Size-GrrO1NFxaW8.mp4 |
4.78MB |
05. Minibatch Size-GrrO1NFxaW8.pt-BR.vtt |
4.77KB |
05. Minibatch Size-GrrO1NFxaW8.zh-CN.vtt |
4.77KB |
05. Modeling.html |
4.35KB |
05. Modeling-P4w_2rkxBvE.en.vtt |
1.29KB |
05. Modeling-P4w_2rkxBvE.mp4 |
1.19MB |
05. Modeling-P4w_2rkxBvE.zh-CN.vtt |
1.09KB |
05. Quiz TensorFlow Softmax.html |
8.42KB |
05. Search and Ranking.html |
6.27KB |
05. Section 2 Introduction-behe53793wo.en.vtt |
606B |
05. Section 2 Introduction-behe53793wo.mp4 |
1.36MB |
05. Section 2 Introduction-behe53793wo.zh-CN.vtt |
528B |
05. Section 2 Motivating and Modelling Recursive Sequences.html |
8.40KB |
05. Sequence Batching.html |
5.63KB |
05. Sequence-Batching-Z4OiyU0Cldg.en.vtt |
2.09KB |
05. Sequence-Batching-Z4OiyU0Cldg.mp4 |
2.29MB |
05. Sequence-Batching-Z4OiyU0Cldg.pt-BR.vtt |
2.33KB |
05. Sequence-Batching-Z4OiyU0Cldg.zh-CN.vtt |
1.92KB |
05. The Learn Gate.html |
5.72KB |
05. Word Embeddings.html |
4.70KB |
05. Word Embeddings-4mM_S9L2_JQ.en.vtt |
1.55KB |
05. Word Embeddings-4mM_S9L2_JQ.mp4 |
1.22MB |
05. Word Embeddings-4mM_S9L2_JQ.zh-CN.vtt |
1.26KB |
06. Batches Solution.html |
5.05KB |
06. Batches Solution-DdfR0RjSC-Q.en.vtt |
2.64KB |
06. Batches Solution-DdfR0RjSC-Q.mp4 |
3.88MB |
06. Batches Solution-DdfR0RjSC-Q.pt-BR.vtt |
2.50KB |
06. Batches Solution-DdfR0RjSC-Q.zh-CN.vtt |
2.40KB |
06. Character-wise RNN Notebook.html |
5.94KB |
06. Context Is Everything.html |
5.84KB |
06. Context-J-4pfu2w1C0.en.vtt |
2.12KB |
06. Context-J-4pfu2w1C0.mp4 |
4.62MB |
06. Context-J-4pfu2w1C0.zh-CN.vtt |
1.97KB |
06. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.en.vtt |
5.89KB |
06. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.mp4 |
5.13MB |
06. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.pt-BR.vtt |
5.61KB |
06. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.zh-CN.vtt |
4.98KB |
06. Forget Gate-iWxpfxLUPSU.en.vtt |
1.26KB |
06. Forget Gate-iWxpfxLUPSU.mp4 |
1.04MB |
06. Forget Gate-iWxpfxLUPSU.pt-BR.vtt |
1.33KB |
06. Forget Gate-iWxpfxLUPSU.zh-CN.vtt |
1.12KB |
06. How do we model an ordered sequence-LYcB8iV2bGE.en.vtt |
5.53KB |
06. How do we model an ordered sequence-LYcB8iV2bGE.mp4 |
5.94MB |
06. How do we model an ordered sequence-LYcB8iV2bGE.zh-CN.vtt |
4.97KB |
06. Machine Translation.html |
19.97KB |
06. Model Validation in Keras.html |
7.75KB |
06. Model Validation in Keras-002jNXSM6CU.en.vtt |
5.51KB |
06. Model Validation in Keras-002jNXSM6CU.mp4 |
5.20MB |
06. Model Validation in Keras-002jNXSM6CU.pt-BR.vtt |
6.07KB |
06. Model Validation in Keras-002jNXSM6CU.zh-CN.vtt |
4.74KB |
06. Motivating and modeling recursive sequences.html |
8.42KB |
06. Normalization.html |
5.89KB |
06. Normalization-eOV2UUY8vtM.en.vtt |
3.24KB |
06. Normalization-eOV2UUY8vtM.mp4 |
3.13MB |
06. Normalization-eOV2UUY8vtM.zh-CN.vtt |
2.88KB |
06. Number Of Iterations-TTdHpSb4DV8.en.vtt |
1.63KB |
06. Number Of Iterations-TTdHpSb4DV8.mp4 |
1.46MB |
06. Number Of Iterations-TTdHpSb4DV8.pt-BR.vtt |
1.53KB |
06. Number Of Iterations-TTdHpSb4DV8.zh-CN.vtt |
1.50KB |
06. Number of Training Iterations Epochs.html |
7.75KB |
06. Perceptrons.html |
10.44KB |
06. Preprocessing.html |
5.59KB |
06. Preprocessing-ktQW6p9pOS4.en.vtt |
7.27KB |
06. Preprocessing-ktQW6p9pOS4.mp4 |
8.88MB |
06. Preprocessing-ktQW6p9pOS4.pt-BR.vtt |
6.81KB |
06. Preprocessing-ktQW6p9pOS4.zh-CN.vtt |
6.40KB |
06. Quiz TensorFlow Cross Entropy.html |
8.79KB |
06. The Forget Gate.html |
5.65KB |
06. Training the Network.html |
4.72KB |
06. Training The Network-nknJ3Xu3ld0.en.vtt |
6.38KB |
06. Training The Network-nknJ3Xu3ld0.mp4 |
8.41MB |
06. Training The Network-nknJ3Xu3ld0.pt-BR.vtt |
5.70KB |
06. Training The Network-nknJ3Xu3ld0.zh-CN.vtt |
5.42KB |
06. Word2Vec.html |
4.66KB |
06. Word2Vec-7jjappzGRe0.en.vtt |
3.42KB |
06. Word2Vec-7jjappzGRe0.mp4 |
2.98MB |
06. Word2Vec-7jjappzGRe0.zh-CN.vtt |
2.85KB |
07. Building the Network.html |
5.08KB |
07. Building The Network-fhSb5c6UX6M.en.vtt |
5.14KB |
07. Building The Network-fhSb5c6UX6M.mp4 |
8.09MB |
07. Building The Network-fhSb5c6UX6M.pt-BR.vtt |
5.00KB |
07. Building The Network-fhSb5c6UX6M.zh-CN.vtt |
4.12KB |
07. GloVe.html |
4.64KB |
07. GloVe-KK3PMIiIn8o.en.vtt |
4.21KB |
07. GloVe-KK3PMIiIn8o.mp4 |
3.81MB |
07. GloVe-KK3PMIiIn8o.zh-CN.vtt |
3.60KB |
07. Implementing a Character-wise RNN.html |
5.73KB |
07. Implementing a Character-wise RNN-KPCMn_jg2oY.en.vtt |
9.94KB |
07. Implementing a Character-wise RNN-KPCMn_jg2oY.mp4 |
13.63MB |
07. Implementing a Character-wise RNN-KPCMn_jg2oY.pt-BR.vtt |
10.69KB |
07. Implementing a Character-wise RNN-KPCMn_jg2oY.zh-CN.vtt |
8.71KB |
07. Natural Language Processing-sQiURKPFXNM.en.vtt |
4.41KB |
07. Natural Language Processing-sQiURKPFXNM.mp4 |
15.48MB |
07. Natural Language Processing-sQiURKPFXNM.zh-CN.vtt |
4.03KB |
07. NLP and IBM Watson.html |
5.41KB |
07. NLP Resources.html |
5.56KB |
07. Number of Hidden Units Layers.html |
5.96KB |
07. Number Of Hidden Units Layers-IkGAIQH5wH8.en.vtt |
3.23KB |
07. Number Of Hidden Units Layers-IkGAIQH5wH8.mp4 |
3.40MB |
07. Number Of Hidden Units Layers-IkGAIQH5wH8.pt-BR.vtt |
3.02KB |
07. Number Of Hidden Units Layers-IkGAIQH5wH8.zh-CN.vtt |
2.82KB |
07. Quiz Mini-batch.html |
25.02KB |
07. Remember Gate-0qlm86HaXuU.en.vtt |
734B |
07. Remember Gate-0qlm86HaXuU.mp4 |
676.91KB |
07. Remember Gate-0qlm86HaXuU.pt-BR.vtt |
700B |
07. Remember Gate-0qlm86HaXuU.zh-CN.vtt |
632B |
07. Sentiment RNN 2-V9YGGjmoHS0.en.vtt |
17.68KB |
07. Sentiment RNN 2-V9YGGjmoHS0.mp4 |
23.11MB |
07. Sentiment RNN 2-V9YGGjmoHS0.pt-BR.vtt |
15.77KB |
07. Sentiment RNN 2-V9YGGjmoHS0.zh-CN.vtt |
14.72KB |
07. Sequence to sequence in TensorFlow.html |
8.01KB |
07. Simple recursive examples.html |
8.58KB |
07. Simple recursive examples-F4-CBqMsd_Y.en.vtt |
8.06KB |
07. Simple recursive examples-F4-CBqMsd_Y.mp4 |
7.53MB |
07. Simple recursive examples-F4-CBqMsd_Y.zh-CN.vtt |
7.15KB |
07. Solutions.html |
4.67KB |
07. The Remember Gate.html |
5.53KB |
07. Tokenization.html |
5.45KB |
07. Tokenization-4Ieotbeh4u8.en.vtt |
2.89KB |
07. Tokenization-4Ieotbeh4u8.mp4 |
3.22MB |
07. Tokenization-4Ieotbeh4u8.zh-CN.vtt |
2.59KB |
07. When do MLPs (not) work well .html |
7.39KB |
07. When do MLPs (not) work well-deMeuLdZN3Q.en.vtt |
3.61KB |
07. When do MLPs (not) work well-deMeuLdZN3Q.mp4 |
5.54MB |
07. When do MLPs (not) work well-deMeuLdZN3Q.pt-BR.vtt |
3.84KB |
07. When do MLPs (not) work well-deMeuLdZN3Q.zh-CN.vtt |
3.11KB |
07. Why Neural Networks.html |
9.33KB |
07. Why Neural Networks-zAkzOZntK6Y.en.vtt |
1.38KB |
07. Why Neural Networks-zAkzOZntK6Y.mp4 |
982.27KB |
07. Why Neural Networks-zAkzOZntK6Y.pt-BR.vtt |
1.27KB |
07. Why Neural Networks-zAkzOZntK6Y.zh-CN.vtt |
1.18KB |
08. AND And OR Perceptrons-45K5N0P9wJk.en.vtt |
3.00KB |
08. AND And OR Perceptrons-45K5N0P9wJk.mp4 |
2.68MB |
08. AND And OR Perceptrons-45K5N0P9wJk.pt-BR.vtt |
3.15KB |
08. AND And OR Perceptrons-45K5N0P9wJk.zh-CN.vtt |
2.48KB |
08. Applications of NLP.html |
5.38KB |
08. Applications of NLP-33dq-H6U4AI.en.vtt |
7.00KB |
08. Applications of NLP-33dq-H6U4AI.mp4 |
27.97MB |
08. Applications of NLP-33dq-H6U4AI.zh-CN.vtt |
6.12KB |
08. Batching Data Solution.html |
5.66KB |
08. Batching Data Solution-o3nBxHJLQcc.en.vtt |
4.31KB |
08. Batching Data Solution-o3nBxHJLQcc.mp4 |
5.08MB |
08. Batching Data Solution-o3nBxHJLQcc.pt-BR.vtt |
4.33KB |
08. Batching Data Solution-o3nBxHJLQcc.zh-CN.vtt |
3.70KB |
08. Embeddings for Deep Learning.html |
4.78KB |
08. Embeddings For Deep Learning-gj8u1KG0H2w.en.vtt |
5.11KB |
08. Embeddings For Deep Learning-gj8u1KG0H2w.mp4 |
4.70MB |
08. Embeddings For Deep Learning-gj8u1KG0H2w.zh-CN.vtt |
4.70KB |
08. Epochs.html |
12.70KB |
08. Inputs.html |
15.30KB |
08. LSTM 7 Use Gate-5Ifolm1jTdY.en.vtt |
1.75KB |
08. LSTM 7 Use Gate-5Ifolm1jTdY.mp4 |
1.50MB |
08. LSTM 7 Use Gate-5Ifolm1jTdY.pt-BR.vtt |
1.73KB |
08. LSTM 7 Use Gate-5Ifolm1jTdY.zh-CN.vtt |
1.50KB |
08. Mini Project Training an MLP on MNIST.html |
10.34KB |
08. Negative Sampling.html |
5.06KB |
08. Negative Sampling-gW17AHBKbHY.en.vtt |
2.55KB |
08. Negative Sampling-gW17AHBKbHY.mp4 |
4.16MB |
08. Negative Sampling-gW17AHBKbHY.pt-BR.vtt |
2.36KB |
08. Negative Sampling-gW17AHBKbHY.zh-CN.vtt |
2.19KB |
08. NLP Summary-B9ul8fsQYOA.en.vtt |
688B |
08. NLP Summary-B9ul8fsQYOA.mp4 |
1.38MB |
08. NLP Summary-B9ul8fsQYOA.zh-CN.vtt |
624B |
08. Perceptrons as Logical Operators.html |
20.86KB |
08. Quiz Split Sentences.html |
8.16KB |
08. Recursive or not Part 1.html |
9.57KB |
08. RNN Hyperparameters.html |
11.28KB |
08. RNN Hyperparameters-yQvnv7l_aUo.en.vtt |
3.87KB |
08. RNN Hyperparameters-yQvnv7l_aUo.mp4 |
4.12MB |
08. RNN Hyperparameters-yQvnv7l_aUo.pt-BR.vtt |
3.71KB |
08. RNN Hyperparameters-yQvnv7l_aUo.zh-CN.vtt |
3.62KB |
08. Summary.html |
4.59KB |
08. The Use Gate.html |
5.77KB |
08. XOR Perceptron-TF83GfjYLdw.en.vtt |
1.01KB |
08. XOR Perceptron-TF83GfjYLdw.mp4 |
947.00KB |
08. XOR Perceptron-TF83GfjYLdw.pt-BR.vtt |
1.00KB |
08. XOR Perceptron-TF83GfjYLdw.zh-CN.vtt |
1021B |
09. 07 Perceptron Algorithm Trick-lif_qPmXvWA.en.vtt |
4.11KB |
09. 07 Perceptron Algorithm Trick-lif_qPmXvWA.mp4 |
3.66MB |
09. 07 Perceptron Algorithm Trick-lif_qPmXvWA.pt-BR.vtt |
4.17KB |
09. 07 Perceptron Algorithm Trick-lif_qPmXvWA.zh-CN.vtt |
3.50KB |
09. Building the Network Solution.html |
5.14KB |
09. Building The Network Solution-pkBAhQ2Ki-8.en.vtt |
4.06KB |
09. Building The Network Solution-pkBAhQ2Ki-8.mp4 |
7.34MB |
09. Building The Network Solution-pkBAhQ2Ki-8.pt-BR.vtt |
4.03KB |
09. Building The Network Solution-pkBAhQ2Ki-8.zh-CN.vtt |
3.34KB |
09. Challenges in NLP.html |
5.33KB |
09. DL 10 S Perceptron Algorithm-fATmrG2hQzI.en.vtt |
420B |
09. DL 10 S Perceptron Algorithm-fATmrG2hQzI.mp4 |
260.01KB |
09. DL 10 S Perceptron Algorithm-fATmrG2hQzI.pt-BR.vtt |
364B |
09. DL 10 S Perceptron Algorithm-fATmrG2hQzI.zh-CN.vtt |
390B |
09. Further Reading.html |
5.53KB |
09. Lab TensorFlow Neural Network.html |
10.39KB |
09. Local Connectivity.html |
7.05KB |
09. Local Connectivity-z9wiDg0w-Dc.en.vtt |
8.95KB |
09. Local Connectivity-z9wiDg0w-Dc.mp4 |
13.09MB |
09. Local Connectivity-z9wiDg0w-Dc.pt-BR.vtt |
9.29KB |
09. Local Connectivity-z9wiDg0w-Dc.zh-CN.vtt |
7.62KB |
09. LSTM Cell.html |
5.57KB |
09. LSTM Cell-ajC-5uWB8S4.en.vtt |
6.06KB |
09. LSTM Cell-ajC-5uWB8S4.mp4 |
7.79MB |
09. LSTM Cell-ajC-5uWB8S4.pt-BR.vtt |
6.21KB |
09. LSTM Cell-ajC-5uWB8S4.zh-CN.vtt |
5.30KB |
09. NLP H 8-LMvKyA3ZBZE.en.vtt |
8.38KB |
09. NLP H 8-LMvKyA3ZBZE.mp4 |
30.44MB |
09. NLP H 8-LMvKyA3ZBZE.zh-CN.vtt |
7.42KB |
09. Perceptron Algorithm--zhTROHtscQ.en.vtt |
2.64KB |
09. Perceptron Algorithm--zhTROHtscQ.mp4 |
1.92MB |
09. Perceptron Algorithm--zhTROHtscQ.pt-BR.vtt |
2.41KB |
09. Perceptron Algorithm--zhTROHtscQ.zh-CN.vtt |
2.35KB |
09. Perceptron Trick.html |
13.12KB |
09. Putting it All Together.html |
5.20KB |
09. Putting It All Together-IF8FlKW-Zo0.en.vtt |
2.42KB |
09. Putting It All Together-IF8FlKW-Zo0.mp4 |
1.58MB |
09. Putting It All Together-IF8FlKW-Zo0.pt-BR.vtt |
2.36KB |
09. Putting It All Together-IF8FlKW-Zo0.zh-CN.vtt |
2.13KB |
09. Recursive or not Part 2.html |
9.72KB |
09. RNN Hyperparameters.html |
6.26KB |
09. Stop Word Removal.html |
5.18KB |
09. Stop Word Removal-WAU_Ij0GJbw.en.vtt |
1.59KB |
09. Stop Word Removal-WAU_Ij0GJbw.mp4 |
1.96MB |
09. Stop Word Removal-WAU_Ij0GJbw.zh-CN.vtt |
1.40KB |
09. t-SNE.html |
4.64KB |
09. T-SNE-xxcK8oZ6_WE.en.vtt |
2.17KB |
09. T-SNE-xxcK8oZ6_WE.mp4 |
5.56MB |
09. T-SNE-xxcK8oZ6_WE.zh-CN.vtt |
1.84KB |
10. Convolutional Layers (Part 1).html |
7.08KB |
10. Convolutional Layers-h5R_JvdUrUI.en.vtt |
7.22KB |
10. Convolutional Layers-h5R_JvdUrUI.mp4 |
8.04MB |
10. Convolutional Layers-h5R_JvdUrUI.pt-BR.vtt |
7.57KB |
10. Convolutional Layers-h5R_JvdUrUI.zh-CN.vtt |
6.10KB |
10. LSTM Cell Solution.html |
5.63KB |
10. LSTM Cell Solution-X4uA0dq_4jA.en.vtt |
3.13KB |
10. LSTM Cell Solution-X4uA0dq_4jA.mp4 |
3.55MB |
10. LSTM Cell Solution-X4uA0dq_4jA.pt-BR.vtt |
3.06KB |
10. LSTM Cell Solution-X4uA0dq_4jA.zh-CN.vtt |
2.82KB |
10. NLP Services.html |
7.66KB |
10. NLP Services-vTupzLkpxJU.en.vtt |
5.00KB |
10. NLP Services-vTupzLkpxJU.mp4 |
16.49MB |
10. NLP Services-vTupzLkpxJU.zh-CN.vtt |
4.41KB |
10. Part-of-Speech Tagging.html |
5.75KB |
10. Part-of-Speech Tagging-WFEu8bXI5OA.en.vtt |
1.67KB |
10. Part-of-Speech Tagging-WFEu8bXI5OA.mp4 |
2.15MB |
10. Part-of-Speech Tagging-WFEu8bXI5OA.zh-CN.vtt |
1.48KB |
10. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.en.vtt |
3.45KB |
10. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.mp4 |
2.87MB |
10. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.pt-BR.vtt |
3.27KB |
10. Perceptron Algorithm.html |
16.71KB |
10. Quiz.html |
6.95KB |
10. Recursive or not Part 3.html |
9.54KB |
10. Sequence to Sequence in TensorFlow.html |
5.24KB |
10. Sources & References.html |
6.03KB |
10. Training Results.html |
5.05KB |
10. Training Results-uISA5ns47s8.en.vtt |
4.36KB |
10. Training Results-uISA5ns47s8.mp4 |
9.78MB |
10. Training Results-uISA5ns47s8.pt-BR.vtt |
4.38KB |
10. Training Results-uISA5ns47s8.zh-CN.vtt |
3.83KB |
10. Two-layer Neural Network.html |
7.40KB |
11. Convolutional Layers (Part 2).html |
7.85KB |
11. Convolutional Layers-RnM1D-XI--8.en.vtt |
9.99KB |
11. Convolutional Layers-RnM1D-XI--8.mp4 |
19.81MB |
11. Convolutional Layers-RnM1D-XI--8.pt-BR.vtt |
11.00KB |
11. Convolutional Layers-RnM1D-XI--8.zh-CN.vtt |
8.71KB |
11. Getting Started with Watson.html |
6.56KB |
11. Getting Started with Watson-9LTS9JfGNzM.en.vtt |
13.99KB |
11. Getting Started with Watson-9LTS9JfGNzM.mp4 |
21.81MB |
11. Getting Started with Watson-9LTS9JfGNzM.zh-CN.vtt |
12.55KB |
11. Graphical model representations of recursive sequences-OS9yQCTzCkg.en.vtt |
8.40KB |
11. Graphical model representations of recursive sequences-OS9yQCTzCkg.mp4 |
7.63MB |
11. Graphical model representations of recursive sequences-OS9yQCTzCkg.zh-CN.vtt |
7.57KB |
11. Named Entity Recognition.html |
5.22KB |
11. Named Entity Recognition-QUQu2nsE7vE.en.vtt |
1.10KB |
11. Named Entity Recognition-QUQu2nsE7vE.mp4 |
1.17MB |
11. Named Entity Recognition-QUQu2nsE7vE.zh-CN.vtt |
1.00KB |
11. Non-Linear Regions.html |
9.31KB |
11. Non-Linear Regions-B8UrWnHh1Wc.en.vtt |
1.77KB |
11. Non-Linear Regions-B8UrWnHh1Wc.mp4 |
1.33MB |
11. Non-Linear Regions-B8UrWnHh1Wc.pt-BR.vtt |
1.51KB |
11. Non-Linear Regions-B8UrWnHh1Wc.zh-CN.vtt |
1.57KB |
11. Other architectures.html |
5.57KB |
11. Other Architectures-MsxFDuYlTuQ.en.vtt |
2.31KB |
11. Other Architectures-MsxFDuYlTuQ.mp4 |
1.71MB |
11. Other Architectures-MsxFDuYlTuQ.pt-BR.vtt |
2.45KB |
11. Other Architectures-MsxFDuYlTuQ.zh-CN.vtt |
2.04KB |
11. Quiz TensorFlow ReLUs.html |
9.04KB |
11. RNN Output.html |
5.58KB |
11. RNN Output-RkanDkcrTxs.en.vtt |
5.73KB |
11. RNN Output-RkanDkcrTxs.mp4 |
8.92MB |
11. RNN Output-RkanDkcrTxs.pt-BR.vtt |
5.64KB |
11. RNN Output-RkanDkcrTxs.zh-CN.vtt |
5.14KB |
11. Ways of thinking about recursivity.html |
8.48KB |
12. A simple model for my savings account balance-JQ2Nzzxx5oQ.en.vtt |
9.61KB |
12. A simple model for my savings account balance-JQ2Nzzxx5oQ.mp4 |
9.01MB |
12. A simple model for my savings account balance-JQ2Nzzxx5oQ.zh-CN.vtt |
8.70KB |
12. Deep Neural Network in TensorFlow.html |
11.26KB |
12. Deploying a Bluemix Application.html |
5.96KB |
12. Deploying a Bluemix Application-YF2SgUXzk9k.en.vtt |
1.21KB |
12. Deploying a Bluemix Application-YF2SgUXzk9k.mp4 |
2.85MB |
12. Deploying a Bluemix Application-YF2SgUXzk9k.zh-CN.vtt |
1.08KB |
12. Driving a recursive sequence.html |
8.43KB |
12. Error Functions.html |
9.29KB |
12. Error Functions-YfUUunxWIJw.en.vtt |
790B |
12. Error Functions-YfUUunxWIJw.mp4 |
3.54MB |
12. Error Functions-YfUUunxWIJw.pt-BR.vtt |
804B |
12. Error Functions-YfUUunxWIJw.zh-CN.vtt |
739B |
12. Network Loss.html |
5.59KB |
12. Network Loss-itu-uNK4brc.en.vtt |
3.08KB |
12. Network Loss-itu-uNK4brc.mp4 |
4.28MB |
12. Network Loss-itu-uNK4brc.pt-BR.vtt |
3.16KB |
12. Network Loss-itu-uNK4brc.zh-CN.vtt |
2.71KB |
12. Outro LSTM.html |
5.10KB |
12. Stemming and Lemmatization.html |
5.23KB |
12. Stemming And Lemmatization-7Gjf81u5hmw.en.vtt |
4.77KB |
12. Stemming And Lemmatization-7Gjf81u5hmw.mp4 |
4.93MB |
12. Stemming And Lemmatization-7Gjf81u5hmw.zh-CN.vtt |
4.26KB |
12. Stride and Padding.html |
7.05KB |
12. Stride and Padding-0r9o8hprDXQ.en.vtt |
4.41KB |
12. Stride and Padding-0r9o8hprDXQ.mp4 |
7.98MB |
12. Stride and Padding-0r9o8hprDXQ.pt-BR.vtt |
4.55KB |
12. Stride and Padding-0r9o8hprDXQ.zh-CN.vtt |
3.74KB |
13. Convolutional Layers in Keras.html |
11.41KB |
13. Error Functions-jfKShxGAbok.en.vtt |
9.45KB |
13. Error Functions-jfKShxGAbok.mp4 |
7.21MB |
13. Error Functions-jfKShxGAbok.pt-BR.vtt |
9.14KB |
13. Error Functions-jfKShxGAbok.zh-CN.vtt |
8.35KB |
13. Log-loss Error Function.html |
10.96KB |
13. Output and Loss Solutions.html |
5.68KB |
13. Output And Loss Solutions-CT8hcU7FmGc.en.vtt |
3.45KB |
13. Output And Loss Solutions-CT8hcU7FmGc.mp4 |
4.69MB |
13. Output And Loss Solutions-CT8hcU7FmGc.pt-BR.vtt |
3.21KB |
13. Output And Loss Solutions-CT8hcU7FmGc.zh-CN.vtt |
3.05KB |
13. Save and Restore TensorFlow Models.html |
14.36KB |
13. Section summary.html |
8.32KB |
13. Summarizing recursivity-l1H8dfGW2A4.en.vtt |
1.39KB |
13. Summarizing recursivity-l1H8dfGW2A4.mp4 |
1.73MB |
13. Summarizing recursivity-l1H8dfGW2A4.zh-CN.vtt |
1.27KB |
13. Summary.html |
5.12KB |
13. Summary-zKYEvRd2XmI.en.vtt |
1.11KB |
13. Summary-zKYEvRd2XmI.mp4 |
977.95KB |
13. Summary-zKYEvRd2XmI.zh-CN.vtt |
984B |
13. Towards Augmented Intelligence.html |
5.44KB |
13. Towards Augmented Intelligence-6y2B8VKoGTw.en.vtt |
3.31KB |
13. Towards Augmented Intelligence-6y2B8VKoGTw.mp4 |
12.37MB |
13. Towards Augmented Intelligence-6y2B8VKoGTw.zh-CN.vtt |
3.02KB |
14. [Preview] Project Bookworm.html |
11.13KB |
14. Build the Network.html |
5.63KB |
14. Build The Network-RVNjDlWTBQU.en.vtt |
4.09KB |
14. Build The Network-RVNjDlWTBQU.mp4 |
7.10MB |
14. Build The Network-RVNjDlWTBQU.pt-BR.vtt |
4.00KB |
14. Build The Network-RVNjDlWTBQU.zh-CN.vtt |
3.45KB |
14. Discrete vs. Continuous-Rm2KxFaPiJg.en.vtt |
5.70KB |
14. Discrete vs. Continuous-Rm2KxFaPiJg.mp4 |
5.35MB |
14. Discrete vs. Continuous-Rm2KxFaPiJg.pt-BR.vtt |
5.67KB |
14. Discrete vs. Continuous-Rm2KxFaPiJg.zh-CN.vtt |
4.67KB |
14. Discrete vs Continuous.html |
11.57KB |
14. Discrete vs Continuous-rdP-RPDFkl0.en.vtt |
551B |
14. Discrete vs Continuous-rdP-RPDFkl0.mp4 |
2.26MB |
14. Discrete vs Continuous-rdP-RPDFkl0.pt-BR.vtt |
584B |
14. Discrete vs Continuous-rdP-RPDFkl0.zh-CN.vtt |
481B |
14. Finetuning.html |
9.76KB |
14. Quiz Dimensionality.html |
15.80KB |
14. Section 3 Injecting recursivity into a learner (the lazy wa.html |
8.41KB |
14. Section 3 Introduction-VyE6NcPbX9Q.en.vtt |
594B |
14. Section 3 Introduction-VyE6NcPbX9Q.mp4 |
1.49MB |
14. Section 3 Introduction-VyE6NcPbX9Q.zh-CN.vtt |
510B |
15. AIND RNN 3 0-jXdIx18dIa0.en.vtt |
3.19KB |
15. AIND RNN 3 0-jXdIx18dIa0.mp4 |
2.84MB |
15. AIND RNN 3 0-jXdIx18dIa0.zh-CN.vtt |
2.92KB |
15. Build The Network And Results-hu8iMMqajmQ.en.vtt |
7.81KB |
15. Build The Network And Results-hu8iMMqajmQ.mp4 |
13.27MB |
15. Build The Network And Results-hu8iMMqajmQ.pt-BR.vtt |
7.64KB |
15. Build The Network And Results-hu8iMMqajmQ.zh-CN.vtt |
6.85KB |
15. Build the Network Solution.html |
5.70KB |
15. DL 18 Q Softmax V2-RC_A9Tu99y4.en.vtt |
5.37KB |
15. DL 18 Q Softmax V2-RC_A9Tu99y4.mp4 |
4.01MB |
15. DL 18 Q Softmax V2-RC_A9Tu99y4.pt-BR.vtt |
5.06KB |
15. DL 18 Q Softmax V2-RC_A9Tu99y4.zh-CN.vtt |
4.37KB |
15. DL 18 S Softmax-n8S-v_LCTms.en.vtt |
2.59KB |
15. DL 18 S Softmax-n8S-v_LCTms.mp4 |
1.95MB |
15. DL 18 S Softmax-n8S-v_LCTms.pt-BR.vtt |
2.52KB |
15. DL 18 S Softmax-n8S-v_LCTms.zh-CN.vtt |
2.30KB |
15. Injecting Recursivity into a Learner (the lazy way).html |
8.35KB |
15. Pooling Layers.html |
7.31KB |
15. Pooling Layers-OkkIZNs7Cyc.en.vtt |
5.40KB |
15. Pooling Layers-OkkIZNs7Cyc.mp4 |
5.82MB |
15. Pooling Layers-OkkIZNs7Cyc.pt-BR.vtt |
5.81KB |
15. Pooling Layers-OkkIZNs7Cyc.zh-CN.vtt |
4.64KB |
15. Quiz - Softmax-NNoezNnAMTY.en.vtt |
495B |
15. Quiz - Softmax-NNoezNnAMTY.mp4 |
1.73MB |
15. Quiz - Softmax-NNoezNnAMTY.pt-BR.vtt |
501B |
15. Quiz - Softmax-NNoezNnAMTY.zh-CN.vtt |
548B |
15. Quiz TensorFlow Dropout.html |
13.34KB |
15. Softmax.html |
13.57KB |
16. A first example.html |
8.29KB |
16. AIND RNN 3 1 1-NMZ4fU2CuHg.en.vtt |
3.70KB |
16. AIND RNN 3 1 1-NMZ4fU2CuHg.mp4 |
3.75MB |
16. AIND RNN 3 1 1-NMZ4fU2CuHg.zh-CN.vtt |
3.41KB |
16. Max Pooling Layers in Keras.html |
10.22KB |
16. One-Hot Encoding.html |
9.30KB |
16. One-Hot Encoding-AePvjhyvsBo.en.vtt |
2.23KB |
16. One-Hot Encoding-AePvjhyvsBo.mp4 |
1.65MB |
16. One-Hot Encoding-AePvjhyvsBo.pt-BR.vtt |
2.03KB |
16. One-Hot Encoding-AePvjhyvsBo.zh-CN.vtt |
2.02KB |
16. RNN Resources.html |
5.85KB |
17. 3 1 2 Introducing A Parameterized Formula-I72EOcAroFk.en.vtt |
3.64KB |
17. 3 1 2 Introducing A Parameterized Formula-I72EOcAroFk.mp4 |
3.90MB |
17. 3 1 2 Introducing A Parameterized Formula-I72EOcAroFk.zh-CN.vtt |
3.42KB |
17. CNNs for Image Classification.html |
10.07KB |
17. CNNs For Image Classification-l9vg_1YUlzg.en.vtt |
11.37KB |
17. CNNs For Image Classification-l9vg_1YUlzg.mp4 |
18.16MB |
17. CNNs For Image Classification-l9vg_1YUlzg.pt-BR.vtt |
12.21KB |
17. CNNs For Image Classification-l9vg_1YUlzg.zh-CN.vtt |
9.72KB |
17. Maximum Likelihood.html |
11.67KB |
17. Maximum Likelihood 1-1yJx-QtlvNI.en.vtt |
1.64KB |
17. Maximum Likelihood 1-1yJx-QtlvNI.mp4 |
5.75MB |
17. Maximum Likelihood 1-1yJx-QtlvNI.pt-BR.vtt |
1.61KB |
17. Maximum Likelihood 1-1yJx-QtlvNI.zh-CN.vtt |
1.43KB |
17. Maximum Likelihood 2-6nUUeQ9AeUA.en.vtt |
4.41KB |
17. Maximum Likelihood 2-6nUUeQ9AeUA.mp4 |
3.85MB |
17. Maximum Likelihood 2-6nUUeQ9AeUA.pt-BR.vtt |
4.49KB |
17. Maximum Likelihood 2-6nUUeQ9AeUA.zh-CN.vtt |
3.67KB |
17. Setting up the example.html |
8.41KB |
18. AIND RNN 3 1 3-R1T3JXi_jKY.en.vtt |
3.17KB |
18. AIND RNN 3 1 3-R1T3JXi_jKY.mp4 |
3.26MB |
18. AIND RNN 3 1 3-R1T3JXi_jKY.zh-CN.vtt |
2.88KB |
18. CNNs in Keras Practical Example.html |
8.83KB |
18. CNNs in Keras Practical Example-faFvmGDwXX0.en.vtt |
5.39KB |
18. CNNs in Keras Practical Example-faFvmGDwXX0.mp4 |
8.71MB |
18. CNNs in Keras Practical Example-faFvmGDwXX0.pt-BR.vtt |
6.12KB |
18. CNNs in Keras Practical Example-faFvmGDwXX0.zh-CN.vtt |
4.78KB |
18. Maximizing Probabilities.html |
11.14KB |
18. Quiz - Cross 1--xxrisIvD0E.en.vtt |
918B |
18. Quiz - Cross 1--xxrisIvD0E.mp4 |
3.02MB |
18. Quiz - Cross 1--xxrisIvD0E.pt-BR.vtt |
947B |
18. Quiz - Cross 1--xxrisIvD0E.zh-CN.vtt |
813B |
18. Quiz Cross Entropy-njq6bYrPqSU.en.vtt |
2.30KB |
18. Quiz Cross Entropy-njq6bYrPqSU.mp4 |
1.86MB |
18. Quiz Cross Entropy-njq6bYrPqSU.pt-BR.vtt |
2.28KB |
18. Quiz Cross Entropy-njq6bYrPqSU.zh-CN.vtt |
2.07KB |
18. Windowing the example sequence.html |
8.32KB |
19. AIND RNN 3 1 4-XYljYztPvUs.en.vtt |
3.30KB |
19. AIND RNN 3 1 4-XYljYztPvUs.mp4 |
3.35MB |
19. AIND RNN 3 1 4-XYljYztPvUs.zh-CN.vtt |
3.04KB |
19. Cross-Entropy 1.html |
9.54KB |
19. Cross Entropy 1-iREoPUrpXvE.en.vtt |
4.81KB |
19. Cross Entropy 1-iREoPUrpXvE.mp4 |
4.22MB |
19. Cross Entropy 1-iREoPUrpXvE.pt-BR.vtt |
5.00KB |
19. Cross Entropy 1-iREoPUrpXvE.zh-CN.vtt |
4.11KB |
19. Mini Project CNNs in Keras.html |
7.85KB |
19. Using Keras for fitting.html |
8.30KB |
20. AIND RNN 3 1 5-6LgdU4avFSk.en.vtt |
2.63KB |
20. AIND RNN 3 1 5-6LgdU4avFSk.mp4 |
2.61MB |
20. AIND RNN 3 1 5-6LgdU4avFSk.zh-CN.vtt |
2.35KB |
20. Cross-Entropy 2.html |
11.83KB |
20. CrossEntropy V1-1BnhC6e0TFw.en.vtt |
8.03KB |
20. CrossEntropy V1-1BnhC6e0TFw.mp4 |
6.61MB |
20. CrossEntropy V1-1BnhC6e0TFw.pt-BR.vtt |
7.81KB |
20. CrossEntropy V1-1BnhC6e0TFw.zh-CN.vtt |
6.66KB |
20. Formula For Cross 1-qvr_ego_d6w.en.vtt |
607B |
20. Formula For Cross 1-qvr_ego_d6w.mp4 |
2.08MB |
20. Formula For Cross 1-qvr_ego_d6w.pt-BR.vtt |
719B |
20. Formula For Cross 1-qvr_ego_d6w.zh-CN.vtt |
545B |
20. Image Augmentation in Keras.html |
8.88KB |
20. Image Augmentation in Keras-odStujZq3GY.en.vtt |
8.22KB |
20. Image Augmentation in Keras-odStujZq3GY.mp4 |
10.26MB |
20. Image Augmentation in Keras-odStujZq3GY.pt-BR.vtt |
8.49KB |
20. Image Augmentation in Keras-odStujZq3GY.zh-CN.vtt |
7.02KB |
20. Using a regressor as a generative model.html |
8.51KB |
21. 3 2 0 Example 2-2qYjlOV4Vi0.en.vtt |
1.09KB |
21. 3 2 0 Example 2-2qYjlOV4Vi0.mp4 |
1.14MB |
21. 3 2 0 Example 2-2qYjlOV4Vi0.zh-CN.vtt |
1016B |
21. A second example.html |
8.29KB |
21. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.en.vtt |
4.72KB |
21. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.mp4 |
4.14MB |
21. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.pt-BR.vtt |
4.54KB |
21. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.zh-CN.vtt |
4.01KB |
21. Mini Project Image Augmentation in Keras.html |
7.94KB |
21. Multi-Class Cross Entropy.html |
10.50KB |
22. AIND RNN 3 2 1-ZFWOCob2gZ8.en.vtt |
2.57KB |
22. AIND RNN 3 2 1-ZFWOCob2gZ8.mp4 |
2.87MB |
22. AIND RNN 3 2 1-ZFWOCob2gZ8.zh-CN.vtt |
2.43KB |
22. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.en.vtt |
1.62KB |
22. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.mp4 |
1.49MB |
22. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.pt-BR.vtt |
1.42KB |
22. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.zh-CN.vtt |
1.46KB |
22. Error Function-V5kkHldUlVU.en.vtt |
4.87KB |
22. Error Function-V5kkHldUlVU.mp4 |
4.84MB |
22. Error Function-V5kkHldUlVU.pt-BR.vtt |
5.19KB |
22. Error Function-V5kkHldUlVU.zh-CN.vtt |
4.15KB |
22. Groundbreaking CNN Architectures.html |
8.29KB |
22. Groundbreaking CNN Architectures-ddrB-mhMfkY.en.vtt |
3.94KB |
22. Groundbreaking CNN Architectures-ddrB-mhMfkY.mp4 |
8.09MB |
22. Groundbreaking CNN Architectures-ddrB-mhMfkY.pt-BR.vtt |
4.26KB |
22. Groundbreaking CNN Architectures-ddrB-mhMfkY.zh-CN.vtt |
3.52KB |
22. Logistic Regression.html |
10.98KB |
22. Setting up the second example.html |
8.31KB |
23. AIND RNN 3 2 2-R4ACff0v7Vk.en.vtt |
3.82KB |
23. AIND RNN 3 2 2-R4ACff0v7Vk.mp4 |
3.76MB |
23. AIND RNN 3 2 2-R4ACff0v7Vk.zh-CN.vtt |
3.49KB |
23. Gradient Descent.html |
17.30KB |
23. Gradient Descent-rhVIF-nigrY.en.vtt |
3.85KB |
23. Gradient Descent-rhVIF-nigrY.mp4 |
3.76MB |
23. Gradient Descent-rhVIF-nigrY.pt-BR.vtt |
3.98KB |
23. Visualizing CNNs (Part 1).html |
9.27KB |
23. Visualizing CNNs-mnqS_EhEZVg.en.vtt |
3.87KB |
23. Visualizing CNNs-mnqS_EhEZVg.mp4 |
9.20MB |
23. Visualizing CNNs-mnqS_EhEZVg.pt-BR.vtt |
3.83KB |
23. Visualizing CNNs-mnqS_EhEZVg.zh-CN.vtt |
3.33KB |
23. Wrapping up the second example.html |
8.32KB |
24. 3 3 Twists On Example 2 (1)-Xf1oAaTd42w.en.vtt |
5.82KB |
24. 3 3 Twists On Example 2 (1)-Xf1oAaTd42w.mp4 |
5.36MB |
24. 3 3 Twists On Example 2 (1)-Xf1oAaTd42w.zh-CN.vtt |
5.34KB |
24. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.en.vtt |
4.27KB |
24. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.mp4 |
3.20MB |
24. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.pt-BR.vtt |
4.24KB |
24. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.zh-CN.vtt |
3.60KB |
24. Interesting twists on the second example.html |
8.39KB |
24. Perceptron vs Gradient Descent.html |
9.68KB |
24. Visualizing CNNs (Part 2).html |
13.90KB |
25. 3 4 Example 4-UfOUisfQPZc.en.vtt |
5.56KB |
25. 3 4 Example 4-UfOUisfQPZc.mp4 |
4.46MB |
25. 3 4 Example 4-UfOUisfQPZc.zh-CN.vtt |
5.01KB |
25. Continuous Perceptrons.html |
9.34KB |
25. Continuous Perceptrons-07-JJ-aGEfM.en.vtt |
1.33KB |
25. Continuous Perceptrons-07-JJ-aGEfM.mp4 |
1.13MB |
25. Continuous Perceptrons-07-JJ-aGEfM.pt-BR.vtt |
1.31KB |
25. Continuous Perceptrons-07-JJ-aGEfM.zh-CN.vtt |
1.15KB |
25. Real time series example.html |
8.30KB |
25. Transfer Learning.html |
18.32KB |
25. Transfer Learning-LHG5FltaR6I.en.vtt |
6.00KB |
25. Transfer Learning-LHG5FltaR6I.mp4 |
13.32MB |
25. Transfer Learning-LHG5FltaR6I.pt-BR.vtt |
6.51KB |
25. Transfer Learning-LHG5FltaR6I.zh-CN.vtt |
5.39KB |
26. 3 5 Summary-imv4cLtF38o.en.vtt |
1.97KB |
26. 3 5 Summary-imv4cLtF38o.mp4 |
1.68MB |
26. 3 5 Summary-imv4cLtF38o.zh-CN.vtt |
1.80KB |
26. Non-linear Data.html |
9.29KB |
26. Non-Linear Data-F7ZiE8PQiSc.en.vtt |
633B |
26. Non-Linear Data-F7ZiE8PQiSc.mp4 |
2.14MB |
26. Non-Linear Data-F7ZiE8PQiSc.pt-BR.vtt |
600B |
26. Non-Linear Data-F7ZiE8PQiSc.zh-CN.vtt |
624B |
26. Section summary.html |
8.28KB |
26. Transfer Learning in Keras.html |
8.53KB |
26. Transfer Learning in Keras-HsIAznMM1LA.en.vtt |
6.11KB |
26. Transfer Learning in Keras-HsIAznMM1LA.mp4 |
12.92MB |
26. Transfer Learning in Keras-HsIAznMM1LA.pt-BR.vtt |
6.77KB |
26. Transfer Learning in Keras-HsIAznMM1LA.zh-CN.vtt |
5.69KB |
27. Introduction to Section 4-xx4PxKWVmHo.en.vtt |
869B |
27. Introduction to Section 4-xx4PxKWVmHo.mp4 |
1.99MB |
27. Introduction to Section 4-xx4PxKWVmHo.zh-CN.vtt |
815B |
27. Non-Linear Models.html |
9.30KB |
27. Non-Linear Models-HWuBKCZsCo8.en.vtt |
1.30KB |
27. Non-Linear Models-HWuBKCZsCo8.mp4 |
1.13MB |
27. Non-Linear Models-HWuBKCZsCo8.pt-BR.vtt |
1.39KB |
27. Non-Linear Models-HWuBKCZsCo8.zh-CN.vtt |
1.12KB |
27. Section 4 Injecting Recursivity into Learners the Smart Way.html |
8.42KB |
28. 29 Neural Network Architecture 2-FWN3Sw5fFoM.en.vtt |
3.02KB |
28. 29 Neural Network Architecture 2-FWN3Sw5fFoM.mp4 |
2.83MB |
28. 29 Neural Network Architecture 2-FWN3Sw5fFoM.pt-BR.vtt |
3.34KB |
28. 29 Neural Network Architecture 2-FWN3Sw5fFoM.zh-CN.vtt |
2.76KB |
28. Coding up a crazy recursive sequence.html |
9.19KB |
28. Combinando modelos-Boy3zHVrWB4.en.vtt |
5.29KB |
28. Combinando modelos-Boy3zHVrWB4.mp4 |
4.73MB |
28. Combinando modelos-Boy3zHVrWB4.pt-BR.vtt |
5.29KB |
28. Combinando modelos-Boy3zHVrWB4.zh-CN.vtt |
4.61KB |
28. Layers-pg99FkXYK0M.en.vtt |
3.40KB |
28. Layers-pg99FkXYK0M.mp4 |
3.11MB |
28. Layers-pg99FkXYK0M.pt-BR.vtt |
3.29KB |
28. Layers-pg99FkXYK0M.zh-CN.vtt |
3.04KB |
28. Multiclass Classification-uNTtvxwfox0.en.vtt |
2.08KB |
28. Multiclass Classification-uNTtvxwfox0.mp4 |
1.88MB |
28. Multiclass Classification-uNTtvxwfox0.pt-BR.vtt |
2.12KB |
28. Multiclass Classification-uNTtvxwfox0.zh-CN.vtt |
1.82KB |
28. Neural Network Architecture.html |
13.96KB |
29. DL 41 Feedforward FIX V2-hVCuvMGOfyY.en.vtt |
6.17KB |
29. DL 41 Feedforward FIX V2-hVCuvMGOfyY.mp4 |
5.33MB |
29. DL 41 Feedforward FIX V2-hVCuvMGOfyY.pt-BR.vtt |
6.76KB |
29. DL 41 Feedforward FIX V2-hVCuvMGOfyY.zh-CN.vtt |
5.33KB |
29. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.en.vtt |
1.97KB |
29. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.mp4 |
1.72MB |
29. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.pt-BR.vtt |
2.12KB |
29. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.zh-CN.vtt |
1.69KB |
29. Feedforward.html |
10.58KB |
29. Flaws with the FNN approach.html |
8.36KB |
29. Flaws with the FNN approach-sUXrzpAkF9A.en.vtt |
8.66KB |
29. Flaws with the FNN approach-sUXrzpAkF9A.mp4 |
7.18MB |
29. Flaws with the FNN approach-sUXrzpAkF9A.zh-CN.vtt |
7.88KB |
2d-simplex.svg |
8.81KB |
30. Backpropagation.html |
13.41KB |
30. Backpropagation V2-1SmY3TZTyUk.en.vtt |
7.21KB |
30. Backpropagation V2-1SmY3TZTyUk.mp4 |
6.52MB |
30. Backpropagation V2-1SmY3TZTyUk.pt-BR.vtt |
7.17KB |
30. Backpropagation V2-1SmY3TZTyUk.zh-CN.vtt |
6.39KB |
30. Calculating The Gradient 1 -tVuZDbUrzzI.en.vtt |
3.41KB |
30. Calculating The Gradient 1 -tVuZDbUrzzI.mp4 |
3.31MB |
30. Calculating The Gradient 1 -tVuZDbUrzzI.pt-BR.vtt |
3.44KB |
30. Calculating The Gradient 1 -tVuZDbUrzzI.zh-CN.vtt |
2.88KB |
30. Chain Rule-YAhIBOnbt54.en.vtt |
1.65KB |
30. Chain Rule-YAhIBOnbt54.mp4 |
1.46MB |
30. Chain Rule-YAhIBOnbt54.pt-BR.vtt |
1.73KB |
30. Chain Rule-YAhIBOnbt54.zh-CN.vtt |
1.42KB |
30. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.en.vtt |
6.16KB |
30. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.mp4 |
5.69MB |
30. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.pt-BR.vtt |
6.50KB |
30. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.zh-CN.vtt |
5.05KB |
30. RNN fundamental derivations.html |
8.37KB |
30. RNNs 4 2 Basic RNN Derivation-Y3-YuSbhbQM.en.vtt |
11.00KB |
30. RNNs 4 2 Basic RNN Derivation-Y3-YuSbhbQM.mp4 |
8.65MB |
30. RNNs 4 2 Basic RNN Derivation-Y3-YuSbhbQM.zh-CN.vtt |
9.87KB |
31. Formulating a Least Squares loss.html |
8.43KB |
31. Keras.html |
19.43KB |
31. RNNs 4 3 Formulating A Least Squares Loss-F5PVwVrEVHY.en.vtt |
3.51KB |
31. RNNs 4 3 Formulating A Least Squares Loss-F5PVwVrEVHY.mp4 |
3.43MB |
31. RNNs 4 3 Formulating A Least Squares Loss-F5PVwVrEVHY.zh-CN.vtt |
3.30KB |
32. Mini Project Students Admissions in Keras.html |
15.19KB |
32. RNNs 4 4 RNN Properties- Memory-0B8O2eNv2DY.en.vtt |
5.03KB |
32. RNNs 4 4 RNN Properties- Memory-0B8O2eNv2DY.mp4 |
4.41MB |
32. RNNs 4 4 RNN Properties- Memory-0B8O2eNv2DY.zh-CN.vtt |
4.47KB |
32. RNNs and memory.html |
8.35KB |
33. Lesson Plan Week 2.html |
9.13KB |
33. RNNs 4 5 RNN Properties- Graphical Models-LON9wniFUiE.en.vtt |
2.52KB |
33. RNNs 4 5 RNN Properties- Graphical Models-LON9wniFUiE.mp4 |
2.24MB |
33. RNNs 4 5 RNN Properties- Graphical Models-LON9wniFUiE.zh-CN.vtt |
2.23KB |
33. RNNs and graphical models.html |
8.41KB |
34. RNN Technical Issues.html |
8.81KB |
34. Technical Issues-6Bpu_XydW2k.en.vtt |
2.16KB |
34. Technical Issues-6Bpu_XydW2k.mp4 |
1.88MB |
34. Technical Issues-6Bpu_XydW2k.zh-CN.vtt |
1.93KB |
34. Training Optimization.html |
9.33KB |
34. Training Optimization-UiGKhx9pUYc.en.vtt |
824B |
34. Training Optimization-UiGKhx9pUYc.mp4 |
2.96MB |
34. Training Optimization-UiGKhx9pUYc.pt-BR.vtt |
874B |
34. Training Optimization-UiGKhx9pUYc.zh-CN.vtt |
840B |
35. Batch vs Stochastic Gradient Descent.html |
9.92KB |
35. Batch Vs Stochastic Gradient Descent-2p58rVgqsgo.en.vtt |
4.64KB |
35. Batch Vs Stochastic Gradient Descent-2p58rVgqsgo.mp4 |
3.95MB |
35. Batch Vs Stochastic Gradient Descent-2p58rVgqsgo.pt-BR.vtt |
4.63KB |
35. Batch Vs Stochastic Gradient Descent-2p58rVgqsgo.zh-CN.vtt |
4.10KB |
35. Section & Course Summary-gYCL4RBvzRM.en.vtt |
3.67KB |
35. Section & Course Summary-gYCL4RBvzRM.mp4 |
3.02MB |
35. Section & Course Summary-gYCL4RBvzRM.zh-CN.vtt |
3.37KB |
35. Section and course summary .html |
8.37KB |
36. Learning Rate Decay.html |
9.29KB |
36. Learning Rate-TwJ8aSZoh2U.en.vtt |
1.12KB |
36. Learning Rate-TwJ8aSZoh2U.mp4 |
927.05KB |
36. Learning Rate-TwJ8aSZoh2U.pt-BR.vtt |
1.26KB |
36. Learning Rate-TwJ8aSZoh2U.zh-CN.vtt |
1020B |
36. Outro.html |
8.23KB |
36. Outro-LurBj_gmFwk.en.vtt |
1.06KB |
36. Outro-LurBj_gmFwk.mp4 |
2.43MB |
36. Outro-LurBj_gmFwk.zh-CN.vtt |
1.06KB |
37. Testing.html |
9.63KB |
37. Testing-EeBZpb-PSac.en.vtt |
2.41KB |
37. Testing-EeBZpb-PSac.mp4 |
2.00MB |
37. Testing-EeBZpb-PSac.pt-BR.vtt |
2.37KB |
37. Testing-EeBZpb-PSac.zh-CN.vtt |
1.99KB |
38. Overfitting and Underfitting.html |
9.38KB |
38. Underfitting And Overfitting-xj4PlXMsN-Y.en.vtt |
7.49KB |
38. Underfitting And Overfitting-xj4PlXMsN-Y.mp4 |
6.42MB |
38. Underfitting And Overfitting-xj4PlXMsN-Y.pt-BR.vtt |
8.15KB |
38. Underfitting And Overfitting-xj4PlXMsN-Y.zh-CN.vtt |
6.54KB |
39. Early Stopping.html |
9.32KB |
39. Model Complexity Graph-NnS0FJyVcDQ.en.vtt |
5.32KB |
39. Model Complexity Graph-NnS0FJyVcDQ.mp4 |
4.90MB |
39. Model Complexity Graph-NnS0FJyVcDQ.pt-BR.vtt |
5.52KB |
39. Model Complexity Graph-NnS0FJyVcDQ.zh-CN.vtt |
4.65KB |
40. DL 53 Q Regularization-KxROxcRsHL8.en.vtt |
1.15KB |
40. DL 53 Q Regularization-KxROxcRsHL8.mp4 |
1.01MB |
40. DL 53 Q Regularization-KxROxcRsHL8.pt-BR.vtt |
1.16KB |
40. DL 53 Q Regularization-KxROxcRsHL8.zh-CN.vtt |
1.02KB |
40. Regularization.html |
10.36KB |
41. Regularization 2.html |
9.29KB |
41. Regularization-ndYnUrx8xvs.en.vtt |
8.07KB |
41. Regularization-ndYnUrx8xvs.mp4 |
7.57MB |
41. Regularization-ndYnUrx8xvs.pt-BR.vtt |
8.78KB |
41. Regularization-ndYnUrx8xvs.zh-CN.vtt |
6.96KB |
42. Dropout.html |
9.81KB |
42. Dropout-Ty6K6YiGdBs.en.vtt |
4.71KB |
42. Dropout-Ty6K6YiGdBs.mp4 |
4.22MB |
42. Dropout-Ty6K6YiGdBs.pt-BR.vtt |
4.66KB |
42. Dropout-Ty6K6YiGdBs.zh-CN.vtt |
4.06KB |
43. Vanishing Gradient.html |
9.31KB |
43. Vanishing Gradient-W_JJm_5syFw.en.vtt |
1.46KB |
43. Vanishing Gradient-W_JJm_5syFw.mp4 |
1.32MB |
43. Vanishing Gradient-W_JJm_5syFw.pt-BR.vtt |
1.56KB |
43. Vanishing Gradient-W_JJm_5syFw.zh-CN.vtt |
1.24KB |
44. Other Activation Functions.html |
10.13KB |
44. Other Activation Functions-kA-1vUt6cvQ.en.vtt |
2.68KB |
44. Other Activation Functions-kA-1vUt6cvQ.mp4 |
2.30MB |
44. Other Activation Functions-kA-1vUt6cvQ.pt-BR.vtt |
2.55KB |
44. Other Activation Functions-kA-1vUt6cvQ.zh-CN.vtt |
2.34KB |
45. Local Minima.html |
9.27KB |
45. Local Minima-gF_sW_nY-xw.en.vtt |
1.14KB |
45. Local Minima-gF_sW_nY-xw.mp4 |
819.86KB |
45. Local Minima-gF_sW_nY-xw.pt-BR.vtt |
1.05KB |
45. Local Minima-gF_sW_nY-xw.zh-CN.vtt |
1.01KB |
46. Random Restart.html |
9.28KB |
46. Random Restart-idyBBCzXiqg.en.vtt |
466B |
46. Random Restart-idyBBCzXiqg.mp4 |
394.99KB |
46. Random Restart-idyBBCzXiqg.pt-BR.vtt |
478B |
46. Random Restart-idyBBCzXiqg.zh-CN.vtt |
419B |
47. Momentum.html |
9.24KB |
47. Momentum-r-rYz_PEWC8.en.vtt |
2.50KB |
47. Momentum-r-rYz_PEWC8.mp4 |
2.14MB |
47. Momentum-r-rYz_PEWC8.pt-BR.vtt |
2.70KB |
47. Momentum-r-rYz_PEWC8.zh-CN.vtt |
2.21KB |
48. Optimizers in Keras.html |
10.08KB |
49. Error Functions Around the World.html |
9.41KB |
49. Error Functions Around the World-34AAcTECu2A.en.vtt |
1.17KB |
49. Error Functions Around the World-34AAcTECu2A.mp4 |
1.73MB |
49. Error Functions Around the World-34AAcTECu2A.pt-BR.vtt |
1.08KB |
49. Error Functions Around the World-34AAcTECu2A.zh-CN.vtt |
1.06KB |
50. Keras Lab-a50un22BsLI.en.vtt |
586B |
50. Keras Lab-a50un22BsLI.mp4 |
2.19MB |
50. Keras Lab-a50un22BsLI.pt-BR.vtt |
574B |
50. Keras Lab-a50un22BsLI.zh-CN.vtt |
540B |
50. Mini Project Intro.html |
9.27KB |
51. Mini Project IMDB Data in Keras.html |
13.11KB |
52. Outro.html |
9.22KB |
52. Outro-HZt6bf73bOo.en.vtt |
802B |
52. Outro-HZt6bf73bOo.mp4 |
3.02MB |
52. Outro-HZt6bf73bOo.pt-BR.vtt |
857B |
52. Outro-HZt6bf73bOo.zh-CN.vtt |
731B |
all-ranks.png |
308.47KB |
and-quiz.png |
265.78KB |
and-to-or.png |
606.14KB |
arpan-c-circle.png |
309.09KB |
arpan-c-circle.png |
309.09KB |
bookworm-hero2-1200x900.jpeg |
471.33KB |
bootstrap.min.css |
137.64KB |
bootstrap.min.js |
49.85KB |
codecogseqn-43.gif |
7.96KB |
codecogseqn-49.gif |
2.09KB |
codecogseqn-58.gif |
919B |
codecogseqn-60-2.png |
8.94KB |
conv-dims.png |
28.55KB |
convolution-schematic.gif |
63.63KB |
Course Index.rar |
7.50KB |
cross-entropy-diagram.png |
62.67KB |
data.json |
38.04KB |
data.json |
9.21KB |
data.json |
159.79KB |
data.json |
98.41KB |
data.json |
115.44KB |
data.json |
43.75KB |
data.json |
21.88KB |
data.json |
17.77KB |
data.json |
26.76KB |
data.json |
10.34KB |
data.json |
5.89KB |
data.json |
22.73KB |
data.json |
9.36KB |
data.json |
215.16KB |
data.json |
23.37KB |
data.json |
14.00KB |
data.json |
26.57KB |
data.png |
49.54KB |
diagonal-line-1.png |
5.76KB |
diagonal-line-2.png |
6.62KB |
Discuss.FreeTutorials.Us.html |
165.68KB |
download-repo.png |
366.63KB |
dropout-node.jpeg |
62.69KB |
f3iwvmld-400x400.jpg |
26.43KB |
FreeCoursesOnline.Me.html |
108.30KB |
FreeTutorials.Eu.html |
102.23KB |
full-padding-no-strides-transposed.gif |
221.74KB |
grid-layer-1.png |
35.30KB |
index.html |
4.00KB |
index.html |
3.10KB |
index.html |
6.87KB |
index.html |
5.26KB |
index.html |
4.11KB |
index.html |
6.39KB |
index.html |
3.73KB |
index.html |
4.08KB |
index.html |
3.65KB |
index.html |
3.37KB |
index.html |
3.25KB |
index.html |
3.82KB |
index.html |
3.45KB |
index.html |
3.39KB |
index.html |
3.35KB |
index.html |
3.65KB |
index.html |
3.65KB |
jquery.mCustomScrollbar.concat.min.js |
44.41KB |
jquery.mCustomScrollbar.min.css |
41.83KB |
jquery-3.3.1.min.js |
84.89KB |
jupyter-logo.png |
5.78KB |
KaTeX_AMS-Regular.ttf |
69.75KB |
KaTeX_AMS-Regular.woff |
39.26KB |
KaTeX_AMS-Regular.woff2 |
32.43KB |
KaTeX_Caligraphic-Bold.ttf |
19.13KB |
KaTeX_Caligraphic-Bold.woff |
11.85KB |
KaTeX_Caligraphic-Bold.woff2 |
10.35KB |
KaTeX_Caligraphic-Regular.ttf |
18.52KB |
KaTeX_Caligraphic-Regular.woff |
11.59KB |
KaTeX_Caligraphic-Regular.woff2 |
10.17KB |
KaTeX_Fraktur-Bold.ttf |
35.13KB |
KaTeX_Fraktur-Bold.woff |
22.84KB |
KaTeX_Fraktur-Bold.woff2 |
20.01KB |
KaTeX_Fraktur-Regular.ttf |
33.84KB |
KaTeX_Fraktur-Regular.woff |
22.31KB |
KaTeX_Fraktur-Regular.woff2 |
19.39KB |
KaTeX_Main-Bold.ttf |
60.27KB |
KaTeX_Main-Bold.woff |
35.89KB |
KaTeX_Main-Bold.woff2 |
29.90KB |
KaTeX_Main-BoldItalic.ttf |
43.77KB |
KaTeX_Main-BoldItalic.woff |
25.61KB |
KaTeX_Main-BoldItalic.woff2 |
21.67KB |
KaTeX_Main-Italic.ttf |
46.83KB |
KaTeX_Main-Italic.woff |
26.56KB |
KaTeX_Main-Italic.woff2 |
22.52KB |
KaTeX_Main-Regular.ttf |
68.43KB |
KaTeX_Main-Regular.woff |
38.52KB |
KaTeX_Main-Regular.woff2 |
32.09KB |
KaTeX_Math-BoldItalic.ttf |
38.81KB |
KaTeX_Math-BoldItalic.woff |
22.65KB |
KaTeX_Math-BoldItalic.woff2 |
19.57KB |
KaTeX_Math-Italic.ttf |
40.48KB |
KaTeX_Math-Italic.woff |
23.26KB |
KaTeX_Math-Italic.woff2 |
19.95KB |
KaTeX_SansSerif-Bold.ttf |
33.23KB |
KaTeX_SansSerif-Bold.woff |
18.72KB |
KaTeX_SansSerif-Bold.woff2 |
15.62KB |
KaTeX_SansSerif-Italic.ttf |
30.57KB |
KaTeX_SansSerif-Italic.woff |
17.70KB |
KaTeX_SansSerif-Italic.woff2 |
14.86KB |
KaTeX_SansSerif-Regular.ttf |
29.45KB |
KaTeX_SansSerif-Regular.woff |
16.39KB |
KaTeX_SansSerif-Regular.woff2 |
13.70KB |
KaTeX_Script-Regular.ttf |
24.28KB |
KaTeX_Script-Regular.woff |
13.53KB |
KaTeX_Script-Regular.woff2 |
11.99KB |
KaTeX_Size1-Regular.ttf |
12.86KB |
KaTeX_Size1-Regular.woff |
6.82KB |
KaTeX_Size1-Regular.woff2 |
5.69KB |
KaTeX_Size2-Regular.ttf |
12.12KB |
KaTeX_Size2-Regular.woff |
6.53KB |
KaTeX_Size2-Regular.woff2 |
5.43KB |
KaTeX_Size3-Regular.ttf |
8.16KB |
KaTeX_Size3-Regular.woff |
4.66KB |
KaTeX_Size3-Regular.woff2 |
3.77KB |
KaTeX_Size4-Regular.ttf |
11.02KB |
KaTeX_Size4-Regular.woff |
6.30KB |
KaTeX_Size4-Regular.woff2 |
5.06KB |
KaTeX_Typewriter-Regular.ttf |
35.46KB |
KaTeX_Typewriter-Regular.woff |
20.43KB |
KaTeX_Typewriter-Regular.woff2 |
17.13KB |
katex.min.css |
21.56KB |
katex.min.js |
231.26KB |
layer-1-grid.png |
45.73KB |
layers.png |
286.10KB |
linear-equation.gif |
1.23KB |
linear-relationships.png |
112.35KB |
mat-headshot.png |
179.99KB |
mat-headshot.png |
179.99KB |
mat-headshot.png |
179.99KB |
maxpool.jpeg |
37.07KB |
meme.png |
209.05KB |
meme.png |
209.05KB |
mnist-012.png |
20.21KB |
multi-layer.png |
214.34KB |
nlp-m1-l4-language-model.002.png |
102.14KB |
nlp-m1-l4-language-model.005.png |
119.65KB |
nlp-m1-l4-language-model.006.png |
148.41KB |
nlp-m1-l4-language-model.007.png |
115.36KB |
nlp-m1-l4-machine-translation.002.png |
174.11KB |
nlp-m1-l4-machine-translation.003.png |
105.45KB |
nlp-m1-l4-machine-translation.004.png |
124.31KB |
nlp-m1-l4-machine-translation.005.png |
120.84KB |
nlp-m1-l4-machine-translation.006.png |
62.46KB |
nlp-m1-l4-machine-translation.007.png |
136.30KB |
nlp-m1-l4-machine-translation.008.png |
142.59KB |
nlp-m1-l4-machine-translation.009.png |
76.07KB |
nlp-m1-l4-search-and-ranking.002.png |
214.08KB |
nlp-m1-l4-search-and-ranking.003.png |
99.49KB |
nlp-m1-l4-sentiment-analysis.002.png |
93.39KB |
nlp-m1-l4-sentiment-analysis.003.png |
59.41KB |
nlp-m1-l4-sentiment-analysis.004-cropped.png |
69.94KB |
nlp-m1-l4-topic-modeling.002.png |
108.52KB |
nlp-m1-l4-topic-modeling.003.png |
218.87KB |
nlp-m1-l4-topic-modeling.004.png |
207.38KB |
nlp-m1-l4-topic-modeling.005.png |
153.18KB |
nlp-m1-l4-topic-modeling.006.png |
149.46KB |
nlp-m1-l4-topic-modeling.008.png |
137.49KB |
nmn.png |
54.15KB |
notmnist.png |
54.15KB |
or-quiz.png |
393.62KB |
perceptronquiz.png |
93.69KB |
plyr.css |
23.62KB |
plyr.polyfilled.min.js |
126.16KB |
points.png |
63.17KB |
pooling-dims.png |
29.17KB |
Presented By SaM.txt |
33B |
Project Description - Machine Translation.html |
8.04KB |
Project Rubric - Machine Translation.html |
8.25KB |
regularization-quiz.png |
87.90KB |
relu-network.png |
31.09KB |
rnn9.png |
169.87KB |
rubric.json |
7.58KB |
screen-shot-2016-11-24-at-12.08.11-pm.png |
2.90MB |
screen-shot-2016-11-24-at-12.09.02-pm.png |
3.09MB |
screen-shot-2016-11-24-at-12.09.24-pm.png |
3.49MB |
screen-shot-2017-11-16-at-4.26.22-pm.png |
41.24KB |
screen-shot-2017-11-16-at-4.27.58-pm.png |
27.77KB |
screen-shot-2017-11-16-at-4.31.41-pm.png |
44.91KB |
screen-shot-2017-11-16-at-5.54.40-pm.png |
71.35KB |
sequence-to-sequence-embedding-encoder-decoder.png |
21.96KB |
sequence-to-sequence-high-level-encoder-decoder.png |
11.54KB |
sequence-to-sequence-unrolled-encoder-decoder.png |
22.50KB |
session.png |
30.85KB |
sigmoid-derivative.gif |
2.09KB |
softmax-input-output.png |
52.45KB |
student-acceptance.png |
20.47KB |
student-quiz.png |
748.98KB |
styles.css |
3.76KB |
summary.png |
93.72KB |
tensorflow.png |
85.28KB |
Torrent Downloaded From GloDls.to.txt |
84B |
two-layer-network.png |
17.15KB |
udacimak.png |
461.07KB |
watson-logo.png |
190.30KB |
watson-logo.png |
190.30KB |
weights-0-1-2.png |
24.61KB |
workspaces-gpu.png |
145.50KB |
workspaces-jupyter.png |
83.54KB |
workspaces-menu.png |
93.96KB |
workspaces-new.png |
85.21KB |
workspaces-notebook.png |
142.90KB |
workspaces-submit.png |
146.20KB |
workspaces-terminal.png |
46.91KB |
xor.png |
214.95KB |
xor-quiz.png |
94.14KB |