Torrent Info
Title Deep Learning with Python, Second Edition, Video Edition
Category
Size 5.76GB

Files List
Please note that this page does not hosts or makes available any of the listed filenames. You cannot download any of those files from here.
[TGx]Downloaded from torrentgalaxy.to .txt 585B
0 67.25KB
01-Chapter 1 What is deep learning.mp4 76.79MB
02-Chapter 1 Learning rules and representations from data.mp4 83.36MB
03-Chapter 1 Understanding how deep learning works, in three figures.mp4 102.93MB
04-Chapter 1 Before deep learning - A brief history of machine learning.mp4 82.65MB
05-Chapter 1 Back to neural networks.mp4 77.93MB
06-Chapter 1 Why deep learning Why now.mp4 56.47MB
07-Chapter 1 Algorithms.mp4 62.35MB
08-Chapter 2 The mathematical building blocks of neural networks.mp4 52.03MB
09-Chapter 2 Data representations for neural networks.mp4 47.57MB
1 240.01KB
10 520.29KB
10-Chapter 2 Real-world examples of data tensors.mp4 48.57MB
11 180.40KB
11-Chapter 2 The gears of neural networks - Tensor operations.mp4 46.50MB
12 403.53KB
12-Chapter 2 Tensor reshaping.mp4 36.72MB
13 804.37KB
13-Chapter 2 The engine of neural networks - Gradient-based optimization.mp4 49.96MB
14 71.86KB
14-Chapter 2 Derivative of a tensor operation - The gradient.mp4 69.46MB
15 212.96KB
15-Chapter 2 Chaining derivatives - The Backpropagation algorithm.mp4 55.02MB
16 51.61KB
16-Chapter 2 Looking back at our first example.mp4 53.70MB
17 965.69KB
17-Chapter 3 Introduction to Keras and TensorFlow.mp4 67.58MB
18 623.69KB
18-Chapter 3 Setting up a deep learning workspace.mp4 43.54MB
19 712.98KB
19-Chapter 3 First steps with TensorFlow.mp4 69.16MB
2 942.96KB
20 470.20KB
20-Chapter 3 Anatomy of a neural network - Understanding core Keras APIs.mp4 56.10MB
21 483.84KB
21-Chapter 3 The “compile” step - Configuring the learning process.mp4 68.01MB
22 291.13KB
22-Chapter 4 Getting started with neural networks - Classification and regression.mp4 53.42MB
23 469.29KB
23-Chapter 4 Building your model.mp4 64.19MB
24 135.48KB
24-Chapter 4 Classifying newswires - A multiclass classification example.mp4 56.83MB
25 496.95KB
25-Chapter 4 Predicting house prices - A regression example.mp4 61.83MB
26 547.91KB
26-Chapter 5 Fundamentals of machine learning.mp4 56.96MB
27 657.34KB
27-Chapter 5 The nature of generalization in deep learning.mp4 80.49MB
28 857.24KB
28-Chapter 5 Evaluating machine learning models.mp4 72.53MB
29 1012.92KB
29-Chapter 5 Improving model fit.mp4 40.50MB
3 878.90KB
30 107.12KB
30-Chapter 5 Improving generalization.mp4 69.36MB
31 425.25KB
31-Chapter 5 Regularizing your model.mp4 60.78MB
32 933.44KB
32-Chapter 6 The universal workflow of machine learning.mp4 66.92MB
33 84.42KB
33-Chapter 6 Collect a dataset.mp4 85.08MB
34 22.81KB
34-Chapter 6 Develop a model.mp4 44.39MB
35 908.00KB
35-Chapter 6 Beat a baseline.mp4 41.15MB
36 113.35KB
36-Chapter 6 Deploy the model.mp4 78.21MB
37 680.13KB
37-Chapter 6 Monitor your model in the wild.mp4 35.09MB
38 829.96KB
38-Chapter 7 Working with Keras - A deep dive.mp4 69.87MB
39 442.40KB
39-Chapter 7 Subclassing the Model class.mp4 35.13MB
4 659.96KB
40 19.64KB
40-Chapter 7 Using built-in training and evaluation loops.mp4 60.17MB
41 505.60KB
41-Chapter 7 Writing your own training and evaluation loops.mp4 45.80MB
42 660.75KB
42-Chapter 7 Make it fast with tf.function.mp4 35.99MB
43 174.24KB
43-Chapter 8 Introduction to deep learning for computer vision.mp4 40.65MB
44 344.74KB
44-Chapter 8 The convolution operation.mp4 74.39MB
45 225.68KB
45-Chapter 8 Training a convnet from scratch on a small dataset.mp4 67.09MB
46 741.62KB
46-Chapter 8 Data preprocessing.mp4 61.66MB
47 850.94KB
47-Chapter 8 Leveraging a pretrained model.mp4 65.11MB
48 93.12KB
48-Chapter 8 Feature extraction with a pretrained model.mp4 64.34MB
49 153.77KB
49-Chapter 9 Advanced deep learning for computer vision.mp4 99.77MB
5 353.91KB
50 89.95KB
50-Chapter 9 Modern convnet architecture patterns.mp4 58.74MB
51 264.11KB
51-Chapter 9 Residual connections.mp4 57.35MB
52 494.91KB
52-Chapter 9 Depthwise separable convolutions.mp4 67.90MB
53 553.28KB
53-Chapter 9 Interpreting what convnets learn.mp4 58.52MB
54 117.90KB
54-Chapter 9 Visualizing convnet filters.mp4 40.41MB
55 640.69KB
55-Chapter 9 Visualizing heatmaps of class activation.mp4 74.30MB
56 665.93KB
56-Chapter 10 Deep learning for timeseries.mp4 53.89MB
57 41.91KB
57-Chapter 10 Preparing the data.mp4 46.98MB
58 179.07KB
58-Chapter 10 Let’s try a basic machine learning model.mp4 45.05MB
59 544.05KB
59-Chapter 10 Understanding recurrent neural networks.mp4 40.46MB
6 109.55KB
60 883.05KB
60-Chapter 10 A recurrent layer in Keras.mp4 41.66MB
61 919.67KB
61-Chapter 10 Advanced use of recurrent neural networks.mp4 59.85MB
62 199.31KB
62-Chapter 10 Using bidirectional RNNs.mp4 64.89MB
63 1003.89KB
63-Chapter 11 Deep learning for text.mp4 57.88MB
64 110.17KB
64-Chapter 11 Preparing text data.mp4 46.48MB
65 307.35KB
65-Chapter 11 Vocabulary indexing.mp4 50.36MB
66 395.28KB
66-Chapter 11 Two approaches for representing groups of words - Sets and sequences.mp4 79.82MB
67 517.84KB
67-Chapter 11 Processing words as a sequence - The sequence model approach, Part 1.mp4 70.54MB
68 588.99KB
68-Chapter 11 Processing words as a sequence - The sequence model approach, Part 2.mp4 52.54MB
69 466.61KB
69-Chapter 11 The Transformer architecture.mp4 71.72MB
7 858.51KB
70 991.60KB
70-Chapter 11 The Transformer encoder.mp4 72.54MB
71 657.80KB
71-Chapter 11 Beyond text classification - Sequence-to-sequence learning.mp4 79.61MB
72 40.13KB
72-Chapter 11 Sequence-to-sequence learning with Transformer.mp4 56.14MB
73 435.98KB
73-Chapter 12 Generative deep learning.mp4 80.58MB
74 117.04KB
74-Chapter 12 How do you generate sequence data.mp4 81.89MB
75 445.28KB
75-Chapter 12 A text-generation callback with variable-temperature sampling.mp4 58.46MB
76 24.25KB
76-Chapter 12 DeepDream.mp4 57.37MB
77 512.38KB
77-Chapter 12 Neural style transfer.mp4 80.93MB
78 528.86KB
78-Chapter 12 Generating images with variational autoencoders.mp4 55.81MB
79 208.61KB
79-Chapter 12 Implementing a VAE with Keras.mp4 75.95MB
8 67.45KB
80 688.57KB
80-Chapter 12 A bag of tricks.mp4 62.51MB
81 977.49KB
81-Chapter 13 Best practices for the real world.mp4 62.98MB
82 624.95KB
82-Chapter 13 Hyperparameter optimization.mp4 75.06MB
83 473.27KB
83-Chapter 13 Scaling-up model training.mp4 53.61MB
84 343.28KB
84-Chapter 13 Multi-GPU training.mp4 37.54MB
85 429.12KB
85-Chapter 13 TPU training.mp4 41.58MB
86 866.41KB
86-Chapter 14 Conclusions.mp4 81.16MB
87 355.80KB
87-Chapter 14 Key enabling technologies.mp4 63.57MB
88 508.32KB
88-Chapter 14 Key network architectures.mp4 59.91MB
89 556.40KB
89-Chapter 14 The limitations of deep learning.mp4 60.28MB
9 429.98KB
90 606.43KB
90-Chapter 14 Local generalization vs. extreme generalization.mp4 45.33MB
91 468.29KB
91-Chapter 14 The purpose of intelligence.mp4 53.49MB
92 289.96KB
92-Chapter 14 Setting the course toward greater generality in AI.mp4 69.51MB
93 11.40KB
93-Chapter 14 Implementing intelligence - The missing ingredients.mp4 65.98MB
94 887.20KB
94-Chapter 14 The missing half of the picture.mp4 47.89MB
95-Chapter 14 Blending together deep learning and program synthesis.mp4 58.91MB
96-Chapter 14 Lifelong learning and modular subroutine reuse.mp4 84.14MB
TutsNode.com.txt 63B
Distribution statistics by country
Republic of Korea (KR) 2
China (CN) 2
Dominican Republic (DO) 1
Peru (PE) 1
Vietnam (VN) 1
India (IN) 1
United States (US) 1
Russia (RU) 1
Turkey (TR) 1
Total 11
IP List List of IP addresses which were distributed this torrent