Please note that this page does not hosts or makes available any of the listed filenames. You
cannot download any of those files from here.
|
[TGx]Downloaded from torrentgalaxy.to .txt |
585B |
0 |
67.25KB |
01-Chapter 1 What is deep learning.mp4 |
76.79MB |
02-Chapter 1 Learning rules and representations from data.mp4 |
83.36MB |
03-Chapter 1 Understanding how deep learning works, in three figures.mp4 |
102.93MB |
04-Chapter 1 Before deep learning - A brief history of machine learning.mp4 |
82.65MB |
05-Chapter 1 Back to neural networks.mp4 |
77.93MB |
06-Chapter 1 Why deep learning Why now.mp4 |
56.47MB |
07-Chapter 1 Algorithms.mp4 |
62.35MB |
08-Chapter 2 The mathematical building blocks of neural networks.mp4 |
52.03MB |
09-Chapter 2 Data representations for neural networks.mp4 |
47.57MB |
1 |
240.01KB |
10 |
520.29KB |
10-Chapter 2 Real-world examples of data tensors.mp4 |
48.57MB |
11 |
180.40KB |
11-Chapter 2 The gears of neural networks - Tensor operations.mp4 |
46.50MB |
12 |
403.53KB |
12-Chapter 2 Tensor reshaping.mp4 |
36.72MB |
13 |
804.37KB |
13-Chapter 2 The engine of neural networks - Gradient-based optimization.mp4 |
49.96MB |
14 |
71.86KB |
14-Chapter 2 Derivative of a tensor operation - The gradient.mp4 |
69.46MB |
15 |
212.96KB |
15-Chapter 2 Chaining derivatives - The Backpropagation algorithm.mp4 |
55.02MB |
16 |
51.61KB |
16-Chapter 2 Looking back at our first example.mp4 |
53.70MB |
17 |
965.69KB |
17-Chapter 3 Introduction to Keras and TensorFlow.mp4 |
67.58MB |
18 |
623.69KB |
18-Chapter 3 Setting up a deep learning workspace.mp4 |
43.54MB |
19 |
712.98KB |
19-Chapter 3 First steps with TensorFlow.mp4 |
69.16MB |
2 |
942.96KB |
20 |
470.20KB |
20-Chapter 3 Anatomy of a neural network - Understanding core Keras APIs.mp4 |
56.10MB |
21 |
483.84KB |
21-Chapter 3 The “compile” step - Configuring the learning process.mp4 |
68.01MB |
22 |
291.13KB |
22-Chapter 4 Getting started with neural networks - Classification and regression.mp4 |
53.42MB |
23 |
469.29KB |
23-Chapter 4 Building your model.mp4 |
64.19MB |
24 |
135.48KB |
24-Chapter 4 Classifying newswires - A multiclass classification example.mp4 |
56.83MB |
25 |
496.95KB |
25-Chapter 4 Predicting house prices - A regression example.mp4 |
61.83MB |
26 |
547.91KB |
26-Chapter 5 Fundamentals of machine learning.mp4 |
56.96MB |
27 |
657.34KB |
27-Chapter 5 The nature of generalization in deep learning.mp4 |
80.49MB |
28 |
857.24KB |
28-Chapter 5 Evaluating machine learning models.mp4 |
72.53MB |
29 |
1012.92KB |
29-Chapter 5 Improving model fit.mp4 |
40.50MB |
3 |
878.90KB |
30 |
107.12KB |
30-Chapter 5 Improving generalization.mp4 |
69.36MB |
31 |
425.25KB |
31-Chapter 5 Regularizing your model.mp4 |
60.78MB |
32 |
933.44KB |
32-Chapter 6 The universal workflow of machine learning.mp4 |
66.92MB |
33 |
84.42KB |
33-Chapter 6 Collect a dataset.mp4 |
85.08MB |
34 |
22.81KB |
34-Chapter 6 Develop a model.mp4 |
44.39MB |
35 |
908.00KB |
35-Chapter 6 Beat a baseline.mp4 |
41.15MB |
36 |
113.35KB |
36-Chapter 6 Deploy the model.mp4 |
78.21MB |
37 |
680.13KB |
37-Chapter 6 Monitor your model in the wild.mp4 |
35.09MB |
38 |
829.96KB |
38-Chapter 7 Working with Keras - A deep dive.mp4 |
69.87MB |
39 |
442.40KB |
39-Chapter 7 Subclassing the Model class.mp4 |
35.13MB |
4 |
659.96KB |
40 |
19.64KB |
40-Chapter 7 Using built-in training and evaluation loops.mp4 |
60.17MB |
41 |
505.60KB |
41-Chapter 7 Writing your own training and evaluation loops.mp4 |
45.80MB |
42 |
660.75KB |
42-Chapter 7 Make it fast with tf.function.mp4 |
35.99MB |
43 |
174.24KB |
43-Chapter 8 Introduction to deep learning for computer vision.mp4 |
40.65MB |
44 |
344.74KB |
44-Chapter 8 The convolution operation.mp4 |
74.39MB |
45 |
225.68KB |
45-Chapter 8 Training a convnet from scratch on a small dataset.mp4 |
67.09MB |
46 |
741.62KB |
46-Chapter 8 Data preprocessing.mp4 |
61.66MB |
47 |
850.94KB |
47-Chapter 8 Leveraging a pretrained model.mp4 |
65.11MB |
48 |
93.12KB |
48-Chapter 8 Feature extraction with a pretrained model.mp4 |
64.34MB |
49 |
153.77KB |
49-Chapter 9 Advanced deep learning for computer vision.mp4 |
99.77MB |
5 |
353.91KB |
50 |
89.95KB |
50-Chapter 9 Modern convnet architecture patterns.mp4 |
58.74MB |
51 |
264.11KB |
51-Chapter 9 Residual connections.mp4 |
57.35MB |
52 |
494.91KB |
52-Chapter 9 Depthwise separable convolutions.mp4 |
67.90MB |
53 |
553.28KB |
53-Chapter 9 Interpreting what convnets learn.mp4 |
58.52MB |
54 |
117.90KB |
54-Chapter 9 Visualizing convnet filters.mp4 |
40.41MB |
55 |
640.69KB |
55-Chapter 9 Visualizing heatmaps of class activation.mp4 |
74.30MB |
56 |
665.93KB |
56-Chapter 10 Deep learning for timeseries.mp4 |
53.89MB |
57 |
41.91KB |
57-Chapter 10 Preparing the data.mp4 |
46.98MB |
58 |
179.07KB |
58-Chapter 10 Let’s try a basic machine learning model.mp4 |
45.05MB |
59 |
544.05KB |
59-Chapter 10 Understanding recurrent neural networks.mp4 |
40.46MB |
6 |
109.55KB |
60 |
883.05KB |
60-Chapter 10 A recurrent layer in Keras.mp4 |
41.66MB |
61 |
919.67KB |
61-Chapter 10 Advanced use of recurrent neural networks.mp4 |
59.85MB |
62 |
199.31KB |
62-Chapter 10 Using bidirectional RNNs.mp4 |
64.89MB |
63 |
1003.89KB |
63-Chapter 11 Deep learning for text.mp4 |
57.88MB |
64 |
110.17KB |
64-Chapter 11 Preparing text data.mp4 |
46.48MB |
65 |
307.35KB |
65-Chapter 11 Vocabulary indexing.mp4 |
50.36MB |
66 |
395.28KB |
66-Chapter 11 Two approaches for representing groups of words - Sets and sequences.mp4 |
79.82MB |
67 |
517.84KB |
67-Chapter 11 Processing words as a sequence - The sequence model approach, Part 1.mp4 |
70.54MB |
68 |
588.99KB |
68-Chapter 11 Processing words as a sequence - The sequence model approach, Part 2.mp4 |
52.54MB |
69 |
466.61KB |
69-Chapter 11 The Transformer architecture.mp4 |
71.72MB |
7 |
858.51KB |
70 |
991.60KB |
70-Chapter 11 The Transformer encoder.mp4 |
72.54MB |
71 |
657.80KB |
71-Chapter 11 Beyond text classification - Sequence-to-sequence learning.mp4 |
79.61MB |
72 |
40.13KB |
72-Chapter 11 Sequence-to-sequence learning with Transformer.mp4 |
56.14MB |
73 |
435.98KB |
73-Chapter 12 Generative deep learning.mp4 |
80.58MB |
74 |
117.04KB |
74-Chapter 12 How do you generate sequence data.mp4 |
81.89MB |
75 |
445.28KB |
75-Chapter 12 A text-generation callback with variable-temperature sampling.mp4 |
58.46MB |
76 |
24.25KB |
76-Chapter 12 DeepDream.mp4 |
57.37MB |
77 |
512.38KB |
77-Chapter 12 Neural style transfer.mp4 |
80.93MB |
78 |
528.86KB |
78-Chapter 12 Generating images with variational autoencoders.mp4 |
55.81MB |
79 |
208.61KB |
79-Chapter 12 Implementing a VAE with Keras.mp4 |
75.95MB |
8 |
67.45KB |
80 |
688.57KB |
80-Chapter 12 A bag of tricks.mp4 |
62.51MB |
81 |
977.49KB |
81-Chapter 13 Best practices for the real world.mp4 |
62.98MB |
82 |
624.95KB |
82-Chapter 13 Hyperparameter optimization.mp4 |
75.06MB |
83 |
473.27KB |
83-Chapter 13 Scaling-up model training.mp4 |
53.61MB |
84 |
343.28KB |
84-Chapter 13 Multi-GPU training.mp4 |
37.54MB |
85 |
429.12KB |
85-Chapter 13 TPU training.mp4 |
41.58MB |
86 |
866.41KB |
86-Chapter 14 Conclusions.mp4 |
81.16MB |
87 |
355.80KB |
87-Chapter 14 Key enabling technologies.mp4 |
63.57MB |
88 |
508.32KB |
88-Chapter 14 Key network architectures.mp4 |
59.91MB |
89 |
556.40KB |
89-Chapter 14 The limitations of deep learning.mp4 |
60.28MB |
9 |
429.98KB |
90 |
606.43KB |
90-Chapter 14 Local generalization vs. extreme generalization.mp4 |
45.33MB |
91 |
468.29KB |
91-Chapter 14 The purpose of intelligence.mp4 |
53.49MB |
92 |
289.96KB |
92-Chapter 14 Setting the course toward greater generality in AI.mp4 |
69.51MB |
93 |
11.40KB |
93-Chapter 14 Implementing intelligence - The missing ingredients.mp4 |
65.98MB |
94 |
887.20KB |
94-Chapter 14 The missing half of the picture.mp4 |
47.89MB |
95-Chapter 14 Blending together deep learning and program synthesis.mp4 |
58.91MB |
96-Chapter 14 Lifelong learning and modular subroutine reuse.mp4 |
84.14MB |
TutsNode.com.txt |
63B |