Please note that this page does not hosts or makes available any of the listed filenames. You
cannot download any of those files from here.
|
[CourseClub.ME].url |
122B |
[FCS Forum].url |
133B |
[FreeCourseSite.com].url |
127B |
[GigaCourse.Com].url |
49B |
001 Course Content.mp4 |
17.07MB |
001 Introduction.mp4 |
38.11MB |
001 Introduction.mp4 |
17.02MB |
001 Learning Types.mp4 |
45.44MB |
001 Python Source Codes.html |
1.23KB |
001 Reading and Modifying a Dataset.mp4 |
154.55MB |
001 Simple and Multiple Linear Regression Concepts.mp4 |
212.19MB |
001 Supervised Learning Models - Introduction and Understanding the Data.mp4 |
233.75MB |
002 K-means Concepts1.mp4 |
44.53MB |
002 k-NN Concepts.mp4 |
48.03MB |
002 Multiple Linear Regression - Model Development.mp4 |
75.59MB |
002 NumPy1.mp4 |
37.49MB |
002 Statistics1.mp4 |
34.04MB |
002 Support Vector Regression - Model Tuning.mp4 |
125.61MB |
002 What is Machine Learning_ Some Basic Terms.mp4 |
25.82MB |
003 Evaluation Metrics - Concepts.mp4 |
49.47MB |
003 K-means Concepts2.mp4 |
21.28MB |
003 K-Means - Model Tuning.mp4 |
15.30MB |
003 k-NN Model Development.mp4 |
140.65MB |
003 NumPy2.mp4 |
56.91MB |
003 Python Installation.html |
1.47KB |
003 Statistics2.mp4 |
207.49MB |
004 Evaluation Metrics - Implementation.mp4 |
159.90MB |
004 K-means Model Development1.mp4 |
35.98MB |
004 k-NN - Model Tuning.mp4 |
133.64MB |
004 k-NN Training-Set and Test-Set Creation.mp4 |
228.42MB |
004 NumPy3.mp4 |
84.52MB |
004 Python IDE.mp4 |
7.51MB |
004 Statistics3 - Covariance.mp4 |
107.48MB |
005 Decision Tree Concepts.mp4 |
25.62MB |
005 IDE Installation.mp4 |
22.28MB |
005 K-means Model Development2.mp4 |
103.83MB |
005 Missing Values1.mp4 |
129.64MB |
005 NumPy4.mp4 |
56.56MB |
005 Overfitting and Underfitting.mp4 |
72.09MB |
005 Polynomial Linear Regression Concepts.mp4 |
26.39MB |
006 Decision Tree Model Development.mp4 |
66.84MB |
006 Installation of Required Libraries.mp4 |
70.78MB |
006 K-means - Model Evaluation.mp4 |
102.40MB |
006 Missing Values2.mp4 |
219.38MB |
006 NumPy5.mp4 |
152.64MB |
006 Polynomial Linear Regression Model Development.mp4 |
219.12MB |
007 DBSCAN Concepts.mp4 |
26.85MB |
007 Decision Tree - Cross Validation.mp4 |
54.64MB |
007 NumPy6.mp4 |
134.50MB |
007 Outlier Detection1.mp4 |
73.20MB |
007 Random Forest Concepts.mp4 |
30.23MB |
007 Spyder Interface.mp4 |
46.36MB |
008 DBSCAN Model Development.mp4 |
86.87MB |
008 Naive Bayes Concepts.mp4 |
59.23MB |
008 Outlier Detection2.mp4 |
130.66MB |
008 Pandas1.mp4 |
95.61MB |
008 Random Forest Model Development.mp4 |
246.24MB |
009 Hierarchical Clustering Concepts.mp4 |
24.29MB |
009 Naive Bayes Model Development.mp4 |
58.95MB |
009 Outlier Detection3.mp4 |
31.01MB |
009 Pandas2.mp4 |
116.94MB |
009 Support Vector Regression Concepts.mp4 |
26.97MB |
010 Concatenation.mp4 |
65.88MB |
010 Hierarchical Clustering Model Development.mp4 |
145.89MB |
010 Logistic Regression Concepts.mp4 |
10.85MB |
010 Pandas3.mp4 |
117.83MB |
010 Support Vector Regression Model Development.mp4 |
121.01MB |
011 Dummy Variable.mp4 |
57.59MB |
011 Logistic Regression Model Development.mp4 |
112.12MB |
011 Pandas4.mp4 |
203.04MB |
012 Model Evaluation Concepts.mp4 |
83.47MB |
012 Normalization.mp4 |
186.87MB |
012 Visualization with Matplotlib1.mp4 |
99.45MB |
013 Model Evaluation - Calculating with Python.mp4 |
174.04MB |
013 Visualization with Matplotlib2.mp4 |
205.24MB |
014 Visualization with Matplotlib3.mp4 |
188.84MB |
015 Visualization with Matplotlib4.mp4 |
142.99MB |
016 Visualization with Matplotlib5.mp4 |
129.25MB |
018 Data_Set.txt |
580B |
024 Data_Set.txt |
580B |
033 Data_New.txt |
201B |
Chapter2.Matplotlib.py |
2.95KB |
Chapter2.NumPy.py |
1.11KB |
Chapter2.Pandas.py |
1.12KB |
Chapter3.Preprocessing.py |
2.57KB |
Chapter5.Classification.py |
3.31KB |
Chapter6.Regression.py |
4.32KB |
Chapter7.Clustering.py |
1.44KB |
Chapter8.Parameter Tuning.py |
1.95KB |
Readme.txt |
70B |
Readme.txt |
70B |