Torrent Info
Title Machine Learning A-Z AI, Python & R + ChatGPT Prize
Category
Size 8.09GB

Files List
Please note that this page does not hosts or makes available any of the listed filenames. You cannot download any of those files from here.
001 Apriori Algorithm Uncovering Hidden Patterns in Data Mining Association Rules.mp4 56.06MB
001 Apriori Algorithm Uncovering Hidden Patterns in Data Mining Association Rules.srt 30.40KB
001 Data Preprocessing for Beginners Preparing Your Dataset for Machine Learning.mp4 4.92MB
001 Data Preprocessing for Beginners Preparing Your Dataset for Machine Learning.srt 2.78KB
001 dataset.zip 221.28MB
001 From Linear to Non-Linear SVM Exploring Higher Dimensional Spaces.mp4 10.12MB
001 From Linear to Non-Linear SVM Exploring Higher Dimensional Spaces.srt 5.16KB
001 How Decision Tree Algorithms Work Step-by-Step Guide with Examples.mp4 25.06MB
001 How Decision Tree Algorithms Work Step-by-Step Guide with Examples.srt 14.82KB
001 How Does Support Vector Regression --(SVR--) Differ from Linear Regression.mp4 25.13MB
001 How Does Support Vector Regression --(SVR--) Differ from Linear Regression.srt 13.64KB
001 How to Build a Regression Tree Step-by-Step Guide for Machine Learning.mp4 34.07MB
001 How to Build a Regression Tree Step-by-Step Guide for Machine Learning.srt 18.67KB
001 How to Perform Hierarchical Clustering Step-by-Step Guide for Machine Learning.mp4 24.19MB
001 How to Perform Hierarchical Clustering Step-by-Step Guide for Machine Learning.srt 16.02KB
001 How to Use XGBoost in Python for Cancer Prediction with High Accuracy.mp4 45.56MB
001 How to Use XGBoost in Python for Cancer Prediction with High Accuracy.srt 29.98KB
001 Huge Congrats for completing the challenge!.html 6.93KB
001 Kernel PCA in Python Improving Classification Accuracy with Feature Extraction.mp4 34.06MB
001 Kernel PCA in Python Improving Classification Accuracy with Feature Extraction.srt 21.63KB
001 K-Nearest Neighbors --(KNN--) Explained A Beginner--'s Guide to Classification.mp4 15.00MB
001 K-Nearest Neighbors --(KNN--) Explained A Beginner--'s Guide to Classification.srt 9.14KB
001 LDA Intuition Maximizing Class Separation in Machine Learning Algorithms.mp4 11.80MB
001 LDA Intuition Maximizing Class Separation in Machine Learning Algorithms.srt 5.95KB
001 Logistic Regression Interpreting Predictions and Errors in Data Science.mp4 24.58MB
001 Logistic Regression Interpreting Predictions and Errors in Data Science.srt 12.59KB
001 Logistic Regression Intuition.mp4 52.69MB
001 Logistic Regression Intuition.srt 28.27KB
001 Machine-Learning-A-Z-Model-Selection.zip 161.91KB
001 Machine-Learning-A-Z-Model-Selection.zip 160.01KB
001 Make sure you have this Model Selection folder ready.html 3.19KB
001 Make sure you have this Model Selection folder ready.html 3.21KB
001 Mastering ECLAT Support-Based Approach to Market Basket Optimization.mp4 16.03MB
001 Mastering ECLAT Support-Based Approach to Market Basket Optimization.srt 9.34KB
001 Mastering Model Evaluation K-Fold Cross-Validation Techniques Explained.mp4 29.69MB
001 Mastering Model Evaluation K-Fold Cross-Validation Techniques Explained.srt 16.38KB
001 Multi-Armed Bandit Exploration vs Exploitation in Reinforcement Learning.mp4 48.33MB
001 Multi-Armed Bandit Exploration vs Exploitation in Reinforcement Learning.srt 26.09KB
001 Optimizing Regression Models R-Squared vs Adjusted R-Squared Explained.mp4 27.47MB
001 Optimizing Regression Models R-Squared vs Adjusted R-Squared Explained.srt 14.31KB
001 PCA Algorithm Intuition Reducing Dimensions in Unsupervised Learning.mp4 11.05MB
001 PCA Algorithm Intuition Reducing Dimensions in Unsupervised Learning.srt 5.69KB
001 Simple Linear Regression Understanding the Equation and Potato Yield Prediction.mp4 7.34MB
001 Simple Linear Regression Understanding the Equation and Potato Yield Prediction.srt 3.60KB
001 Startup Success Prediction Regression Model for VC Fund Decision-Making.mp4 11.59MB
001 Startup Success Prediction Regression Model for VC Fund Decision-Making.srt 6.26KB
001 Step 1 - Data Preprocessing in Python Preparing Your Dataset for ML Models.mp4 16.49MB
001 Step 1 - Data Preprocessing in Python Preparing Your Dataset for ML Models.srt 8.98KB
001 Support Vector Machines Explained Hyperplanes and Support Vectors in ML.mp4 31.64MB
001 Support Vector Machines Explained Hyperplanes and Support Vectors in ML.srt 17.33KB
001 Understanding Bayes--' Theorem Intuitively From Probability to Machine Learning.mp4 62.58MB
001 Understanding Bayes--' Theorem Intuitively From Probability to Machine Learning.srt 36.92KB
001 Understanding CNN Layers Convolution, ReLU, Pooling, and Flattening Explained.mp4 7.94MB
001 Understanding CNN Layers Convolution, ReLU, Pooling, and Flattening Explained.mp4 10.49MB
001 Understanding CNN Layers Convolution, ReLU, Pooling, and Flattening Explained.srt 4.51KB
001 Understanding CNN Layers Convolution, ReLU, Pooling, and Flattening Explained.srt 6.03KB
001 Understanding Logistic Regression Predicting Categorical Outcomes.mp4 11.08MB
001 Understanding Logistic Regression Predicting Categorical Outcomes.srt 8.22KB
001 Understanding Polynomial Linear Regression Applications and Examples.mp4 15.82MB
001 Understanding Polynomial Linear Regression Applications and Examples.srt 8.73KB
001 Understanding Random Forest Algorithm Intuition and Application in ML.mp4 22.70MB
001 Understanding Random Forest Algorithm Intuition and Application in ML.srt 11.52KB
001 Understanding Random Forest Decision Trees and Majority Voting Explained.mp4 15.69MB
001 Understanding Random Forest Decision Trees and Majority Voting Explained.srt 8.04KB
001 Understanding R-squared Evaluating Goodness of Fit in Regression Models.mp4 7.96MB
001 Understanding R-squared Evaluating Goodness of Fit in Regression Models.srt 7.56KB
001 Understanding Thompson Sampling Algorithm Intuition and Implementation.mp4 58.45MB
001 Understanding Thompson Sampling Algorithm Intuition and Implementation.srt 33.41KB
001 Welcome Challenge!.html 7.62KB
001 Welcome to Part 10 - Model Selection & Boosting.html 3.14KB
001 Welcome to Part 1 - Data Preprocessing.html 2.74KB
001 Welcome to Part 2 - Regression.html 3.01KB
001 Welcome to Part 3 - Classification.html 3.08KB
001 Welcome to Part 4 - Clustering.html 2.97KB
001 Welcome to Part 5 - Association Rule Learning.html 2.70KB
001 Welcome to Part 6 - Reinforcement Learning.html 3.74KB
001 Welcome to Part 7 - Natural Language Processing.html 3.97KB
001 Welcome to Part 8 - Deep Learning.html 3.08KB
001 Welcome to Part 9 - Dimensionality Reduction.html 3.44KB
001 What is Clustering in Machine Learning Introduction to Unsupervised Learning.mp4 6.94MB
001 What is Clustering in Machine Learning Introduction to Unsupervised Learning.srt 5.88KB
002 Bonus How To UNLOCK Top Salaries (Live Training).html 4.00KB
002 Data Preprocessing Tutorial Understanding Independent vs Dependent Variables.mp4 6.04MB
002 Data Preprocessing Tutorial Understanding Independent vs Dependent Variables.srt 3.30KB
002 Deep Learning Basics Exploring Neurons, Synapses, and Activation Functions.mp4 49.82MB
002 Deep Learning Basics Exploring Neurons, Synapses, and Activation Functions.srt 31.40KB
002 Deterministic vs Probabilistic UCB and Thompson Sampling in Machine Learning.mp4 25.23MB
002 Deterministic vs Probabilistic UCB and Thompson Sampling in Machine Learning.srt 13.59KB
002 Get Excited about ML Predict Car Purchases with Python --& Scikit-learn in 5 mins.mp4 14.39MB
002 Get Excited about ML Predict Car Purchases with Python --& Scikit-learn in 5 mins.srt 8.34KB
002 How to Find the Best Fit Line Understanding Ordinary Least Squares Regression.mp4 5.99MB
002 How to Find the Best Fit Line Understanding Ordinary Least Squares Regression.srt 5.25KB
002 How to Master the Bias-Variance Tradeoff in Machine Learning Models.mp4 15.05MB
002 How to Master the Bias-Variance Tradeoff in Machine Learning Models.srt 8.36KB
002 Implementing Kernel PCA for Non-Linear Data Step-by-Step Guide.mp4 68.90MB
002 Implementing Kernel PCA for Non-Linear Data Step-by-Step Guide.srt 36.37KB
002 Introduction to CNNs Understanding Deep Learning for Computer Vision.mp4 48.76MB
002 Introduction to CNNs Understanding Deep Learning for Computer Vision.srt 26.28KB
002 Introduction to Deep Learning From Historical Context to Modern Applications.mp4 42.89MB
002 Introduction to Deep Learning From Historical Context to Modern Applications.srt 21.07KB
002 K-Means Clustering Tutorial Visualizing the Machine Learning Algorithm.mp4 5.66MB
002 K-Means Clustering Tutorial Visualizing the Machine Learning Algorithm.srt 4.82KB
002 Linear Regression Analysis Interpreting Coefficients for Business Decisions.mp4 29.03MB
002 Linear Regression Analysis Interpreting Coefficients for Business Decisions.srt 15.01KB
002 Logistic Regression Finding the Best Fit Curve Using Maximum Likelihood.mp4 9.62MB
002 Logistic Regression Finding the Best Fit Curve Using Maximum Likelihood.srt 6.03KB
002 Machine Learning Model Evaluation Accuracy Paradox and Better Metrics.mp4 6.87MB
002 Machine Learning Model Evaluation Accuracy Paradox and Better Metrics.srt 3.52KB
002 Machine Learning Workflow Importing, Modeling, and Evaluating Your ML Model.mp4 3.67MB
002 Machine Learning Workflow Importing, Modeling, and Evaluating Your ML Model.srt 2.74KB
002 Mastering Linear Discriminant Analysis Step-by-Step Python Implementation.mp4 45.78MB
002 Mastering Linear Discriminant Analysis Step-by-Step Python Implementation.srt 29.53KB
002 Mastering the Confusion Matrix True Positives, Negatives, and Errors.mp4 12.29MB
002 Mastering the Confusion Matrix True Positives, Negatives, and Errors.srt 7.71KB
002 Model Selection and Boosting Additional Content.html 3.37KB
002 Multiple Linear Regression Independent Variables --& Prediction Models.mp4 7.54MB
002 Multiple Linear Regression Independent Variables --& Prediction Models.srt 4.06KB
002 NLP Basics Understanding Bag of Words and Its Applications in Machine Learning.mp4 9.24MB
002 NLP Basics Understanding Bag of Words and Its Applications in Machine Learning.srt 4.99KB
002 Python Tutorial Adapting Apriori to Eclat for Efficient Frequent Itemset Mining.mp4 36.95MB
002 Python Tutorial Adapting Apriori to Eclat for Efficient Frequent Itemset Mining.srt 24.86KB
002 RBF Kernel SVR From Linear to Non-Linear Support Vector Regression.mp4 10.67MB
002 RBF Kernel SVR From Linear to Non-Linear Support Vector Regression.srt 6.87KB
002 Step 1a - Building a Polynomial Regression Model for Salary Prediction in Python.mp4 11.88MB
002 Step 1a - Building a Polynomial Regression Model for Salary Prediction in Python.srt 7.28KB
002 Step 1a - Decision Tree Regression Building a Model without Feature Scaling.mp4 14.42MB
002 Step 1a - Decision Tree Regression Building a Model without Feature Scaling.srt 8.00KB
002 Step 1 - Association Rule Learning Boost Sales with Python Data Mining.mp4 30.60MB
002 Step 1 - Association Rule Learning Boost Sales with Python Data Mining.srt 15.77KB
002 Step 1 - Building a Random Forest Regression Model with Python and Scikit-Learn.mp4 18.14MB
002 Step 1 - Building a Random Forest Regression Model with Python and Scikit-Learn.srt 10.29KB
002 Step 1 - Building a Support Vector Machine Model with Scikit-learn in Python.mp4 19.07MB
002 Step 1 - Building a Support Vector Machine Model with Scikit-learn in Python.srt 10.12KB
002 Step 1 - Implementing Decision Tree Classification in Python with Scikit-learn.mp4 18.45MB
002 Step 1 - Implementing Decision Tree Classification in Python with Scikit-learn.srt 10.39KB
002 Step 1 - Implementing Random Forest Classification in Python with Scikit-Learn.mp4 18.35MB
002 Step 1 - Implementing Random Forest Classification in Python with Scikit-Learn.srt 10.10KB
002 Step 1 - Mastering Regression Toolkit Comparing Models for Optimal Performance.mp4 14.64MB
002 Step 1 - Mastering Regression Toolkit Comparing Models for Optimal Performance.srt 7.67KB
002 Step 1 PCA in Python Reducing Wine Dataset Features with Scikit-learn.mp4 51.93MB
002 Step 1 PCA in Python Reducing Wine Dataset Features with Scikit-learn.srt 34.57KB
002 Step 1 - Python KNN Tutorial Classifying Customer Data for Targeted Marketing.mp4 18.92MB
002 Step 1 - Python KNN Tutorial Classifying Customer Data for Targeted Marketing.srt 9.81KB
002 Step 2 - Data Preprocessing Techniques From Raw Data to ML-Ready Datasets.mp4 16.52MB
002 Step 2 - Data Preprocessing Techniques From Raw Data to ML-Ready Datasets.srt 11.38KB
002 Support Vector Machines Transforming Non-Linear Data for Linear Separation.mp4 18.53MB
002 Support Vector Machines Transforming Non-Linear Data for Linear Separation.srt 12.61KB
002 Understanding Adjusted R-Squared Key Differences from R-Squared Explained.mp4 16.90MB
002 Understanding Adjusted R-Squared Key Differences from R-Squared Explained.srt 8.43KB
002 Understanding Naive Bayes Algorithm Probabilistic Classification Explained.mp4 42.30MB
002 Understanding Naive Bayes Algorithm Probabilistic Classification Explained.srt 27.22KB
002 Upper Confidence Bound Algorithm Solving Multi-Armed Bandit Problems in ML.mp4 43.75MB
002 Upper Confidence Bound Algorithm Solving Multi-Armed Bandit Problems in ML.srt 26.55KB
002 Visualizing Cluster Dissimilarity Dendrograms in Hierarchical Clustering.mp4 27.08MB
002 Visualizing Cluster Dissimilarity Dendrograms in Hierarchical Clustering.srt 15.84KB
002 What is Classification in Machine Learning Fundamentals and Applications.mp4 7.77MB
002 What is Classification in Machine Learning Fundamentals and Applications.srt 4.14KB
003 Bayes Theorem in Machine Learning Step-by-Step Probability Calculation.mp4 18.61MB
003 Bayes Theorem in Machine Learning Step-by-Step Probability Calculation.srt 10.68KB
003 Conclusion of Part 2 - Regression.html 3.92KB
003 Data Preprocessing Importance of Training-Test Split in ML Model Evaluation.mp4 6.30MB
003 Data Preprocessing Importance of Training-Test Split in ML Model Evaluation.srt 3.30KB
003 Deep Learning Quiz.html 20.20KB
003 Deep NLP --& Sequence-to-Sequence Models Exploring Natural Language Processing.mp4 12.89MB
003 Deep NLP --& Sequence-to-Sequence Models Exploring Natural Language Processing.srt 6.36KB
003 Download-the-PDF.url 68B
003 Eclat.zip 48.54KB
003 Eclat vs Apriori Simplified Association Rule Learning in Data Mining.mp4 31.71MB
003 Eclat vs Apriori Simplified Association Rule Learning in Data Mining.srt 17.19KB
003 Evaluating Regression Models Performance Quiz.html 20.32KB
003 Get all the Datasets, Codes and Slides here.html 2.66KB
003 How to Use the Elbow Method in K-Means Clustering A Step-by-Step Guide.mp4 11.47MB
003 How to Use the Elbow Method in K-Means Clustering A Step-by-Step Guide.srt 6.90KB
003 Kernel Trick SVM Machine Learning for Non-Linear Classification.mp4 37.99MB
003 Kernel Trick SVM Machine Learning for Non-Linear Classification.srt 19.30KB
003 K-Fold Cross-Validation in Python Improve Machine Learning Model Performance.mp4 44.73MB
003 K-Fold Cross-Validation in Python Improve Machine Learning Model Performance.srt 27.12KB
003 Machine Learning Toolkit Importing NumPy, Matplotlib, and Pandas Libraries.mp4 10.98MB
003 Machine Learning Toolkit Importing NumPy, Matplotlib, and Pandas Libraries.srt 6.20KB
003 Mastering Hierarchical Clustering Dendrogram Analysis and Threshold Setting.mp4 34.97MB
003 Mastering Hierarchical Clustering Dendrogram Analysis and Threshold Setting.srt 19.36KB
003 Neural Network Basics Understanding Activation Functions in Deep Learning.mp4 26.12MB
003 Neural Network Basics Understanding Activation Functions in Deep Learning.srt 14.20KB
003 Regression-Bonus.zip 364.49KB
003 R Tutorial Importing and Viewing Datasets for Data Preprocessing.mp4 8.45MB
003 R Tutorial Importing and Viewing Datasets for Data Preprocessing.srt 4.73KB
003 Step 1a - Building a Logistic Regression Model for Customer Behavior Prediction.mp4 17.62MB
003 Step 1a - Building a Logistic Regression Model for Customer Behavior Prediction.srt 9.28KB
003 Step 1a - Mastering Simple Linear Regression Key Concepts and Implementation.mp4 15.56MB
003 Step 1a - Mastering Simple Linear Regression Key Concepts and Implementation.srt 9.86KB
003 Step 1a - SVR Model Training Feature Scaling and Dataset Preparation in Python.mp4 17.81MB
003 Step 1a - SVR Model Training Feature Scaling and Dataset Preparation in Python.srt 9.60KB
003 Step 1b - Setting Up Data for Linear vs Polynomial Regression Comparison.mp4 18.29MB
003 Step 1b - Setting Up Data for Linear vs Polynomial Regression Comparison.srt 10.64KB
003 Step 1b Uploading --& Preprocessing Data for Decision Tree Regression in Python.mp4 12.25MB
003 Step 1b Uploading --& Preprocessing Data for Decision Tree Regression in Python.srt 7.00KB
003 Step 1 - How to Choose the Right Classification Algorithm for Your Dataset.mp4 18.04MB
003 Step 1 - How to Choose the Right Classification Algorithm for Your Dataset.srt 10.04KB
003 Step 1 - Python Implementation of Thompson Sampling for Bandit Problems.mp4 17.91MB
003 Step 1 - Python Implementation of Thompson Sampling for Bandit Problems.srt 10.69KB
003 Step 1 - Understanding Convolution in CNNs Feature Detection and Feature Maps.mp4 50.59MB
003 Step 1 - Understanding Convolution in CNNs Feature Detection and Feature Maps.srt 28.71KB
003 Step 1 - Upper Confidence Bound Solving Multi-Armed Bandit Problem in Python.mp4 39.09MB
003 Step 1 - Upper Confidence Bound Solving Multi-Armed Bandit Problem in Python.srt 27.75KB
003 Step 2 - Building a K-Nearest Neighbors Model Scikit-Learn KNeighborsClassifier.mp4 18.08MB
003 Step 2 - Building a K-Nearest Neighbors Model Scikit-Learn KNeighborsClassifier.srt 10.05KB
003 Step 2 - Building a Support Vector Machine Model with Sklearn--'s SVC in Python.mp4 18.19MB
003 Step 2 - Building a Support Vector Machine Model with Sklearn--'s SVC in Python.srt 10.00KB
003 Step 2 - Creating a List of Transactions for Market Basket Analysis in Python.mp4 52.69MB
003 Step 2 - Creating a List of Transactions for Market Basket Analysis in Python.srt 35.36KB
003 Step 2 - Creating a Random Forest Regressor Key Parameters and Model Fitting.mp4 18.31MB
003 Step 2 - Creating a Random Forest Regressor Key Parameters and Model Fitting.srt 9.78KB
003 Step 2 - Creating Generic Code Templates for Various Regression Models in Python.mp4 18.45MB
003 Step 2 - Creating Generic Code Templates for Various Regression Models in Python.srt 10.36KB
003 Step 2 - PCA in Action Reducing Dimensions and Predicting Customer Segments.mp4 17.04MB
003 Step 2 - PCA in Action Reducing Dimensions and Predicting Customer Segments.srt 9.47KB
003 Step 2 Random Forest Evaluation - Confusion Matrix --& Accuracy Metrics.mp4 18.94MB
003 Step 2 Random Forest Evaluation - Confusion Matrix --& Accuracy Metrics.srt 10.77KB
003 Step 2 - Training a Decision Tree Classifier Optimizing Performance in Python.mp4 18.45MB
003 Step 2 - Training a Decision Tree Classifier Optimizing Performance in Python.srt 10.44KB
003 Step-by-Step Guide Applying LDA for Feature Extraction in Machine Learning.mp4 64.93MB
003 Step-by-Step Guide Applying LDA for Feature Extraction in Machine Learning.srt 33.56KB
003 Understanding CAP Curves Assessing Model Performance in Data Science 2024.mp4 32.55MB
003 Understanding CAP Curves Assessing Model Performance in Data Science 2024.srt 18.25KB
003 Understanding Linear Regression Assumptions Linearity, Homoscedasticity --& More.mp4 13.09MB
003 Understanding Linear Regression Assumptions Linearity, Homoscedasticity --& More.srt 7.75KB
003 XGBoost Tutorial Implementing Gradient Boosting for Classification Problems.mp4 57.54MB
003 XGBoost Tutorial Implementing Gradient Boosting for Classification Problems.srt 29.92KB
004 Eclat Quiz.html 20.15KB
004 Feature Scaling in Machine Learning Normalization vs Standardization Explained.mp4 16.33MB
004 Feature Scaling in Machine Learning Normalization vs Standardization Explained.srt 10.73KB
004 From IfElse Rules to CNNs Evolution of Natural Language Processing.mp4 35.00MB
004 From IfElse Rules to CNNs Evolution of Natural Language Processing.srt 17.79KB
004 How Do Neural Networks Work Step-by-Step Guide to Deep Learning Algorithms.mp4 39.41MB
004 How Do Neural Networks Work Step-by-Step Guide to Deep Learning Algorithms.srt 22.91KB
004 How to Handle Categorical Variables in Linear Regression Models.mp4 22.67MB
004 How to Handle Categorical Variables in Linear Regression Models.srt 12.12KB
004 How to Handle Missing Values in R Data Preprocessing for Machine Learning.mp4 18.29MB
004 How to Handle Missing Values in R Data Preprocessing for Machine Learning.srt 9.61KB
004 How to Use Google Colab --& Machine Learning Course Folder.mp4 17.42MB
004 How to Use Google Colab --& Machine Learning Course Folder.srt 10.60KB
004 K-Means++ Algorithm Solving the Random Initialization Trap in Clustering.mp4 13.19MB
004 K-Means++ Algorithm Solving the Random Initialization Trap in Clustering.srt 8.08KB
004 LDA Quiz.html 20.21KB
004 Mastering CAP Analysis Assessing Classification Models with Accuracy Ratio.mp4 19.46MB
004 Mastering CAP Analysis Assessing Classification Models with Accuracy Ratio.srt 10.06KB
004 Optimizing SVM Models with GridSearchCV A Step-by-Step Python Tutorial.mp4 67.80MB
004 Optimizing SVM Models with GridSearchCV A Step-by-Step Python Tutorial.srt 43.60KB
004 Step 1b - Applying ReLU to Convolutional Layers Breaking Up Image Linearity.mp4 20.58MB
004 Step 1b - Applying ReLU to Convolutional Layers Breaking Up Image Linearity.srt 10.99KB
004 Step 1b Data Preprocessing for Linear Regression Import --& Split Data in Python.mp4 18.39MB
004 Step 1b Data Preprocessing for Linear Regression Import --& Split Data in Python.srt 10.43KB
004 Step 1b - Implementing Logistic Regression in Python Data Preprocessing Guide.mp4 12.29MB
004 Step 1b - Implementing Logistic Regression in Python Data Preprocessing Guide.srt 7.11KB
004 Step 1b - SVR in Python Importing Libraries and Dataset for Machine Learning.mp4 10.77MB
004 Step 1b - SVR in Python Importing Libraries and Dataset for Machine Learning.srt 5.94KB
004 Step 1 - Building a Random Forest Model in R Regression Tutorial.mp4 18.29MB
004 Step 1 - Building a Random Forest Model in R Regression Tutorial.srt 9.94KB
004 Step 1 - Getting Started with Hierarchical Clustering Data Setup in Python.mp4 18.38MB
004 Step 1 - Getting Started with Hierarchical Clustering Data Setup in Python.srt 9.92KB
004 Step 1 in R - Understanding Principal Component Analysis for Feature Extraction.mp4 37.47MB
004 Step 1 in R - Understanding Principal Component Analysis for Feature Extraction.srt 21.58KB
004 Step 1 - Machine Learning Basics Importing Datasets Using Pandas read_csv--(--).mp4 16.09MB
004 Step 1 - Machine Learning Basics Importing Datasets Using Pandas read_csv--(--).srt 8.81KB
004 Step 1 Random Forest Classifier - From Template to Implementation in R.mp4 18.29MB
004 Step 1 Random Forest Classifier - From Template to Implementation in R.srt 10.56KB
004 Step 1 - R Tutorial Creating a Decision Tree Classifier with rpart Library.mp4 18.30MB
004 Step 1 - R Tutorial Creating a Decision Tree Classifier with rpart Library.srt 9.93KB
004 Step 2a Linear to Polynomial Regression - Preparing Data for Advanced Models.mp4 18.20MB
004 Step 2a Linear to Polynomial Regression - Preparing Data for Advanced Models.srt 10.02KB
004 Step 2 - Implementing DecisionTreeRegressor A Step-by-Step Guide in Python.mp4 15.37MB
004 Step 2 - Implementing DecisionTreeRegressor A Step-by-Step Guide in Python.srt 8.62KB
004 Step 2 Implementing UCB Algorithm in Python - Data Preparation.mp4 11.93MB
004 Step 2 Implementing UCB Algorithm in Python - Data Preparation.srt 6.56KB
004 Step 2 - Optimizing Ad Selection with Thompson Sampling Algorithm in Python.mp4 38.03MB
004 Step 2 - Optimizing Ad Selection with Thompson Sampling Algorithm in Python.srt 20.12KB
004 Step 2 - Optimizing Model Selection Streamlined Classification Code in Python.mp4 18.45MB
004 Step 2 - Optimizing Model Selection Streamlined Classification Code in Python.srt 10.72KB
004 Step 3 - Configuring Apriori Function Support, Confidence, and Lift in Python.mp4 39.49MB
004 Step 3 - Configuring Apriori Function Support, Confidence, and Lift in Python.srt 25.91KB
004 Step 3 Evaluating Regression Models - R-Squared --& Performance Metrics Explained.mp4 12.28MB
004 Step 3 Evaluating Regression Models - R-Squared --& Performance Metrics Explained.srt 7.25KB
004 Step 3 - Understanding Linear SVM Limitations Why It Didn--'t Beat kNN Classifier.mp4 8.28MB
004 Step 3 - Understanding Linear SVM Limitations Why It Didn--'t Beat kNN Classifier.srt 4.81KB
004 Step 3 - Visualizing KNN Decision Boundaries Python Tutorial for Beginners.mp4 18.45MB
004 Step 3 - Visualizing KNN Decision Boundaries Python Tutorial for Beginners.srt 10.29KB
004 Understanding Different Types of Kernel Functions for Machine Learning.mp4 7.45MB
004 Understanding Different Types of Kernel Functions for Machine Learning.srt 3.71KB
004 Why is Naive Bayes Called Naive Understanding the Algorithm--'s Assumptions.mp4 29.33MB
004 Why is Naive Bayes Called Naive Understanding the Algorithm--'s Assumptions.srt 17.38KB
005 Classification-Pros-Cons.pdf 29.25KB
005 Conclusion of Part 3 - Classification.html 5.56KB
005 Evaluating ML Model Accuracy K-Fold Cross-Validation Implementation in R.mp4 62.87MB
005 Evaluating ML Model Accuracy K-Fold Cross-Validation Implementation in R.srt 31.99KB
005 Getting Started with R Programming Install R and RStudio on Windows --& Mac.mp4 17.21MB
005 Getting Started with R Programming Install R and RStudio on Windows --& Mac.srt 9.95KB
005 How Do Neural Networks Learn Deep Learning Fundamentals Explained.mp4 39.96MB
005 How Do Neural Networks Learn Deep Learning Fundamentals Explained.srt 21.74KB
005 Implementing Bag of Words in NLP A Step-by-Step Tutorial.mp4 52.65MB
005 Implementing Bag of Words in NLP A Step-by-Step Tutorial.srt 28.52KB
005 Mastering Support Vector Regression Non-Linear SVR with RBF Kernel Explained.mp4 34.13MB
005 Mastering Support Vector Regression Non-Linear SVR with RBF Kernel Explained.srt 18.49KB
005 Multicollinearity in Regression Understanding the Dummy Variable Trap.mp4 6.78MB
005 Multicollinearity in Regression Understanding the Dummy Variable Trap.srt 3.73KB
005 Step 1a - Python K-Means Tutorial Identifying Customer Patterns in Mall Data.mp4 11.92MB
005 Step 1a - Python K-Means Tutorial Identifying Customer Patterns in Mall Data.srt 8.19KB
005 Step 1 - Building a Linear SVM Classifier in R Data Import and Initial Setup.mp4 19.30MB
005 Step 1 - Building a Linear SVM Classifier in R Data Import and Initial Setup.srt 9.00KB
005 Step 1 - Implementing KNN Classification in R Setup --& Data Preparation.mp4 19.43MB
005 Step 1 - Implementing KNN Classification in R Setup --& Data Preparation.srt 9.27KB
005 Step 1 - Naive Bayes in Python Applying ML to Social Network Ads Optimisation.mp4 18.41MB
005 Step 1 - Naive Bayes in Python Applying ML to Social Network Ads Optimisation.srt 9.92KB
005 Step 2a - Building a Simple Linear Regression Model with Scikit-learn in Python.mp4 11.99MB
005 Step 2a - Building a Simple Linear Regression Model with Scikit-learn in Python.srt 6.54KB
005 Step 2a - Implementing Hierarchical Clustering Building a Dendrogram with SciPy.mp4 15.01MB
005 Step 2a - Implementing Hierarchical Clustering Building a Dendrogram with SciPy.srt 8.10KB
005 Step 2a - Mastering Feature Scaling for Support Vector Regression in Python.mp4 17.17MB
005 Step 2a - Mastering Feature Scaling for Support Vector Regression in Python.srt 11.11KB
005 Step 2a Python Data Preprocessing for Logistic Regression Dataset Prep.mp4 18.01MB
005 Step 2a Python Data Preprocessing for Logistic Regression Dataset Prep.srt 11.89KB
005 Step 2b - Transforming Linear to Polynomial Regression A Step-by-Step Guide.mp4 17.64MB
005 Step 2b - Transforming Linear to Polynomial Regression A Step-by-Step Guide.srt 10.00KB
005 Step 2 - Decision Tree Classifier Optimizing Prediction Boundaries in R.mp4 19.50MB
005 Step 2 - Decision Tree Classifier Optimizing Prediction Boundaries in R.srt 9.77KB
005 Step 2 - Max Pooling in CNNs Enhancing Spatial Invariance for Image Recognition.mp4 45.43MB
005 Step 2 - Max Pooling in CNNs Enhancing Spatial Invariance for Image Recognition.srt 25.27KB
005 Step 2 Random Forest Classification - Visualizing Predictions --& Results.mp4 18.91MB
005 Step 2 Random Forest Classification - Visualizing Predictions --& Results.srt 10.42KB
005 Step 2 - Using Pandas iloc for Feature Selection in ML Data Preprocessing.mp4 14.50MB
005 Step 2 - Using Pandas iloc for Feature Selection in ML Data Preprocessing.srt 8.01KB
005 Step 2 - Using preProcess Function in R for PCA Extracting Principal Components.mp4 35.04MB
005 Step 2 - Using preProcess Function in R for PCA Extracting Principal Components.srt 19.38KB
005 Step 2 - Visualizing Random Forest Regression Interpreting Stairs and Splits.mp4 16.78MB
005 Step 2 - Visualizing Random Forest Regression Interpreting Stairs and Splits.srt 10.49KB
005 Step 3 - Evaluating Classification Algorithms Accuracy Metrics in Python.mp4 18.08MB
005 Step 3 - Evaluating Classification Algorithms Accuracy Metrics in Python.srt 10.64KB
005 Step 3 - Implementing Decision Tree Regression in Python Making Predictions.mp4 10.08MB
005 Step 3 - Implementing Decision Tree Regression in Python Making Predictions.srt 5.37KB
005 Step 3 - Python Code for Thompson Sampling Maximizing Random Beta Distributions.mp4 43.28MB
005 Step 3 - Python Code for Thompson Sampling Maximizing Random Beta Distributions.srt 28.71KB
005 Step 3 - Python Code for Upper Confidence Bound Setting Up Key Variables.mp4 22.40MB
005 Step 3 - Python Code for Upper Confidence Bound Setting Up Key Variables.srt 13.93KB
005 Step 4 - Implementing R-Squared Score in Python with Scikit-Learn--'s Metrics.mp4 12.19MB
005 Step 4 - Implementing R-Squared Score in Python with Scikit-Learn--'s Metrics.srt 6.74KB
005 Step 4 Visualizing Apriori Algorithm Results for Product Deals in Python.mp4 60.69MB
005 Step 4 Visualizing Apriori Algorithm Results for Product Deals in Python.srt 34.27KB
005 SVM.zip 8.27KB
005 Using R--'s Factor Function to Handle Categorical Variables in Data Analysis.mp4 18.73MB
005 Using R--'s Factor Function to Handle Categorical Variables in Data Analysis.srt 9.65KB
006 Deep Learning Fundamentals Gradient Descent vs Brute Force Optimization.mp4 31.49MB
006 Deep Learning Fundamentals Gradient Descent vs Brute Force Optimization.srt 17.55KB
006 Evaluating Classiification Model Performance Quiz.html 20.55KB
006 EXTRA Use ChatGPT to Boost your ML Skills.html 3.24KB
006 Optimizing SVM Models with Grid Search A Step-by-Step R Tutorial.mp4 45.24MB
006 Optimizing SVM Models with Grid Search A Step-by-Step R Tutorial.srt 23.78KB
006 Step 1b K-Means Clustering - Data Preparation in Google ColabJupyter.mp4 9.16MB
006 Step 1b K-Means Clustering - Data Preparation in Google ColabJupyter.srt 4.95KB
006 Step 1 - Creating a Sparse Matrix for Association Rule Mining in R.mp4 61.23MB
006 Step 1 - Creating a Sparse Matrix for Association Rule Mining in R.srt 32.84KB
006 Step 1 - Getting Started with Natural Language Processing Sentiment Analysis.mp4 22.21MB
006 Step 1 - Getting Started with Natural Language Processing Sentiment Analysis.srt 12.49KB
006 Step 1 - How to Prepare Data for Machine Learning Training vs Test Sets.mp4 14.28MB
006 Step 1 - How to Prepare Data for Machine Learning Training vs Test Sets.srt 8.02KB
006 Step 1 - Python Kernel SVM Applying RBF to Solve Non-Linear Classification.mp4 18.42MB
006 Step 1 - Python Kernel SVM Applying RBF to Solve Non-Linear Classification.srt 9.96KB
006 Step 1 - Selecting the Best Regression Model R-squared Evaluation in Python.mp4 14.82MB
006 Step 1 - Selecting the Best Regression Model R-squared Evaluation in Python.srt 8.27KB
006 Step 2b - Data Preprocessing Feature Scaling Techniques for Logistic Regression.mp4 18.32MB
006 Step 2b - Data Preprocessing Feature Scaling Techniques for Logistic Regression.srt 10.08KB
006 Step 2b - Machine Learning Basics Training a Linear Regression Model in Python.mp4 12.25MB
006 Step 2b - Machine Learning Basics Training a Linear Regression Model in Python.srt 7.17KB
006 Step 2b Reshaping Data for SVR - Preparing Y Vector for Feature Scaling --(Python.mp4 15.24MB
006 Step 2b Reshaping Data for SVR - Preparing Y Vector for Feature Scaling --(Python.srt 8.04KB
006 Step 2 - Building a KNN Classifier Preparing Training and Test Sets in R.mp4 14.22MB
006 Step 2 - Building a KNN Classifier Preparing Training and Test Sets in R.srt 7.74KB
006 Step 2b - Visualizing Hierarchical Clustering Dendrogram Basics in Python.mp4 18.35MB
006 Step 2b - Visualizing Hierarchical Clustering Dendrogram Basics in Python.srt 9.61KB
006 Step 2 Creating --& Evaluating Linear SVM Classifier in R - Predictions --& Results.mp4 17.71MB
006 Step 2 Creating --& Evaluating Linear SVM Classifier in R - Predictions --& Results.srt 9.26KB
006 Step 2 - Python Naive Bayes Training and Evaluating a Classifier on Real Data.mp4 18.69MB
006 Step 2 - Python Naive Bayes Training and Evaluating a Classifier on Real Data.srt 9.88KB
006 Step 3a - Plotting Real vs Predicted Salaries Linear Regression Visualization.mp4 18.34MB
006 Step 3a - Plotting Real vs Predicted Salaries Linear Regression Visualization.srt 9.98KB
006 Step 3 - Decision Tree Visualization Exploring Splits and Conditions in R.mp4 17.56MB
006 Step 3 - Decision Tree Visualization Exploring Splits and Conditions in R.srt 8.74KB
006 Step 3 - Evaluating Random Forest Performance Test Set Results --& Overfitting.mp4 16.89MB
006 Step 3 - Evaluating Random Forest Performance Test Set Results --& Overfitting.srt 9.52KB
006 Step 3 - Fine-Tuning Random Forest From 10 to 500 Trees for Accurate Prediction.mp4 16.80MB
006 Step 3 - Fine-Tuning Random Forest From 10 to 500 Trees for Accurate Prediction.srt 9.30KB
006 Step 3 - Implementing PCA and SVM for Customer Segmentation Practical Guide.mp4 43.65MB
006 Step 3 - Implementing PCA and SVM for Customer Segmentation Practical Guide.srt 22.69KB
006 Step 3 - Preprocessing Data Building X and Y Vectors for ML Model Training.mp4 17.79MB
006 Step 3 - Preprocessing Data Building X and Y Vectors for ML Model Training.srt 10.01KB
006 Step 3 - Understanding Flattening in Convolutional Neural Network Architecture.mp4 5.80MB
006 Step 3 - Understanding Flattening in Convolutional Neural Network Architecture.srt 3.23KB
006 Step 4 - Beating UCB with Thompson Sampling Python Multi-Armed Bandit Tutorial.mp4 23.88MB
006 Step 4 - Beating UCB with Thompson Sampling Python Multi-Armed Bandit Tutorial.srt 12.31KB
006 Step 4 - Model Selection Process Evaluating Classification Algorithms.mp4 8.18MB
006 Step 4 - Model Selection Process Evaluating Classification Algorithms.srt 5.01KB
006 Step 4 - Python for RL Coding the UCB Algorithm Step-by-Step.mp4 48.54MB
006 Step 4 - Python for RL Coding the UCB Algorithm Step-by-Step.srt 33.03KB
006 Step 4 - Visualizing Decision Tree Regression High-Resolution Results.mp4 15.39MB
006 Step 4 - Visualizing Decision Tree Regression High-Resolution Results.srt 8.54KB
006 Understanding P-Values and Statistical Significance in Hypothesis Testing.mp4 36.18MB
006 Understanding P-Values and Statistical Significance in Hypothesis Testing.srt 20.34KB
007 Additional Resource for this Section.html 4.45KB
007 Backward Elimination Building Robust Multiple Linear Regression Models.mp4 48.29MB
007 Backward Elimination Building Robust Multiple Linear Regression Models.srt 29.79KB
007 Decision Tree Classification Quiz.html 20.40KB
007 For Python learners, summary of Object-oriented programming classes & objects.html 3.79KB
007 PCA Quiz.html 20.20KB
007 Random Forest Classification Quiz.html 20.59KB
007 Random Forest Regression Quiz.html 20.37KB
007 Step 1 - Creating a Decision Tree Regressor Using rpart Function in R.mp4 15.24MB
007 Step 1 - Creating a Decision Tree Regressor Using rpart Function in R.srt 8.72KB
007 Step 2a - K-Means Clustering in Python Selecting Relevant Features for Analysis.mp4 15.15MB
007 Step 2a - K-Means Clustering in Python Selecting Relevant Features for Analysis.srt 7.92KB
007 Step 2c - Interpreting Dendrograms Optimal Clusters in Hierarchical Clustering.mp4 18.89MB
007 Step 2c - Interpreting Dendrograms Optimal Clusters in Hierarchical Clustering.srt 10.42KB
007 Step 2c SVR Data Prep - Scaling X --& Y Independently with StandardScaler.mp4 10.87MB
007 Step 2c SVR Data Prep - Scaling X --& Y Independently with StandardScaler.srt 5.53KB
007 Step 2 - Importing TSV Data for Sentiment Analysis Python NLP Data Processing.mp4 20.80MB
007 Step 2 - Importing TSV Data for Sentiment Analysis Python NLP Data Processing.srt 13.43KB
007 Step 2 - Mastering Kernel SVM Improving Accuracy with Non-Linear Classifiers.mp4 18.74MB
007 Step 2 - Mastering Kernel SVM Improving Accuracy with Non-Linear Classifiers.srt 10.71KB
007 Step 2 - Optimizing Apriori Model Choosing Minimum Support and Confidence.mp4 45.09MB
007 Step 2 - Optimizing Apriori Model Choosing Minimum Support and Confidence.srt 24.88KB
007 Step 2 - Preparing Data Creating Training and Test Sets in R for ML Models.mp4 15.16MB
007 Step 2 - Preparing Data Creating Training and Test Sets in R for ML Models.srt 8.65KB
007 Step 2 - Selecting the Best Regression Model Random Forest vs. SVR Performance.mp4 12.93MB
007 Step 2 - Selecting the Best Regression Model Random Forest vs. SVR Performance.srt 7.00KB
007 Step 3a - How to Import and Use LogisticRegression Class from Scikit-learn.mp4 12.22MB
007 Step 3a - How to Import and Use LogisticRegression Class from Scikit-learn.srt 6.63KB
007 Step 3 - Analyzing Naive Bayes Algorithm Results Accuracy and Predictions.mp4 4.93MB
007 Step 3 - Analyzing Naive Bayes Algorithm Results Accuracy and Predictions.srt 2.92KB
007 Step 3b - Polynomial vs Linear Regression Better Fit with Higher Degrees.mp4 17.41MB
007 Step 3b - Polynomial vs Linear Regression Better Fit with Higher Degrees.srt 9.54KB
007 Step 3 - Implementing KNN Classification in R Adapting the Classifier Template.mp4 15.02MB
007 Step 3 - Implementing KNN Classification in R Adapting the Classifier Template.srt 8.19KB
007 Step 3 - Using Scikit-Learn--'s Predict Method for Linear Regression in Python.mp4 14.10MB
007 Step 3 - Using Scikit-Learn--'s Predict Method for Linear Regression in Python.srt 8.14KB
007 Step 4 - Fully Connected Layers in CNNs Optimizing Feature Combination.mp4 59.73MB
007 Step 4 - Fully Connected Layers in CNNs Optimizing Feature Combination.srt 33.96KB
007 Step 5 - Coding Upper Confidence Bound Optimizing Ad Selection in Python.mp4 19.12MB
007 Step 5 - Coding Upper Confidence Bound Optimizing Ad Selection in Python.srt 12.38KB
007 Stochastic vs Batch Gradient Descent Deep Learning Fundamentals.mp4 27.41MB
007 Stochastic vs Batch Gradient Descent Deep Learning Fundamentals.srt 14.87KB
007 SVM Quiz.html 20.60KB
008 Coding Exercise 1 Importing and Preprocessing a Dataset for Machine Learning.html 10.52KB
008 Conclusion of Part 2 - Regression.html 3.92KB
008 Deep Learning Basics How Convolutional Neural Networks --(CNNs--) Process Images.mp4 13.31MB
008 Deep Learning Basics How Convolutional Neural Networks --(CNNs--) Process Images.srt 6.83KB
008 Deep Learning Fundamentals Training Neural Networks Step-by-Step.mp4 16.54MB
008 Deep Learning Fundamentals Training Neural Networks Step-by-Step.srt 8.60KB
008 Feature Scaling in ML Step 1 Why It--'s Crucial for Data Preprocessing.mp4 13.62MB
008 Feature Scaling in ML Step 1 Why It--'s Crucial for Data Preprocessing.srt 7.17KB
008 K-Nearest Neighbor Quiz.html 20.10KB
008 Regression-Bonus.zip 364.49KB
008 Step 1a - Hands-On Data Preprocessing for Multiple Linear Regression in Python.mp4 18.19MB
008 Step 1a - Hands-On Data Preprocessing for Multiple Linear Regression in Python.srt 10.29KB
008 Step 1 - Getting Started with Naive Bayes Algorithm in R for Classification.mp4 15.09MB
008 Step 1 - Getting Started with Naive Bayes Algorithm in R for Classification.srt 7.81KB
008 Step 1 - Kernel SVM vs Linear SVM Overcoming Non-Linear Separability in R.mp4 19.35MB
008 Step 1 - Kernel SVM vs Linear SVM Overcoming Non-Linear Separability in R.srt 9.66KB
008 Step 1 - Thompson Sampling vs UCB Optimizing Ad Click-Through Rates in R.mp4 58.61MB
008 Step 1 - Thompson Sampling vs UCB Optimizing Ad Click-Through Rates in R.srt 31.73KB
008 Step 2b K-Means Clustering - Optimizing Features for 2D Visualization.mp4 16.71MB
008 Step 2b K-Means Clustering - Optimizing Features for 2D Visualization.srt 9.05KB
008 Step 2 - Decision Tree Regression Fixing Splits with rpart Control Parameter.mp4 19.20MB
008 Step 2 - Decision Tree Regression Fixing Splits with rpart Control Parameter.srt 10.17KB
008 Step 3a - Building a Hierarchical Clustering Model with Scikit-learn in Python.mp4 17.77MB
008 Step 3a - Building a Hierarchical Clustering Model with Scikit-learn in Python.srt 9.30KB
008 Step 3b - Training Logistic Regression Model Fit Method for Classification.mp4 10.79MB
008 Step 3b - Training Logistic Regression Model Fit Method for Classification.srt 5.54KB
008 Step 3 Optimizing Product Placement - Apriori Algorithm, Lift --& Confidence.mp4 62.21MB
008 Step 3 Optimizing Product Placement - Apriori Algorithm, Lift --& Confidence.srt 33.20KB
008 Step 3 SVM Regression Creating --& Training SVR Model with RBF Kernel in Python.mp4 18.35MB
008 Step 3 SVM Regression Creating --& Training SVR Model with RBF Kernel in Python.srt 9.77KB
008 Step 3 - Text Cleaning for NLP Remove Punctuation and Convert to Lowercase.mp4 39.73MB
008 Step 3 - Text Cleaning for NLP Remove Punctuation and Convert to Lowercase.srt 26.45KB
008 Step 4a - Linear Regression Plotting Real vs Predicted Salaries Visualization.mp4 17.99MB
008 Step 4a - Linear Regression Plotting Real vs Predicted Salaries Visualization.srt 9.90KB
008 Step 4a Predicting Salaries - Linear Regression in Python --(Array Input Guide--).mp4 12.28MB
008 Step 4a Predicting Salaries - Linear Regression in Python --(Array Input Guide--).srt 6.43KB
008 Step 6 - Reinforcement Learning Finalizing UCB Algorithm in Python.mp4 23.00MB
008 Step 6 - Reinforcement Learning Finalizing UCB Algorithm in Python.srt 14.75KB
009 Apriori Quiz.html 20.28KB
009 Bank Customer Churn Prediction Machine Learning Model with TensorFlow.mp4 17.84MB
009 Bank Customer Churn Prediction Machine Learning Model with TensorFlow.srt 8.85KB
009 Deep Learning Essentials Understanding Softmax and Cross-Entropy in CNNs.mp4 56.42MB
009 Deep Learning Essentials Understanding Softmax and Cross-Entropy in CNNs.srt 32.01KB
009 How to Scale Numeric Features in R for Machine Learning Preprocessing - Step 2.mp4 15.49MB
009 How to Scale Numeric Features in R for Machine Learning Preprocessing - Step 2.srt 7.99KB
009 Step 1b - Hands-On Guide Implementing Multiple Linear Regression in Python.mp4 8.01MB
009 Step 1b - Hands-On Guide Implementing Multiple Linear Regression in Python.srt 4.50KB
009 Step 1 - Using Scikit-Learn to Replace Missing Values in Machine Learning.mp4 18.26MB
009 Step 1 - Using Scikit-Learn to Replace Missing Values in Machine Learning.srt 9.80KB
009 Step 2 - Building a Gaussian Kernel SVM Classifier for Advanced Machine Learning.mp4 17.49MB
009 Step 2 - Building a Gaussian Kernel SVM Classifier for Advanced Machine Learning.srt 9.30KB
009 Step 2 - Reinforcement Learning Thompson Sampling Outperforms UCB Algorithm.mp4 9.41MB
009 Step 2 - Reinforcement Learning Thompson Sampling Outperforms UCB Algorithm.srt 5.57KB
009 Step 2 - Troubleshooting Naive Bayes Classification Empty Prediction Vectors.mp4 14.87MB
009 Step 2 - Troubleshooting Naive Bayes Classification Empty Prediction Vectors.srt 7.72KB
009 Step 3a - Implementing the Elbow Method for K-Means Clustering in Python.mp4 17.99MB
009 Step 3a - Implementing the Elbow Method for K-Means Clustering in Python.srt 9.30KB
009 Step 3b - Comparing 3 vs 5 Clusters in Hierarchical Clustering Python Example.mp4 17.62MB
009 Step 3b - Comparing 3 vs 5 Clusters in Hierarchical Clustering Python Example.srt 9.44KB
009 Step 3 Non-Continuous Regression - Decision Tree Visualization Challenges.mp4 13.84MB
009 Step 3 Non-Continuous Regression - Decision Tree Visualization Challenges.srt 8.69KB
009 Step 4a - Formatting Single Observation Input for Logistic Regression Predict.mp4 18.42MB
009 Step 4a - Formatting Single Observation Input for Logistic Regression Predict.srt 9.30KB
009 Step 4b - Evaluating Linear Regression Model Performance on Test Data.mp4 18.17MB
009 Step 4b - Evaluating Linear Regression Model Performance on Test Data.srt 12.33KB
009 Step 4b Python Polynomial Regression - Predicting Salaries Accurately.mp4 11.27MB
009 Step 4b Python Polynomial Regression - Predicting Salaries Accurately.srt 6.45KB
009 Step 4 - SVR Model Prediction Handling Scaled Data and Inverse Transformation.mp4 11.70MB
009 Step 4 - SVR Model Prediction Handling Scaled Data and Inverse Transformation.srt 6.33KB
009 Step 4 - Text Preprocessing Stemming and Stop Word Removal for NLP in Python.mp4 33.90MB
009 Step 4 - Text Preprocessing Stemming and Stop Word Removal for NLP in Python.srt 22.84KB
009 Step 7 - Visualizing UCB Algorithm Results Histogram Analysis in Python.mp4 25.16MB
009 Step 7 - Visualizing UCB Algorithm Results Histogram Analysis in Python.srt 12.90KB
010 dataset.zip 221.65MB
010 Essential Steps in Data Preprocessing Preparing Your Dataset for ML Models.mp4 16.77MB
010 Essential Steps in Data Preprocessing Preparing Your Dataset for ML Models.srt 9.61KB
010 Make sure you have your dataset ready.html 3.00KB
010 Simple Linear Regression in Python - Additional Lecture.html 3.37KB
010 Step 1a - Implementing Polynomial Regression in R HR Salary Analysis Case Study.mp4 11.54MB
010 Step 1a - Implementing Polynomial Regression in R HR Salary Analysis Case Study.srt 6.43KB
010 Step 1 ANN in Python Predicting Customer Churn with TensorFlow.mp4 31.85MB
010 Step 1 ANN in Python Predicting Customer Churn with TensorFlow.srt 17.85KB
010 Step 1 - Exploring Upper Confidence Bound in R Multi-Armed Bandit Problems.mp4 42.04MB
010 Step 1 - Exploring Upper Confidence Bound in R Multi-Armed Bandit Problems.srt 27.35KB
010 Step 1 - R Data Import for Clustering Annual Income --& Spending Score Analysis.mp4 11.73MB
010 Step 1 - R Data Import for Clustering Annual Income --& Spending Score Analysis.srt 6.71KB
010 Step 2a - Hands-on Multiple Linear Regression Preparing Data in Python.mp4 13.78MB
010 Step 2a - Hands-on Multiple Linear Regression Preparing Data in Python.srt 7.70KB
010 Step 2 - Imputing Missing Data in Python SimpleImputer and Numerical Columns.mp4 18.41MB
010 Step 2 - Imputing Missing Data in Python SimpleImputer and Numerical Columns.srt 9.50KB
010 Step 3b - Optimizing K-means Clustering WCSS and Elbow Method Implementation.mp4 17.60MB
010 Step 3b - Optimizing K-means Clustering WCSS and Elbow Method Implementation.srt 9.63KB
010 Step 3 Visualizing Kernel SVM - Non-Linear Classification in Machine Learning.mp4 15.94MB
010 Step 3 Visualizing Kernel SVM - Non-Linear Classification in Machine Learning.srt 8.77KB
010 Step 3 - Visualizing Naive Bayes Results Creating Confusion Matrix and Graphs.mp4 11.34MB
010 Step 3 - Visualizing Naive Bayes Results Creating Confusion Matrix and Graphs.srt 5.94KB
010 Step 4b Predicted vs. Real Purchase Decisions in Logistic Regression.mp4 5.62MB
010 Step 4b Predicted vs. Real Purchase Decisions in Logistic Regression.srt 3.05KB
010 Step 4 - Visualizing Decision Tree Understanding Intervals and Predictions.mp4 12.05MB
010 Step 4 - Visualizing Decision Tree Understanding Intervals and Predictions.srt 6.53KB
010 Step 5a - How to Plot Support Vector Regression --(SVR--) Models Step-by-Step Guide.mp4 11.43MB
010 Step 5a - How to Plot Support Vector Regression --(SVR--) Models Step-by-Step Guide.srt 6.33KB
010 Step 5 - Tokenization and Feature Extraction for Naive Bayes Sentiment Analysis.mp4 53.58MB
010 Step 5 - Tokenization and Feature Extraction for Naive Bayes Sentiment Analysis.srt 29.58KB
010 Thompson Sampling Quiz.html 20.25KB
011 Coding Exercise 2 Handling Missing Data in a Dataset for Machine Learning.html 32.76KB
011 Data Preprocessing Quiz.html 20.93KB
011 Decision Tree Regression Quiz.html 20.18KB
011 Kernel SVM Quiz.html 20.90KB
011 Naive Bayes Quiz.html 21.29KB
011 Step 1b - ML Fundamentals Preparing Data for Polynomial Regression.mp4 11.49MB
011 Step 1b - ML Fundamentals Preparing Data for Polynomial Regression.srt 6.08KB
011 Step 1 - Data Preprocessing in R Preparing for Linear Regression Modeling.mp4 14.47MB
011 Step 1 - Data Preprocessing in R Preparing for Linear Regression Modeling.srt 8.28KB
011 Step 1 Intro to CNNs for Image Classification.mp4 35.66MB
011 Step 1 Intro to CNNs for Image Classification.srt 19.19KB
011 Step 2b - Multiple Linear Regression in Python Preparing Your Dataset.mp4 14.54MB
011 Step 2b - Multiple Linear Regression in Python Preparing Your Dataset.srt 8.38KB
011 Step 2 - TensorFlow 2.0 Tutorial Preprocessing Data for Customer Churn Model.mp4 57.33MB
011 Step 2 - TensorFlow 2.0 Tutorial Preprocessing Data for Customer Churn Model.srt 31.49KB
011 Step 2 - UCB Algorithm in R Calculating Average Reward --& Confidence Interval.mp4 49.32MB
011 Step 2 - UCB Algorithm in R Calculating Average Reward --& Confidence Interval.srt 30.38KB
011 Step 2 Using H.clust in R - Building --& Interpreting Dendrograms for Clustering.mp4 16.21MB
011 Step 2 Using H.clust in R - Building --& Interpreting Dendrograms for Clustering.srt 9.13KB
011 Step 3c - Plotting the Elbow Method Graph for K-Means Clustering in Python.mp4 12.25MB
011 Step 3c - Plotting the Elbow Method Graph for K-Means Clustering in Python.srt 6.34KB
011 Step 5b - SVR Scaling --& Inverse Transformation in Python.mp4 11.33MB
011 Step 5b - SVR Scaling --& Inverse Transformation in Python.srt 6.32KB
011 Step 5 - Comparing Predicted vs Real Results Python Logistic Regression Guide.mp4 17.25MB
011 Step 5 - Comparing Predicted vs Real Results Python Logistic Regression Guide.srt 11.88KB
011 Step 6 - Training and Evaluating a Naive Bayes Classifier for Sentiment Analysis.mp4 30.40MB
011 Step 6 - Training and Evaluating a Naive Bayes Classifier for Sentiment Analysis.srt 17.32KB
012 Natural Language Processing in Python - EXTRA.html 3.33KB
012 Step 1 - One-Hot Encoding Transforming Categorical Features for ML Algorithms.mp4 13.59MB
012 Step 1 - One-Hot Encoding Transforming Categorical Features for ML Algorithms.srt 6.97KB
012 Step 1 - SVR Tutorial Creating a Support Vector Machine Regressor in R.mp4 18.47MB
012 Step 1 - SVR Tutorial Creating a Support Vector Machine Regressor in R.srt 10.06KB
012 Step 2a - Building Linear --& Polynomial Regression Models in R A Comparison.mp4 14.97MB
012 Step 2a - Building Linear --& Polynomial Regression Models in R A Comparison.srt 7.96KB
012 Step 2 - Fitting Simple Linear Regression in R LM Function and Model Summary.mp4 19.22MB
012 Step 2 - Fitting Simple Linear Regression in R LM Function and Model Summary.srt 9.84KB
012 Step 2 - Keras ImageDataGenerator Prevent Overfitting in CNN Models.mp4 54.71MB
012 Step 2 - Keras ImageDataGenerator Prevent Overfitting in CNN Models.srt 30.55KB
012 Step 3a - Scikit-learn for Multiple Linear Regression Efficient Model Building.mp4 18.09MB
012 Step 3a - Scikit-learn for Multiple Linear Regression Efficient Model Building.srt 10.46KB
012 Step 3 - Designing ANN Sequential Model --& Dense Layers for Deep Learning.mp4 44.50MB
012 Step 3 - Designing ANN Sequential Model --& Dense Layers for Deep Learning.srt 24.56KB
012 Step 3 - Implementing Hierarchical Clustering Using Cat Tree Method in R.mp4 10.33MB
012 Step 3 - Implementing Hierarchical Clustering Using Cat Tree Method in R.srt 5.29KB
012 Step 3 Optimizing Ad Selection - UCB --& Multi-Armed Bandit Algorithm Explained.mp4 55.68MB
012 Step 3 Optimizing Ad Selection - UCB --& Multi-Armed Bandit Algorithm Explained.srt 28.74KB
012 Step 4 - Creating a Dependent Variable from K-Means Clustering Results in Python.mp4 18.45MB
012 Step 4 - Creating a Dependent Variable from K-Means Clustering Results in Python.srt 9.58KB
012 Step 6a - Implementing Confusion Matrix and Accuracy Score in Scikit-Learn.mp4 18.10MB
012 Step 6a - Implementing Confusion Matrix and Accuracy Score in Scikit-Learn.srt 9.91KB
013 Homework Challenge.html 3.54KB
013 Step 2b - Building a Polynomial Regression Model Adding Squared --& Cubed Terms.mp4 15.39MB
013 Step 2b - Building a Polynomial Regression Model Adding Squared --& Cubed Terms.srt 8.05KB
013 Step 2 - Handling Categorical Data One-Hot Encoding with ColumnTransformer.mp4 18.16MB
013 Step 2 - Handling Categorical Data One-Hot Encoding with ColumnTransformer.srt 10.06KB
013 Step 2 - Support Vector Regression Building a Predictive Model in Python.mp4 12.16MB
013 Step 2 - Support Vector Regression Building a Predictive Model in Python.srt 8.62KB
013 Step 3b - Scikit-Learn Building --& Training Multiple Linear Regression Models.mp4 14.20MB
013 Step 3b - Scikit-Learn Building --& Training Multiple Linear Regression Models.srt 7.94KB
013 Step 3 - How to Use predict--(--) Function in R for Linear Regression Analysis.mp4 11.52MB
013 Step 3 - How to Use predict--(--) Function in R for Linear Regression Analysis.srt 5.89KB
013 Step 3 - TensorFlow CNN Convolution to Output Layer for Vision Tasks.mp4 55.19MB
013 Step 3 - TensorFlow CNN Convolution to Output Layer for Vision Tasks.srt 36.66KB
013 Step 4 - Cluster Plot Method Visualizing Hierarchical Clustering Results in R.mp4 9.67MB
013 Step 4 - Cluster Plot Method Visualizing Hierarchical Clustering Results in R.srt 4.42KB
013 Step 4 - Train Neural Network Compile --& Fit for Customer Churn Prediction.mp4 36.86MB
013 Step 4 - Train Neural Network Compile --& Fit for Customer Churn Prediction.srt 20.31KB
013 Step 4 - UCB Algorithm Performance Analyzing Ad Selection with Histograms.mp4 9.34MB
013 Step 4 - UCB Algorithm Performance Analyzing Ad Selection with Histograms.srt 5.09KB
013 Step 5a Visualizing K-Means Clusters of Customer Data with Python Scatter.mp4 18.39MB
013 Step 5a Visualizing K-Means Clusters of Customer Data with Python Scatter.srt 9.74KB
013 Step 6b Evaluating Classification Models - Confusion Matrix --& Accuracy Metrics.mp4 10.61MB
013 Step 6b Evaluating Classification Models - Confusion Matrix --& Accuracy Metrics.srt 5.64KB
014 Step 1 - Text Classification Using Bag-of-Words and Random Forest in R.mp4 51.09MB
014 Step 1 - Text Classification Using Bag-of-Words and Random Forest in R.srt 27.59KB
014 Step 3a Visualizing Regression Results - Creating Scatter Plots with ggplot2 in.mp4 15.42MB
014 Step 3a Visualizing Regression Results - Creating Scatter Plots with ggplot2 in.srt 8.09KB
014 Step 3 - Preprocessing Categorical Data One-Hot and Label Encoding Techniques.mp4 14.36MB
014 Step 3 - Preprocessing Categorical Data One-Hot and Label Encoding Techniques.srt 7.70KB
014 Step 4a Comparing Real vs Predicted Profits in Linear Regression - Hands-on Gui.mp4 17.40MB
014 Step 4a Comparing Real vs Predicted Profits in Linear Regression - Hands-on Gui.srt 9.85KB
014 Step 4a - Plotting Linear Regression Data in R ggplot2 Step-by-Step Guide.mp4 18.18MB
014 Step 4a - Plotting Linear Regression Data in R ggplot2 Step-by-Step Guide.srt 9.50KB
014 Step 4 CNN Training - Epochs, Loss Function --& Metrics in TensorFlow.mp4 22.76MB
014 Step 4 CNN Training - Epochs, Loss Function --& Metrics in TensorFlow.srt 12.28KB
014 Step 5b - Visualizing K-Means Clusters Plotting Customer Segments in Python.mp4 15.22MB
014 Step 5b - Visualizing K-Means Clusters Plotting Customer Segments in Python.srt 8.14KB
014 Step 5 - Hierarchical Clustering in R Understanding Customer Spending Patterns.mp4 8.09MB
014 Step 5 - Hierarchical Clustering in R Understanding Customer Spending Patterns.srt 4.40KB
014 Step 5 - Implementing ANN for Churn Prediction From Model to Confusion Matrix.mp4 50.54MB
014 Step 5 - Implementing ANN for Churn Prediction From Model to Confusion Matrix.srt 26.60KB
014 Step 7a - Visualizing Logistic Regression Decision Boundaries in Python 2D Plot.mp4 18.16MB
014 Step 7a - Visualizing Logistic Regression Decision Boundaries in Python 2D Plot.srt 9.14KB
014 SVR Quiz.html 20.42KB
014 Upper Confidence Bound Quiz.html 20.23KB
015 Coding Exercise 3 Encoding Categorical Data for Machine Learning.html 22.73KB
015 Hierarchical Clustering Quiz.html 20.24KB
015 Step 1 - How to Preprocess Data for Artificial Neural Networks in R.mp4 53.27MB
015 Step 1 - How to Preprocess Data for Artificial Neural Networks in R.srt 29.91KB
015 Step 3b Visualizing Linear Regression - Plotting Predictions vs Observations.mp4 16.22MB
015 Step 3b Visualizing Linear Regression - Plotting Predictions vs Observations.srt 9.03KB
015 Step 4b - Creating a Scatter Plot with Regression Line in R Using ggplot2.mp4 17.02MB
015 Step 4b - Creating a Scatter Plot with Regression Line in R Using ggplot2.srt 8.51KB
015 Step 4b - ML in Python Evaluating Multiple Linear Regression Accuracy.mp4 17.17MB
015 Step 4b - ML in Python Evaluating Multiple Linear Regression Accuracy.srt 9.18KB
015 Step 5c - Analyzing Customer Segments Insights from K-means Clustering.mp4 21.62MB
015 Step 5c - Analyzing Customer Segments Insights from K-means Clustering.srt 11.52KB
015 Step 5 - Making Single Predictions with Convolutional Neural Networks in Python.mp4 45.99MB
015 Step 5 - Making Single Predictions with Convolutional Neural Networks in Python.srt 29.46KB
015 Step 7b - Interpreting Logistic Regression Results Prediction Regions Explained.mp4 11.51MB
015 Step 7b - Interpreting Logistic Regression Results Prediction Regions Explained.srt 6.05KB
015 Warning - Update.html 2.92KB
016 Clustering-Pros-Cons.pdf 25.76KB
016 Conclusion of Part 4 - Clustering.html 2.60KB
016 Hands-on CNN Training Using Jupyter Notebook for Image Classification.mp4 72.81MB
016 Hands-on CNN Training Using Jupyter Notebook for Image Classification.srt 37.53KB
016 Multiple Linear Regression in Python - Backward Elimination.html 5.79KB
016 Step 1 - How to Prepare Data for Machine Learning Training vs Test Sets.mp4 12.06MB
016 Step 1 - How to Prepare Data for Machine Learning Training vs Test Sets.srt 6.32KB
016 Step 1 - K-Means Clustering in R Importing --& Exploring Segmentation Data.mp4 18.44MB
016 Step 1 - K-Means Clustering in R Importing --& Exploring Segmentation Data.srt 10.45KB
016 Step 2 - How to Install and Initialize H2O for Efficient Deep Learning in R.mp4 20.14MB
016 Step 2 - How to Install and Initialize H2O for Efficient Deep Learning in R.srt 11.39KB
016 Step 2 - NLP Data Preprocessing in R Importing TSV Files for Sentiment Analysis.mp4 26.70MB
016 Step 2 - NLP Data Preprocessing in R Importing TSV Files for Sentiment Analysis.srt 14.83KB
016 Step 3c - Polynomial Regression Curve Fitting for Better Predictions.mp4 16.50MB
016 Step 3c - Polynomial Regression Curve Fitting for Better Predictions.srt 9.59KB
016 Step 4c - Comparing Training vs Test Set Predictions in Linear Regression.mp4 13.33MB
016 Step 4c - Comparing Training vs Test Set Predictions in Linear Regression.srt 8.04KB
016 Step 7c - Visualizing Logistic Regression Performance on New Data in Python.mp4 10.29MB
016 Step 7c - Visualizing Logistic Regression Performance on New Data in Python.srt 5.46KB
017 Deep Learning Additional Content #2.html 3.11KB
017 Logistic Regression in Python - Step 7 (Colour-blind friendly image).html 2.96KB
017 Multiple Linear Regression in Python - EXTRA CONTENT.html 3.44KB
017 Simple Linear Regression Quiz.html 20.53KB
017 Step 2 - K-Means Algorithm Implementation in R Fitting and Analyzing Mall Data.mp4 17.82MB
017 Step 2 - K-Means Algorithm Implementation in R Fitting and Analyzing Mall Data.srt 10.07KB
017 Step 2 - Preparing Data Creating Training and Test Sets in Python for ML Models.mp4 18.45MB
017 Step 2 - Preparing Data Creating Training and Test Sets in Python for ML Models.srt 9.89KB
017 Step 3 Building Deep Learning Model - H2O Neural Network Layer Config.mp4 39.85MB
017 Step 3 Building Deep Learning Model - H2O Neural Network Layer Config.srt 23.62KB
017 Step 3 - NLP in R Initialising a Corpus for Sentiment Analysis.mp4 20.54MB
017 Step 3 - NLP in R Initialising a Corpus for Sentiment Analysis.srt 11.37KB
017 Step 4a - How to Make Single Predictions Using Polynomial Regression in R.mp4 12.29MB
017 Step 4a - How to Make Single Predictions Using Polynomial Regression in R.srt 6.67KB
018 CNN Quiz.html 20.13KB
018 K-Means Clustering Quiz.html 20.19KB
018 Step 1a - Data Preprocessing for MLR Handling Categorical Data.mp4 12.01MB
018 Step 1a - Data Preprocessing for MLR Handling Categorical Data.srt 6.36KB
018 Step 1 - Data Preprocessing for Logistic Regression in R Preparing Your Dataset.mp4 18.59MB
018 Step 1 - Data Preprocessing for Logistic Regression in R Preparing Your Dataset.srt 9.91KB
018 Step 3 - Splitting Data into Training and Test Sets Best Practices in Python.mp4 11.95MB
018 Step 3 - Splitting Data into Training and Test Sets Best Practices in Python.srt 6.04KB
018 Step 4b - Predicting Salaries with Polynomial Regression A Practical Example.mp4 11.68MB
018 Step 4b - Predicting Salaries with Polynomial Regression A Practical Example.srt 6.74KB
018 Step 4 - H2O Deep Learning Making Predictions and Evaluating Model Accuracy.mp4 45.35MB
018 Step 4 - H2O Deep Learning Making Predictions and Evaluating Model Accuracy.srt 27.85KB
018 Step 4 - NLP Data Cleaning Lowercase Transformation in R for Text Analysis.mp4 9.42MB
018 Step 4 - NLP Data Cleaning Lowercase Transformation in R for Text Analysis.srt 5.14KB
019 Coding Exercise 4 Dataset Splitting and Feature Scaling.html 10.38KB
019 Deep Learning Additional Content.html 3.19KB
019 Step 1b - Preparing Datasets for Multiple Linear Regression in R.mp4 12.31MB
019 Step 1b - Preparing Datasets for Multiple Linear Regression in R.srt 6.43KB
019 Step 1 - Building a Reusable Framework for Nonlinear Regression Analysis in R.mp4 18.35MB
019 Step 1 - Building a Reusable Framework for Nonlinear Regression Analysis in R.srt 10.06KB
019 Step 2 - How to Create a Logistic Regression Classifier Using R--'s GLM Function.mp4 10.02MB
019 Step 2 - How to Create a Logistic Regression Classifier Using R--'s GLM Function.srt 5.03KB
019 Step 5 - Sentiment Analysis Data Cleaning Removing Numbers with TM Map.mp4 6.47MB
019 Step 5 - Sentiment Analysis Data Cleaning Removing Numbers with TM Map.srt 3.64KB
020 EXTRA CONTENT ANN Case Study.html 2.73KB
020 Step 1 - Feature Scaling in ML Why It--'s Crucial for Data Preprocessing.mp4 18.34MB
020 Step 1 - Feature Scaling in ML Why It--'s Crucial for Data Preprocessing.srt 10.06KB
020 Step 2a - Multiple Linear Regression in R Building --& Interpreting the Regressor.mp4 16.92MB
020 Step 2a - Multiple Linear Regression in R Building --& Interpreting the Regressor.srt 8.91KB
020 Step 2 - Mastering Regression Model Visualization Increasing Data Resolution.mp4 16.77MB
020 Step 2 - Mastering Regression Model Visualization Increasing Data Resolution.srt 9.21KB
020 Step 3 - How to Use R for Logistic Regression Prediction Step-by-Step Guide.mp4 17.46MB
020 Step 3 - How to Use R for Logistic Regression Prediction Step-by-Step Guide.srt 8.37KB
020 Step 6 - Cleaning Text Data Removing Punctuation for NLP and Classification.mp4 18.05MB
020 Step 6 - Cleaning Text Data Removing Punctuation for NLP and Classification.srt 9.81KB
021 ANN QUIZ.html 20.16KB
021 Polynomial Regression Quiz.html 20.48KB
021 Step 2b Statistical Significance - P-values --& Stars in Regression.mp4 13.42MB
021 Step 2b Statistical Significance - P-values --& Stars in Regression.srt 6.82KB
021 Step 2 - How to Scale Numeric Features in Python for ML Preprocessing.mp4 14.64MB
021 Step 2 - How to Scale Numeric Features in Python for ML Preprocessing.srt 7.90KB
021 Step 4 - How to Assess Model Accuracy Using a Confusion Matrix in R.mp4 8.70MB
021 Step 4 - How to Assess Model Accuracy Using a Confusion Matrix in R.srt 4.34KB
021 Step 7 - Simplifying Corpus Using SnowballC Package to Remove Stop Words in R.mp4 10.63MB
021 Step 7 - Simplifying Corpus Using SnowballC Package to Remove Stop Words in R.srt 5.83KB
022 Step 3 - How to Use predict--(--) Function in R for Multiple Linear Regression.mp4 13.97MB
022 Step 3 - How to Use predict--(--) Function in R for Multiple Linear Regression.srt 7.19KB
022 Step 3 - Implementing Feature Scaling Fit and Transform Methods Explained.mp4 11.73MB
022 Step 3 - Implementing Feature Scaling Fit and Transform Methods Explained.srt 6.30KB
022 Step 8 - Enhancing Text Classification Stemming for Efficient Feature Matrices.mp4 16.51MB
022 Step 8 - Enhancing Text Classification Stemming for Efficient Feature Matrices.srt 9.21KB
022 Warning - Update.html 4.02KB
023 Optimizing Multiple Regression Models Backward Elimination Technique in R.mp4 54.96MB
023 Optimizing Multiple Regression Models Backward Elimination Technique in R.srt 29.83KB
023 Step 4 - Applying the Same Scaler to Training and Test Sets in Python.mp4 18.26MB
023 Step 4 - Applying the Same Scaler to Training and Test Sets in Python.srt 10.03KB
023 Step 5a - Interpreting Logistic Regression Plots Prediction Regions Explained.mp4 18.28MB
023 Step 5a - Interpreting Logistic Regression Plots Prediction Regions Explained.srt 9.52KB
023 Step 9 Removing Extra Spaces for NLP Sentiment Analysis Text Cleaning.mp4 40.39MB
023 Step 9 Removing Extra Spaces for NLP Sentiment Analysis Text Cleaning.srt 22.44KB
024 Coding exercise 5 Feature scaling for Machine Learning.html 91.81KB
024 Mastering Feature Selection Backward Elimination in R for Linear Regression.mp4 23.39MB
024 Mastering Feature Selection Backward Elimination in R for Linear Regression.srt 14.55KB
024 Step 10 - Building a Document-Term Matrix for NLP Text Classification.mp4 54.87MB
024 Step 10 - Building a Document-Term Matrix for NLP Text Classification.srt 30.43KB
024 Step 5b Logistic Regression - Linear Classifiers --& Prediction Boundaries.mp4 18.76MB
024 Step 5b Logistic Regression - Linear Classifiers --& Prediction Boundaries.srt 9.88KB
025 Homework Challenge.html 3.65KB
025 Multiple Linear Regression in R - Automatic Backward Elimination.html 3.00KB
025 Step 5c - Data Viz in R Colorizing Pixels for Logistic Regression.mp4 16.28MB
025 Step 5c - Data Viz in R Colorizing Pixels for Logistic Regression.srt 8.18KB
026 Logistic Regression in R - Step 5 (Colour-blind friendly image).html 2.96KB
026 Multiple Linear Regression Quiz.html 20.64KB
026 Natural Language Processing Quiz.html 20.15KB
027 Optimizing R Scripts for Machine Learning Building a Classification Template.mp4 16.55MB
027 Optimizing R Scripts for Machine Learning Building a Classification Template.srt 9.26KB
028 Machine Learning Regression and Classification EXTRA.html 3.04KB
029 Logistic Regression Quiz.html 20.51KB
030 EXTRA CONTENT Logistic Regression Practical Case Study.html 2.85KB
external-links.txt 70B
Distribution statistics by country
Russia (RU) 5
Israel (IL) 2
Kazakhstan (KZ) 1
Poland (PL) 1
Thailand (TH) 1
Bulgaria (BG) 1
Ukraine (UA) 1
Netherlands (NL) 1
Philippines (PH) 1
Total 14
IP List List of IP addresses which were distributed this torrent