Torrent Info
Title [GigaCourse.Com] Udemy - The Data Analyst Course Complete Data Analyst Bootcamp 2022
Category XXX
Size 5.13GB
Files List
Please note that this page does not hosts or makes available any of the listed filenames. You cannot download any of those files from here.
[CourseClub.Me].url 122B
[CourseClub.Me].url 122B
[CourseClub.Me].url 122B
[CourseClub.Me].url 122B
[CourseClub.Me].url 122B
[CourseClub.Me].url 122B
[CourseClub.Me].url 122B
[CourseClub.Me].url 122B
[GigaCourse.Com].url 49B
[GigaCourse.Com].url 49B
[GigaCourse.Com].url 49B
[GigaCourse.Com].url 49B
[GigaCourse.Com].url 49B
[GigaCourse.Com].url 49B
[GigaCourse.Com].url 49B
[GigaCourse.Com].url 49B
001 .unique(), .nunique()_en.vtt 4.80KB
001 .unique(), .nunique().mp4 26.29MB
001 An Introduction to the Absenteeism Exercise_en.vtt 1.65KB
001 An Introduction to the Absenteeism Exercise.mp4 3.65MB
001 A Practical Example - What Will You Learn in This Course_en.vtt 6.30KB
001 A Practical Example - What Will You Learn in This Course.mp4 58.11MB
001 A Revision to pandas DataFrames_en.vtt 6.62KB
001 A Revision to pandas DataFrames.mp4 17.82MB
001 Arrays of 0s and 1s_en.vtt 6.83KB
001 Arrays of 0s and 1s.mp4 16.16MB
001 Basic Slicing in NumPy_en.vtt 12.04KB
001 Basic Slicing in NumPy.mp4 26.56MB
001 Checking for Missing Values in Ndarrays_en.vtt 10.97KB
001 Checking for Missing Values in Ndarrays.mp4 47.88MB
001 Conclusion_en.vtt 3.03KB
001 Conclusion.mp4 16.19MB
001 Data Cleaning and Data Preprocessing_en.vtt 7.66KB
001 Data Cleaning and Data Preprocessing.mp4 16.47MB
001 How to Complete the Absenteeism Exercise_en.vtt 2.67KB
001 How to Complete the Absenteeism Exercise.mp4 6.23MB
001 Indexing in NumPy_en.vtt 7.20KB
001 Indexing in NumPy.mp4 14.87MB
001 Introduction_en.vtt 1.93KB
001 Introduction.mp4 13.81MB
001 Introduction to the pandas Library_en.vtt 7.28KB
001 Introduction to the pandas Library.mp4 14.22MB
001 Introduction to the World of Business and Data_en.vtt 3.24KB
001 Introduction to the World of Business and Data.mp4 10.40MB
001 Iterating Over Range Objects_en.vtt 5.30KB
001 Iterating Over Range Objects.mp4 11.06MB
001 ndarrays_en.vtt 10.67KB
001 ndarrays.mp4 29.33MB
001 Object-Oriented Programming (OOP)_en.vtt 5.35KB
001 Object-Oriented Programming (OOP).mp4 8.43MB
001 Overview of APIs_en.vtt 4.10KB
001 Overview of APIs.mp4 10.40MB
001 Python Variables_en.vtt 3.98KB
001 Python Variables.mp4 14.08MB
001 Setting Up Introduction to the Practical Example_en.vtt 6.14KB
001 Setting Up Introduction to the Practical Example.mp4 20.53MB
001 The NumPy Package and Why We Use It_en.vtt 5.01KB
001 The NumPy Package and Why We Use It.mp4 13.03MB
001 Using Statistical Functions in NumPy_en.vtt 10.11KB
001 Using Statistical Functions in NumPy.mp4 21.25MB
001 What is data gatheringdata collection_en.vtt 9.49KB
001 What is data gatheringdata collection.mp4 19.17MB
001 What Is Data Visualization and Why Is It Important_en.vtt 5.92KB
001 What Is Data Visualization and Why Is It Important.mp4 13.97MB
001 What Is а Matrix_en.vtt 3.88KB
001 Working with Files in Python - An Introduction_en.vtt 5.07KB
001 Working with Files in Python - An Introduction.mp4 11.73MB
001 Working with Text Data and Argument Specifiers_en.vtt 11.45KB
001 Working with Text Data and Argument Specifiers.mp4 21.35MB
002 _like functions in NumPy_en.vtt 4.10KB
002 _like functions in NumPy.mp4 8.74MB
002 Arrays vs Lists_en.vtt 7.45KB
002 Arrays vs Lists.mp4 16.58MB
002 Assigning Values in NumPy_en.vtt 4.94KB
002 Assigning Values in NumPy.mp4 10.14MB
002 Common Attributes for Working with DataFrames_en.vtt 5.59KB
002 Common Attributes for Working with DataFrames.mp4 29.78MB
002 Converting Series into Arrays_en.vtt 7.02KB
002 Converting Series into Arrays.mp4 19.86MB
002 Eyeball Your Data First_en.vtt 6.22KB
002 Eyeball Your Data First.mp4 54.25MB
002 File vs File Object, Read vs Parse_en.vtt 3.67KB
002 File vs File Object, Read vs Parse.mp4 9.23MB
002 GET and POST Requests_en.vtt 3.50KB
002 GET and POST Requests.mp4 6.27MB
002 Installing and Running pandas_en.vtt 6.87KB
002 Installing and Running pandas.mp4 37.73MB
002 InstallingUpgrading NumPy_en.vtt 2.41KB
002 InstallingUpgrading NumPy.mp4 3.92MB
002 Manipulating Python Strings_en.vtt 5.27KB
002 Manipulating Python Strings.mp4 12.29MB
002 Minimal and Maximal Values in NumPy_en.vtt 7.59KB
002 Minimal and Maximal Values in NumPy.mp4 19.95MB
002 Modules, Packages, and the Python Standard Library_en.vtt 5.80KB
002 Modules, Packages, and the Python Standard Library.mp4 13.61MB
002 Nested For Loops - Introduction_en.vtt 7.30KB
002 Nested For Loops - Introduction.mp4 12.21MB
002 Programming Explained in a Few Minutes_en.vtt 6.11KB
002 Programming Explained in a Few Minutes.mp4 14.34MB
002 Relevant Terms Explained_en.vtt 7.32KB
002 Relevant Terms Explained.mp4 17.13MB
002 Scalars and Vectors_en.vtt 3.36KB
002 Scalars and Vectors.mp4 8.39MB
002 Setting Up Importing the Data Set_en.vtt 4.65KB
002 Setting Up Importing the Data Set.mp4 36.90MB
002 Stepwise Slicing in NumPy_en.vtt 5.97KB
002 Stepwise Slicing in NumPy.mp4 13.98MB
002 Substituting Missing Values in Ndarrays_en.vtt 10.63KB
002 Substituting Missing Values in Ndarrays.mp4 34.32MB
002 The Absenteeism Exercise from a Business Perspective_en.vtt 3.09KB
002 The Absenteeism Exercise from a Business Perspective.mp4 7.19MB
002 Types of Data - Numbers and Boolean Values_en.vtt 3.12KB
002 Types of Data - Numbers and Boolean Values.mp4 13.70MB
002 What Does the Course Cover_en.vtt 7.60KB
002 What Does the Course Cover.mp4 60.77MB
002 Why Learn Data Visualization_en.vtt 7.14KB
002 Why Learn Data Visualization.mp4 26.44MB
003 .sort_values()_en.vtt 4.85KB
003 .sort_values().mp4 13.19MB
003 A Non-Random Sequence of Numbers_en.vtt 6.28KB
003 A Non-Random Sequence of Numbers.mp4 19.98MB
003 Choosing the Right Visualization – What Are Some Popular Approaches and Framewor_en.vtt 7.95KB
003 Choosing the Right Visualization – What Are Some Popular Approaches and Framewor.mp4 43.80MB
003 Conditional Slicing in NumPy_en.vtt 5.84KB
003 Conditional Slicing in NumPy.mp4 16.14MB
003 Data Analyst Compared to Other Data Jobs_en.vtt 3.10KB
003 Data Analyst Compared to Other Data Jobs.mp4 8.21MB
003 Data Exchange Format for APIs JSON_en.vtt 3.24KB
003 Data Exchange Format for APIs JSON.mp4 5.70MB
003 Data Selection in pandas DataFrames_en.vtt 8.75KB
003 Data Selection in pandas DataFrames.mp4 37.28MB
003 Download All Resources.html 693B
003 Elementwise Properties of Arrays_en.vtt 5.49KB
003 Elementwise Properties of Arrays.mp4 14.92MB
003 Importing Modules_en.vtt 4.07KB
003 Importing Modules.mp4 7.41MB
003 Introduction to pandas Series_en.vtt 9.31KB
003 Introduction to pandas Series.mp4 24.62MB
003 Jupyter - Introduction_en.vtt 4.10KB
003 Jupyter - Introduction.mp4 8.20MB
003 Linear Algebra and Geometry_en.vtt 3.52KB
003 Linear Algebra and Geometry.mp4 13.56MB
003 Ndarray_en.vtt 3.67KB
003 Ndarray.mp4 7.64MB
003 Note Programming vs the Rest of the World_en.vtt 3.63KB
003 Note Programming vs the Rest of the World.mp4 18.03MB
003 Reshaping Ndarrays_en.vtt 7.35KB
003 Reshaping Ndarrays.mp4 24.59MB
003 Setting Up Checking for Incomplete Data_en.vtt 5.00KB
003 Setting Up Checking for Incomplete Data.mp4 17.14MB
003 Statistical Order Functions in NumPy_en.vtt 7.93KB
003 Statistical Order Functions in NumPy.mp4 27.37MB
003 Strings vs Object vs Number_en.vtt 8.11KB
003 Strings vs Object vs Number.mp4 24.78MB
003 Structured vs Semi-Structured and Unstructured Data_en.vtt 4.35KB
003 Structured vs Semi-Structured and Unstructured Data.mp4 10.85MB
003 The Dataset_en.vtt 2.10KB
003 The Dataset.mp4 5.66MB
003 Triple Nested For Loops_en.vtt 7.05KB
003 Triple Nested For Loops.mp4 19.41MB
003 Types of Data - Strings_en.vtt 6.24KB
003 Types of Data - Strings.mp4 19.73MB
003 Using Various Python String Methods - Part I_en.vtt 8.60KB
003 Using Various Python String Methods - Part I.mp4 23.59MB
004 Arrays in Python_en.vtt 5.14KB
004 Arrays in Python.mp4 19.00MB
004 Attribute and Method Chaining_en.vtt 5.50KB
004 Attribute and Method Chaining.mp4 14.76MB
004 Averages and Variance in NumPy_en.vtt 5.54KB
004 Averages and Variance in NumPy.mp4 14.57MB
004 Basic Python Syntax - Arithmetic Operators_en.vtt 3.77KB
004 Basic Python Syntax - Arithmetic Operators.mp4 7.29MB
004 Data Analyst Job Description_en.vtt 7.35KB
004 Data Analyst Job Description.mp4 19.93MB
004 Data Connectivity through Text Files_en.vtt 4.07KB
004 Data Connectivity through Text Files.mp4 10.57MB
004 Data Selection - Indexing with .iloc[]_en.vtt 6.97KB
004 Data Selection - Indexing with .iloc[].mp4 23.53MB
004 Dimensions and the Squeeze Function_en.vtt 7.58KB
004 Dimensions and the Squeeze Function.mp4 18.26MB
004 FAQ.html 18.18KB
004 Introducing the Exchange Rates API_en.vtt 5.39KB
004 Introducing the Exchange Rates API.mp4 25.19MB
004 Introduction into Colors and Color Theory_en.vtt 10.31KB
004 Introduction into Colors and Color Theory.mp4 56.19MB
004 Introduction to Using NumPy and pandas_en.vtt 12.09KB
004 Introduction to Using NumPy and pandas.mp4 31.90MB
004 Jupyter - Installing Anaconda_en.vtt 4.99KB
004 Jupyter - Installing Anaconda.mp4 21.46MB
004 List Comprehensions_en.vtt 10.85KB
004 List Comprehensions.mp4 43.20MB
004 NumPy DataTypes - Exercise.html 1.09KB
004 Random Generators and Seeds_en.vtt 6.76KB
004 Random Generators and Seeds.mp4 19.32MB
004 Removing Values from Ndarrays_en.vtt 5.00KB
004 Removing Values from Ndarrays.mp4 19.93MB
004 Setting Up Splitting the Dataset_en.vtt 5.81KB
004 Setting Up Splitting the Dataset.mp4 19.76MB
004 The NumPy Documentation_en.vtt 6.04KB
004 The NumPy Documentation.mp4 15.82MB
004 Types of Data Supported by NumPy_en.vtt 7.30KB
004 Types of Data Supported by NumPy.mp4 18.13MB
004 Using a Statistical Approach to Solve Our Exercise_en.vtt 2.55KB
004 Using a Statistical Approach to Solve Our Exercise.mp4 9.90MB
004 Using Various Python String Methods - Part II_en.vtt 8.78KB
004 Using Various Python String Methods - Part II.mp4 20.37MB
004 Working with Attributes in Python_en.vtt 6.71KB
004 Working with Attributes in Python.mp4 26.84MB
005 .sort_index()_en.vtt 5.15KB
005 .sort_index().mp4 15.69MB
005 Anonymous (Lambda) Functions_en.vtt 8.75KB
005 Anonymous (Lambda) Functions.mp4 33.70MB
005 Bar Chart - Introduction - General Theory and Getting to Know the Dataset_en.vtt 1.88KB
005 Bar Chart - Introduction - General Theory and Getting to Know the Dataset.mp4 10.81MB
005 Basic Python Syntax - The Double Equality Sign_en.vtt 1.55KB
005 Basic Python Syntax - The Double Equality Sign.mp4 2.72MB
005 Basic Random Functions in NumPy_en.vtt 5.02KB
005 Basic Random Functions in NumPy.mp4 14.84MB
005 Characteristics of NumPy Functions Part 1_en.vtt 5.62KB
005 Characteristics of NumPy Functions Part 1.mp4 23.18MB
005 Covariance and Correlation in NumPy_en.vtt 3.79KB
005 Covariance and Correlation in NumPy.mp4 8.74MB
005 Data Selection - Indexing with .loc[]_en.vtt 4.87KB
005 Data Selection - Indexing with .loc[].mp4 21.62MB
005 Dropping the 'ID' Column_en.vtt 6.79KB
005 Dropping the 'ID' Column.mp4 41.33MB
005 Including Parameters in a GET Request_en.vtt 3.80KB
005 Including Parameters in a GET Request.mp4 10.80MB
005 Jupyter - Intro to Using Jupyter_en.vtt 3.19KB
005 Jupyter - Intro to Using Jupyter.mp4 5.88MB
005 NumPy Basics - Exercise.html 841B
005 Principles of Importing Data in Python_en.vtt 6.54KB
005 Principles of Importing Data in Python.mp4 16.45MB
005 Setting Up Creating Checkpoints_en.vtt 3.20KB
005 Setting Up Creating Checkpoints.mp4 11.01MB
005 Sorting Ndarrays_en.vtt 11.46KB
005 Sorting Ndarrays.mp4 55.27MB
005 String Accessors_en.vtt 6.09KB
005 String Accessors.mp4 30.62MB
005 Using an Index in pandas_en.vtt 5.04KB
005 Using an Index in pandas.mp4 15.73MB
005 What Is a Tensor_en.vtt 3.24KB
005 What Is a Tensor.mp4 11.62MB
005 What is Software Documentation_en.vtt 5.64KB
005 What is Software Documentation.mp4 13.40MB
005 Why Python_en.vtt 6.58KB
005 Why Python.mp4 15.10MB
005 Working with Arrays - Exercise.html 1.10KB
006 Adding and Subtracting Matrices_en.vtt 3.49KB
006 Adding and Subtracting Matrices.mp4 22.10MB
006 A Few Comments on Using .loc[] and .iloc[]_en.vtt 14.68KB
006 A Few Comments on Using .loc[] and .iloc[].mp4 76.91MB
006 Analysis of the 'Reason for Absence' Column_en.vtt 5.39KB
006 Analysis of the 'Reason for Absence' Column.mp4 17.18MB
006 Argument Sort in NumPy_en.vtt 6.52KB
006 Argument Sort in NumPy.mp4 29.52MB
006 Bar Chart - How to Create a Bar Chart Using Python_en.vtt 11.48KB
006 Bar Chart - How to Create a Bar Chart Using Python.mp4 31.86MB
006 Basic Python Syntax - Reassign Values_en.vtt 1.21KB
006 Basic Python Syntax - Reassign Values.mp4 1.87MB
006 Characteristics of NumPy Functions Part 2_en.vtt 4.35KB
006 Characteristics of NumPy Functions Part 2.mp4 10.14MB
006 Histograms in NumPy (Part 1)_en.vtt 9.80KB
006 Histograms in NumPy (Part 1).mp4 22.10MB
006 Jupyter - Working with Notebook Files_en.vtt 6.72KB
006 Jupyter - Working with Notebook Files.mp4 18.63MB
006 Label-based vs Position-based Indexing_en.vtt 5.94KB
006 Label-based vs Position-based Indexing.mp4 24.52MB
006 Manipulating Text Data Issue Date_en.vtt 6.37KB
006 Manipulating Text Data Issue Date.mp4 14.92MB
006 More Functionalities of the Exchange Rates API_en.vtt 5.17KB
006 More Functionalities of the Exchange Rates API.mp4 16.60MB
006 More on Text Files (.txt vs .csv)_en.vtt 5.87KB
006 More on Text Files (.txt vs .csv).mp4 12.82MB
006 Probability Distributions in NumPy_en.vtt 6.76KB
006 Probability Distributions in NumPy.mp4 31.54MB
006 The Python Documentation_en.vtt 8.40KB
006 The Python Documentation.mp4 43.94MB
006 Using the .format() Method_en.vtt 10.80KB
006 Using the .format() Method.mp4 21.66MB
007 Applications of Random Data in NumPy_en.vtt 4.99KB
007 Applications of Random Data in NumPy.mp4 29.41MB
007 Argument Where in NumPy_en.vtt 13.35KB
007 Argument Where in NumPy.mp4 51.52MB
007 Bar Chart – Interpreting the Bar Graph. How to Make a Good Bar Graph_en.vtt 3.23KB
007 Bar Chart – Interpreting the Bar Graph. How to Make a Good Bar Graph.mp4 8.20MB
007 Basic Python Syntax - Add Comments_en.vtt 1.57KB
007 Basic Python Syntax - Add Comments.mp4 2.41MB
007 Coding a Simple Currency Conversion Calculator_en.vtt 5.37KB
007 Coding a Simple Currency Conversion Calculator.mp4 22.44MB
007 Errors When Adding Matrices_en.vtt 2.30KB
007 Errors When Adding Matrices.mp4 5.76MB
007 Fixed-width Files_en.vtt 2.00KB
007 Fixed-width Files.mp4 4.73MB
007 Histograms in NumPy (Part 2)_en.vtt 5.41KB
007 Histograms in NumPy (Part 2).mp4 11.52MB
007 Jupyter - Using Shortcuts_en.vtt 4.11KB
007 Jupyter - Using Shortcuts.mp4 6.67MB
007 Manipulating Text Data Loan Status and Term_en.vtt 8.17KB
007 Manipulating Text Data Loan Status and Term.mp4 25.16MB
007 More on Working with Indices in Python_en.vtt 6.81KB
007 More on Working with Indices in Python.mp4 33.21MB
007 NumPy Fundamentals - Exercise.html 1.10KB
007 Splitting the Reasons for Absence into Multiple Dummy Variables_en.vtt 9.05KB
007 Splitting the Reasons for Absence into Multiple Dummy Variables.mp4 63.76MB
008 Basic Python Syntax - Line Continuation_en.vtt 1.01KB
008 Basic Python Syntax - Line Continuation.mp4 1.20MB
008 Common Naming Conventions Used in Programming_en.vtt 5.26KB
008 Common Naming Conventions Used in Programming.mp4 8.22MB
008 Generating Data with NumPy - Exercise.html 1.12KB
008 iTunes API_en.vtt 5.23KB
008 iTunes API.mp4 39.61MB
008 Jupyter - Handling Error Messages_en.vtt 7.82KB
008 Jupyter - Handling Error Messages.mp4 13.26MB
008 Manipulating Text Data Grade and Sub Grade_en.vtt 10.41KB
008 Manipulating Text Data Grade and Sub Grade.mp4 41.20MB
008 NAN Equivalent Functions in NumPy_en.vtt 3.79KB
008 NAN Equivalent Functions in NumPy.mp4 16.77MB
008 Pie Chart - Introduction - General Theory and Dataset_en.vtt 4.83KB
008 Pie Chart - Introduction - General Theory and Dataset.mp4 22.69MB
008 Shuffling Ndarrays_en.vtt 8.42KB
008 Shuffling Ndarrays.mp4 32.96MB
008 Transpose_en.vtt 4.98KB
008 Transpose.mp4 20.50MB
008 Using Methods in Python - Part I_en.vtt 6.15KB
008 Using Methods in Python - Part I.mp4 17.04MB
008 Working with Dummy Variables - A Statistical Perspective_en.vtt 1.53KB
008 Working with Dummy Variables - A Statistical Perspective.mp4 5.82MB
009 Basic Python Syntax - Indexing Elements_en.vtt 1.43KB
009 Basic Python Syntax - Indexing Elements.mp4 2.37MB
009 Casting Ndarrays_en.vtt 6.79KB
009 Casting Ndarrays.mp4 40.24MB
009 Dot Product of Vectors_en.vtt 3.75KB
009 Dot Product of Vectors.mp4 11.36MB
009 Grouping the Reason for Absence Columns_en.vtt 8.84KB
009 Grouping the Reason for Absence Columns.mp4 51.32MB
009 Importing Text Files in Python ( open() )_en.vtt 11.77KB
009 Importing Text Files in Python ( open() ).mp4 24.83MB
009 iTunes API Homework.html 256B
009 Jupyter - Restarting the Kernel_en.vtt 2.34KB
009 Jupyter - Restarting the Kernel.mp4 4.71MB
009 Manipulating Text Data Verification Status & URL_en.vtt 5.65KB
009 Manipulating Text Data Verification Status & URL.mp4 26.67MB
009 Pie Chart - How to Create a Pie Chart Using Python_en.vtt 6.06KB
009 Pie Chart - How to Create a Pie Chart Using Python.mp4 16.29MB
009 Statistics with NumPy - Exercise.html 1.11KB
009 Using Methods in Python - Part II_en.vtt 3.31KB
009 Using Methods in Python - Part II.mp4 9.18MB
010 Basic Python Syntax - Indentation_en.vtt 1.92KB
010 Basic Python Syntax - Indentation.mp4 2.80MB
010 Concatenating Columns in a pandas DataFrame_en.vtt 4.55KB
010 Concatenating Columns in a pandas DataFrame.mp4 19.77MB
010 Dot Product of Matrices_en.vtt 8.27KB
010 Dot Product of Matrices.mp4 26.42MB
010 Importing Text Files in Python ( with open() )_en.vtt 6.58KB
010 Importing Text Files in Python ( with open() ).mp4 26.29MB
010 iTunes API Structuring and Exporting the Data_en.vtt 2.55KB
010 iTunes API Structuring and Exporting the Data.mp4 12.86MB
010 Manipulating Text Data State Address_en.vtt 7.11KB
010 Manipulating Text Data State Address.mp4 26.23MB
010 Parameters vs Arguments_en.vtt 5.38KB
010 Parameters vs Arguments.mp4 16.78MB
010 Pie Chart – Interpreting the Pie Chart_en.vtt 1.79KB
010 Pie Chart – Interpreting the Pie Chart.mp4 9.74MB
010 Striping Values from Ndarrays_en.vtt 5.12KB
010 Striping Values from Ndarrays.mp4 18.41MB
011 Importing .csv Files with pandas - Part I_en.vtt 7.51KB
011 Importing .csv Files with pandas - Part I.mp4 49.84MB
011 Manipulating Text Data Converting Strings and Creating a Checkpoint_en.vtt 4.05KB
011 Manipulating Text Data Converting Strings and Creating a Checkpoint.mp4 8.66MB
011 Operators - Comparison Operators_en.vtt 2.17KB
011 Operators - Comparison Operators.mp4 4.16MB
011 Pagination GitHub API_en.vtt 4.79KB
011 Pagination GitHub API.mp4 28.21MB
011 Pie Chart - Why You Should Never Create a Pie Graph_en.vtt 8.35KB
011 Pie Chart - Why You Should Never Create a Pie Graph.mp4 46.37MB
011 Reordering Columns in a DataFrame_en.vtt 1.65KB
011 Reordering Columns in a DataFrame.mp4 7.20MB
011 Stacking Ndarrays_en.vtt 11.52KB
011 Stacking Ndarrays.mp4 65.14MB
011 the pandas Documentation_en.vtt 11.90KB
011 the pandas Documentation.mp4 52.02MB
011 Why is Linear Algebra Useful_en.vtt 10.91KB
011 Why is Linear Algebra Useful.mp4 86.22MB
012 APIs Exercise.html 616B
012 Concatenating Ndarrays_en.vtt 7.33KB
012 Concatenating Ndarrays.mp4 35.68MB
012 Importing .csv Files with pandas - Part II_en.vtt 3.17KB
012 Importing .csv Files with pandas - Part II.mp4 10.91MB
012 Introduction to pandas DataFrames_en.vtt 7.18KB
012 Introduction to pandas DataFrames.mp4 11.71MB
012 Manipulating Numeric Data Substitute Filler Values_en.vtt 9.21KB
012 Manipulating Numeric Data Substitute Filler Values.mp4 27.86MB
012 Operators - Logical and Identity Operators_en.vtt 5.09KB
012 Operators - Logical and Identity Operators.mp4 15.05MB
012 Stacked Area Chart - Introduction - General Theory. Getting to Know the Dataset_en.vtt 3.76KB
012 Stacked Area Chart - Introduction - General Theory. Getting to Know the Dataset.mp4 7.61MB
012 Working on the 'Date' Column_en.vtt 7.55KB
012 Working on the 'Date' Column.mp4 26.06MB
013 Conditional Statements - The IF Statement_en.vtt 3.09KB
013 Conditional Statements - The IF Statement.mp4 5.33MB
013 Creating DataFrames from Scratch - Part I_en.vtt 7.40KB
013 Creating DataFrames from Scratch - Part I.mp4 26.06MB
013 Extracting the Month Value from the 'Date' Column_en.vtt 6.93KB
013 Extracting the Month Value from the 'Date' Column.mp4 37.05MB
013 Finding Unique Values in Ndarrays_en.vtt 6.27KB
013 Finding Unique Values in Ndarrays.mp4 27.75MB
013 Importing .csv Files with pandas - Part III_en.vtt 8.10KB
013 Importing .csv Files with pandas - Part III.mp4 75.11MB
013 Manipulating Numeric Data Currency Change – The Exchange Rate_en.vtt 7.73KB
013 Manipulating Numeric Data Currency Change – The Exchange Rate.mp4 18.99MB
013 Stacked Area Chart - How to Create a Stacked Area Chart Using Python_en.vtt 6.80KB
013 Stacked Area Chart - How to Create a Stacked Area Chart Using Python.mp4 25.04MB
014 Conditional Statements - The ELSE Statement_en.vtt 2.73KB
014 Conditional Statements - The ELSE Statement.mp4 5.25MB
014 Creating DataFrames from Scratch - Part II_en.vtt 6.31KB
014 Creating DataFrames from Scratch - Part II.mp4 29.79MB
014 Creating the 'Day of the Week' Column_en.vtt 3.83KB
014 Creating the 'Day of the Week' Column.mp4 23.33MB
014 Importing Data with the index_col Parameter_en.vtt 3.39KB
014 Importing Data with the index_col Parameter.mp4 11.65MB
014 Manipulating Numeric Data Currency Change - From USD to EUR_en.vtt 9.67KB
014 Manipulating Numeric Data Currency Change - From USD to EUR.mp4 31.45MB
014 Stacked Area Chart - Interpreting the Stacked Area Graph_en.vtt 2.99KB
014 Stacked Area Chart - Interpreting the Stacked Area Graph.mp4 9.60MB
015 Additional Notes on Using DataFrames_en.vtt 2.58KB
015 Additional Notes on Using DataFrames.mp4 12.41MB
015 Completing the Dataset_en.vtt 7.78KB
015 Completing the Dataset.mp4 44.04MB
015 Conditional Statements - The ELIF Statement_en.vtt 5.75KB
015 Conditional Statements - The ELIF Statement.mp4 14.25MB
015 Importing Data with NumPy - .loadtxt() vs genfromtxt()_en.vtt 12.25KB
015 Importing Data with NumPy - .loadtxt() vs genfromtxt().mp4 56.48MB
015 Stacked Area Chart - How to Make a Good Stacked Area Chart_en.vtt 4.58KB
015 Stacked Area Chart - How to Make a Good Stacked Area Chart.mp4 12.62MB
015 Understanding the Meaning of 5 More Columns_en.vtt 3.89KB
015 Understanding the Meaning of 5 More Columns.mp4 12.25MB
016 Conditional Statements - A Note on Boolean Values_en.vtt 2.56KB
016 Conditional Statements - A Note on Boolean Values.mp4 4.25MB
016 Importing Data with NumPy - Partial Cleaning While Importing_en.vtt 8.22KB
016 Importing Data with NumPy - Partial Cleaning While Importing.mp4 30.51MB
016 Line Chart - Introduction - General Theory. Getting to Know the Dataset_en.vtt 2.36KB
016 Line Chart - Introduction - General Theory. Getting to Know the Dataset.mp4 5.05MB
016 Modifying the 'Education' Column_en.vtt 4.98KB
016 Modifying the 'Education' Column.mp4 19.66MB
016 pandas Basics - Conclusion.html 1.03KB
017 Final Remarks on the Absenteeism Exercise_en.vtt 2.32KB
017 Final Remarks on the Absenteeism Exercise.mp4 14.91MB
017 Functions - Defining a Function in Python_en.vtt 2.14KB
017 Functions - Defining a Function in Python.mp4 3.23MB
017 Importing Data with NumPy - Exercise.html 1.11KB
017 Line Chart - How to Create a Line Chart in Python_en.vtt 7.05KB
017 Line Chart - How to Create a Line Chart in Python.mp4 40.29MB
018 Functions - Creating a Function with a Parameter_en.vtt 3.76KB
018 Functions - Creating a Function with a Parameter.mp4 10.00MB
018 Importing .json Files_en.vtt 6.50KB
018 Importing .json Files.mp4 48.53MB
018 Line Chart - Interpretation_en.vtt 3.58KB
018 Line Chart - Interpretation.mp4 32.70MB
019 Functions - Another Way to Define a Function_en.vtt 2.54KB
019 Functions - Another Way to Define a Function.mp4 6.46MB
019 Line Chart - How to Make a Good Line Chart_en.vtt 7.82KB
019 Line Chart - How to Make a Good Line Chart.mp4 27.18MB
019 Prelude to Working with Excel Files in Python_en.vtt 4.64KB
019 Prelude to Working with Excel Files in Python.mp4 43.03MB
020 Functions - Using a Function in Another Function_en.vtt 1.82KB
020 Functions - Using a Function in Another Function.mp4 3.24MB
020 Histogram - Introduction - General Theory. Getting to Know the Dataset_en.vtt 5.29KB
020 Histogram - Introduction - General Theory. Getting to Know the Dataset.mp4 14.34MB
020 Working with Excel Data (the .xlsx Format)_en.vtt 2.42KB
020 Working with Excel Data (the .xlsx Format).mp4 11.55MB
021 An Important Exercise on Importing Data in Python_en.vtt 7.42KB
021 An Important Exercise on Importing Data in Python.mp4 42.97MB
021 Functions - Combining Conditional Statements and Functions_en.vtt 3.13KB
021 Functions - Combining Conditional Statements and Functions.mp4 6.10MB
021 Histogram - How to Create a Histogram Using Python_en.vtt 5.15KB
021 Histogram - How to Create a Histogram Using Python.mp4 14.59MB
022 Functions - Creating Functions That Contain a Few Arguments_en.vtt 1.16KB
022 Functions - Creating Functions That Contain a Few Arguments.mp4 2.82MB
022 Histogram – Interpreting the Histogram_en.vtt 2.33KB
022 Histogram – Interpreting the Histogram.mp4 4.88MB
022 Importing Data with the pandas' Squeeze Parameter_en.vtt 3.04KB
022 Importing Data with the pandas' Squeeze Parameter.mp4 11.58MB
023 A Note on Importing Files in Jupyter_en.vtt 4.00KB
023 A Note on Importing Files in Jupyter.mp4 19.68MB
023 Functions - Notable Built-in Functions in Python_en.vtt 3.75KB
023 Functions - Notable Built-in Functions in Python.mp4 8.50MB
023 Histogram – Choosing the Number of Bins in a Histogram_en.vtt 6.18KB
023 Histogram – Choosing the Number of Bins in a Histogram.mp4 21.10MB
024 Histogram - How to Make a Good Histogram_en.vtt 5.71KB
024 Histogram - How to Make a Good Histogram.mp4 21.69MB
024 Saving Your Data with pandas_en.vtt 3.89KB
024 Saving Your Data with pandas.mp4 27.68MB
024 Sequences - Lists_en.vtt 4.25KB
024 Sequences - Lists.mp4 9.53MB
025 Saving Your Data with NumPy - np.save()_en.vtt 6.48KB
025 Saving Your Data with NumPy - np.save().mp4 18.93MB
025 Scatter Plot - Introduction - General Theory. Getting to Know the Dataset_en.vtt 3.07KB
025 Scatter Plot - Introduction - General Theory. Getting to Know the Dataset.mp4 8.74MB
025 Sequences - Using Methods_en.vtt 3.54KB
025 Sequences - Using Methods.mp4 7.93MB
026 Saving Your Data with NumPy - np.savez()_en.vtt 5.76KB
026 Saving Your Data with NumPy - np.savez().mp4 15.41MB
026 Scatter Plot - How to Create a Scatter Plot Using Python_en.vtt 8.09KB
026 Scatter Plot - How to Create a Scatter Plot Using Python.mp4 29.78MB
026 Sequences - List Slicing_en.vtt 4.63KB
026 Sequences - List Slicing.mp4 19.19MB
027 Saving Your Data with NumPy - np.savetxt()_en.vtt 4.30KB
027 Saving Your Data with NumPy - np.savetxt().mp4 20.84MB
027 Scatter Plot – Interpreting the Scatter Plot_en.vtt 3.44KB
027 Scatter Plot – Interpreting the Scatter Plot.mp4 10.21MB
027 Sequences - Tuples_en.vtt 2.96KB
027 Sequences - Tuples.mp4 7.41MB
028 Saving Your Data with NumPy - Exercise.html 1.24KB
028 Scatter Plot - How to Make a Good Scatter Plot_en.vtt 3.76KB
028 Scatter Plot - How to Make a Good Scatter Plot.mp4 18.63MB
028 Sequences - Dictionaries_en.vtt 3.68KB
028 Sequences - Dictionaries.mp4 10.14MB
029 Iteration - For Loops_en.vtt 3.07KB
029 Iteration - For Loops.mp4 5.51MB
029 Regression Plot - Introduction - General Theory. Getting to Know the Dataset_en.vtt 3.38KB
029 Regression Plot - Introduction - General Theory. Getting to Know the Dataset.mp4 9.38MB
029 Working with Text Files - Conclusion_en.vtt 985B
029 Working with Text Files - Conclusion.mp4 2.06MB
030 Iteration - While Loops and Incrementing_en.vtt 2.48KB
030 Iteration - While Loops and Incrementing.mp4 9.15MB
030 Regression Plot - How to Create a Regression Scatter Plot Using Python_en.vtt 6.71KB
030 Regression Plot - How to Create a Regression Scatter Plot Using Python.mp4 21.75MB
031 Iteration - Create Lists with the range() Function_en.vtt 4.37KB
031 Iteration - Create Lists with the range() Function.mp4 7.25MB
031 Regression Plot – Interpreting the Regression Scatter Plot_en.vtt 5.17KB
031 Regression Plot – Interpreting the Regression Scatter Plot.mp4 17.43MB
032 Iteration - Use Conditional Statements and Loops Together_en.vtt 3.31KB
032 Iteration - Use Conditional Statements and Loops Together.mp4 7.13MB
032 Regression Plot - How to Make a Good Regression Plot_en.vtt 3.86KB
032 Regression Plot - How to Make a Good Regression Plot.mp4 12.35MB
033 Bar and Line Chart - Introduction - General Theory. Getting to Know the Dataset_en.vtt 3.74KB
033 Bar and Line Chart - Introduction - General Theory. Getting to Know the Dataset.mp4 9.35MB
033 Iteration - Conditional Statements, Functions, and Loops_en.vtt 2.05KB
033 Iteration - Conditional Statements, Functions, and Loops.mp4 4.27MB
034 Bar and Line Chart - How to Create a Combination Bar and Line Graph Using Python_en.vtt 7.30KB
034 Bar and Line Chart - How to Create a Combination Bar and Line Graph Using Python.mp4 26.31MB
034 Iteration - Iterating over Dictionaries_en.vtt 3.22KB
034 Iteration - Iterating over Dictionaries.mp4 6.54MB
035 Bar and Line Chart – Interpreting the Combination Bar and Line Graph_en.vtt 2.93KB
035 Bar and Line Chart – Interpreting the Combination Bar and Line Graph.mp4 7.74MB
036 Bar and Line Chart – How to Make a Good Bar and Line Graph_en.vtt 4.59KB
036 Bar and Line Chart – How to Make a Good Bar and Line Graph.mp4 16.13MB
037 Data Visualization - Exercise.html 927B
28764174-Data-Analyst-Common-Naming-Conventions.pdf 643.80KB
31655162-Working-with-Text-Data-Lectures.ipynb 15.89KB
31655170-Working-with-Text-Data-Exercises.ipynb 17.32KB
31655194-Working-with-Text-Data-Solutions.ipynb 26.21KB
31655208-Working-with-Text-Data-Lectures.ipynb 15.89KB
31655214-Working-with-Text-Data-Exercises.ipynb 17.32KB
31655222-Working-with-Text-Data-Solutions.ipynb 26.21KB
32894054-Setting-Up-the-Environment-Jupyter-Lectures.ipynb 4.40KB
32894066-Jupyter-Shortcuts.pdf 589.59KB
32894068-Setting-Up-the-Environment-Jupyter-Lectures.ipynb 4.40KB
32894082-Python-Basics-Lectures.ipynb 74.90KB
32894084-Python-Basics-Exercises.ipynb 42.12KB
32894100-Python-Basics-Solutions.ipynb 73.52KB
32894124-Python-Basics-Lectures.ipynb 74.90KB
32894132-Python-Basics-Exercises.ipynb 42.12KB
32894142-Python-Basics-Solutions.ipynb 73.52KB
32894314-Importing-Modules-Lecture.ipynb 12.61KB
32894342-Importing-Modules-Lecture.ipynb 12.61KB
32896320-Mathematics-for-Python-Lectures.ipynb 34.80KB
32896326-Mathematics-for-Python-Lectures.ipynb 34.80KB
32896332-Intro-to-NumPy-Exercise.ipynb 3.79KB
32896336-Intro-to-NumPy-Solution.ipynb 7.25KB
32896340-Intro-to-NumPy-Template.ipynb 1.90KB
32896342-Intro-to-NumPy-Complete.ipynb 3.18KB
32896346-Introduction-to-pandas-DataFrames.pdf 1.49MB
32896360-pandas-Basics-Lectures.ipynb 28.39KB
32896372-pandas-Basics-Exercises.ipynb 20.83KB
32896374-pandas-Basics-Solutions.ipynb 42.49KB
32896382-Data-Analyst-pandas-Basics-Conclusion.pdf 51.32KB
32896384-pandas-Basics-Lectures.ipynb 28.39KB
32896388-pandas-Basics-Exercises.ipynb 20.83KB
32896390-pandas-Basics-Solutions.ipynb 42.49KB
32896402-Common-Naming-Conventions.pdf 643.80KB
32896406-Importing-Text-Files-in-Python-open.ipynb 2.15KB
32896416-source.txt 39B
32896436-Importing-Text-Files-in-Python-with-open.ipynb 2.47KB
32896438-source.txt 39B
32896496-Importing.csv-Files-with-pandas-Part-I.ipynb 1.56KB
32896534-Lending-company.xlsx 92.60KB
32896536-Lending-company-single-column-data.csv 109.32KB
32896550-Importing-Text-Data-Template.ipynb 2.60KB
32896554-Importing-Text-Data-Complete.ipynb 13.13KB
32896560-Lending-Company-Numeric-Data.csv 29.54KB
32896568-Lending-Company-Numeric-Data-NAN.csv 28.64KB
32896596-Lending-company.json 213.54KB
32896612-Customer-Gender.csv 7.45KB
32896668-Saving-Data-NP-Template.ipynb 3.17KB
32896670-Saving-Data-NP-Complete.ipynb 9.82KB
32896676-Lending-Company-Saving.csv 58.40KB
32896694-Importing-Text-Files-in-Python-open.ipynb 2.15KB
32896708-source.txt 39B
32896718-Must-Know-Python-Tools-Lectures.ipynb 10.58KB
32896720-Must-Know-Python-Tools-Exercises.ipynb 8.60KB
32896722-Must-Know-Python-Tools-Solutions.ipynb 10.63KB
32896724-Must-Know-Python-Tools-Lectures.ipynb 10.58KB
32896728-Must-Know-Python-Tools-Exercises.ipynb 8.60KB
32896730-Must-Know-Python-Tools-Solutions.ipynb 10.63KB
32896806-pandas-Series-Lectures.ipynb 22.68KB
32896812-pandas-Series-Exercises.ipynb 7.66KB
32896814-pandas-Series-Solutions.ipynb 15.87KB
32896816-Location.csv 13.49KB
32896818-Region.csv 10.22KB
32896820-pandas-Series-Lectures.ipynb 22.68KB
32896824-pandas-Series-Exercises.ipynb 7.66KB
32896828-pandas-Series-Solutions.ipynb 15.87KB
32896830-Location.csv 13.49KB
32896832-Region.csv 10.22KB
32896844-pandas-DataFrames.pdf 438.21KB
32896848-pandas-DataFrames-Lectures.ipynb 16.61KB
32896852-pandas-DataFrames-Exercises.ipynb 23.21KB
32896856-pandas-DataFrames-Solutions.ipynb 103.81KB
32896864-Lending-company.csv 112.43KB
32896874-pandas-DataFrames.pdf 438.21KB
32896876-pandas-DataFrames-Lectures.ipynb 16.61KB
32896878-pandas-DataFrames-Exercises.ipynb 23.21KB
32896882-pandas-DataFrames-Solutions.ipynb 103.81KB
32896886-Lending-company.csv 112.43KB
32896890-Sales-products.csv 152.28KB
32904758-NumPy-Fundamentals-Template.ipynb 6.46KB
32904760-NumPy-Fundamentals-Complete.ipynb 17.75KB
32905064-NumPy-Fundamentals-Exercise.ipynb 11.13KB
32905068-NumPy-Fundamentals-Solution.ipynb 23.29KB
32905364-Working-With-Arrays-Template.ipynb 4.28KB
32905372-Working-With-Arrays-Complete.ipynb 12.38KB
32905376-Working-With-Arrays-Exercise.ipynb 8.19KB
32905380-Working-With-Arrays-Solution.ipynb 16.45KB
32905420-Generating-Data-With-NumPy-Template.ipynb 5.13KB
32905426-Generating-Data-With-NumPy-Complete.ipynb 22.14KB
32905436-Generating-Data-With-NumPy-Exercise.ipynb 8.50KB
32905442-Generating-Data-With-NumPy-Solution.ipynb 19.85KB
32905472-Statistics-With-NumPy-Template.ipynb 7.66KB
32905482-Statistics-With-NumPy-Complete.ipynb 29.54KB
32905490-Statistics-With-NumPy-Exercise.ipynb 10.47KB
32905494-Statistics-With-NumPy-Solution.ipynb 26.32KB
32905556-Preprocessing-Data-With-NumPy-Template.ipynb 14.68KB
32905558-Preprocessing-Data-With-NumPy-Complete.ipynb 80.88KB
32905618-Lending-company-Numeric.csv 29.54KB
32905624-Lending-company-Numeric-NAN.csv 28.64KB
32905628-Preprocessing-Data-With-NumPy-Template.ipynb 14.68KB
32905630-Preprocessing-Data-With-NumPy-Complete.ipynb 80.88KB
32905632-Lending-company-Numeric.csv 29.54KB
32905638-Lending-company-Numeric-NAN.csv 28.64KB
32905800-A-Loan-Data-Example-with-NumPy-Template.ipynb 23.02KB
32905806-A-Loan-Data-Example-with-NumPy-Complete.ipynb 68.13KB
32905808-EUR-USD.csv 964B
32905810-loan-data.csv 1.53MB
32905812-loan-data-dictionary.xlsx 19.60KB
32905828-A-Loan-Data-Example-with-NumPy-Template.ipynb 23.02KB
32905830-A-Loan-Data-Example-with-NumPy-Complete.ipynb 68.13KB
32905860-EUR-USD.csv 964B
32905864-loan-data.csv 1.53MB
32905866-loan-data-dictionary.xlsx 19.60KB
32905886-Absenteeism-data.csv 32.05KB
32905894-df-cleaned.csv 29.11KB
32906066-Absenteeism-Exercise-Lectures.ipynb 8.43MB
32906098-Absenteeism-Exercise-df-cleaned.ipynb 17.95KB
32906104-Absenteeism-data.csv 32.05KB
32906108-df-cleaned.csv 29.11KB
32906114-data-cleaning-homework.pdf 135.74KB
32906128-Absenteeism-Exercise-Lectures.ipynb 8.43MB
32906132-Absenteeism-Exercise-df-cleaned.ipynb 17.95KB
32906136-Absenteeism-data.csv 32.05KB
32906140-df-cleaned.csv 29.11KB
32906148-data-cleaning-homework.pdf 135.74KB
32906196-Data-Viz-Notebook-Template.ipynb 5.44KB
32906202-Data-Viz-Homework-Notebook.ipynb 11.79KB
32906208-Data-Visualization-Course-Notes.pdf 1.67MB
32906548-Data-Viz-Homework-Solution-Notebook.ipynb 687.58KB
32906550-Data-Viz-Notebook-with-Comments.ipynb 26.15KB
32906864-APIs-complete-notebook.ipynb 1.16MB
32906872-15.8.Homework-Setup.ipynb 2.69KB
32906880-15.8.Homework-Solution.ipynb 485.40KB
38405832-Sales-products.csv 152.28KB
external-assets-links.txt 123B
external-assets-links.txt 110B
external-assets-links.txt 130B
external-assets-links.txt 119B
external-assets-links.txt 109B
external-assets-links.txt 240B
external-assets-links.txt 1.13KB
external-assets-links.txt 119B
external-assets-links.txt 193B
external-assets-links.txt 110B
external-assets-links.txt 114B
external-assets-links.txt 107B
external-assets-links.txt 112B
external-assets-links.txt 116B
external-assets-links.txt 123B
external-assets-links.txt 118B
external-assets-links.txt 116B
external-assets-links.txt 127B
external-assets-links.txt 129B
external-assets-links.txt 133B
external-assets-links.txt 2.00KB
Distribution statistics by country
India (IN) 3
Spain (ES) 2
Australia (AU) 1
United States (US) 1
Russia (RU) 1
Total 8
IP List List of IP addresses which were distributed this torrent