Torrent Info
Title 2021 Python for Data Science & Machine Learning from A-Z
Category
Size 7.38GB

Files List
Please note that this page does not hosts or makes available any of the listed filenames. You cannot download any of those files from here.
[TGx]Downloaded from torrentgalaxy.to .txt 585B
0 1.83KB
1 433B
1.1 NumPy Basics.pdf 77.10KB
1.1 Pandas.pdf 110.18KB
1.1 Supervised Learning.pdf 836.74KB
1.1 Unsupervised Learning.pdf 636.55KB
1.2 Pandas Basics.pdf 77.06KB
1. Creating A Data Science Resume.mp4 37.08MB
1. Creating A Data Science Resume.srt 10.52KB
1. Data Visualization Overview.mp4 73.08MB
1. Data Visualization Overview.srt 36.78KB
1. Decision Trees Section Overview.mp4 16.46MB
1. Decision Trees Section Overview.srt 5.60KB
1. Ensemble Learning Section Overview.mp4 16.07MB
1. Ensemble Learning Section Overview.srt 5.17KB
1. Exploratory Data Analysis.mp4 50.56MB
1. Exploratory Data Analysis.srt 19.07KB
1. Feature Engineering.mp4 18.41MB
1. Feature Engineering.srt 9.42KB
1. Feature Scaling.mp4 19.38MB
1. Feature Scaling.srt 11.58KB
1. Introduction To Machine Learning.mp4 98.71MB
1. Introduction To Machine Learning.srt 36.98KB
1. Introduction to Pandas.mp4 46.83MB
1. Introduction to Pandas.srt 22.30KB
1. Intro NumPy Array Data Types.mp4 34.67MB
1. Intro NumPy Array Data Types.srt 18.29KB
1. Intro To Statistics.mp4 21.24MB
1. Intro To Statistics.srt 11.17KB
1. KNN Overview.mp4 12.89MB
1. KNN Overview.srt 4.27KB
1. Linear Regression Intro.mp4 30.80MB
1. Linear Regression Intro.srt 12.16KB
1. PCA Section Overview.mp4 31.77MB
1. PCA Section Overview.srt 7.06KB
1. SVM Outline.mp4 35.31MB
1. SVM Outline.srt 7.40KB
1. Unsupervised Machine Learning Intro.mp4 100.92MB
1. Unsupervised Machine Learning Intro.srt 29.36KB
1. What is Exactly is Probability.mp4 27.17MB
1. What is Exactly is Probability.srt 6.73KB
1. What is Programming.mp4 18.35MB
1. What is Programming.srt 9.03KB
1. Who is This Course For.mp4 17.16MB
1. Who is This Course For.srt 3.95KB
1. Why We Use Python.mp4 13.51MB
1. Why We Use Python.srt 4.91KB
10 60.42KB
10. Feature scaling in KNN.mp4 49.39MB
10. Feature scaling in KNN.srt 8.06KB
10. PCA - Feature Scaling and Screen Plot.mp4 68.20MB
10. PCA - Feature Scaling and Screen Plot.srt 14.40KB
10. Python Conditional Statements.mp4 54.61MB
10. Python Conditional Statements.srt 18.15KB
10. Random Forests Pros and Cons.mp4 19.69MB
10. Random Forests Pros and Cons.srt 7.85KB
10. SMV - Project Overview.mp4 39.61MB
10. SMV - Project Overview.srt 6.23KB
10. Visualizing the tree.mp4 68.17MB
10. Visualizing the tree.srt 15.00KB
100 403.55KB
101 482.85KB
102 4.13KB
103 360.64KB
104 441.01KB
105 312.24KB
106 439.69KB
107 44.83KB
108 528.47KB
109 578.17KB
11 554.95KB
11. Curse of dimensionality.mp4 45.99MB
11. Curse of dimensionality.srt 9.60KB
11. PCA - Supervised vs Unsupervised.mp4 35.79MB
11. PCA - Supervised vs Unsupervised.srt 7.12KB
11. Plot the features importance.mp4 31.67MB
11. Plot the features importance.srt 7.75KB
11. Python For Loops and While Loops.mp4 25.61MB
11. Python For Loops and While Loops.srt 10.74KB
11. What is Boosting.mp4 35.44MB
11. What is Boosting.srt 6.86KB
110 778.26KB
111 957.72KB
112 319.91KB
113 577.17KB
114 639.75KB
115 835.76KB
116 603.58KB
117 668.45KB
118 142.78KB
119 143.06KB
12 33.74KB
12. AdaBoost Part 1.mp4 25.53MB
12. AdaBoost Part 1.srt 5.50KB
12. Decision Trees Hyper-parameters.mp4 81.27MB
12. Decision Trees Hyper-parameters.srt 16.12KB
12. KNN use cases.mp4 28.92MB
12. KNN use cases.srt 4.85KB
12. PCA - Visualization.mp4 68.02MB
12. PCA - Visualization.srt 10.96KB
12. Python Lists.mp4 21.44MB
12. Python Lists.srt 7.12KB
120 862.71KB
121 45.85KB
122 65.97KB
123 554.51KB
124 693.74KB
125 947.62KB
126 50.47KB
127 73.94KB
128 374.41KB
129 648.74KB
13 461.98KB
13. AdaBoost Part 2.mp4 85.94MB
13. AdaBoost Part 2.srt 20.87KB
13. KNN pros and cons.mp4 30.45MB
13. KNN pros and cons.srt 7.75KB
13. More about Lists.mp4 60.42MB
13. More about Lists.srt 19.44KB
13. Pruning.mp4 112.97MB
13. Pruning.srt 24.35KB
130 909.93KB
131 286.96KB
132 443.11KB
133 500.26KB
134 111.10KB
135 970.97KB
136 101.79KB
137 761.13KB
138 934.13KB
14 636.46KB
14. [Optional] Gain Ration.mp4 19.18MB
14. [Optional] Gain Ration.srt 3.70KB
14. Python Tuples.mp4 54.53MB
14. Python Tuples.srt 14.96KB
15 391.78KB
15. Decision Trees Pros and Cons.mp4 47.74MB
15. Decision Trees Pros and Cons.srt 10.60KB
15. Python Dictionaries.mp4 104.18MB
15. Python Dictionaries.srt 27.72KB
16 841.00KB
16. [Project] Predict whether income exceeds $50Kyr - Overview.mp4 15.11MB
16. [Project] Predict whether income exceeds $50Kyr - Overview.srt 3.60KB
16. Python Sets.mp4 29.43MB
16. Python Sets.srt 13.48KB
17 449.09KB
17. Compound Data Types & When to use each one.mp4 47.07MB
17. Compound Data Types & When to use each one.srt 17.98KB
18 77.60KB
18. Python Functions.mp4 62.51MB
18. Python Functions.srt 20.84KB
19 294.34KB
19. Object Oriented Programming in Python.mp4 70.25MB
19. Object Oriented Programming in Python.srt 25.73KB
2 45B
2.1 Importing Python Data.pdf 61.55KB
2.2 Python Basics.pdf 127.71KB
2. Data Cleaning.mp4 30.21MB
2. Data Cleaning.srt 11.53KB
2. Data Science + Machine Learning Marketplace.mp4 46.94MB
2. Data Science + Machine Learning Marketplace.srt 10.40KB
2. Data Science Cover Letter.mp4 22.96MB
2. Data Science Cover Letter.srt 5.99KB
2. Descriptive Statistics.mp4 21.48MB
2. Descriptive Statistics.srt 10.04KB
2. Different Data Visualization Libraries in Python.mp4 15.95MB
2. Different Data Visualization Libraries in Python.srt 8.76KB
2. EDA on Adult Dataset.mp4 123.19MB
2. EDA on Adult Dataset.srt 23.77KB
2. Expected Values.mp4 14.72MB
2. Expected Values.srt 4.11KB
2. Gradient Descent.mp4 15.93MB
2. Gradient Descent.srt 8.44KB
2. Introduction to Pandas Continued.mp4 71.10MB
2. Introduction to Pandas Continued.srt 26.81KB
2. NumPy Arrays.mp4 32.33MB
2. NumPy Arrays.srt 11.09KB
2. parametric vs non-parametric models.mp4 15.63MB
2. parametric vs non-parametric models.srt 4.73KB
2. SVM intuition.mp4 48.86MB
2. SVM intuition.srt 16.01KB
2. Unsupervised Machine Learning Continued.mp4 83.13MB
2. Unsupervised Machine Learning Continued.srt 29.19KB
2. What is Data Science.mp4 87.99MB
2. What is Data Science.srt 21.23KB
2. What is Ensemble Learning.mp4 91.97MB
2. What is Ensemble Learning.srt 17.42KB
2. What is PCA.mp4 47.26MB
2. What is PCA.srt 14.59KB
2. Why Python for Data Science.mp4 16.32MB
2. Why Python for Data Science.srt 6.77KB
20 28.67KB
21 713.81KB
22 5.19KB
23 26.11KB
24 244.21KB
25 60.39KB
26 742.56KB
27 604.93KB
28 894.66KB
29 746.62KB
3 256B
3.1 Jupyter Notebook.pdf 307.15KB
3. Data Science Job Opportunities.mp4 29.42MB
3. Data Science Job Opportunities.srt 6.86KB
3. EDA on Iris Dataset.mp4 161.88MB
3. EDA on Iris Dataset.srt 31.65KB
3. Hard vs Soft Margins.mp4 65.64MB
3. Hard vs Soft Margins.srt 18.92KB
3. How to Contact Recruiters.mp4 24.65MB
3. How to Contact Recruiters.srt 7.34KB
3. Linear Regression + Correlation Methods.mp4 110.38MB
3. Linear Regression + Correlation Methods.srt 38.61KB
3. Measure of Variability.mp4 38.20MB
3. Measure of Variability.srt 18.19KB
3. NumPy Arrays Basics.mp4 39.98MB
3. NumPy Arrays Basics.srt 16.84KB
3. PCA Drawbacks.mp4 19.44MB
3. PCA Drawbacks.srt 4.90KB
3. Python Data Visualization Implementation.mp4 27.43MB
3. Python Data Visualization Implementation.srt 12.44KB
3. Relative Frequency.mp4 32.69MB
3. Relative Frequency.srt 8.67KB
3. Representing Clusters.mp4 109.62MB
3. Representing Clusters.srt 28.32KB
3. What is Bootstrap Sampling.mp4 55.88MB
3. What is Bootstrap Sampling.srt 11.13KB
3. What is Entropy and Information Gain.mp4 136.08MB
3. What is Entropy and Information Gain.srt 29.33KB
3. What is Jupyter.mp4 14.57MB
3. What is Jupyter.srt 5.92KB
3. What is Machine Learning.mp4 83.41MB
3. What is Machine Learning.srt 22.93KB
30 201.37KB
31 537.54KB
32 21.45KB
33 195.71KB
34 977.41KB
35 81.60KB
36 942.37KB
37 925.90KB
38 763.91KB
39 820.11KB
4 5B
4. C hyper-parameter.mp4 21.06MB
4. C hyper-parameter.srt 5.64KB
4. Data Science Job Roles.mp4 79.80MB
4. Data Science Job Roles.srt 15.73KB
4. Getting Started with Freelancing.mp4 30.24MB
4. Getting Started with Freelancing.srt 7.08KB
4. Hypothesis Testing Overview.mp4 60.59MB
4. Hypothesis Testing Overview.srt 14.58KB
4. Linear Regression Implementation.mp4 17.86MB
4. Linear Regression Implementation.srt 6.88KB
4. Machine Learning Concepts & Algorithms.mp4 77.98MB
4. Machine Learning Concepts & Algorithms.srt 23.56KB
4. Measure of Variability Continued.mp4 34.61MB
4. Measure of Variability Continued.srt 13.32KB
4. NumPy Array Indexing.mp4 34.74MB
4. NumPy Array Indexing.srt 14.02KB
4. PCA Algorithm Steps (Mathematics).mp4 57.73MB
4. PCA Algorithm Steps (Mathematics).srt 18.59KB
4. The Decision Tree ID3 algorithm from scratch Part 1.mp4 85.27MB
4. The Decision Tree ID3 algorithm from scratch Part 1.srt 14.91KB
4. The KNN Intuition.mp4 8.09MB
4. The KNN Intuition.srt 3.06KB
4. What is Bagging.mp4 29.48MB
4. What is Bagging.srt 7.75KB
4. What is Google Colab.mp4 8.26MB
4. What is Google Colab.srt 4.89KB
40 849.42KB
41 1004.12KB
42 369.93KB
43 429.60KB
44 39.64KB
45 500.60KB
46 420.86KB
47 590.20KB
48 276.84KB
49 750.84KB
5 2.08KB
5. Covariance Matrix vs SVD.mp4 38.74MB
5. Covariance Matrix vs SVD.srt 6.54KB
5. Implement the KNN algorithm from scratch.mp4 86.97MB
5. Implement the KNN algorithm from scratch.srt 17.14KB
5. Kernel Trick.mp4 77.05MB
5. Kernel Trick.srt 18.19KB
5. Logistic Regression.mp4 8.90MB
5. Logistic Regression.srt 4.93KB
5. Measures of Variable Relationship.mp4 23.57MB
5. Measures of Variable Relationship.srt 10.72KB
5. NumPy Array Computations.mp4 16.96MB
5. NumPy Array Computations.srt 8.60KB
5. Out-of-Bag Error (OOB Error).mp4 42.03MB
5. Out-of-Bag Error (OOB Error).srt 9.97KB
5. Python Variables, Booleans and None.mp4 38.26MB
5. Python Variables, Booleans and None.srt 15.22KB
5. The Decision Tree ID3 algorithm from scratch Part 2.mp4 63.96MB
5. The Decision Tree ID3 algorithm from scratch Part 2.srt 10.62KB
5. Top Freelance Websites.mp4 29.55MB
5. Top Freelance Websites.srt 8.37KB
5. What is a Data Scientist.mp4 127.47MB
5. What is a Data Scientist.srt 26.86KB
5. What is Deep Learning.mp4 77.81MB
5. What is Deep Learning.srt 15.83KB
50 125.12KB
51 398.01KB
52 476.84KB
53 452.16KB
54 510.82KB
55 623.28KB
56 147.12KB
57 265.59KB
58 760.38KB
59 954.32KB
6 35B
6. Broadcasting.mp4 17.86MB
6. Broadcasting.srt 6.36KB
6. Compare the result with the sklearn library.mp4 24.57MB
6. Compare the result with the sklearn library.srt 5.10KB
6. Getting Started with Google Colab.mp4 35.09MB
6. Getting Started with Google Colab.srt 12.39KB
6. How To Get a Data Science Job.mp4 131.19MB
6. How To Get a Data Science Job.srt 30.62KB
6. Implementing Random Forests from scratch Part 1.mp4 202.55MB
6. Implementing Random Forests from scratch Part 1.srt 30.12KB
6. Inferential Statistics.mp4 45.01MB
6. Inferential Statistics.srt 22.10KB
6. Machine Learning vs Deep Learning.mp4 75.92MB
6. Machine Learning vs Deep Learning.srt 17.90KB
6. PCA - Main Applications.mp4 10.05MB
6. PCA - Main Applications.srt 3.90KB
6. Personal Branding.mp4 30.49MB
6. Personal Branding.srt 6.42KB
6. SVM - Kernel Types.mp4 126.38MB
6. SVM - Kernel Types.srt 26.75KB
6. The Decision Tree ID3 algorithm from scratch Part 3.mp4 33.41MB
6. The Decision Tree ID3 algorithm from scratch Part 3.srt 5.75KB
60 63.74KB
61 173.71KB
62 11.56KB
63 1015.51KB
64 996.71KB
65 22.17KB
66 342.12KB
67 398.70KB
68 264.54KB
69 762.22KB
7 67B
7. Data Science Projects Overview.mp4 79.48MB
7. Data Science Projects Overview.srt 19.09KB
7. Hyperparameter tuning using the cross-validation.mp4 90.30MB
7. Hyperparameter tuning using the cross-validation.srt 14.66KB
7. ID3 - Putting Everything Together.mp4 182.48MB
7. ID3 - Putting Everything Together.srt 31.03KB
7. Implementing Random Forests from scratch Part 2.mp4 50.50MB
7. Implementing Random Forests from scratch Part 2.srt 8.27KB
7. Measure of Asymmetry.mp4 6.76MB
7. Measure of Asymmetry.srt 2.75KB
7. Networking Do's and Don'ts.mp4 23.70MB
7. Networking Do's and Don'ts.srt 6.28KB
7. PCA - Image Compression.mp4 249.92MB
7. PCA - Image Compression.srt 39.37KB
7. Python Operators.mp4 86.76MB
7. Python Operators.srt 31.44KB
7. SVM with Linear Dataset (Iris).mp4 101.56MB
7. SVM with Linear Dataset (Iris).srt 19.85KB
70 821.74KB
71 940.89KB
72 216.68KB
73 573.58KB
74 704.37KB
75 933.60KB
76 263.89KB
77 333.23KB
78 396.20KB
79 600.83KB
8 364.83KB
8. Compare with sklearn implementation.mp4 27.65MB
8. Compare with sklearn implementation.srt 4.94KB
8. Evaluating our ID3 implementation.mp4 121.94MB
8. Evaluating our ID3 implementation.srt 24.54KB
8. Importance of a Website.mp4 15.37MB
8. Importance of a Website.srt 4.79KB
8. PCA Data Preprocessing.mp4 120.46MB
8. PCA Data Preprocessing.srt 21.05KB
8. Python Numbers & Booleans.mp4 25.61MB
8. Python Numbers & Booleans.srt 9.60KB
8. Sampling Distribution.mp4 26.46MB
8. Sampling Distribution.srt 10.25KB
8. SVM with Non-linear Dataset.mp4 111.55MB
8. SVM with Non-linear Dataset.srt 18.38KB
8. The decision boundary visualization.mp4 16.94MB
8. The decision boundary visualization.srt 7.07KB
80 313.90KB
81 682.21KB
82 236.24KB
83 342.93KB
84 203.71KB
85 522.07KB
86 525.93KB
87 562.29KB
88 778.70KB
89 813.19KB
9 826.00KB
9. Compare with Sklearn implementation.mp4 65.58MB
9. Compare with Sklearn implementation.srt 12.27KB
9. Manhattan vs Euclidean Distance.mp4 30.49MB
9. Manhattan vs Euclidean Distance.srt 7.75KB
9. PCA - Biplot and the Screen Plot.mp4 135.60MB
9. PCA - Biplot and the Screen Plot.srt 26.37KB
9. Python Strings.mp4 56.27MB
9. Python Strings.srt 16.14KB
9. Random Forests Hyper-Parameters.mp4 39.67MB
9. Random Forests Hyper-Parameters.srt 5.97KB
9. SVM with Regression.mp4 25.00MB
9. SVM with Regression.srt 8.00KB
90 459.58KB
91 534.02KB
92 580.48KB
93 592.09KB
94 79.05KB
95 360.01KB
96 581.00KB
97 854.04KB
98 548.74KB
99 402.85KB
TutsNode.com.txt 63B
Distribution statistics by country
Total 0
IP List List of IP addresses which were distributed this torrent