|
Please note that this page does not hosts or makes available any of the listed filenames. You
cannot download any of those files from here.
|
| [FreeCourseSite.com].txt |
1.07KB |
| [FreeCourseSite.com].url |
127B |
| [HaxTech.me].txt |
1.05KB |
| [HaxTech.me].url |
123B |
| 1. [Activity] Find the Most Popular Movie.mp4 |
31.21MB |
| 1.1 popular-movies.py.py |
473B |
| 1. Introducing Elastic MapReduce.mp4 |
28.99MB |
| 1. Introducing MLLib.mp4 |
32.22MB |
| 1. Introducing SparkSQL.mp4 |
24.38MB |
| 1. Introduction.mp4 |
9.13MB |
| 1. Introduction to Spark.mp4 |
33.95MB |
| 1. Learning More about Spark and Data Science.mp4 |
69.82MB |
| 10. [Activity] Improving the Word Count Script with Regular Expressions.mp4 |
23.76MB |
| 10. [Exercise] Improve the Quality of Similar Movies.mp4 |
20.59MB |
| 10.1 word-count-better.py.py |
522B |
| 11. [Activity] Sorting the Word Count Results.mp4 |
32.89MB |
| 11.1 word-count-better-sorted.py.py |
669B |
| 12. Tally up amount spent by customer using Spark.html |
148B |
| 13. Sort your results by amount spent per customer.html |
148B |
| 2. [Activity] Setting up your AWS Elastic MapReduce Account and Setting Up PuTTY.mp4 |
65.61MB |
| 2. [Activity] Use Broadcast Variables to Display Movie Names Instead of ID Numbers.mp4 |
38.86MB |
| 2. [Activity] Using MLLib to Produce Movie Recommendations.mp4 |
16.32MB |
| 2.1 movie-recommendations-als.py.py |
1.40KB |
| 2.1 My website!.html |
93B |
| 2.1 popular-movies-nicer.py.py |
848B |
| 2.1 spark-sql.py.py |
1.06KB |
| 2.2 Book version of this course at Amazon.html |
80B |
| 2. Bonus Lecture Discounts on my other courses!.mp4 |
15.36MB |
| 2. Executing SQL commands and SQL-style functions on a DataFrame.mp4 |
31.10MB |
| 2. How to Use This Course.mp4 |
11.52MB |
| 2. The Resilient Distributed Dataset (RDD).mp4 |
35.96MB |
| 3.1 Marvel Names.txt |
324.63KB |
| 3.1 popular-movies-dataframe.py.py |
1.34KB |
| 3.1 ratings-counter.py.py |
439B |
| 3.2 Marvel Graph.txt |
1.59MB |
| 3.3 most-popular-superhero.py.py |
887B |
| 3. Analyzing the ALS Recommendations Results.mp4 |
35.07MB |
| 3. Find the Most Popular Superhero in a Social Graph.mp4 |
25.03MB |
| 3. Partitioning.mp4 |
24.56MB |
| 3. Ratings Histogram Walkthrough.mp4 |
44.67MB |
| 3. Using DataFrames instead of RDD's.mp4 |
19.85MB |
| 3. Warning about Java 9!.html |
573B |
| 4. [Activity]Getting Set Up Installing Python, a JDK, Spark, and its Dependencies..mp4 |
82.54MB |
| 4. [Activity] Run the Script - Discover Who the Most Popular Superhero is!.mp4 |
29.04MB |
| 4.1 Apache Spark.html |
100B |
| 4.1 Marvel Graph.txt |
1.59MB |
| 4.1 movie-similarities-1m.py.py |
3.52KB |
| 4.1 spark-linear-regression.py.py |
1.95KB |
| 4.2 most-popular-superhero.py.py |
876B |
| 4.2 regression.txt.txt |
10.75KB |
| 4.2 winutils.exe.html |
108B |
| 4.3 GETTING STARTED - installation steps.html |
102B |
| 4.3 Marvel Names.txt |
324.63KB |
| 4.4 Enthought Canopy.html |
107B |
| 4.5 JDK.html |
127B |
| 4. Create Similar Movies from One Million Ratings - Part 1.mp4 |
28.85MB |
| 4. KeyValue RDD's, and the Average Friends by Age Example.mp4 |
61.74MB |
| 4. Using DataFrames with MLLib.mp4 |
28.66MB |
| 5. [Activity] Create Similar Movies from One Million Ratings - Part 2.mp4 |
60.13MB |
| 5. [Activity] Installing the MovieLens Movie Rating Dataset.mp4 |
7.88MB |
| 5. [Activity] Running the Average Friends by Age Example.mp4 |
8.47MB |
| 5.1 fakefriends.csv.html |
111B |
| 5.2 friends-by-age.py.py |
600B |
| 5. Spark Streaming and GraphX.mp4 |
35.56MB |
| 5. Superhero Degrees of Separation Introducing Breadth-First Search.mp4 |
38.24MB |
| 6. [Activity] Run your first Spark program! Ratings histogram example..mp4 |
9.61MB |
| 6.1 min-temperatures.py.py |
718B |
| 6.1 ratings-counter.py.py |
439B |
| 6.2 1800.csv.html |
104B |
| 6. Create Similar Movies from One Million Ratings - Part 3.mp4 |
30.68MB |
| 6. Filtering RDD's, and the Minimum Temperature by Location Example.mp4 |
30.86MB |
| 6. Superhero Degrees of Separation Accumulators, and Implementing BFS in Spark.mp4 |
25.94MB |
| 7. [Activity]Running the Minimum Temperature Example, and Modifying it for Maximums.mp4 |
32.91MB |
| 7. [Activity] Superhero Degrees of Separation Review the Code and Run it.mp4 |
55.22MB |
| 7.1 1800.csv.html |
104B |
| 7.1 degrees-of-separation.py.py |
3.52KB |
| 7.2 min-temperatures.py.py |
718B |
| 7. Troubleshooting Spark on a Cluster.mp4 |
22.28MB |
| 8. [Activity] Running the Maximum Temperature by Location Example.mp4 |
22.09MB |
| 8.1 max-temperatures.py.py |
718B |
| 8. Item-Based Collaborative Filtering in Spark, cache(), and persist().mp4 |
46.59MB |
| 8. More Troubleshooting, and Managing Dependencies.mp4 |
29.77MB |
| 9. [Activity] Counting Word Occurrences using flatmap().mp4 |
29.38MB |
| 9. [Activity] Running the Similar Movies Script using Spark's Cluster Manager.mp4 |
57.69MB |
| 9.1 movie-similarities.py.py |
3.45KB |
| 9.1 word-count.py.py |
428B |
| 9.2 Book.txt |
257.79KB |