Please note that this page does not hosts or makes available any of the listed filenames. You
cannot download any of those files from here.
|
[CourseClub.NET].url |
123B |
[DesireCourse.Com].url |
51B |
0101.Install Anaconda, course materials, and create movie recommendations!.mp4 |
88.13MB |
0102.Course Roadmap.mp4 |
69.27MB |
0103.Types of Recommenders.mp4 |
14.11MB |
0104.Understanding You through Implicit and Explicit Ratings.mp4 |
9.20MB |
0105.Top-N Recommender Architecture.mp4 |
15.32MB |
0106.Review the basics of recommender systems..mp4 |
11.16MB |
0201.The Basics of Python.mp4 |
42.00MB |
0202.Data Structures in Python.mp4 |
11.59MB |
0203.Functions in Python.mp4 |
5.85MB |
0204.Booleans, loops, and a hands-on challenge.mp4 |
7.33MB |
0301.TrainTest and Cross Validation.mp4 |
23.17MB |
0302.Accuracy Metrics (RMSE, MAE).mp4 |
46.73MB |
0303.Top-N Hit Rate - Many Ways.mp4 |
12.16MB |
0304.Coverage, Diversity, and Novelty.mp4 |
7.94MB |
0305.Churn, Responsiveness, and AB Tests.mp4 |
82.68MB |
0306.Review ways to measure your recommender..mp4 |
8.26MB |
0307.Walkthrough of RecommenderMetrics.py.mp4 |
38.78MB |
0308.Walkthrough of TestMetrics.py.mp4 |
25.34MB |
0309.Measure the Performance of SVD Recommendations.mp4 |
12.05MB |
0401.Our Recommender Engine Architecture.mp4 |
18.17MB |
0402.Recommender Engine Walkthrough, Part 1.mp4 |
18.55MB |
0403.Recommender Engine Walkthrough, Part 2.mp4 |
18.57MB |
0404.Review the Results of our Algorithm Evaluation..mp4 |
14.30MB |
0501.Content-Based Recommendations, and the Cosine Similarity Metric.mp4 |
38.47MB |
0502.K-Nearest-Neighbors and Content Recs.mp4 |
11.84MB |
0503.Producing and Evaluating Content-Based Movie Recommendations.mp4 |
27.89MB |
0504.Bleeding Edge Alert! Mise en Scene Recommendations.mp4 |
33.71MB |
0505.Dive Deeper into Content-Based Recommendations.mp4 |
10.66MB |
0601.Measuring Similarity, and Sparsity.mp4 |
69.75MB |
0602.Similarity Metrics.mp4 |
15.45MB |
0603.User-based Collaborative Filtering.mp4 |
19.99MB |
0604.User-based Collaborative Filtering, Hands-On.mp4 |
24.56MB |
0605.Item-based Collaborative Filtering.mp4 |
61.59MB |
0606.Item-based Collaborative Filtering, Hands-On.mp4 |
18.12MB |
0607.Tuning Collaborative Filtering Algorithms.mp4 |
10.06MB |
0608.Evaluating Collaborative Filtering Systems Offline.mp4 |
10.57MB |
0609.Measure the Hit Rate of Item-Based Collaborative Filtering.mp4 |
4.43MB |
0610.KNN Recommenders.mp4 |
21.88MB |
0611.Running User and Item-Based KNN on MovieLens.mp4 |
19.63MB |
0612.Experiment with different KNN parameters..mp4 |
38.78MB |
0613.Bleeding Edge Alert! Translation-Based Recommendations.mp4 |
19.64MB |
0701.Principal Component Analysis (PCA).mp4 |
64.98MB |
0702.Singular Value Decomposition.mp4 |
12.98MB |
0703.Running SVD and SVD++ on MovieLens.mp4 |
23.12MB |
0704.Improving on SVD.mp4 |
9.69MB |
0705.Tune the hyperparameters on SVD.mp4 |
8.02MB |
0706.Bleeding Edge Alert! Sparse Linear Methods (SLIM).mp4 |
21.08MB |
0801.Deep Learning Introduction.mp4 |
22.80MB |
0802.Deep Learning Pre-Requisites.mp4 |
20.12MB |
0803.History of Artificial Neural Networks.mp4 |
40.44MB |
0804.[Activity] Playing with Tensorflow.mp4 |
116.91MB |
0805.Training Neural Networks.mp4 |
18.84MB |
0806.Tuning Neural Networks.mp4 |
13.11MB |
0807.Introduction to Tensorflow.mp4 |
43.00MB |
0808.[Activity] Handwriting Recognition with Tensorflow, part 1.mp4 |
92.89MB |
0809.[Activity] Handwriting Recognition with Tensorflow, part 2.mp4 |
27.40MB |
0810.Introduction to Keras.mp4 |
6.67MB |
0811.[Activity] Handwriting Recognition with Keras.mp4 |
46.94MB |
0812.Classifier Patterns with Keras.mp4 |
13.12MB |
0813.[Exercise] Predict Political Parties of Politicians with Keras.mp4 |
53.70MB |
0814.Intro to Convolutional Neural Networks (CNN_s).mp4 |
36.40MB |
0815.CNN Architectures.mp4 |
9.65MB |
0816.[Activity] Handwriting Recognition with Convolutional Neural Networks (CNNs).mp4 |
42.41MB |
0817.Intro to Recurrent Neural Networks (RNN_s).mp4 |
22.49MB |
0818.Training Recurrent Neural Networks.mp4 |
10.10MB |
0819.[Activity] Sentiment Analysis of Movie Reviews using RNN_s and Keras.mp4 |
73.37MB |
0901.Intro to Deep Learning for Recommenders.mp4 |
55.99MB |
0902.Restricted Boltzmann Machines (RBM_s).mp4 |
15.93MB |
0903.[Activity] Recommendations with RBM_s, part 1.mp4 |
50.52MB |
0904.[Activity] Recommendations with RBM_s, part 2.mp4 |
26.41MB |
0905.[Activity] Evaluating the RBM Recommender.mp4 |
19.85MB |
0906.[Exercise] Tuning Restricted Boltzmann Machines.mp4 |
53.71MB |
0907.Exercise Results Tuning a RBM Recommender.mp4 |
6.63MB |
0908.Auto-Encoders for Recommendations Deep Learning for Recs.mp4 |
11.82MB |
0909.[Activity] Recommendations with Deep Neural Networks.mp4 |
37.22MB |
0910.Clickstream Recommendations with RNN_s.mp4 |
24.84MB |
0911.[Exercise] Get GRU4Rec Working on your Desktop.mp4 |
3.88MB |
0912.Exercise Results GRU4Rec in Action.mp4 |
41.06MB |
0913.Bleeding Edge Alert! Deep Factorization Machines.mp4 |
44.31MB |
0914.More Emerging Tech to Watch.mp4 |
14.16MB |
1001.[Activity] Introduction and Installation of Apache Spark.mp4 |
40.04MB |
1002.Apache Spark Architecture.mp4 |
9.37MB |
1003.[Activity] Movie Recommendations with Spark, Matrix Factorization, and ALS.mp4 |
23.76MB |
1004.[Activity] Recommendations from 20 million ratings with Spark.mp4 |
26.92MB |
1005.Amazon DSSTNE.mp4 |
41.35MB |
1006.DSSTNE in Action.mp4 |
61.12MB |
1007.Scaling Up DSSTNE.mp4 |
4.82MB |
1008.AWS SageMaker and Factorization Machines.mp4 |
7.95MB |
1009.SageMaker in Action Factorization Machines on one million ratings, in the cloud.mp4 |
44.20MB |
1101.The Cold Start Problem (and solutions).mp4 |
11.80MB |
1102.[Exercise] Implement Random Exploration.mp4 |
1.19MB |
1103.Exercise Solution Random Exploration.mp4 |
15.43MB |
1104.Stoplists.mp4 |
8.67MB |
1105.[Exercise] Implement a Stoplist.mp4 |
761.82KB |
1106.Exercise Solution Implement a Stoplist.mp4 |
15.07MB |
1107.Filter Bubbles, Trust, and Outliers.mp4 |
21.76MB |
1108.[Exercise] Identify and Eliminate Outlier Users.mp4 |
1020.31KB |
1109.Exercise Solution Outlier Removal.mp4 |
16.61MB |
1110.Fraud, the Perils of Clickstream, and International Concerns.mp4 |
72.79MB |
1111.Temporal Effects, and Value-Aware Recommendations.mp4 |
81.63MB |
1201.Case Study YouTube, Part 1.mp4 |
12.79MB |
1202.Case Study YouTube, Part 2.mp4 |
12.47MB |
1203.Case Study Netflix, Part 1.mp4 |
13.85MB |
1204.Case Study Netflix, Part 2.mp4 |
9.84MB |
1301.Hybrid Recommenders and Exercise.mp4 |
8.82MB |
1302.Exercise Solution Hybrid Recommenders.mp4 |
20.42MB |
1401.More to Explore.mp4 |
61.91MB |
exercise_files.zip |
1.70MB |