Please note that this page does not hosts or makes available any of the listed filenames. You
cannot download any of those files from here.
|
[TGx]Downloaded from torrentgalaxy.to .txt |
585B |
0 |
6B |
1 |
190.41KB |
1.1 advanced_spark_datasets.zip |
736.25KB |
1.1 DataPipeline_v5.zip |
1.48KB |
1.1 FutureXScalaUnitTesting.zip |
15.62KB |
1.1 FutureXSparkScalaProject_readHivewritePG.zip |
353.51KB |
1.1 hello_world_python_spark_hadoop.zip |
746B |
1.1 hive-partition.txt |
2.29KB |
1.1 pom.zip |
989B |
1.1 pyspark_bank_marketing_project.py |
2.72KB |
1.1 scala-basics.txt |
1.93KB |
1.1 test.zip |
455B |
1.2 pyspark_bank_marketing_project.zip |
14.70KB |
1.2 retailstore_large.zip |
5.37MB |
1. Advanced Spark datasets.mp4 |
12.63MB |
1. Big Data concepts.mp4 |
19.74MB |
1. Creating a free Hadoop and Spark cluster using Google Dataproc.mp4 |
79.19MB |
1. Exporting the project to an uber jar.mp4 |
45.90MB |
1. Fast queries with Hive Partitioning.mp4 |
116.67MB |
1. Ingesting data from Hive.mp4 |
43.34MB |
1. Introduction.mp4 |
14.57MB |
1. Introduction to AWS data lake use case.mp4 |
13.58MB |
1. Organizing code further.mp4 |
21.07MB |
1. Project - Bank prospects marketing data transformation using Hadoop and Spark.mp4 |
87.76MB |
1. PySpark Hadoop Hive development environment using PyCharm and Winutils.mp4 |
97.54MB |
1. Python Logging.mp4 |
42.01MB |
1. Python unittest framework.mp4 |
23.37MB |
1. Reading from Hive and Writing to Postgres.mp4 |
104.10MB |
1. Scala basics.mp4 |
54.80MB |
1. Scala Unit Testing using JUnit & ScalaTest.mp4 |
62.38MB |
1. Spark concepts.mp4 |
28.12MB |
1. Spark Scala real world coding introduction.mp4 |
2.46MB |
1. Structured Streaming concepts.mp4 |
6.06MB |
10 |
292.82KB |
10.1 Postgres-course-catalog.sql |
1.20KB |
10. Installing PostgreSQL.mp4 |
32.78MB |
11 |
859.84KB |
11.1 Postgres-course-catalog_psql.zip |
619B |
11. psql command line interface for PostgreSQL.mp4 |
11.03MB |
12 |
481.35KB |
12.1 FutureXSparkScalaProject_Postgres.zip |
12.28KB |
12. Fetching PostgresSQL data to a Spark DataFrame.mp4 |
31.84MB |
13 |
705.81KB |
13. Importing a project into IntelliJ.mp4 |
34.24MB |
14 |
745.62KB |
14.1 FutureXSparkScalaProject_organize.zip |
108.74KB |
14. Organizing code with Objects and Methods.mp4 |
91.17MB |
15 |
573.59KB |
15.1 log4j.zip |
343B |
15. Implementing Log4j SLf4j Logging.mp4 |
43.29MB |
16 |
908.47KB |
16. Exception Handling with try, catch, Option, Some and None.mp4 |
54.83MB |
17 |
639.59KB |
18 |
689.57KB |
19 |
473.25KB |
2 |
4.24KB |
2.1 cloudera-gcp.txt |
3.42KB |
2.1 Creating a Data Lake using S3, Glue, Athena.zip |
1.40KB |
2.1 DataPipeline_logging_1.zip |
2.61KB |
2.1 DataPipeline_read_config.zip |
917.98KB |
2.1 DataPipeline_v1.zip |
951B |
2.1 files.zip |
509B |
2.1 FutureXSparkScalaProject_ScalaTest.zip |
980.54KB |
2.1 FutureXSparkScalaProject_typesafe_config_parser.zip |
358.89KB |
2.1 hive-bucketing.txt |
1.17KB |
2.1 pyspark_udf_and_join.py |
3.67KB |
2.1 retailstore.csv |
306B |
2.1 Spark_Installation_on_Colab.zip |
11.88KB |
2.1 spark-scala-dataframe.txt |
2.46KB |
2.2 FuturexMiscSparkScala.zip |
18.72KB |
2.2 hive-hdfs-commands.txt |
1.51KB |
2.2 PySpark_udf_and_join.zip |
15.99KB |
2.2 retailstore_large.zip |
5.38MB |
2.2 spark_installation_on_colab.py |
1.33KB |
2. AWS data lake - S3, Glue and Athena introduction.mp4 |
24.46MB |
2. Cloudera QuickStart VM Installation on GCP.mp4 |
66.11MB |
2. Fast queries with Hive Bucketing.mp4 |
21.02MB |
2. Hadoop concepts.mp4 |
41.23MB |
2. Installing JDK on a local Machine.mp4 |
12.70MB |
2. Installing Spark on Google Colab.mp4 |
35.45MB |
2. Managing log level through a configuration file.mp4 |
76.71MB |
2. Rapid Revision - Big Data, Hadoop and Spark concepts.mp4 |
108.67MB |
2. Reading configuration from a property file.mp4 |
19.43MB |
2. Reading Configuration from JSON using Typesafe.mp4 |
85.05MB |
2. Spark SQL DataFrame using Scala.mp4 |
35.03MB |
2. Spark Transformation unit testing using ScalaTest.mp4 |
73.31MB |
2. Storing data in HDFS and querying with Hive.mp4 |
82.07MB |
2. Streaming data from files.mp4 |
18.78MB |
2. Structuring code with classes and methods.mp4 |
31.71MB |
2. Transforming ingested data.mp4 |
18.67MB |
2. Unit testing PySpark transformation logic.mp4 |
31.91MB |
2. User Defined Function (UDF).mp4 |
29.80MB |
20 |
214.45KB |
21 |
169.62KB |
22 |
202.64KB |
23 |
465.43KB |
24 |
6.49KB |
25 |
33.35KB |
26 |
560.31KB |
27 |
681.54KB |
28 |
1013.92KB |
29 |
98.80KB |
3 |
71.31KB |
3.1 DataPipeline_Logger2.zip |
2.75KB |
3.1 FutureXSparkScalaProject_writeToHive.zip |
396.86KB |
3.1 Postgres-course-catalog.zip |
579B |
3.1 PySpark_udf_and_join.zip |
15.99KB |
3.1 python_basics.py |
4.39KB |
3.1 spark2-cloudera.txt |
1.47KB |
3.1 spark-scala-bank-marketing-project.txt |
1.28KB |
3.1 test_transformer.zip |
826B |
3.2 pyspark_udf_and_join.py |
3.67KB |
3.2 python_basics.py |
4.39KB |
3. Bank prospects marketing project in Scala.mp4 |
22.52MB |
3. Batch Vs Streaming code.mp4 |
12.63MB |
3. Create a data lake on AWS S3.mp4 |
15.59MB |
3. Having custom logger for each Python class.mp4 |
41.98MB |
3. How Spark works.mp4 |
7.54MB |
3. Installing IntelliJ IDEA.mp4 |
5.22MB |
3. Installing PostgreSQL.mp4 |
23.30MB |
3. Joins - Left, Right, Inner, Outer.mp4 |
50.01MB |
3. Python basics.mp4 |
71.27MB |
3. Running Spark 2 with Hive on Cloudera QuickStart VM.mp4 |
36.58MB |
3. Unit testing an error.mp4 |
12.88MB |
3. Unit testing to catch an Exception.mp4 |
17.57MB |
3. Writing data to a Hive Table.mp4 |
31.17MB |
30 |
565.48KB |
31 |
166.70KB |
32 |
509.07KB |
33 |
678.16KB |
34 |
723.08KB |
35 |
1012.10KB |
36 |
23.82KB |
37 |
67.85KB |
38 |
625.67KB |
39 |
791.72KB |
4 |
109.85KB |
4.1 DataPipeline_psycopg2.zip |
2.40KB |
4.1 DataPipeline_v2.zip |
1.19KB |
4.1 files (1).zip |
509B |
4.1 FutureXSparkScalaProject.zip |
978.10KB |
4.1 pyspark_rdd.zip |
15.72KB |
4.1 spark-submit.txt |
222B |
4.2 FuturexMiscSparkScala (1).zip |
18.72KB |
4.2 FutureXSparkScalaProject-spark-submit.zip |
26.51KB |
4.2 retailstore.csv |
279B |
4. Adding Scala Plugin to IntelliJ.mp4 |
2.59MB |
4. AWS Glue crawler and AWS Athena query tool.mp4 |
41.93MB |
4. Catching Exception using assertThrows.mp4 |
23.39MB |
4. Creating and reusing SparkSession.mp4 |
53.55MB |
4. Error Handling with try except and raise.mp4 |
53.04MB |
4. Managing input parameters using a Scala Case Class.mp4 |
34.28MB |
4. PySpark PostgreSQL interaction with Psycopg2 adapter.mp4 |
59.54MB |
4. PySpark RDD.mp4 |
78.49MB |
4. PySpark - spark submit.mp4 |
13.05MB |
4. Uber Jar spark-submit on Cloudera QuickStart VM.mp4 |
25.01MB |
4. Writing streaming data to a Hive table.mp4 |
24.36MB |
40 |
310.07KB |
41 |
365.31KB |
42 |
429.02KB |
43 |
564.86KB |
44 |
925.25KB |
45 |
996.51KB |
46 |
371.56KB |
47 |
739.30KB |
48 |
780.43KB |
49 |
222.69KB |
5 |
248.49KB |
5.1 DataPipeline_postgres_jdbc.zip |
911.76KB |
5.1 DataPipeline_v3.zip |
1.55KB |
5.1 pyspark_dataframe.py |
4.50KB |
5.1 ScalaHelloWorld.zip |
7.96KB |
5.1 SparkTransformerSpec.zip |
703B |
5.1 StructuredStreamingWindowAggregation.zip |
823B |
5.2 FutureXSparkScalaProject_assetThrowsIntercept.zip |
1.02MB |
5.2 PySpark_DataFrame.zip |
17.67KB |
5.2 sale.zip |
530B |
5. Doing spark-submit locally.mp4 |
26.50MB |
5. ETL transformation using AWS Glue.mp4 |
48.45MB |
5. Hello World Scala.mp4 |
35.10MB |
5. Intellij Maven troubleshooting tips.html |
590B |
5. PySpark - Spark SQL and DataFrame.mp4 |
69.44MB |
5. Spark DataFrame.mp4 |
44.50MB |
5. Spark PostgreSQL interaction with JDBC driver.mp4 |
34.64MB |
5. Streaming Aggregation.mp4 |
38.70MB |
5. Throwing Custom Error and Intercepting Error Message.mp4 |
60.33MB |
50 |
96.70KB |
51 |
166.90KB |
52 |
295.98KB |
53 |
847.86KB |
54 |
340.81KB |
55 |
203.70KB |
56 |
898.92KB |
57 |
516.32KB |
58 |
1014.85KB |
59 |
549.06KB |
6 |
58.05KB |
6.1 DataPipeline_v4.zip |
1.69KB |
6.1 FuturexMiscSparkScala_Filter.zip |
33.72KB |
6.1 pg_course.zip |
315B |
6.1 ScalaBasics.zip |
12.22KB |
6.1 spark-hadoop-commands.txt |
1.75KB |
6.1 SparkTransformerSpec.zip |
770B |
6.1 Triggering AWS Glue job with a serverless Lambda function.zip |
526B |
6.2 persist_transformed_df.zip |
867B |
6. Filtering Stream.mp4 |
44.84MB |
6. Persisting transformed data in PostgreSQL.mp4 |
18.78MB |
6. Running PySpark on a Hadoop Cluster.mp4 |
45.45MB |
6. Scala basics using IntelliJ.mp4 |
75.53MB |
6. Separating out Ingestion, Transformation and Persistence code.mp4 |
46.01MB |
6. Testing with assertResult.mp4 |
12.95MB |
6. Triggering AWS Glue job with a serverless AWS Lambda function.mp4 |
57.79MB |
60 |
656.88KB |
61 |
627.26KB |
62 |
648.27KB |
63 |
714.59KB |
64 |
490.15KB |
65 |
948.79KB |
66 |
998.45KB |
67 |
267.48KB |
68 |
588.02KB |
69 |
225.76KB |
7 |
235.62KB |
7.1 common.zip |
1.70KB |
7.1 glue_pyspark_bank_marketing_project.zip |
1.23KB |
7.1 SparkHelloWorld.zip |
9.65KB |
7.1 StructuredStreamingDemoTimestamp.zip |
721B |
7. Adding timestamp to streaming data.mp4 |
30.67MB |
7. Hello World Spark Scala using IntelliJ.mp4 |
41.39MB |
7. Project - Bank prospects data transformation using S3, Glue & Athena services.mp4 |
76.16MB |
7. Testing with Matchers.mp4 |
12.06MB |
70 |
230.01KB |
71 |
341.10KB |
72 |
440.61KB |
73 |
416.85KB |
74 |
441.18KB |
75 |
426.94KB |
76 |
973.52KB |
77 |
50.07KB |
78 |
123.21KB |
79 |
302.83KB |
8 |
833.52KB |
8.1 failtests.txt |
100B |
8.1 githuhb-link.txt |
42B |
8.1 StructuredStreamingWindowAggregation.zip |
823B |
8.2 winutils.zip |
36.12KB |
8. Aggregation in a time window.mp4 |
37.64MB |
8. Configuring HADOOP HOME on Windows using Winutils.mp4 |
8.08MB |
8. Failing tests intentionally.mp4 |
10.78MB |
80 |
377.71KB |
81 |
380.60KB |
82 |
965.75KB |
83 |
989.75KB |
84 |
119.67KB |
85 |
221.97KB |
86 |
623.35KB |
87 |
940.37KB |
88 |
474.69KB |
89 |
963.02KB |
9 |
522.16KB |
9.1 FuturexMiscSparkScala.zip |
7.79KB |
9.1 FutureXSparkScalaProject.zip |
11.72KB |
9.1 SparkTransformerSpec.zip |
811B |
9. Enabling Hive Support in Spark Session.mp4 |
46.33MB |
9. Sharing fixtures.mp4 |
10.88MB |
9. Tumbling window and Sliding window.mp4 |
9.39MB |
90 |
632.31KB |
91 |
642.31KB |
92 |
793.67KB |
93 |
421.08KB |
94 |
549.65KB |
TutsNode.com.txt |
63B |