Torrent Info
Title [FreeTutorials.Us] Udemy - The Data Science Course 2018 Complete Data Science Bootcamp
Category
Size 9.20GB

Files List
Please note that this page does not hosts or makes available any of the listed filenames. You cannot download any of those files from here.
1.1 2.13. Practical example. Descriptive statistics_lesson.xlsx.xlsx 146.51KB
1.1 3.17. Practical example. Confidence intervals_lesson.xlsx.xlsx 1.74MB
1.1 4.10.Hypothesis-testing-section-practical-example.xlsx.xlsx 51.71KB
1.1 Arithmetic Operators - Resources.html 134B
1.1 Audiobooks_data.csv.csv 710.77KB
1.1 Comparison Operators - Resources.html 134B
1.1 Course notes_descriptive_statistics.pdf.pdf 482.27KB
1.1 Course notes_hypothesis_testing.pdf.pdf 648.60KB
1.1 Course notes_inferential statistics.pdf.pdf 382.32KB
1.1 Course Notes - Section 2.pdf.pdf 927.67KB
1.1 Course Notes - Section 6.pdf.pdf 936.42KB
1.1 Defining a Function in Python - Resources.html 134B
1.1 For Loops - Resources.html 134B
1.1 Glossary.xlsx.xlsx 19.97KB
1.1 Introduction to the If Statement - Resources.html 134B
1.1 Lists - Resources.html 134B
1.1 Shortcuts-for-Jupyter.pdf.pdf 619.17KB
1.1 Shortcuts-for-Jupyter.pdf.pdf 619.17KB
1.1 Variables - Resources.html 134B
1.2 Bais NN Example Part 1.html 136B
1.2 Course notes_descriptive_statistics.pdf.pdf 482.27KB
1. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.mp4 126.87MB
1. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.srt 8.99KB
1. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.vtt 7.90KB
1. A Practical Example What You Will Learn in This Course.mp4 49.03MB
1. A Practical Example What You Will Learn in This Course.srt 6.37KB
1. A Practical Example What You Will Learn in This Course.vtt 5.62KB
1. Basic NN Example (Part 1).mp4 20.60MB
1. Basic NN Example (Part 1).srt 4.47KB
1. Basic NN Example (Part 1).vtt 3.91KB
1. Business Case Getting acquainted with the dataset.mp4 87.66MB
1. Business Case Getting acquainted with the dataset.srt 10.79KB
1. Business Case Getting acquainted with the dataset.vtt 9.37KB
1. Comparison Operators.mp4 10.18MB
1. Comparison Operators.srt 2.47KB
1. Comparison Operators.vtt 2.14KB
1. Data Science and Business Buzzwords Why are there so many.mp4 81.41MB
1. Data Science and Business Buzzwords Why are there so many.srt 6.63KB
1. Data Science and Business Buzzwords Why are there so many.vtt 5.84KB
1. Debunking Common Misconceptions.mp4 72.85MB
1. Debunking Common Misconceptions.srt 5.30KB
1. Debunking Common Misconceptions.vtt 4.69KB
1. Defining a Function in Python.mp4 7.74MB
1. Defining a Function in Python.srt 2.53KB
1. Defining a Function in Python.vtt 2.20KB
1. Finding the Job - What to Expect and What to Look for.mp4 54.38MB
1. Finding the Job - What to Expect and What to Look for.srt 4.50KB
1. Finding the Job - What to Expect and What to Look for.vtt 3.94KB
1. For Loops.mp4 11.79MB
1. For Loops.srt 2.80KB
1. For Loops.vtt 2.44KB
1. How to Install TensorFlow.mp4 14.56MB
1. How to Install TensorFlow.srt 3.22KB
1. How to Install TensorFlow.vtt 2.84KB
1. Introduction.mp4 15.51MB
1. Introduction.srt 1.63KB
1. Introduction.vtt 1.44KB
1. Introduction to Cluster Analysis.mp4 53.42MB
1. Introduction to Cluster Analysis.srt 4.80KB
1. Introduction to Cluster Analysis.vtt 4.21KB
1. Introduction to Logistic Regression.mp4 27.07MB
1. Introduction to Logistic Regression.srt 1.62KB
1. Introduction to Logistic Regression.vtt 1.44KB
1. Introduction to Neural Networks.mp4 42.92MB
1. Introduction to Neural Networks.srt 5.90KB
1. Introduction to Neural Networks.vtt 5.18KB
1. Introduction to Programming.mp4 58.55MB
1. Introduction to Programming.srt 6.91KB
1. Introduction to Programming.vtt 6.08KB
1. Introduction to Regression Analysis.mp4 17.32MB
1. Introduction to Regression Analysis.srt 2.21KB
1. Introduction to Regression Analysis.vtt 1.95KB
1. K-Means Clustering.mp4 27.28MB
1. K-Means Clustering.srt 6.67KB
1. K-Means Clustering.vtt 5.76KB
1. Lists.mp4 22.00MB
1. Lists.srt 4.99KB
1. Lists.vtt 4.30KB
1. MNIST What is the MNIST Dataset.mp4 17.82MB
1. MNIST What is the MNIST Dataset.srt 3.50KB
1. MNIST What is the MNIST Dataset.vtt 3.07KB
1. Multiple Linear Regression.mp4 21.53MB
1. Multiple Linear Regression.srt 3.35KB
1. Multiple Linear Regression.vtt 2.93KB
1. Necessary Programming Languages and Software Used in Data Science.mp4 103.52MB
1. Necessary Programming Languages and Software Used in Data Science.srt 7.30KB
1. Necessary Programming Languages and Software Used in Data Science.vtt 6.42KB
1. Object Oriented Programming.mp4 33.59MB
1. Object Oriented Programming.srt 6.10KB
1. Object Oriented Programming.vtt 5.34KB
1. Population and Sample.mp4 58.11MB
1. Population and Sample.srt 5.47KB
1. Population and Sample.vtt 4.81KB
1. Practical Example Descriptive Statistics.mp4 159.46MB
1. Practical Example Descriptive Statistics.srt 20.61KB
1. Practical Example Descriptive Statistics.vtt 17.85KB
1. Practical Example Hypothesis Testing.mp4 69.48MB
1. Practical Example Hypothesis Testing.srt 8.49KB
1. Practical Example Hypothesis Testing.vtt 7.43KB
1. Practical Example Inferential Statistics.mp4 102.67MB
1. Practical Example Inferential Statistics.srt 13.65KB
1. Practical Example Inferential Statistics.vtt 11.90KB
1. Preprocessing Introduction.mp4 27.78MB
1. Preprocessing Introduction.srt 3.87KB
1. Preprocessing Introduction.vtt 3.39KB
1. Stochastic Gradient Descent.mp4 28.68MB
1. Stochastic Gradient Descent.srt 4.82KB
1. Stochastic Gradient Descent.vtt 4.18KB
1. Summary of What You Learned.mp4 39.76MB
1. Summary of What You Learned.srt 5.22KB
1. Summary of What You Learned.vtt 4.61KB
1. Techniques for Working with Traditional Data.mp4 138.30MB
1. Techniques for Working with Traditional Data.srt 10.63KB
1. Techniques for Working with Traditional Data.vtt 9.30KB
1. The IF Statement.mp4 13.63MB
1. The IF Statement.srt 3.60KB
1. The IF Statement.vtt 3.12KB
1. The Linear Regression Model.mp4 57.37MB
1. The Linear Regression Model.srt 7.06KB
1. The Linear Regression Model.vtt 6.14KB
1. The Null vs Alternative Hypothesis.mp4 92.12MB
1. The Null vs Alternative Hypothesis.srt 7.36KB
1. The Null vs Alternative Hypothesis.vtt 6.43KB
1. The Reason behind these Disciplines.mp4 81.19MB
1. The Reason behind these Disciplines.srt 6.50KB
1. The Reason behind these Disciplines.vtt 5.69KB
1. Types of Clustering.mp4 44.58MB
1. Types of Clustering.srt 4.66KB
1. Types of Clustering.vtt 4.12KB
1. Types of Data.mp4 72.52MB
1. Types of Data.srt 5.96KB
1. Types of Data.vtt 5.25KB
1. Using Arithmetic Operators in Python.mp4 18.92MB
1. Using Arithmetic Operators in Python.srt 4.12KB
1. Using Arithmetic Operators in Python.vtt 3.58KB
1. Variables.mp4 26.61MB
1. Variables.srt 6.18KB
1. Variables.vtt 5.35KB
1. What are Confidence Intervals.mp4 49.98MB
1. What are Confidence Intervals.srt 3.26KB
1. What are Confidence Intervals.vtt 2.86KB
1. What is a Layer.mp4 12.50MB
1. What is a Layer.srt 2.39KB
1. What is a Layer.vtt 2.13KB
1. What is a matrix.mp4 33.59MB
1. What is a matrix.srt 4.35KB
1. What is a matrix.vtt 3.80KB
1. What is Initialization.mp4 21.76MB
1. What is Initialization.srt 3.51KB
1. What is Initialization.vtt 3.09KB
1. What is Overfitting.mp4 31.08MB
1. What is Overfitting.srt 5.58KB
1. What is Overfitting.vtt 4.93KB
1. What to Expect from this Part.mp4 31.10MB
1. What to Expect from this Part.srt 4.63KB
1. What to Expect from this Part.vtt 4.05KB
10.1 2.5.The-Histogram-exercise.xlsx.xlsx 15.50KB
10.1 Addition and Subtraction of Matrices Python Notebook.html 178B
10.1 Indexing Elements - Resources.html 134B
10.1 Online p-value calculator.pdf.pdf 1.22MB
10.1 TensorFlow MNIST All Exercises.html 144B
10.2 2.5.The-Histogram-exercise-solution.xlsx.xlsx 17.10KB
10. A2 No Endogeneity.mp4 35.67MB
10. A2 No Endogeneity.srt 5.24KB
10. A2 No Endogeneity.vtt 4.58KB
10. A Breakdown of our Data Science Infographic.html 161B
10. Addition and Subtraction of Matrices.mp4 32.62MB
10. Addition and Subtraction of Matrices.srt 4.05KB
10. Addition and Subtraction of Matrices.vtt 3.48KB
10. Business Case Testing the Model.mp4 11.20MB
10. Business Case Testing the Model.srt 2.71KB
10. Business Case Testing the Model.vtt 2.36KB
10. Histogram Exercise.html 81B
10. How is Clustering Useful.mp4 74.45MB
10. How is Clustering Useful.srt 6.40KB
10. How is Clustering Useful.vtt 5.65KB
10. How to Interpret the Regression Table.mp4 44.64MB
10. How to Interpret the Regression Table.srt 6.31KB
10. How to Interpret the Regression Table.vtt 5.50KB
10. Indexing Elements.mp4 5.94MB
10. Indexing Elements.srt 1.71KB
10. Indexing Elements.vtt 1.47KB
10. Jupyter's Interface.html 161B
10. Margin of Error.html 161B
10. MNIST Exercises.html 2.13KB
10. p-value.mp4 55.87MB
10. p-value.srt 5.04KB
10. p-value.vtt 4.46KB
10. Standard error.mp4 22.77MB
10. Standard error.srt 2.03KB
10. Standard error.vtt 1.76KB
10. Techniques for Working with Traditional Methods.mp4 123.51MB
10. Techniques for Working with Traditional Methods.srt 11.08KB
10. Techniques for Working with Traditional Methods.vtt 9.66KB
10. The Linear Model with Multiple Inputs.html 161B
10. Underfitting and Overfitting.mp4 22.29MB
10. Underfitting and Overfitting.srt 4.98KB
10. Underfitting and Overfitting.vtt 4.37KB
11.10 TensorFlow MNIST '5. Activation Functions (Part 2)' Solution.html 172B
11.11 TensorFlow MNIST 'Around 98% Accuracy' Solution.html 157B
11.1 2.6. Cross table and scatter plot.xlsx.xlsx 26.12KB
11.1 3.13. Confidence intervals. Two means. Dependent samples_lesson.xlsx.xlsx 10.47KB
11.1 TensorFlow Business Case Homework.html 134B
11.1 TensorFlow MNIST 'Time' Solution.html 162B
11.1 Test dataset.html 134B
11.2 TensorFlow MNIST '1. Width' Solution.html 150B
11.3 TensorFlow MNIST '3. Width and Depth' Solution.html 160B
11.4 TensorFlow MNIST '2. Depth' Solution.html 150B
11.5 TensorFlow MNIST '8. Learning Rate (Part 1)' Solution.html 165B
11.6 TensorFlow MNIST '9. Learning Rate (Part 2)' Solution.html 165B
11.7 TensorFlow MNIST '7. Batch size (Part 2)' Solution.html 162B
11.8 TensorFlow MNIST '4. Activation Functions (Part 1)' Solution.html 172B
11.9 TensorFlow MNIST '6. Batch size (Part 1)' Solution.html 162B
11. A2 No Endogeneity.html 161B
11. Addition and Subtraction of Matrices.html 161B
11. Business Case A Comment on the Homework.mp4 36.38MB
11. Business Case A Comment on the Homework.srt 5.30KB
11. Business Case A Comment on the Homework.vtt 4.65KB
11. Confidence intervals. Two means. Dependent samples.mp4 70.47MB
11. Confidence intervals. Two means. Dependent samples.srt 8.04KB
11. Confidence intervals. Two means. Dependent samples.vtt 7.10KB
11. Cross Table and Scatter Plot.mp4 39.81MB
11. Cross Table and Scatter Plot.srt 6.69KB
11. Cross Table and Scatter Plot.vtt 5.87KB
11. Decomposition of Variability.mp4 49.66MB
11. Decomposition of Variability.srt 4.17KB
11. Decomposition of Variability.vtt 3.67KB
11. Estimators and Estimates.mp4 47.83MB
11. Estimators and Estimates.srt 3.72KB
11. Estimators and Estimates.vtt 3.27KB
11. Indexing Elements.html 161B
11. MNIST Solutions.html 2.19KB
11. p-value.html 161B
11. Techniques for Working with Traditional Methods.html 161B
11. Testing the Model.mp4 32.27MB
11. Testing the Model.srt 6.55KB
11. Testing the Model.vtt 5.70KB
11. The Linear model with Multiple Inputs and Multiple Outputs.mp4 38.31MB
11. The Linear model with Multiple Inputs and Multiple Outputs.srt 5.47KB
11. The Linear model with Multiple Inputs and Multiple Outputs.vtt 4.79KB
12.1 2.6. Cross table and scatter plot_exercise_solution.xlsx.xlsx 40.44KB
12.1 3.13. Confidence intervals. Two means. Dependent samples_exercise_solution.xlsx.xlsx 14.24KB
12.1 4.6.Test-for-the-mean.Population-variance-unknown-lesson.xlsx.xlsx 14.54KB
12.1 Errors when Adding Matrices Python Notebook.html 220B
12.1 Structure Your Code with Indentation - Resources.html 134B
12.1 TensorFlow Business Case Homework.html 134B
12.2 2.6. Cross table and scatter plot_exercise.xlsx.xlsx 16.28KB
12.2 3.13. Confidence intervals. Two means. Dependent samples_exercise.xlsx.xlsx 13.74KB
12. A3 Normality and Homoscedasticity.mp4 42.70MB
12. A3 Normality and Homoscedasticity.srt 6.67KB
12. A3 Normality and Homoscedasticity.vtt 5.81KB
12. Business Case Final Exercise.html 439B
12. Confidence intervals. Two means. Dependent samples Exercise.html 81B
12. Cross Tables and Scatter Plots Exercise.html 81B
12. Decomposition of Variability.html 161B
12. Errors when Adding Matrices.mp4 11.18MB
12. Errors when Adding Matrices.srt 2.58KB
12. Errors when Adding Matrices.vtt 2.27KB
12. Estimators and Estimates.html 161B
12. Real Life Examples of Traditional Methods.mp4 42.78MB
12. Real Life Examples of Traditional Methods.srt 3.59KB
12. Real Life Examples of Traditional Methods.vtt 3.14KB
12. Structuring with Indentation.mp4 6.81MB
12. Structuring with Indentation.srt 2.27KB
12. Structuring with Indentation.vtt 1.96KB
12. Test for the Mean. Population Variance Unknown.mp4 40.21MB
12. Test for the Mean. Population Variance Unknown.srt 5.90KB
12. Test for the Mean. Population Variance Unknown.vtt 5.18KB
12. The Linear model with Multiple Inputs and Multiple Outputs.html 161B
13.1 2.7. Mean, median and mode_lesson.xlsx.xlsx 10.49KB
13.1 3.14. Confidence intervals. Two means. Independent samples (Part 1)_lesson.xlsx.xlsx 9.83KB
13.1 4.6.Test-for-the-mean.Population-variance-unknown-exercise-solution.xlsx.xlsx 11.85KB
13.1 Transpose of a Matrix Python Notebook.html 167B
13.2 4.6.Test-for-the-mean.Population-variance-unknown-exercise.xlsx.xlsx 11.34KB
13. A4 No Autocorrelation.mp4 31.52MB
13. A4 No Autocorrelation.srt 4.91KB
13. A4 No Autocorrelation.vtt 4.27KB
13. Confidence intervals. Two means. Independent samples (Part 1).mp4 28.75MB
13. Confidence intervals. Two means. Independent samples (Part 1).srt 6.07KB
13. Confidence intervals. Two means. Independent samples (Part 1).vtt 5.33KB
13. Graphical Representation of Simple Neural Networks.mp4 22.64MB
13. Graphical Representation of Simple Neural Networks.srt 2.69KB
13. Graphical Representation of Simple Neural Networks.vtt 2.34KB
13. Machine Learning (ML) Techniques.mp4 99.32MB
13. Machine Learning (ML) Techniques.srt 8.74KB
13. Machine Learning (ML) Techniques.vtt 7.67KB
13. Mean, median and mode.mp4 37.07MB
13. Mean, median and mode.srt 5.73KB
13. Mean, median and mode.vtt 5.00KB
13. Structuring with Indentation.html 161B
13. Test for the Mean. Population Variance Unknown Exercise.html 81B
13. Transpose of a Matrix.mp4 38.07MB
13. Transpose of a Matrix.srt 5.37KB
13. Transpose of a Matrix.vtt 4.69KB
13. What is the OLS.mp4 28.31MB
13. What is the OLS.srt 3.82KB
13. What is the OLS.vtt 3.33KB
14.1 2.7. Mean, median and mode_exercise_solution.xlsx.xlsx 11.35KB
14.1 3.14. Confidence intervals. Two means. Independent samples (Part 1)_exercise_solution.xlsx.xlsx 10.12KB
14.1 4.7. Test for the mean. Dependent samples_lesson.xlsx.xlsx 9.79KB
14.1 Dot Product Python Notebook.html 154B
14.2 2.7. Mean, median and mode_exercise.xlsx.xlsx 10.87KB
14.2 3.14. Confidence intervals. Two means. Independent samples (Part 1)_exercise.xlsx.xlsx 9.83KB
14. A4 No autocorrelation.html 161B
14. Confidence intervals. Two means. Independent samples (Part 1) Exercise.html 81B
14. Dot Product.mp4 24.00MB
14. Dot Product.srt 4.27KB
14. Dot Product.vtt 3.68KB
14. Graphical Representation of Simple Neural Networks.html 161B
14. Machine Learning (ML) Techniques.html 161B
14. Mean, Median and Mode Exercise.html 81B
14. R-Squared.mp4 41.03MB
14. R-Squared.srt 6.58KB
14. R-Squared.vtt 5.79KB
14. Test for the Mean. Dependent Samples.mp4 50.39MB
14. Test for the Mean. Dependent Samples.srt 6.70KB
14. Test for the Mean. Dependent Samples.vtt 5.86KB
15.1 2.8. Skewness_lesson.xlsx.xlsx 34.63KB
15.1 3.15. Confidence intervals. Two means. Independent samples (Part 2)_lesson.xlsx.xlsx 9.52KB
15.1 4.7. Test for the mean. Dependent samples_exercise.xlsx.xlsx 12.80KB
15.1 Dot Product of Matrices Python Notebook.html 171B
15.2 4.7. Test for the mean. Dependent samples_exercise_solution.xlsx.xlsx 14.40KB
15. A5 No Multicollinearity.mp4 28.71MB
15. A5 No Multicollinearity.srt 4.62KB
15. A5 No Multicollinearity.vtt 4.04KB
15. Confidence intervals. Two means. Independent samples (Part 2).mp4 26.82MB
15. Confidence intervals. Two means. Independent samples (Part 2).srt 4.51KB
15. Confidence intervals. Two means. Independent samples (Part 2).vtt 3.98KB
15. Dot Product of Matrices.mp4 49.43MB
15. Dot Product of Matrices.srt 9.52KB
15. Dot Product of Matrices.vtt 8.22KB
15. R-Squared.html 161B
15. Skewness.mp4 19.41MB
15. Skewness.srt 3.65KB
15. Skewness.vtt 3.20KB
15. Test for the Mean. Dependent Samples Exercise.html 81B
15. Types of Machine Learning.mp4 125.15MB
15. Types of Machine Learning.srt 10.52KB
15. Types of Machine Learning.vtt 9.23KB
15. What is the Objective Function.mp4 17.91MB
15. What is the Objective Function.srt 2.12KB
15. What is the Objective Function.vtt 1.87KB
16.1 2.8. Skewness_exercise.xlsx.xlsx 9.49KB
16.1 3.15. Confidence intervals. Two means. Independent samples (Part 2)_exercise_solution.xlsx.xlsx 9.79KB
16.1 4.8. Test for the mean. Independent samples (Part 1)_lesson.xlsx.xlsx 9.63KB
16.2 2.8. Skewness_exercise_solution.xlsx.xlsx 19.78KB
16.2 3.15. Confidence intervals. Two means. Independent samples (Part 2)_exercise.xlsx.xlsx 9.17KB
16. A5 No Multicollinearity.html 161B
16. Confidence intervals. Two means. Independent samples (Part 2) Exercise.html 81B
16. Skewness Exercise.html 81B
16. Test for the mean. Independent samples (Part 1).mp4 29.96MB
16. Test for the mean. Independent samples (Part 1).srt 5.51KB
16. Test for the mean. Independent samples (Part 1).vtt 4.80KB
16. Types of Machine Learning.html 161B
16. What is the Objective Function.html 161B
16. Why is Linear Algebra Useful.mp4 144.34MB
16. Why is Linear Algebra Useful.srt 11.79KB
16. Why is Linear Algebra Useful.vtt 10.31KB
17.1 2.9. Variance_lesson.xlsx.xlsx 10.08KB
17.1 4.9. Test for the mean. Independent samples (Part 2)_lesson.xlsx.xlsx 9.31KB
17.1 Dummies - Lecture.html 134B
17. Common Objective Functions L2-norm Loss.mp4 23.28MB
17. Common Objective Functions L2-norm Loss.srt 2.77KB
17. Common Objective Functions L2-norm Loss.vtt 2.44KB
17. Confidence intervals. Two means. Independent samples (Part 3).mp4 19.93MB
17. Confidence intervals. Two means. Independent samples (Part 3).srt 1.96KB
17. Confidence intervals. Two means. Independent samples (Part 3).vtt 1.72KB
17. Dealing with Categorical Data - Dummy Variables.mp4 55.66MB
17. Dealing with Categorical Data - Dummy Variables.srt 8.15KB
17. Dealing with Categorical Data - Dummy Variables.vtt 7.11KB
17. Real Life Examples of Machine Learning (ML).mp4 36.81MB
17. Real Life Examples of Machine Learning (ML).srt 2.91KB
17. Real Life Examples of Machine Learning (ML).vtt 2.57KB
17. Test for the mean. Independent samples (Part 2).mp4 36.37MB
17. Test for the mean. Independent samples (Part 2).srt 5.44KB
17. Test for the mean. Independent samples (Part 2).vtt 4.72KB
17. Variance.mp4 50.95MB
17. Variance.srt 7.54KB
17. Variance.vtt 6.64KB
18.1 2.9. Variance_exercise.xlsx.xlsx 10.83KB
18.1 4.9. Test for the mean. Independent samples (Part 2)_exercise.xlsx.xlsx 9.45KB
18.1 Dummy variables Exercise.html 134B
18.2 2.9. Variance_exercise_solution.xlsx.xlsx 11.05KB
18.2 4.9. Test for the mean. Independent samples (Part 2)_exercise_solution.xlsx.xlsx 10.24KB
18. Common Objective Functions L2-norm Loss.html 161B
18. Dealing with Categorical Data - Dummy Variables.html 76B
18. Real Life Examples of Machine Learning (ML).html 161B
18. Test for the mean. Independent samples (Part 2) Exercise.html 81B
18. Variance Exercise.html 522B
19.1 2.10. Standard deviation and coefficient of variation_lesson.xlsx.xlsx 10.97KB
19.1 Making predictions - Lecture.html 134B
19. Common Objective Functions Cross-Entropy Loss.mp4 37.24MB
19. Common Objective Functions Cross-Entropy Loss.srt 5.26KB
19. Common Objective Functions Cross-Entropy Loss.vtt 4.57KB
19. Making Predictions with the Linear Regression.mp4 24.70MB
19. Making Predictions with the Linear Regression.srt 4.45KB
19. Making Predictions with the Linear Regression.vtt 3.87KB
19. Standard Deviation and Coefficient of Variation.mp4 45.13MB
19. Standard Deviation and Coefficient of Variation.srt 6.60KB
19. Standard Deviation and Coefficient of Variation.vtt 5.75KB
2.1 2.13. Practical-example.Descriptive-statistics-exercise-solution.xlsx.xlsx 146.22KB
2.1 3.17. Practical example. Confidence intervals_exercise.xlsx.xlsx 1.73MB
2.1 4.10. Hypothesis testing section_practical example_exercise.xlsx.xlsx 43.38KB
2.1 Basic NN Example (Part 2).html 136B
2.1 Country clusters.html 134B
2.1 Course notes_inferential statistics.pdf.pdf 382.32KB
2.1 Course Notes - Section 6.pdf.pdf 936.42KB
2.1 Creating a Function with a Parameter - Resources.html 134B
2.1 Multiple linear regression - Lecture.html 134B
2.1 Simple logistic regression example.html 134B
2.2 2.13.Practical-example.Descriptive-statistics-exercise.xlsx.xlsx 120.24KB
2.2 3.17.Practical-example.Confidence-intervals-exercise-solution.xlsx.xlsx 1.74MB
2.2 3.2. What is a distribution_lesson.xlsx.xlsx 19.46KB
2.2 4.10.Hypothesis-testing-section-practical-example-exercise-solution.xlsx.xlsx 44.04KB
2. Adjusted R-Squared.mp4 54.83MB
2. Adjusted R-Squared.srt 7.53KB
2. Adjusted R-Squared.vtt 6.57KB
2. A Note on Installation of Packages in Anaconda.html 626B
2. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.html 161B
2. A Simple Example in Python.mp4 34.70MB
2. A Simple Example in Python.srt 5.80KB
2. A Simple Example in Python.vtt 5.05KB
2. A Simple Example of Clustering.mp4 51.82MB
2. A Simple Example of Clustering.srt 9.59KB
2. A Simple Example of Clustering.vtt 8.28KB
2. Basic NN Example (Part 2).mp4 34.94MB
2. Basic NN Example (Part 2).srt 6.79KB
2. Basic NN Example (Part 2).vtt 5.88KB
2. Business Case Outlining the Solution.mp4 12.22MB
2. Business Case Outlining the Solution.srt 2.52KB
2. Business Case Outlining the Solution.vtt 2.19KB
2. Comparison Operators.html 161B
2. Data Science and Business Buzzwords Why are there so many.html 161B
2. Debunking Common Misconceptions.html 161B
2. Dendrogram.mp4 29.06MB
2. Dendrogram.srt 7.36KB
2. Dendrogram.vtt 6.41KB
2. Finding the Job - What to Expect and What to Look for.html 161B
2. For Loops.html 161B
2. Further Reading on Null and Alternative Hypothesis.html 2.18KB
2. How to Create a Function with a Parameter.mp4 23.87MB
2. How to Create a Function with a Parameter.srt 4.35KB
2. How to Create a Function with a Parameter.vtt 3.78KB
2. Introduction to Neural Networks.html 161B
2. Introduction to Programming.html 161B
2. Introduction to Regression Analysis.html 161B
2. Lists.html 161B
2. MNIST How to Tackle the MNIST.mp4 22.59MB
2. MNIST How to Tackle the MNIST.srt 3.62KB
2. MNIST How to Tackle the MNIST.vtt 3.17KB
2. Necessary Programming Languages and Software Used in Data Science.html 161B
2. Object Oriented Programming.html 161B
2. Population and Sample.html 161B
2. Practical Example Descriptive Statistics Exercise.html 81B
2. Practical Example Hypothesis Testing Exercise.html 81B
2. Practical Example Inferential Statistics Exercise.html 81B
2. Problems with Gradient Descent.mp4 11.02MB
2. Problems with Gradient Descent.srt 2.83KB
2. Problems with Gradient Descent.vtt 2.50KB
2. Some Examples of Clusters.mp4 71.54MB
2. Some Examples of Clusters.srt 6.24KB
2. Some Examples of Clusters.vtt 5.43KB
2. Techniques for Working with Traditional Data.html 161B
2. The IF Statement.html 161B
2. The Linear Regression Model.html 161B
2. The Reason behind these Disciplines.html 161B
2. Types of Basic Preprocessing.mp4 11.84MB
2. Types of Basic Preprocessing.srt 1.64KB
2. Types of Basic Preprocessing.vtt 1.46KB
2. Types of Data.html 161B
2. Types of Simple Initializations.mp4 14.31MB
2. Types of Simple Initializations.srt 3.68KB
2. Types of Simple Initializations.vtt 3.23KB
2. Underfitting and Overfitting for Classification.mp4 25.07MB
2. Underfitting and Overfitting for Classification.srt 2.63KB
2. Underfitting and Overfitting for Classification.vtt 2.31KB
2. Using Arithmetic Operators in Python.html 161B
2. Variables.html 161B
2. What's Further out there in terms of Machine Learning.mp4 20.13MB
2. What's Further out there in terms of Machine Learning.srt 2.55KB
2. What's Further out there in terms of Machine Learning.vtt 2.27KB
2. What are Confidence Intervals.html 161B
2. What Does the Course Cover.mp4 62.25MB
2. What Does the Course Cover.srt 5.08KB
2. What Does the Course Cover.vtt 4.49KB
2. What is a Deep Net.mp4 29.53MB
2. What is a Deep Net.srt 3.25KB
2. What is a Deep Net.vtt 2.84KB
2. What is a Distribution.mp4 61.59MB
2. What is a Distribution.srt 5.86KB
2. What is a Distribution.vtt 5.07KB
2. What is a Matrix.html 161B
2. What is Machine Learning.html 161B
20.1 2.10. Standard deviation and coefficient of variation_exercise_solution.xlsx.xlsx 12.37KB
20.2 2.10. Standard deviation and coefficient of variation_exercise.xlsx.xlsx 11.30KB
20. Common Objective Functions Cross-Entropy Loss.html 161B
20. Standard Deviation and Coefficient of Variation Exercise.html 81B
21.1 2.11. Covariance_lesson.xlsx.xlsx 24.92KB
21.1 GD-function-example.xlsx.xlsx 42.18KB
21. Covariance.mp4 27.48MB
21. Covariance.srt 4.92KB
21. Covariance.vtt 4.30KB
21. Optimization Algorithm 1-Parameter Gradient Descent.mp4 55.62MB
21. Optimization Algorithm 1-Parameter Gradient Descent.srt 8.47KB
21. Optimization Algorithm 1-Parameter Gradient Descent.vtt 7.43KB
22.1 2.11. Covariance_exercise.xlsx.xlsx 20.23KB
22.2 2.11. Covariance_exercise_solution.xlsx.xlsx 29.51KB
22. Covariance Exercise.html 81B
22. Optimization Algorithm 1-Parameter Gradient Descent.html 161B
23. Correlation Coefficient.mp4 29.57MB
23. Correlation Coefficient.srt 4.72KB
23. Correlation Coefficient.vtt 4.15KB
23. Optimization Algorithm n-Parameter Gradient Descent.mp4 39.42MB
23. Optimization Algorithm n-Parameter Gradient Descent.srt 7.53KB
23. Optimization Algorithm n-Parameter Gradient Descent.vtt 6.62KB
24.1 2.12. Correlation_exercise.xlsx.xlsx 29.30KB
24.2 2.12. Correlation_exercise_solution.xlsx.xlsx 29.48KB
24. Correlation Coefficient Exercise.html 81B
24. Optimization Algorithm n-Parameter Gradient Descent.html 161B
3.1 3.9. Population variance known, z-score_lesson.xlsx.xlsx 11.21KB
3.1 Add an Else Statement - Resources.html 134B
3.1 Another Way to Define a Function - Resources.html 134B
3.1 Basic NN Example (Part 3).html 136B
3.1 Clustering categorical data.html 134B
3.1 Course Notes - Section 2.pdf.pdf 927.67KB
3.1 Heatmaps.html 134B
3.1 Help Yourself with Methods - Resources.html 134B
3.1 Logical and Identity Operators - Resources.html 134B
3.1 Numbers and Boolean Values - Resources.html 134B
3.1 TensorFlow MNIST Part 1 with Comments.html 159B
3.1 The Double Equality Sign - Resources.html 134B
3.1 While Loops and Incrementing - Resources.html 134B
3.2 3.9. The z-table.xlsx.xlsx 18.48KB
3. Adjusted R-Squared.html 161B
3. An overview of CNNs.mp4 58.79MB
3. An overview of CNNs.srt 6.44KB
3. An overview of CNNs.vtt 5.66KB
3. Basic NN Example (Part 3).mp4 24.40MB
3. Basic NN Example (Part 3).srt 4.46KB
3. Basic NN Example (Part 3).vtt 3.88KB
3. Clustering Categorical Data.mp4 21.24MB
3. Clustering Categorical Data.srt 3.24KB
3. Clustering Categorical Data.vtt 2.81KB
3. Confidence Intervals; Population Variance Known; z-score.mp4 78.20MB
3. Confidence Intervals; Population Variance Known; z-score.srt 9.80KB
3. Confidence Intervals; Population Variance Known; z-score.vtt 8.65KB
3. Correlation vs Regression.mp4 14.73MB
3. Correlation vs Regression.srt 2.10KB
3. Correlation vs Regression.vtt 1.82KB
3. Defining a Function in Python - Part II.mp4 14.78MB
3. Defining a Function in Python - Part II.srt 3.13KB
3. Defining a Function in Python - Part II.vtt 2.70KB
3. Difference between Classification and Clustering.mp4 36.16MB
3. Difference between Classification and Clustering.srt 3.28KB
3. Difference between Classification and Clustering.vtt 2.89KB
3. Digging into a Deep Net.mp4 59.36MB
3. Digging into a Deep Net.srt 6.70KB
3. Digging into a Deep Net.vtt 5.84KB
3. Heatmaps.mp4 29.62MB
3. Heatmaps.srt 6.35KB
3. Heatmaps.vtt 5.47KB
3. Levels of Measurement.mp4 54.39MB
3. Levels of Measurement.srt 4.55KB
3. Levels of Measurement.vtt 4.03KB
3. Logical and Identity Operators.mp4 30.05MB
3. Logical and Identity Operators.srt 5.78KB
3. Logical and Identity Operators.vtt 4.99KB
3. Logistic vs Logit Function.mp4 86.49MB
3. Logistic vs Logit Function.srt 4.88KB
3. Logistic vs Logit Function.vtt 4.27KB
3. MNIST Relevant Packages.mp4 18.91MB
3. MNIST Relevant Packages.srt 2.12KB
3. MNIST Relevant Packages.vtt 1.89KB
3. Modules and Packages.mp4 8.50MB
3. Modules and Packages.srt 1.26KB
3. Modules and Packages.vtt 1.13KB
3. Momentum.mp4 16.44MB
3. Momentum.srt 3.45KB
3. Momentum.vtt 3.04KB
3. Numbers and Boolean Values in Python.mp4 17.07MB
3. Numbers and Boolean Values in Python.srt 3.69KB
3. Numbers and Boolean Values in Python.vtt 3.17KB
3. Real Life Examples of Traditional Data.mp4 29.94MB
3. Real Life Examples of Traditional Data.srt 2.25KB
3. Real Life Examples of Traditional Data.vtt 1.97KB
3. Scalars and Vectors.mp4 33.85MB
3. Scalars and Vectors.srt 3.78KB
3. Scalars and Vectors.vtt 3.30KB
3. Standardization.mp4 50.98MB
3. Standardization.srt 5.98KB
3. Standardization.vtt 5.29KB
3. State-of-the-Art Method - (Xavier) Glorot Initialization.mp4 17.14MB
3. State-of-the-Art Method - (Xavier) Glorot Initialization.srt 3.71KB
3. State-of-the-Art Method - (Xavier) Glorot Initialization.vtt 3.24KB
3. TensorFlow Outline and Logic.mp4 47.69MB
3. TensorFlow Outline and Logic.srt 5.21KB
3. TensorFlow Outline and Logic.vtt 4.59KB
3. The Double Equality Sign.mp4 5.99MB
3. The Double Equality Sign.srt 1.83KB
3. The Double Equality Sign.vtt 1.59KB
3. The ELSE Statement.mp4 13.58MB
3. The ELSE Statement.srt 2.78KB
3. The ELSE Statement.vtt 2.45KB
3. The Importance of Working with a Balanced Dataset.mp4 39.41MB
3. The Importance of Working with a Balanced Dataset.srt 4.48KB
3. The Importance of Working with a Balanced Dataset.vtt 3.91KB
3. The Null vs Alternative Hypothesis.html 161B
3. Training the Model.mp4 28.71MB
3. Training the Model.srt 4.28KB
3. Training the Model.vtt 3.79KB
3. Using Methods.mp4 21.95MB
3. Using Methods.srt 3.96KB
3. Using Methods.vtt 3.47KB
3. What is a Distribution.html 161B
3. What is the difference between Analysis and Analytics.mp4 53.56MB
3. What is the difference between Analysis and Analytics.srt 5.08KB
3. What is the difference between Analysis and Analytics.vtt 4.42KB
3. What is Validation.mp4 32.71MB
3. What is Validation.srt 4.90KB
3. What is Validation.vtt 4.27KB
3. While Loops and Incrementing.mp4 15.44MB
3. While Loops and Incrementing.srt 2.77KB
3. While Loops and Incrementing.vtt 2.42KB
3. Why Python.mp4 75.08MB
3. Why Python.srt 6.97KB
3. Why Python.vtt 6.11KB
4.1 3.9. Population variance known, z-score_exercise.xlsx.xlsx 10.83KB
4.1 Audiobooks Preprocessing.html 134B
4.1 Basic NN Example (Part 4).html 145B
4.1 Building a logistic regression.html 134B
4.1 Course notes_hypothesis_testing.pdf.pdf 658.60KB
4.1 Create Lists with the range() Function - Resources.html 134B
4.1 Else if, for Brief - Elif - Resources.html 134B
4.1 Multiple Linear Regression Exercise.html 134B
4.1 Selecting the number of clusters.html 134B
4.1 Shortcuts-for-Jupyter.pdf.pdf 619.17KB
4.1 TensorFlow MNIST Part 2 with Comments.html 159B
4.1 Using a Function in Another Function - Resources.html 134B
4.2 3.9. The z-table.xlsx.xlsx 18.48KB
4.3 3.9. Population variance known, z-score_exercise_solution.xlsx.xlsx 11.16KB
4. Actual Introduction to TensorFlow.mp4 17.41MB
4. Actual Introduction to TensorFlow.srt 2.18KB
4. Actual Introduction to TensorFlow.vtt 1.92KB
4. Basic NN Example (Part 4).mp4 61.14MB
4. Basic NN Example (Part 4).srt 10.87KB
4. Basic NN Example (Part 4).vtt 9.46KB
4. Building a Logistic Regression.mp4 17.11MB
4. Building a Logistic Regression.srt 3.28KB
4. Building a Logistic Regression.vtt 2.89KB
4. Business Case Preprocessing.mp4 103.41MB
4. Business Case Preprocessing.srt 13.46KB
4. Business Case Preprocessing.vtt 11.71KB
4. Confidence Intervals; Population Variance Known; z-score; Exercise.html 81B
4. Correlation vs Regression.html 161B
4. DeepMind and Deep Learning.html 1.05KB
4. How to Choose the Number of Clusters.mp4 44.14MB
4. How to Choose the Number of Clusters.srt 7.37KB
4. How to Choose the Number of Clusters.vtt 6.43KB
4. How to Use a Function within a Function.mp4 8.13MB
4. How to Use a Function within a Function.srt 2.04KB
4. How to Use a Function within a Function.vtt 1.78KB
4. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.mp4 29.09MB
4. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.srt 5.94KB
4. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.vtt 5.22KB
4. Levels of Measurement.html 161B
4. Lists with the range() Function.mp4 11.42MB
4. Lists with the range() Function.srt 2.79KB
4. Lists with the range() Function.vtt 2.45KB
4. Logical and Identity Operators.html 161B
4. Math Prerequisites.mp4 14.55MB
4. Math Prerequisites.srt 4.06KB
4. Math Prerequisites.vtt 3.53KB
4. MNIST Model Outline.mp4 56.38MB
4. MNIST Model Outline.srt 9.07KB
4. MNIST Model Outline.vtt 7.91KB
4. Modules and Packages.html 161B
4. Multiple Linear Regression Exercise.html 76B
4. Non-Linearities and their Purpose.mp4 27.68MB
4. Non-Linearities and their Purpose.srt 3.89KB
4. Non-Linearities and their Purpose.vtt 3.38KB
4. Numbers and Boolean Values in Python.html 161B
4. Preprocessing Categorical Data.mp4 18.60MB
4. Preprocessing Categorical Data.srt 2.77KB
4. Preprocessing Categorical Data.vtt 2.42KB
4. Rejection Region and Significance Level.mp4 113.16MB
4. Rejection Region and Significance Level.srt 8.97KB
4. Rejection Region and Significance Level.vtt 7.83KB
4. Scalars and Vectors.html 161B
4. Techniques for Working with Big Data.mp4 75.51MB
4. Techniques for Working with Big Data.srt 5.67KB
4. Techniques for Working with Big Data.vtt 4.96KB
4. The Double Equality Sign.html 161B
4. The ELIF Statement.mp4 33.15MB
4. The ELIF Statement.srt 6.65KB
4. The ELIF Statement.vtt 5.75KB
4. The Normal Distribution.mp4 49.85MB
4. The Normal Distribution.srt 4.90KB
4. The Normal Distribution.vtt 4.32KB
4. Training, Validation, and Test Datasets.mp4 25.20MB
4. Training, Validation, and Test Datasets.srt 3.60KB
4. Training, Validation, and Test Datasets.vtt 3.11KB
4. Training the Model.html 161B
4. Using Methods.html 161B
4. What is the difference between Analysis and Analytics.html 161B
4. Why Python.html 161B
5.10 Basic NN Example Exercise 6 Solution.html 149B
5.1 2.3.Categorical-variables.Visualization-techniques-lesson.xlsx.xlsx 30.77KB
5.1 365_DataScience_Diagram.pdf.pdf 323.08KB
5.1 A Note on Boolean Values - Resources.html 134B
5.1 Basic NN Example Exercise 5 Solution.html 149B
5.1 Basic NN Example with TensorFlow (Part 1).html 154B
5.1 Combining Conditional Statements and Functions - Resources.html 134B
5.1 List Slicing - Resources.html 134B
5.1 Preprocessing Exercise.html 134B
5.1 Reassign Values - Resources.html 134B
5.1 Strings - Resources.html 134B
5.1 TensorFlow MNIST Part 3 with Comments.html 159B
5.2 Basic NN Example (All Exercises).html 143B
5.3 Basic NN Example Exercise 4 Solution.html 149B
5.4 Basic NN Example Exercise 1 Solution.html 149B
5.5 Basic NN Example Exercise 2 Solution.html 149B
5.6 Basic NN Example Exercise 3d Solution.html 154B
5.7 Basic NN Example Exercise 3b Solution.html 154B
5.8 Basic NN Example Exercise 3c Solution.html 154B
5.9 Basic NN Example Exercise 3a Solution.html 154B
5. Activation Functions.mp4 25.10MB
5. Activation Functions.srt 5.26KB
5. Activation Functions.vtt 4.58KB
5. An Invaluable Coding Tip.mp4 23.05MB
5. An Invaluable Coding Tip.srt 3.21KB
5. An Invaluable Coding Tip.vtt 2.78KB
5. A Note on Boolean Values.mp4 11.25MB
5. A Note on Boolean Values.srt 2.92KB
5. A Note on Boolean Values.vtt 2.55KB
5. An Overview of RNNs.mp4 25.27MB
5. An Overview of RNNs.srt 3.71KB
5. An Overview of RNNs.vtt 3.30KB
5. Basic NN Example Exercises.html 1.37KB
5. Binary and One-Hot Encoding.mp4 28.95MB
5. Binary and One-Hot Encoding.srt 4.81KB
5. Binary and One-Hot Encoding.vtt 4.18KB
5. Business Analytics, Data Analytics, and Data Science An Introduction.mp4 64.51MB
5. Business Analytics, Data Analytics, and Data Science An Introduction.srt 10.63KB
5. Business Analytics, Data Analytics, and Data Science An Introduction.vtt 9.26KB
5. Business Case Preprocessing Exercise.html 383B
5. Categorical Variables - Visualization Techniques.mp4 38.46MB
5. Categorical Variables - Visualization Techniques.srt 6.43KB
5. Categorical Variables - Visualization Techniques.vtt 5.66KB
5. Conditional Statements and Functions.mp4 15.69MB
5. Conditional Statements and Functions.srt 3.52KB
5. Conditional Statements and Functions.vtt 3.05KB
5. Geometrical Representation of the Linear Regression Model.mp4 5.12MB
5. Geometrical Representation of the Linear Regression Model.srt 1.64KB
5. Geometrical Representation of the Linear Regression Model.vtt 1.45KB
5. How to Reassign Values.mp4 4.00MB
5. How to Reassign Values.srt 1.30KB
5. How to Reassign Values.vtt 1.13KB
5. Learning Rate Schedules Visualized.mp4 9.11MB
5. Learning Rate Schedules Visualized.srt 2.17KB
5. Learning Rate Schedules Visualized.vtt 1.90KB
5. Linear Algebra and Geometry.mp4 49.79MB
5. Linear Algebra and Geometry.srt 4.10KB
5. Linear Algebra and Geometry.vtt 3.54KB
5. List Slicing.mp4 30.77MB
5. List Slicing.srt 5.55KB
5. List Slicing.vtt 4.83KB
5. Lists with the range() Function.html 161B
5. MNIST Loss and Optimization Algorithm.mp4 25.86MB
5. MNIST Loss and Optimization Algorithm.srt 3.54KB
5. MNIST Loss and Optimization Algorithm.vtt 3.09KB
5. N-Fold Cross Validation.mp4 20.70MB
5. N-Fold Cross Validation.srt 4.18KB
5. N-Fold Cross Validation.vtt 3.67KB
5. Pros and Cons of K-Means Clustering.mp4 37.71MB
5. Pros and Cons of K-Means Clustering.srt 4.62KB
5. Pros and Cons of K-Means Clustering.vtt 4.01KB
5. Python Strings.mp4 30.76MB
5. Python Strings.srt 7.45KB
5. Python Strings.vtt 6.46KB
5. Rejection Region and Significance Level.html 161B
5. Student's T Distribution.mp4 35.43MB
5. Student's T Distribution.srt 4.14KB
5. Student's T Distribution.vtt 3.68KB
5. Techniques for Working with Big Data.html 161B
5. Test for Significance of the Model (F-Test).mp4 16.42MB
5. Test for Significance of the Model (F-Test).srt 2.56KB
5. Test for Significance of the Model (F-Test).vtt 2.23KB
5. The Normal Distribution.html 161B
5. Types of File Formats, supporting Tensors.mp4 20.34MB
5. Types of File Formats, supporting Tensors.srt 3.45KB
5. Types of File Formats, supporting Tensors.vtt 3.00KB
5. Types of Machine Learning.mp4 45.11MB
5. Types of Machine Learning.srt 5.24KB
5. Types of Machine Learning.vtt 4.62KB
5. What is the Standard Library.mp4 18.04MB
5. What is the Standard Library.srt 3.57KB
5. What is the Standard Library.vtt 3.15KB
5. Why Jupyter.mp4 44.31MB
5. Why Jupyter.srt 4.64KB
5. Why Jupyter.vtt 4.10KB
6.1 2.3. Categorical variables. Visualization techniques_exercise_solution.xlsx.xlsx 41.11KB
6.1 3.4. Standard normal distribution_lesson.xlsx.xlsx 10.38KB
6.1 Basic NN Example with TensorFlow (Part 2).html 154B
6.1 Creating a Data Provider (Class).html 134B
6.1 Creating Functions Containing a Few Arguments - Resources.html 134B
6.1 TensorFlow MNIST Part 4 with Comments.html 159B
6.1 Tuples - Resources.html 134B
6.1 Use Conditional Statements and Loops Together - Resources.html 134B
6.2 2.3. Categorical variables. Visualization techniques_exercise.xlsx.xlsx 15.24KB
6. Activation Functions Softmax Activation.mp4 25.92MB
6. Activation Functions Softmax Activation.srt 4.46KB
6. Activation Functions Softmax Activation.vtt 3.89KB
6. Adaptive Learning Rate Schedules ( AdaGrad and RMSprop ).mp4 26.35MB
6. Adaptive Learning Rate Schedules ( AdaGrad and RMSprop ).srt 5.21KB
6. Adaptive Learning Rate Schedules ( AdaGrad and RMSprop ).vtt 4.57KB
6. A Note on Boolean Values.html 161B
6. An Overview of non-NN Approaches.mp4 44.77MB
6. An Overview of non-NN Approaches.srt 5.12KB
6. An Overview of non-NN Approaches.vtt 4.56KB
6. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.mp4 38.49MB
6. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.srt 7.36KB
6. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.vtt 6.47KB
6. Business Analytics, Data Analytics, and Data Science An Introduction.html 161B
6. Calculating the Accuracy of the Model.mp4 43.90MB
6. Calculating the Accuracy of the Model.srt 5.19KB
6. Calculating the Accuracy of the Model.vtt 4.51KB
6. Categorical Variables Exercise.html 81B
6. Conditional Statements and Loops.mp4 16.09MB
6. Conditional Statements and Loops.srt 3.59KB
6. Conditional Statements and Loops.vtt 3.15KB
6. Creating a Data Provider.mp4 76.34MB
6. Creating a Data Provider.srt 7.75KB
6. Creating a Data Provider.vtt 6.80KB
6. Early Stopping or When to Stop Training.mp4 24.17MB
6. Early Stopping or When to Stop Training.srt 6.86KB
6. Early Stopping or When to Stop Training.vtt 6.01KB
6. Functions Containing a Few Arguments.mp4 7.58MB
6. Functions Containing a Few Arguments.srt 1.31KB
6. Functions Containing a Few Arguments.vtt 1.13KB
6. How to Reassign Values.html 161B
6. Linear Algebra and Geometry.html 161B
6. OLS Assumptions.mp4 21.85MB
6. OLS Assumptions.srt 3.04KB
6. OLS Assumptions.vtt 2.67KB
6. Python Packages Installation.mp4 40.59MB
6. Python Packages Installation.srt 5.62KB
6. Python Packages Installation.vtt 4.89KB
6. Python Strings.html 161B
6. Real Life Examples of Big Data.mp4 22.03MB
6. Real Life Examples of Big Data.srt 1.88KB
6. Real Life Examples of Big Data.vtt 1.64KB
6. Student's T Distribution.html 161B
6. The Standard Normal Distribution.mp4 22.51MB
6. The Standard Normal Distribution.srt 3.94KB
6. The Standard Normal Distribution.vtt 3.45KB
6. To Standardize or to not Standardize.mp4 30.11MB
6. To Standardize or to not Standardize.srt 5.89KB
6. To Standardize or to not Standardize.vtt 5.14KB
6. Tuples.mp4 16.67MB
6. Tuples.srt 3.39KB
6. Tuples.vtt 2.96KB
6. Type I Error and Type II Error.mp4 43.93MB
6. Type I Error and Type II Error.srt 5.67KB
6. Type I Error and Type II Error.vtt 4.90KB
6. Types of Machine Learning.html 161B
6. Understanding Logistic Regression Tables.mp4 30.55MB
6. Understanding Logistic Regression Tables.srt 5.56KB
6. Understanding Logistic Regression Tables.vtt 4.84KB
6. What is the Standard Library.html 161B
6. Why Jupyter.html 161B
7.1 2.4. Numerical variables. Frequency distribution table_lesson.xlsx.xlsx 11.32KB
7.1 3.11. Population variance unknown, t-score_lesson.xlsx.xlsx 10.78KB
7.1 3.4. Standard normal distribution_exercise.xlsx.xlsx 11.84KB
7.1 365_DataScience_Diagram.pdf.pdf 323.08KB
7.1 Add Comments - Resources.html 134B
7.1 All In - Conditional Statements, Functions, and Loops - Resources.html 134B
7.1 Arrays in Python Notebook.html 181B
7.1 Basic NN Example with TensorFlow (Part 3).html 154B
7.1 Dictionaries - Resources.html 134B
7.1 Notable Built-In Functions in Python - Resources.html 134B
7.1 Simple linear regression - Lecture.html 134B
7.1 TensorFlow Business Case Model Outline.html 134B
7.1 TensorFlow MNIST Part 5 with Comments.html 159B
7.2 3.11. The t-table.xlsx.xlsx 15.85KB
7.2 3.4. Standard normal distribution_exercise_solution.xlsx.xlsx 23.73KB
7.2 365_DataScience.png.png 6.92MB
7.2 Simple linear regression - Exercise.html 134B
7. Adam (Adaptive Moment Estimation).mp4 22.36MB
7. Adam (Adaptive Moment Estimation).srt 3.33KB
7. Adam (Adaptive Moment Estimation).vtt 2.92KB
7. Add Comments.mp4 5.01MB
7. Add Comments.srt 1.71KB
7. Add Comments.vtt 1.49KB
7. Arrays in Python - A Convenient Way To Represent Matrices.mp4 26.12MB
7. Arrays in Python - A Convenient Way To Represent Matrices.srt 5.94KB
7. Arrays in Python - A Convenient Way To Represent Matrices.vtt 5.14KB
7. Backpropagation.mp4 34.95MB
7. Backpropagation.srt 4.47KB
7. Backpropagation.vtt 3.91KB
7. Basic NN Example with TF Loss Function and Gradient Descent.mp4 32.51MB
7. Basic NN Example with TF Loss Function and Gradient Descent.srt 4.83KB
7. Basic NN Example with TF Loss Function and Gradient Descent.vtt 4.21KB
7. Built-in Functions in Python.mp4 22.02MB
7. Built-in Functions in Python.srt 4.21KB
7. Built-in Functions in Python.vtt 3.68KB
7. Business Case Model Outline.mp4 53.13MB
7. Business Case Model Outline.srt 6.94KB
7. Business Case Model Outline.vtt 6.07KB
7. Business Intelligence (BI) Techniques.mp4 89.94MB
7. Business Intelligence (BI) Techniques.srt 8.63KB
7. Business Intelligence (BI) Techniques.vtt 7.57KB
7. Conditional Statements, Functions, and Loops.mp4 9.48MB
7. Conditional Statements, Functions, and Loops.srt 2.41KB
7. Conditional Statements, Functions, and Loops.vtt 2.09KB
7. Confidence Intervals; Population Variance Unknown; t-score.mp4 32.21MB
7. Confidence Intervals; Population Variance Unknown; t-score.srt 5.71KB
7. Confidence Intervals; Population Variance Unknown; t-score.vtt 5.00KB
7. Continuing with BI, ML, and AI.mp4 108.98MB
7. Continuing with BI, ML, and AI.srt 11.88KB
7. Continuing with BI, ML, and AI.vtt 10.43KB
7. Dictionaries.mp4 25.04MB
7. Dictionaries.srt 4.21KB
7. Dictionaries.vtt 3.63KB
7. First Regression in Python.mp4 44.57MB
7. First Regression in Python.srt 7.91KB
7. First Regression in Python.vtt 6.91KB
7. Importing Modules in Python.mp4 19.93MB
7. Importing Modules in Python.srt 4.82KB
7. Importing Modules in Python.vtt 4.17KB
7. Installing Python and Jupyter.mp4 54.41MB
7. Installing Python and Jupyter.srt 7.13KB
7. Installing Python and Jupyter.vtt 6.23KB
7. MNIST Batching and Early Stopping.mp4 12.85MB
7. MNIST Batching and Early Stopping.srt 2.93KB
7. MNIST Batching and Early Stopping.vtt 2.56KB
7. Numerical Variables - Frequency Distribution Table.mp4 25.98MB
7. Numerical Variables - Frequency Distribution Table.srt 4.36KB
7. Numerical Variables - Frequency Distribution Table.vtt 3.83KB
7. OLS Assumptions.html 161B
7. Relationship between Clustering and Regression.mp4 9.93MB
7. Relationship between Clustering and Regression.srt 2.18KB
7. Relationship between Clustering and Regression.vtt 1.92KB
7. The Linear Model (Linear Algebraic Version).mp4 28.44MB
7. The Linear Model (Linear Algebraic Version).srt 3.88KB
7. The Linear Model (Linear Algebraic Version).vtt 3.43KB
7. The Standard Normal Distribution Exercise.html 81B
7. Type I Error and Type II Error.html 161B
7. What do the Odds Actually Mean.mp4 32.29MB
7. What do the Odds Actually Mean.srt 4.79KB
7. What do the Odds Actually Mean.vtt 4.18KB
8.1 2.4. Numerical variables. Frequency distribution table_exercise_solution.xlsx.xlsx 13.15KB
8.1 3.11. Population variance unknown, t-score_exercise.xlsx.xlsx 10.62KB
8.1 4.4. Test for the mean. Population variance known_lesson.xlsx.xlsx 10.96KB
8.1 Basic NN Example with TensorFlow (Complete).html 156B
8.1 Binary predictors.html 134B
8.1 Iterating over Dictionaries - Resources.html 134B
8.1 Market segmentation example.html 134B
8.1 Simple Linear Regression Exercise.html 134B
8.1 TensorFlow Business Case Optimization.html 134B
8.1 TensorFlow MNIST Part 6 with Comments.html 159B
8.1 Tensors Notebook.html 148B
8.2 2.4. Numerical variables. Frequency distribution table_exercise.xlsx.xlsx 11.75KB
8.2 3.11. Population variance unknown, t-score_exercise_solution.xlsx.xlsx 11.10KB
8. A1 Linearity.mp4 12.61MB
8. A1 Linearity.srt 2.36KB
8. A1 Linearity.vtt 2.07KB
8. Add Comments.html 161B
8. Backpropagation picture.mp4 19.51MB
8. Backpropagation picture.srt 3.98KB
8. Backpropagation picture.vtt 3.44KB
8. Basic NN Example with TF Model Output.mp4 37.39MB
8. Basic NN Example with TF Model Output.srt 7.93KB
8. Basic NN Example with TF Model Output.vtt 6.87KB
8. Binary Predictors in a Logistic Regression.mp4 38.43MB
8. Binary Predictors in a Logistic Regression.srt 5.42KB
8. Binary Predictors in a Logistic Regression.vtt 4.75KB
8. Business Case Optimization.mp4 41.52MB
8. Business Case Optimization.srt 6.60KB
8. Business Case Optimization.vtt 5.76KB
8. Business Intelligence (BI) Techniques.html 161B
8. Central Limit Theorem.mp4 62.88MB
8. Central Limit Theorem.srt 5.64KB
8. Central Limit Theorem.vtt 4.95KB
8. Confidence Intervals; Population Variance Unknown; t-score; Exercise.html 81B
8. Continuing with BI, ML, and AI.html 161B
8. Dictionaries.html 161B
8. First Regression in Python Exercise.html 76B
8. How to Iterate over Dictionaries.mp4 16.98MB
8. How to Iterate over Dictionaries.srt 3.88KB
8. How to Iterate over Dictionaries.vtt 3.34KB
8. Importing Modules in Python.html 161B
8. Market Segmentation with Cluster Analysis (Part 1).mp4 43.01MB
8. Market Segmentation with Cluster Analysis (Part 1).srt 7.53KB
8. Market Segmentation with Cluster Analysis (Part 1).vtt 6.53KB
8. MNIST Learning.mp4 46.69MB
8. MNIST Learning.srt 10.20KB
8. MNIST Learning.vtt 8.89KB
8. Numerical Variables Exercise.html 81B
8. Python Functions.html 161B
8. Test for the Mean. Population Variance Known.mp4 54.22MB
8. Test for the Mean. Population Variance Known.srt 8.15KB
8. Test for the Mean. Population Variance Known.vtt 7.12KB
8. The Linear Model.html 161B
8. Understanding Jupyter's Interface - the Notebook Dashboard.mp4 13.79MB
8. Understanding Jupyter's Interface - the Notebook Dashboard.srt 3.74KB
8. Understanding Jupyter's Interface - the Notebook Dashboard.vtt 3.25KB
8. What is a Tensor.mp4 22.53MB
8. What is a Tensor.srt 3.61KB
8. What is a Tensor.vtt 3.17KB
9.1 2.5. The Histogram_lesson.xlsx.xlsx 18.63KB
9.1 365_DataScience.png.png 6.93MB
9.1 4.4. Test for the mean. Population variance known_exercise.xlsx.xlsx 11.03KB
9.1 Accuracy.html 134B
9.1 Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf.pdf 182.36KB
9.1 Basic NN Example with TensorFlow Exercise 2.4 Solution.html 162B
9.1 Line Continuation - Resources.html 134B
9.1 Market segmentation example (Part 2).html 134B
9.1 TensorFlow Business Case Interpretation.html 134B
9.1 TensorFlow MNIST Complete Code with Comments.html 152B
9.2 4.4. Test for the mean. Population variance known_exercise_solution.xlsx.xlsx 11.22KB
9.2 Basic NN Example with TensorFlow Exercise 2.1 Solution.html 162B
9.3 Basic NN Example with TensorFlow (All Exercises).html 154B
9.4 Basic NN Example with TensorFlow Exercise 3 Solution.html 160B
9.5 Basic NN Example with TensorFlow Exercise 2.2 Solution.html 162B
9.6 Basic NN Example with TensorFlow Exercise 4 Solution.html 160B
9.7 Basic NN Example with TensorFlow Exercise 1 Solution.html 160B
9.8 Basic NN Example with TensorFlow Exercise 2.3 Solution.html 162B
9. A1 Linearity.html 161B
9. A Breakdown of our Data Science Infographic.mp4 67.74MB
9. A Breakdown of our Data Science Infographic.srt 5.11KB
9. A Breakdown of our Data Science Infographic.vtt 4.45KB
9. Backpropagation - A Peek into the Mathematics of Optimization.html 539B
9. Basic NN Example with TF Exercises.html 1.59KB
9. Business Case Interpretation.mp4 25.74MB
9. Business Case Interpretation.srt 2.94KB
9. Business Case Interpretation.vtt 2.60KB
9. Calculating the Accuracy of the Model.mp4 32.85MB
9. Calculating the Accuracy of the Model.srt 4.13KB
9. Calculating the Accuracy of the Model.vtt 3.63KB
9. Central Limit Theorem.html 161B
9. Margin of Error.mp4 59.09MB
9. Margin of Error.srt 6.21KB
9. Margin of Error.vtt 5.45KB
9. Market Segmentation with Cluster Analysis (Part 2).mp4 56.11MB
9. Market Segmentation with Cluster Analysis (Part 2).srt 9.19KB
9. Market Segmentation with Cluster Analysis (Part 2).vtt 7.96KB
9. MNIST Results and Testing.mp4 62.77MB
9. MNIST Results and Testing.srt 8.17KB
9. MNIST Results and Testing.vtt 7.15KB
9. Prerequisites for Coding in the Jupyter Notebooks.mp4 30.58MB
9. Prerequisites for Coding in the Jupyter Notebooks.srt 7.79KB
9. Prerequisites for Coding in the Jupyter Notebooks.vtt 6.80KB
9. Real Life Examples of Business Intelligence (BI).mp4 29.54MB
9. Real Life Examples of Business Intelligence (BI).srt 2.13KB
9. Real Life Examples of Business Intelligence (BI).vtt 1.89KB
9. Test for the Mean. Population Variance Known Exercise.html 81B
9. The Histogram.mp4 13.78MB
9. The Histogram.srt 3.01KB
9. The Histogram.vtt 2.67KB
9. The Linear Model with Multiple Inputs.mp4 25.11MB
9. The Linear Model with Multiple Inputs.srt 3.10KB
9. The Linear Model with Multiple Inputs.vtt 2.74KB
9. Understanding Line Continuation.mp4 2.35MB
9. Understanding Line Continuation.srt 1.14KB
9. Understanding Line Continuation.vtt 1.00KB
9. Using Seaborn for Graphs.mp4 12.24MB
9. Using Seaborn for Graphs.srt 1.48KB
9. Using Seaborn for Graphs.vtt 1.30KB
9. What is a Tensor.html 161B
Distribution statistics by country
France (FR) 4
United States (US) 3
Malaysia (MY) 2
Philippines (PH) 2
Brazil (BR) 1
India (IN) 1
Russia (RU) 1
United Arab Emirates (AE) 1
Bangladesh (BD) 1
Ethiopia (ET) 1
Seychelles (SC) 1
Republic of Korea (KR) 1
Romania (RO) 1
Total 20
IP List List of IP addresses which were distributed this torrent