Please note that this page does not hosts or makes available any of the listed filenames. You
cannot download any of those files from here.
|
1.1 2.13. Practical example. Descriptive statistics_lesson.xlsx.xlsx |
146.51KB |
1.1 3.17. Practical example. Confidence intervals_lesson.xlsx.xlsx |
1.74MB |
1.1 4.10.Hypothesis-testing-section-practical-example.xlsx.xlsx |
51.71KB |
1.1 Arithmetic Operators - Resources.html |
134B |
1.1 Audiobooks_data.csv.csv |
710.77KB |
1.1 Comparison Operators - Resources.html |
134B |
1.1 Course notes_descriptive_statistics.pdf.pdf |
482.27KB |
1.1 Course notes_hypothesis_testing.pdf.pdf |
648.60KB |
1.1 Course notes_inferential statistics.pdf.pdf |
382.32KB |
1.1 Course Notes - Section 2.pdf.pdf |
927.67KB |
1.1 Course Notes - Section 6.pdf.pdf |
936.42KB |
1.1 Defining a Function in Python - Resources.html |
134B |
1.1 For Loops - Resources.html |
134B |
1.1 Glossary.xlsx.xlsx |
19.97KB |
1.1 Introduction to the If Statement - Resources.html |
134B |
1.1 Lists - Resources.html |
134B |
1.1 Shortcuts-for-Jupyter.pdf.pdf |
619.17KB |
1.1 Shortcuts-for-Jupyter.pdf.pdf |
619.17KB |
1.1 Variables - Resources.html |
134B |
1.2 Bais NN Example Part 1.html |
136B |
1.2 Course notes_descriptive_statistics.pdf.pdf |
482.27KB |
1. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.mp4 |
126.87MB |
1. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.srt |
8.99KB |
1. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.vtt |
7.90KB |
1. A Practical Example What You Will Learn in This Course.mp4 |
49.03MB |
1. A Practical Example What You Will Learn in This Course.srt |
6.37KB |
1. A Practical Example What You Will Learn in This Course.vtt |
5.62KB |
1. Basic NN Example (Part 1).mp4 |
20.60MB |
1. Basic NN Example (Part 1).srt |
4.47KB |
1. Basic NN Example (Part 1).vtt |
3.91KB |
1. Business Case Getting acquainted with the dataset.mp4 |
87.66MB |
1. Business Case Getting acquainted with the dataset.srt |
10.79KB |
1. Business Case Getting acquainted with the dataset.vtt |
9.37KB |
1. Comparison Operators.mp4 |
10.18MB |
1. Comparison Operators.srt |
2.47KB |
1. Comparison Operators.vtt |
2.14KB |
1. Data Science and Business Buzzwords Why are there so many.mp4 |
81.41MB |
1. Data Science and Business Buzzwords Why are there so many.srt |
6.63KB |
1. Data Science and Business Buzzwords Why are there so many.vtt |
5.84KB |
1. Debunking Common Misconceptions.mp4 |
72.85MB |
1. Debunking Common Misconceptions.srt |
5.30KB |
1. Debunking Common Misconceptions.vtt |
4.69KB |
1. Defining a Function in Python.mp4 |
7.74MB |
1. Defining a Function in Python.srt |
2.53KB |
1. Defining a Function in Python.vtt |
2.20KB |
1. Finding the Job - What to Expect and What to Look for.mp4 |
54.38MB |
1. Finding the Job - What to Expect and What to Look for.srt |
4.50KB |
1. Finding the Job - What to Expect and What to Look for.vtt |
3.94KB |
1. For Loops.mp4 |
11.79MB |
1. For Loops.srt |
2.80KB |
1. For Loops.vtt |
2.44KB |
1. How to Install TensorFlow.mp4 |
14.56MB |
1. How to Install TensorFlow.srt |
3.22KB |
1. How to Install TensorFlow.vtt |
2.84KB |
1. Introduction.mp4 |
15.51MB |
1. Introduction.srt |
1.63KB |
1. Introduction.vtt |
1.44KB |
1. Introduction to Cluster Analysis.mp4 |
53.42MB |
1. Introduction to Cluster Analysis.srt |
4.80KB |
1. Introduction to Cluster Analysis.vtt |
4.21KB |
1. Introduction to Logistic Regression.mp4 |
27.07MB |
1. Introduction to Logistic Regression.srt |
1.62KB |
1. Introduction to Logistic Regression.vtt |
1.44KB |
1. Introduction to Neural Networks.mp4 |
42.92MB |
1. Introduction to Neural Networks.srt |
5.90KB |
1. Introduction to Neural Networks.vtt |
5.18KB |
1. Introduction to Programming.mp4 |
58.55MB |
1. Introduction to Programming.srt |
6.91KB |
1. Introduction to Programming.vtt |
6.08KB |
1. Introduction to Regression Analysis.mp4 |
17.32MB |
1. Introduction to Regression Analysis.srt |
2.21KB |
1. Introduction to Regression Analysis.vtt |
1.95KB |
1. K-Means Clustering.mp4 |
27.28MB |
1. K-Means Clustering.srt |
6.67KB |
1. K-Means Clustering.vtt |
5.76KB |
1. Lists.mp4 |
22.00MB |
1. Lists.srt |
4.99KB |
1. Lists.vtt |
4.30KB |
1. MNIST What is the MNIST Dataset.mp4 |
17.82MB |
1. MNIST What is the MNIST Dataset.srt |
3.50KB |
1. MNIST What is the MNIST Dataset.vtt |
3.07KB |
1. Multiple Linear Regression.mp4 |
21.53MB |
1. Multiple Linear Regression.srt |
3.35KB |
1. Multiple Linear Regression.vtt |
2.93KB |
1. Necessary Programming Languages and Software Used in Data Science.mp4 |
103.52MB |
1. Necessary Programming Languages and Software Used in Data Science.srt |
7.30KB |
1. Necessary Programming Languages and Software Used in Data Science.vtt |
6.42KB |
1. Object Oriented Programming.mp4 |
33.59MB |
1. Object Oriented Programming.srt |
6.10KB |
1. Object Oriented Programming.vtt |
5.34KB |
1. Population and Sample.mp4 |
58.11MB |
1. Population and Sample.srt |
5.47KB |
1. Population and Sample.vtt |
4.81KB |
1. Practical Example Descriptive Statistics.mp4 |
159.46MB |
1. Practical Example Descriptive Statistics.srt |
20.61KB |
1. Practical Example Descriptive Statistics.vtt |
17.85KB |
1. Practical Example Hypothesis Testing.mp4 |
69.48MB |
1. Practical Example Hypothesis Testing.srt |
8.49KB |
1. Practical Example Hypothesis Testing.vtt |
7.43KB |
1. Practical Example Inferential Statistics.mp4 |
102.67MB |
1. Practical Example Inferential Statistics.srt |
13.65KB |
1. Practical Example Inferential Statistics.vtt |
11.90KB |
1. Preprocessing Introduction.mp4 |
27.78MB |
1. Preprocessing Introduction.srt |
3.87KB |
1. Preprocessing Introduction.vtt |
3.39KB |
1. Stochastic Gradient Descent.mp4 |
28.68MB |
1. Stochastic Gradient Descent.srt |
4.82KB |
1. Stochastic Gradient Descent.vtt |
4.18KB |
1. Summary of What You Learned.mp4 |
39.76MB |
1. Summary of What You Learned.srt |
5.22KB |
1. Summary of What You Learned.vtt |
4.61KB |
1. Techniques for Working with Traditional Data.mp4 |
138.30MB |
1. Techniques for Working with Traditional Data.srt |
10.63KB |
1. Techniques for Working with Traditional Data.vtt |
9.30KB |
1. The IF Statement.mp4 |
13.63MB |
1. The IF Statement.srt |
3.60KB |
1. The IF Statement.vtt |
3.12KB |
1. The Linear Regression Model.mp4 |
57.37MB |
1. The Linear Regression Model.srt |
7.06KB |
1. The Linear Regression Model.vtt |
6.14KB |
1. The Null vs Alternative Hypothesis.mp4 |
92.12MB |
1. The Null vs Alternative Hypothesis.srt |
7.36KB |
1. The Null vs Alternative Hypothesis.vtt |
6.43KB |
1. The Reason behind these Disciplines.mp4 |
81.19MB |
1. The Reason behind these Disciplines.srt |
6.50KB |
1. The Reason behind these Disciplines.vtt |
5.69KB |
1. Types of Clustering.mp4 |
44.58MB |
1. Types of Clustering.srt |
4.66KB |
1. Types of Clustering.vtt |
4.12KB |
1. Types of Data.mp4 |
72.52MB |
1. Types of Data.srt |
5.96KB |
1. Types of Data.vtt |
5.25KB |
1. Using Arithmetic Operators in Python.mp4 |
18.92MB |
1. Using Arithmetic Operators in Python.srt |
4.12KB |
1. Using Arithmetic Operators in Python.vtt |
3.58KB |
1. Variables.mp4 |
26.61MB |
1. Variables.srt |
6.18KB |
1. Variables.vtt |
5.35KB |
1. What are Confidence Intervals.mp4 |
49.98MB |
1. What are Confidence Intervals.srt |
3.26KB |
1. What are Confidence Intervals.vtt |
2.86KB |
1. What is a Layer.mp4 |
12.50MB |
1. What is a Layer.srt |
2.39KB |
1. What is a Layer.vtt |
2.13KB |
1. What is a matrix.mp4 |
33.59MB |
1. What is a matrix.srt |
4.35KB |
1. What is a matrix.vtt |
3.80KB |
1. What is Initialization.mp4 |
21.76MB |
1. What is Initialization.srt |
3.51KB |
1. What is Initialization.vtt |
3.09KB |
1. What is Overfitting.mp4 |
31.08MB |
1. What is Overfitting.srt |
5.58KB |
1. What is Overfitting.vtt |
4.93KB |
1. What to Expect from this Part.mp4 |
31.10MB |
1. What to Expect from this Part.srt |
4.63KB |
1. What to Expect from this Part.vtt |
4.05KB |
10.1 2.5.The-Histogram-exercise.xlsx.xlsx |
15.50KB |
10.1 Addition and Subtraction of Matrices Python Notebook.html |
178B |
10.1 Indexing Elements - Resources.html |
134B |
10.1 Online p-value calculator.pdf.pdf |
1.22MB |
10.1 TensorFlow MNIST All Exercises.html |
144B |
10.2 2.5.The-Histogram-exercise-solution.xlsx.xlsx |
17.10KB |
10. A2 No Endogeneity.mp4 |
35.67MB |
10. A2 No Endogeneity.srt |
5.24KB |
10. A2 No Endogeneity.vtt |
4.58KB |
10. A Breakdown of our Data Science Infographic.html |
161B |
10. Addition and Subtraction of Matrices.mp4 |
32.62MB |
10. Addition and Subtraction of Matrices.srt |
4.05KB |
10. Addition and Subtraction of Matrices.vtt |
3.48KB |
10. Business Case Testing the Model.mp4 |
11.20MB |
10. Business Case Testing the Model.srt |
2.71KB |
10. Business Case Testing the Model.vtt |
2.36KB |
10. Histogram Exercise.html |
81B |
10. How is Clustering Useful.mp4 |
74.45MB |
10. How is Clustering Useful.srt |
6.40KB |
10. How is Clustering Useful.vtt |
5.65KB |
10. How to Interpret the Regression Table.mp4 |
44.64MB |
10. How to Interpret the Regression Table.srt |
6.31KB |
10. How to Interpret the Regression Table.vtt |
5.50KB |
10. Indexing Elements.mp4 |
5.94MB |
10. Indexing Elements.srt |
1.71KB |
10. Indexing Elements.vtt |
1.47KB |
10. Jupyter's Interface.html |
161B |
10. Margin of Error.html |
161B |
10. MNIST Exercises.html |
2.13KB |
10. p-value.mp4 |
55.87MB |
10. p-value.srt |
5.04KB |
10. p-value.vtt |
4.46KB |
10. Standard error.mp4 |
22.77MB |
10. Standard error.srt |
2.03KB |
10. Standard error.vtt |
1.76KB |
10. Techniques for Working with Traditional Methods.mp4 |
123.51MB |
10. Techniques for Working with Traditional Methods.srt |
11.08KB |
10. Techniques for Working with Traditional Methods.vtt |
9.66KB |
10. The Linear Model with Multiple Inputs.html |
161B |
10. Underfitting and Overfitting.mp4 |
22.29MB |
10. Underfitting and Overfitting.srt |
4.98KB |
10. Underfitting and Overfitting.vtt |
4.37KB |
11.10 TensorFlow MNIST '5. Activation Functions (Part 2)' Solution.html |
172B |
11.11 TensorFlow MNIST 'Around 98% Accuracy' Solution.html |
157B |
11.1 2.6. Cross table and scatter plot.xlsx.xlsx |
26.12KB |
11.1 3.13. Confidence intervals. Two means. Dependent samples_lesson.xlsx.xlsx |
10.47KB |
11.1 TensorFlow Business Case Homework.html |
134B |
11.1 TensorFlow MNIST 'Time' Solution.html |
162B |
11.1 Test dataset.html |
134B |
11.2 TensorFlow MNIST '1. Width' Solution.html |
150B |
11.3 TensorFlow MNIST '3. Width and Depth' Solution.html |
160B |
11.4 TensorFlow MNIST '2. Depth' Solution.html |
150B |
11.5 TensorFlow MNIST '8. Learning Rate (Part 1)' Solution.html |
165B |
11.6 TensorFlow MNIST '9. Learning Rate (Part 2)' Solution.html |
165B |
11.7 TensorFlow MNIST '7. Batch size (Part 2)' Solution.html |
162B |
11.8 TensorFlow MNIST '4. Activation Functions (Part 1)' Solution.html |
172B |
11.9 TensorFlow MNIST '6. Batch size (Part 1)' Solution.html |
162B |
11. A2 No Endogeneity.html |
161B |
11. Addition and Subtraction of Matrices.html |
161B |
11. Business Case A Comment on the Homework.mp4 |
36.38MB |
11. Business Case A Comment on the Homework.srt |
5.30KB |
11. Business Case A Comment on the Homework.vtt |
4.65KB |
11. Confidence intervals. Two means. Dependent samples.mp4 |
70.47MB |
11. Confidence intervals. Two means. Dependent samples.srt |
8.04KB |
11. Confidence intervals. Two means. Dependent samples.vtt |
7.10KB |
11. Cross Table and Scatter Plot.mp4 |
39.81MB |
11. Cross Table and Scatter Plot.srt |
6.69KB |
11. Cross Table and Scatter Plot.vtt |
5.87KB |
11. Decomposition of Variability.mp4 |
49.66MB |
11. Decomposition of Variability.srt |
4.17KB |
11. Decomposition of Variability.vtt |
3.67KB |
11. Estimators and Estimates.mp4 |
47.83MB |
11. Estimators and Estimates.srt |
3.72KB |
11. Estimators and Estimates.vtt |
3.27KB |
11. Indexing Elements.html |
161B |
11. MNIST Solutions.html |
2.19KB |
11. p-value.html |
161B |
11. Techniques for Working with Traditional Methods.html |
161B |
11. Testing the Model.mp4 |
32.27MB |
11. Testing the Model.srt |
6.55KB |
11. Testing the Model.vtt |
5.70KB |
11. The Linear model with Multiple Inputs and Multiple Outputs.mp4 |
38.31MB |
11. The Linear model with Multiple Inputs and Multiple Outputs.srt |
5.47KB |
11. The Linear model with Multiple Inputs and Multiple Outputs.vtt |
4.79KB |
12.1 2.6. Cross table and scatter plot_exercise_solution.xlsx.xlsx |
40.44KB |
12.1 3.13. Confidence intervals. Two means. Dependent samples_exercise_solution.xlsx.xlsx |
14.24KB |
12.1 4.6.Test-for-the-mean.Population-variance-unknown-lesson.xlsx.xlsx |
14.54KB |
12.1 Errors when Adding Matrices Python Notebook.html |
220B |
12.1 Structure Your Code with Indentation - Resources.html |
134B |
12.1 TensorFlow Business Case Homework.html |
134B |
12.2 2.6. Cross table and scatter plot_exercise.xlsx.xlsx |
16.28KB |
12.2 3.13. Confidence intervals. Two means. Dependent samples_exercise.xlsx.xlsx |
13.74KB |
12. A3 Normality and Homoscedasticity.mp4 |
42.70MB |
12. A3 Normality and Homoscedasticity.srt |
6.67KB |
12. A3 Normality and Homoscedasticity.vtt |
5.81KB |
12. Business Case Final Exercise.html |
439B |
12. Confidence intervals. Two means. Dependent samples Exercise.html |
81B |
12. Cross Tables and Scatter Plots Exercise.html |
81B |
12. Decomposition of Variability.html |
161B |
12. Errors when Adding Matrices.mp4 |
11.18MB |
12. Errors when Adding Matrices.srt |
2.58KB |
12. Errors when Adding Matrices.vtt |
2.27KB |
12. Estimators and Estimates.html |
161B |
12. Real Life Examples of Traditional Methods.mp4 |
42.78MB |
12. Real Life Examples of Traditional Methods.srt |
3.59KB |
12. Real Life Examples of Traditional Methods.vtt |
3.14KB |
12. Structuring with Indentation.mp4 |
6.81MB |
12. Structuring with Indentation.srt |
2.27KB |
12. Structuring with Indentation.vtt |
1.96KB |
12. Test for the Mean. Population Variance Unknown.mp4 |
40.21MB |
12. Test for the Mean. Population Variance Unknown.srt |
5.90KB |
12. Test for the Mean. Population Variance Unknown.vtt |
5.18KB |
12. The Linear model with Multiple Inputs and Multiple Outputs.html |
161B |
13.1 2.7. Mean, median and mode_lesson.xlsx.xlsx |
10.49KB |
13.1 3.14. Confidence intervals. Two means. Independent samples (Part 1)_lesson.xlsx.xlsx |
9.83KB |
13.1 4.6.Test-for-the-mean.Population-variance-unknown-exercise-solution.xlsx.xlsx |
11.85KB |
13.1 Transpose of a Matrix Python Notebook.html |
167B |
13.2 4.6.Test-for-the-mean.Population-variance-unknown-exercise.xlsx.xlsx |
11.34KB |
13. A4 No Autocorrelation.mp4 |
31.52MB |
13. A4 No Autocorrelation.srt |
4.91KB |
13. A4 No Autocorrelation.vtt |
4.27KB |
13. Confidence intervals. Two means. Independent samples (Part 1).mp4 |
28.75MB |
13. Confidence intervals. Two means. Independent samples (Part 1).srt |
6.07KB |
13. Confidence intervals. Two means. Independent samples (Part 1).vtt |
5.33KB |
13. Graphical Representation of Simple Neural Networks.mp4 |
22.64MB |
13. Graphical Representation of Simple Neural Networks.srt |
2.69KB |
13. Graphical Representation of Simple Neural Networks.vtt |
2.34KB |
13. Machine Learning (ML) Techniques.mp4 |
99.32MB |
13. Machine Learning (ML) Techniques.srt |
8.74KB |
13. Machine Learning (ML) Techniques.vtt |
7.67KB |
13. Mean, median and mode.mp4 |
37.07MB |
13. Mean, median and mode.srt |
5.73KB |
13. Mean, median and mode.vtt |
5.00KB |
13. Structuring with Indentation.html |
161B |
13. Test for the Mean. Population Variance Unknown Exercise.html |
81B |
13. Transpose of a Matrix.mp4 |
38.07MB |
13. Transpose of a Matrix.srt |
5.37KB |
13. Transpose of a Matrix.vtt |
4.69KB |
13. What is the OLS.mp4 |
28.31MB |
13. What is the OLS.srt |
3.82KB |
13. What is the OLS.vtt |
3.33KB |
14.1 2.7. Mean, median and mode_exercise_solution.xlsx.xlsx |
11.35KB |
14.1 3.14. Confidence intervals. Two means. Independent samples (Part 1)_exercise_solution.xlsx.xlsx |
10.12KB |
14.1 4.7. Test for the mean. Dependent samples_lesson.xlsx.xlsx |
9.79KB |
14.1 Dot Product Python Notebook.html |
154B |
14.2 2.7. Mean, median and mode_exercise.xlsx.xlsx |
10.87KB |
14.2 3.14. Confidence intervals. Two means. Independent samples (Part 1)_exercise.xlsx.xlsx |
9.83KB |
14. A4 No autocorrelation.html |
161B |
14. Confidence intervals. Two means. Independent samples (Part 1) Exercise.html |
81B |
14. Dot Product.mp4 |
24.00MB |
14. Dot Product.srt |
4.27KB |
14. Dot Product.vtt |
3.68KB |
14. Graphical Representation of Simple Neural Networks.html |
161B |
14. Machine Learning (ML) Techniques.html |
161B |
14. Mean, Median and Mode Exercise.html |
81B |
14. R-Squared.mp4 |
41.03MB |
14. R-Squared.srt |
6.58KB |
14. R-Squared.vtt |
5.79KB |
14. Test for the Mean. Dependent Samples.mp4 |
50.39MB |
14. Test for the Mean. Dependent Samples.srt |
6.70KB |
14. Test for the Mean. Dependent Samples.vtt |
5.86KB |
15.1 2.8. Skewness_lesson.xlsx.xlsx |
34.63KB |
15.1 3.15. Confidence intervals. Two means. Independent samples (Part 2)_lesson.xlsx.xlsx |
9.52KB |
15.1 4.7. Test for the mean. Dependent samples_exercise.xlsx.xlsx |
12.80KB |
15.1 Dot Product of Matrices Python Notebook.html |
171B |
15.2 4.7. Test for the mean. Dependent samples_exercise_solution.xlsx.xlsx |
14.40KB |
15. A5 No Multicollinearity.mp4 |
28.71MB |
15. A5 No Multicollinearity.srt |
4.62KB |
15. A5 No Multicollinearity.vtt |
4.04KB |
15. Confidence intervals. Two means. Independent samples (Part 2).mp4 |
26.82MB |
15. Confidence intervals. Two means. Independent samples (Part 2).srt |
4.51KB |
15. Confidence intervals. Two means. Independent samples (Part 2).vtt |
3.98KB |
15. Dot Product of Matrices.mp4 |
49.43MB |
15. Dot Product of Matrices.srt |
9.52KB |
15. Dot Product of Matrices.vtt |
8.22KB |
15. R-Squared.html |
161B |
15. Skewness.mp4 |
19.41MB |
15. Skewness.srt |
3.65KB |
15. Skewness.vtt |
3.20KB |
15. Test for the Mean. Dependent Samples Exercise.html |
81B |
15. Types of Machine Learning.mp4 |
125.15MB |
15. Types of Machine Learning.srt |
10.52KB |
15. Types of Machine Learning.vtt |
9.23KB |
15. What is the Objective Function.mp4 |
17.91MB |
15. What is the Objective Function.srt |
2.12KB |
15. What is the Objective Function.vtt |
1.87KB |
16.1 2.8. Skewness_exercise.xlsx.xlsx |
9.49KB |
16.1 3.15. Confidence intervals. Two means. Independent samples (Part 2)_exercise_solution.xlsx.xlsx |
9.79KB |
16.1 4.8. Test for the mean. Independent samples (Part 1)_lesson.xlsx.xlsx |
9.63KB |
16.2 2.8. Skewness_exercise_solution.xlsx.xlsx |
19.78KB |
16.2 3.15. Confidence intervals. Two means. Independent samples (Part 2)_exercise.xlsx.xlsx |
9.17KB |
16. A5 No Multicollinearity.html |
161B |
16. Confidence intervals. Two means. Independent samples (Part 2) Exercise.html |
81B |
16. Skewness Exercise.html |
81B |
16. Test for the mean. Independent samples (Part 1).mp4 |
29.96MB |
16. Test for the mean. Independent samples (Part 1).srt |
5.51KB |
16. Test for the mean. Independent samples (Part 1).vtt |
4.80KB |
16. Types of Machine Learning.html |
161B |
16. What is the Objective Function.html |
161B |
16. Why is Linear Algebra Useful.mp4 |
144.34MB |
16. Why is Linear Algebra Useful.srt |
11.79KB |
16. Why is Linear Algebra Useful.vtt |
10.31KB |
17.1 2.9. Variance_lesson.xlsx.xlsx |
10.08KB |
17.1 4.9. Test for the mean. Independent samples (Part 2)_lesson.xlsx.xlsx |
9.31KB |
17.1 Dummies - Lecture.html |
134B |
17. Common Objective Functions L2-norm Loss.mp4 |
23.28MB |
17. Common Objective Functions L2-norm Loss.srt |
2.77KB |
17. Common Objective Functions L2-norm Loss.vtt |
2.44KB |
17. Confidence intervals. Two means. Independent samples (Part 3).mp4 |
19.93MB |
17. Confidence intervals. Two means. Independent samples (Part 3).srt |
1.96KB |
17. Confidence intervals. Two means. Independent samples (Part 3).vtt |
1.72KB |
17. Dealing with Categorical Data - Dummy Variables.mp4 |
55.66MB |
17. Dealing with Categorical Data - Dummy Variables.srt |
8.15KB |
17. Dealing with Categorical Data - Dummy Variables.vtt |
7.11KB |
17. Real Life Examples of Machine Learning (ML).mp4 |
36.81MB |
17. Real Life Examples of Machine Learning (ML).srt |
2.91KB |
17. Real Life Examples of Machine Learning (ML).vtt |
2.57KB |
17. Test for the mean. Independent samples (Part 2).mp4 |
36.37MB |
17. Test for the mean. Independent samples (Part 2).srt |
5.44KB |
17. Test for the mean. Independent samples (Part 2).vtt |
4.72KB |
17. Variance.mp4 |
50.95MB |
17. Variance.srt |
7.54KB |
17. Variance.vtt |
6.64KB |
18.1 2.9. Variance_exercise.xlsx.xlsx |
10.83KB |
18.1 4.9. Test for the mean. Independent samples (Part 2)_exercise.xlsx.xlsx |
9.45KB |
18.1 Dummy variables Exercise.html |
134B |
18.2 2.9. Variance_exercise_solution.xlsx.xlsx |
11.05KB |
18.2 4.9. Test for the mean. Independent samples (Part 2)_exercise_solution.xlsx.xlsx |
10.24KB |
18. Common Objective Functions L2-norm Loss.html |
161B |
18. Dealing with Categorical Data - Dummy Variables.html |
76B |
18. Real Life Examples of Machine Learning (ML).html |
161B |
18. Test for the mean. Independent samples (Part 2) Exercise.html |
81B |
18. Variance Exercise.html |
522B |
19.1 2.10. Standard deviation and coefficient of variation_lesson.xlsx.xlsx |
10.97KB |
19.1 Making predictions - Lecture.html |
134B |
19. Common Objective Functions Cross-Entropy Loss.mp4 |
37.24MB |
19. Common Objective Functions Cross-Entropy Loss.srt |
5.26KB |
19. Common Objective Functions Cross-Entropy Loss.vtt |
4.57KB |
19. Making Predictions with the Linear Regression.mp4 |
24.70MB |
19. Making Predictions with the Linear Regression.srt |
4.45KB |
19. Making Predictions with the Linear Regression.vtt |
3.87KB |
19. Standard Deviation and Coefficient of Variation.mp4 |
45.13MB |
19. Standard Deviation and Coefficient of Variation.srt |
6.60KB |
19. Standard Deviation and Coefficient of Variation.vtt |
5.75KB |
2.1 2.13. Practical-example.Descriptive-statistics-exercise-solution.xlsx.xlsx |
146.22KB |
2.1 3.17. Practical example. Confidence intervals_exercise.xlsx.xlsx |
1.73MB |
2.1 4.10. Hypothesis testing section_practical example_exercise.xlsx.xlsx |
43.38KB |
2.1 Basic NN Example (Part 2).html |
136B |
2.1 Country clusters.html |
134B |
2.1 Course notes_inferential statistics.pdf.pdf |
382.32KB |
2.1 Course Notes - Section 6.pdf.pdf |
936.42KB |
2.1 Creating a Function with a Parameter - Resources.html |
134B |
2.1 Multiple linear regression - Lecture.html |
134B |
2.1 Simple logistic regression example.html |
134B |
2.2 2.13.Practical-example.Descriptive-statistics-exercise.xlsx.xlsx |
120.24KB |
2.2 3.17.Practical-example.Confidence-intervals-exercise-solution.xlsx.xlsx |
1.74MB |
2.2 3.2. What is a distribution_lesson.xlsx.xlsx |
19.46KB |
2.2 4.10.Hypothesis-testing-section-practical-example-exercise-solution.xlsx.xlsx |
44.04KB |
2. Adjusted R-Squared.mp4 |
54.83MB |
2. Adjusted R-Squared.srt |
7.53KB |
2. Adjusted R-Squared.vtt |
6.57KB |
2. A Note on Installation of Packages in Anaconda.html |
626B |
2. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.html |
161B |
2. A Simple Example in Python.mp4 |
34.70MB |
2. A Simple Example in Python.srt |
5.80KB |
2. A Simple Example in Python.vtt |
5.05KB |
2. A Simple Example of Clustering.mp4 |
51.82MB |
2. A Simple Example of Clustering.srt |
9.59KB |
2. A Simple Example of Clustering.vtt |
8.28KB |
2. Basic NN Example (Part 2).mp4 |
34.94MB |
2. Basic NN Example (Part 2).srt |
6.79KB |
2. Basic NN Example (Part 2).vtt |
5.88KB |
2. Business Case Outlining the Solution.mp4 |
12.22MB |
2. Business Case Outlining the Solution.srt |
2.52KB |
2. Business Case Outlining the Solution.vtt |
2.19KB |
2. Comparison Operators.html |
161B |
2. Data Science and Business Buzzwords Why are there so many.html |
161B |
2. Debunking Common Misconceptions.html |
161B |
2. Dendrogram.mp4 |
29.06MB |
2. Dendrogram.srt |
7.36KB |
2. Dendrogram.vtt |
6.41KB |
2. Finding the Job - What to Expect and What to Look for.html |
161B |
2. For Loops.html |
161B |
2. Further Reading on Null and Alternative Hypothesis.html |
2.18KB |
2. How to Create a Function with a Parameter.mp4 |
23.87MB |
2. How to Create a Function with a Parameter.srt |
4.35KB |
2. How to Create a Function with a Parameter.vtt |
3.78KB |
2. Introduction to Neural Networks.html |
161B |
2. Introduction to Programming.html |
161B |
2. Introduction to Regression Analysis.html |
161B |
2. Lists.html |
161B |
2. MNIST How to Tackle the MNIST.mp4 |
22.59MB |
2. MNIST How to Tackle the MNIST.srt |
3.62KB |
2. MNIST How to Tackle the MNIST.vtt |
3.17KB |
2. Necessary Programming Languages and Software Used in Data Science.html |
161B |
2. Object Oriented Programming.html |
161B |
2. Population and Sample.html |
161B |
2. Practical Example Descriptive Statistics Exercise.html |
81B |
2. Practical Example Hypothesis Testing Exercise.html |
81B |
2. Practical Example Inferential Statistics Exercise.html |
81B |
2. Problems with Gradient Descent.mp4 |
11.02MB |
2. Problems with Gradient Descent.srt |
2.83KB |
2. Problems with Gradient Descent.vtt |
2.50KB |
2. Some Examples of Clusters.mp4 |
71.54MB |
2. Some Examples of Clusters.srt |
6.24KB |
2. Some Examples of Clusters.vtt |
5.43KB |
2. Techniques for Working with Traditional Data.html |
161B |
2. The IF Statement.html |
161B |
2. The Linear Regression Model.html |
161B |
2. The Reason behind these Disciplines.html |
161B |
2. Types of Basic Preprocessing.mp4 |
11.84MB |
2. Types of Basic Preprocessing.srt |
1.64KB |
2. Types of Basic Preprocessing.vtt |
1.46KB |
2. Types of Data.html |
161B |
2. Types of Simple Initializations.mp4 |
14.31MB |
2. Types of Simple Initializations.srt |
3.68KB |
2. Types of Simple Initializations.vtt |
3.23KB |
2. Underfitting and Overfitting for Classification.mp4 |
25.07MB |
2. Underfitting and Overfitting for Classification.srt |
2.63KB |
2. Underfitting and Overfitting for Classification.vtt |
2.31KB |
2. Using Arithmetic Operators in Python.html |
161B |
2. Variables.html |
161B |
2. What's Further out there in terms of Machine Learning.mp4 |
20.13MB |
2. What's Further out there in terms of Machine Learning.srt |
2.55KB |
2. What's Further out there in terms of Machine Learning.vtt |
2.27KB |
2. What are Confidence Intervals.html |
161B |
2. What Does the Course Cover.mp4 |
62.25MB |
2. What Does the Course Cover.srt |
5.08KB |
2. What Does the Course Cover.vtt |
4.49KB |
2. What is a Deep Net.mp4 |
29.53MB |
2. What is a Deep Net.srt |
3.25KB |
2. What is a Deep Net.vtt |
2.84KB |
2. What is a Distribution.mp4 |
61.59MB |
2. What is a Distribution.srt |
5.86KB |
2. What is a Distribution.vtt |
5.07KB |
2. What is a Matrix.html |
161B |
2. What is Machine Learning.html |
161B |
20.1 2.10. Standard deviation and coefficient of variation_exercise_solution.xlsx.xlsx |
12.37KB |
20.2 2.10. Standard deviation and coefficient of variation_exercise.xlsx.xlsx |
11.30KB |
20. Common Objective Functions Cross-Entropy Loss.html |
161B |
20. Standard Deviation and Coefficient of Variation Exercise.html |
81B |
21.1 2.11. Covariance_lesson.xlsx.xlsx |
24.92KB |
21.1 GD-function-example.xlsx.xlsx |
42.18KB |
21. Covariance.mp4 |
27.48MB |
21. Covariance.srt |
4.92KB |
21. Covariance.vtt |
4.30KB |
21. Optimization Algorithm 1-Parameter Gradient Descent.mp4 |
55.62MB |
21. Optimization Algorithm 1-Parameter Gradient Descent.srt |
8.47KB |
21. Optimization Algorithm 1-Parameter Gradient Descent.vtt |
7.43KB |
22.1 2.11. Covariance_exercise.xlsx.xlsx |
20.23KB |
22.2 2.11. Covariance_exercise_solution.xlsx.xlsx |
29.51KB |
22. Covariance Exercise.html |
81B |
22. Optimization Algorithm 1-Parameter Gradient Descent.html |
161B |
23. Correlation Coefficient.mp4 |
29.57MB |
23. Correlation Coefficient.srt |
4.72KB |
23. Correlation Coefficient.vtt |
4.15KB |
23. Optimization Algorithm n-Parameter Gradient Descent.mp4 |
39.42MB |
23. Optimization Algorithm n-Parameter Gradient Descent.srt |
7.53KB |
23. Optimization Algorithm n-Parameter Gradient Descent.vtt |
6.62KB |
24.1 2.12. Correlation_exercise.xlsx.xlsx |
29.30KB |
24.2 2.12. Correlation_exercise_solution.xlsx.xlsx |
29.48KB |
24. Correlation Coefficient Exercise.html |
81B |
24. Optimization Algorithm n-Parameter Gradient Descent.html |
161B |
3.1 3.9. Population variance known, z-score_lesson.xlsx.xlsx |
11.21KB |
3.1 Add an Else Statement - Resources.html |
134B |
3.1 Another Way to Define a Function - Resources.html |
134B |
3.1 Basic NN Example (Part 3).html |
136B |
3.1 Clustering categorical data.html |
134B |
3.1 Course Notes - Section 2.pdf.pdf |
927.67KB |
3.1 Heatmaps.html |
134B |
3.1 Help Yourself with Methods - Resources.html |
134B |
3.1 Logical and Identity Operators - Resources.html |
134B |
3.1 Numbers and Boolean Values - Resources.html |
134B |
3.1 TensorFlow MNIST Part 1 with Comments.html |
159B |
3.1 The Double Equality Sign - Resources.html |
134B |
3.1 While Loops and Incrementing - Resources.html |
134B |
3.2 3.9. The z-table.xlsx.xlsx |
18.48KB |
3. Adjusted R-Squared.html |
161B |
3. An overview of CNNs.mp4 |
58.79MB |
3. An overview of CNNs.srt |
6.44KB |
3. An overview of CNNs.vtt |
5.66KB |
3. Basic NN Example (Part 3).mp4 |
24.40MB |
3. Basic NN Example (Part 3).srt |
4.46KB |
3. Basic NN Example (Part 3).vtt |
3.88KB |
3. Clustering Categorical Data.mp4 |
21.24MB |
3. Clustering Categorical Data.srt |
3.24KB |
3. Clustering Categorical Data.vtt |
2.81KB |
3. Confidence Intervals; Population Variance Known; z-score.mp4 |
78.20MB |
3. Confidence Intervals; Population Variance Known; z-score.srt |
9.80KB |
3. Confidence Intervals; Population Variance Known; z-score.vtt |
8.65KB |
3. Correlation vs Regression.mp4 |
14.73MB |
3. Correlation vs Regression.srt |
2.10KB |
3. Correlation vs Regression.vtt |
1.82KB |
3. Defining a Function in Python - Part II.mp4 |
14.78MB |
3. Defining a Function in Python - Part II.srt |
3.13KB |
3. Defining a Function in Python - Part II.vtt |
2.70KB |
3. Difference between Classification and Clustering.mp4 |
36.16MB |
3. Difference between Classification and Clustering.srt |
3.28KB |
3. Difference between Classification and Clustering.vtt |
2.89KB |
3. Digging into a Deep Net.mp4 |
59.36MB |
3. Digging into a Deep Net.srt |
6.70KB |
3. Digging into a Deep Net.vtt |
5.84KB |
3. Heatmaps.mp4 |
29.62MB |
3. Heatmaps.srt |
6.35KB |
3. Heatmaps.vtt |
5.47KB |
3. Levels of Measurement.mp4 |
54.39MB |
3. Levels of Measurement.srt |
4.55KB |
3. Levels of Measurement.vtt |
4.03KB |
3. Logical and Identity Operators.mp4 |
30.05MB |
3. Logical and Identity Operators.srt |
5.78KB |
3. Logical and Identity Operators.vtt |
4.99KB |
3. Logistic vs Logit Function.mp4 |
86.49MB |
3. Logistic vs Logit Function.srt |
4.88KB |
3. Logistic vs Logit Function.vtt |
4.27KB |
3. MNIST Relevant Packages.mp4 |
18.91MB |
3. MNIST Relevant Packages.srt |
2.12KB |
3. MNIST Relevant Packages.vtt |
1.89KB |
3. Modules and Packages.mp4 |
8.50MB |
3. Modules and Packages.srt |
1.26KB |
3. Modules and Packages.vtt |
1.13KB |
3. Momentum.mp4 |
16.44MB |
3. Momentum.srt |
3.45KB |
3. Momentum.vtt |
3.04KB |
3. Numbers and Boolean Values in Python.mp4 |
17.07MB |
3. Numbers and Boolean Values in Python.srt |
3.69KB |
3. Numbers and Boolean Values in Python.vtt |
3.17KB |
3. Real Life Examples of Traditional Data.mp4 |
29.94MB |
3. Real Life Examples of Traditional Data.srt |
2.25KB |
3. Real Life Examples of Traditional Data.vtt |
1.97KB |
3. Scalars and Vectors.mp4 |
33.85MB |
3. Scalars and Vectors.srt |
3.78KB |
3. Scalars and Vectors.vtt |
3.30KB |
3. Standardization.mp4 |
50.98MB |
3. Standardization.srt |
5.98KB |
3. Standardization.vtt |
5.29KB |
3. State-of-the-Art Method - (Xavier) Glorot Initialization.mp4 |
17.14MB |
3. State-of-the-Art Method - (Xavier) Glorot Initialization.srt |
3.71KB |
3. State-of-the-Art Method - (Xavier) Glorot Initialization.vtt |
3.24KB |
3. TensorFlow Outline and Logic.mp4 |
47.69MB |
3. TensorFlow Outline and Logic.srt |
5.21KB |
3. TensorFlow Outline and Logic.vtt |
4.59KB |
3. The Double Equality Sign.mp4 |
5.99MB |
3. The Double Equality Sign.srt |
1.83KB |
3. The Double Equality Sign.vtt |
1.59KB |
3. The ELSE Statement.mp4 |
13.58MB |
3. The ELSE Statement.srt |
2.78KB |
3. The ELSE Statement.vtt |
2.45KB |
3. The Importance of Working with a Balanced Dataset.mp4 |
39.41MB |
3. The Importance of Working with a Balanced Dataset.srt |
4.48KB |
3. The Importance of Working with a Balanced Dataset.vtt |
3.91KB |
3. The Null vs Alternative Hypothesis.html |
161B |
3. Training the Model.mp4 |
28.71MB |
3. Training the Model.srt |
4.28KB |
3. Training the Model.vtt |
3.79KB |
3. Using Methods.mp4 |
21.95MB |
3. Using Methods.srt |
3.96KB |
3. Using Methods.vtt |
3.47KB |
3. What is a Distribution.html |
161B |
3. What is the difference between Analysis and Analytics.mp4 |
53.56MB |
3. What is the difference between Analysis and Analytics.srt |
5.08KB |
3. What is the difference between Analysis and Analytics.vtt |
4.42KB |
3. What is Validation.mp4 |
32.71MB |
3. What is Validation.srt |
4.90KB |
3. What is Validation.vtt |
4.27KB |
3. While Loops and Incrementing.mp4 |
15.44MB |
3. While Loops and Incrementing.srt |
2.77KB |
3. While Loops and Incrementing.vtt |
2.42KB |
3. Why Python.mp4 |
75.08MB |
3. Why Python.srt |
6.97KB |
3. Why Python.vtt |
6.11KB |
4.1 3.9. Population variance known, z-score_exercise.xlsx.xlsx |
10.83KB |
4.1 Audiobooks Preprocessing.html |
134B |
4.1 Basic NN Example (Part 4).html |
145B |
4.1 Building a logistic regression.html |
134B |
4.1 Course notes_hypothesis_testing.pdf.pdf |
658.60KB |
4.1 Create Lists with the range() Function - Resources.html |
134B |
4.1 Else if, for Brief - Elif - Resources.html |
134B |
4.1 Multiple Linear Regression Exercise.html |
134B |
4.1 Selecting the number of clusters.html |
134B |
4.1 Shortcuts-for-Jupyter.pdf.pdf |
619.17KB |
4.1 TensorFlow MNIST Part 2 with Comments.html |
159B |
4.1 Using a Function in Another Function - Resources.html |
134B |
4.2 3.9. The z-table.xlsx.xlsx |
18.48KB |
4.3 3.9. Population variance known, z-score_exercise_solution.xlsx.xlsx |
11.16KB |
4. Actual Introduction to TensorFlow.mp4 |
17.41MB |
4. Actual Introduction to TensorFlow.srt |
2.18KB |
4. Actual Introduction to TensorFlow.vtt |
1.92KB |
4. Basic NN Example (Part 4).mp4 |
61.14MB |
4. Basic NN Example (Part 4).srt |
10.87KB |
4. Basic NN Example (Part 4).vtt |
9.46KB |
4. Building a Logistic Regression.mp4 |
17.11MB |
4. Building a Logistic Regression.srt |
3.28KB |
4. Building a Logistic Regression.vtt |
2.89KB |
4. Business Case Preprocessing.mp4 |
103.41MB |
4. Business Case Preprocessing.srt |
13.46KB |
4. Business Case Preprocessing.vtt |
11.71KB |
4. Confidence Intervals; Population Variance Known; z-score; Exercise.html |
81B |
4. Correlation vs Regression.html |
161B |
4. DeepMind and Deep Learning.html |
1.05KB |
4. How to Choose the Number of Clusters.mp4 |
44.14MB |
4. How to Choose the Number of Clusters.srt |
7.37KB |
4. How to Choose the Number of Clusters.vtt |
6.43KB |
4. How to Use a Function within a Function.mp4 |
8.13MB |
4. How to Use a Function within a Function.srt |
2.04KB |
4. How to Use a Function within a Function.vtt |
1.78KB |
4. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.mp4 |
29.09MB |
4. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.srt |
5.94KB |
4. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.vtt |
5.22KB |
4. Levels of Measurement.html |
161B |
4. Lists with the range() Function.mp4 |
11.42MB |
4. Lists with the range() Function.srt |
2.79KB |
4. Lists with the range() Function.vtt |
2.45KB |
4. Logical and Identity Operators.html |
161B |
4. Math Prerequisites.mp4 |
14.55MB |
4. Math Prerequisites.srt |
4.06KB |
4. Math Prerequisites.vtt |
3.53KB |
4. MNIST Model Outline.mp4 |
56.38MB |
4. MNIST Model Outline.srt |
9.07KB |
4. MNIST Model Outline.vtt |
7.91KB |
4. Modules and Packages.html |
161B |
4. Multiple Linear Regression Exercise.html |
76B |
4. Non-Linearities and their Purpose.mp4 |
27.68MB |
4. Non-Linearities and their Purpose.srt |
3.89KB |
4. Non-Linearities and their Purpose.vtt |
3.38KB |
4. Numbers and Boolean Values in Python.html |
161B |
4. Preprocessing Categorical Data.mp4 |
18.60MB |
4. Preprocessing Categorical Data.srt |
2.77KB |
4. Preprocessing Categorical Data.vtt |
2.42KB |
4. Rejection Region and Significance Level.mp4 |
113.16MB |
4. Rejection Region and Significance Level.srt |
8.97KB |
4. Rejection Region and Significance Level.vtt |
7.83KB |
4. Scalars and Vectors.html |
161B |
4. Techniques for Working with Big Data.mp4 |
75.51MB |
4. Techniques for Working with Big Data.srt |
5.67KB |
4. Techniques for Working with Big Data.vtt |
4.96KB |
4. The Double Equality Sign.html |
161B |
4. The ELIF Statement.mp4 |
33.15MB |
4. The ELIF Statement.srt |
6.65KB |
4. The ELIF Statement.vtt |
5.75KB |
4. The Normal Distribution.mp4 |
49.85MB |
4. The Normal Distribution.srt |
4.90KB |
4. The Normal Distribution.vtt |
4.32KB |
4. Training, Validation, and Test Datasets.mp4 |
25.20MB |
4. Training, Validation, and Test Datasets.srt |
3.60KB |
4. Training, Validation, and Test Datasets.vtt |
3.11KB |
4. Training the Model.html |
161B |
4. Using Methods.html |
161B |
4. What is the difference between Analysis and Analytics.html |
161B |
4. Why Python.html |
161B |
5.10 Basic NN Example Exercise 6 Solution.html |
149B |
5.1 2.3.Categorical-variables.Visualization-techniques-lesson.xlsx.xlsx |
30.77KB |
5.1 365_DataScience_Diagram.pdf.pdf |
323.08KB |
5.1 A Note on Boolean Values - Resources.html |
134B |
5.1 Basic NN Example Exercise 5 Solution.html |
149B |
5.1 Basic NN Example with TensorFlow (Part 1).html |
154B |
5.1 Combining Conditional Statements and Functions - Resources.html |
134B |
5.1 List Slicing - Resources.html |
134B |
5.1 Preprocessing Exercise.html |
134B |
5.1 Reassign Values - Resources.html |
134B |
5.1 Strings - Resources.html |
134B |
5.1 TensorFlow MNIST Part 3 with Comments.html |
159B |
5.2 Basic NN Example (All Exercises).html |
143B |
5.3 Basic NN Example Exercise 4 Solution.html |
149B |
5.4 Basic NN Example Exercise 1 Solution.html |
149B |
5.5 Basic NN Example Exercise 2 Solution.html |
149B |
5.6 Basic NN Example Exercise 3d Solution.html |
154B |
5.7 Basic NN Example Exercise 3b Solution.html |
154B |
5.8 Basic NN Example Exercise 3c Solution.html |
154B |
5.9 Basic NN Example Exercise 3a Solution.html |
154B |
5. Activation Functions.mp4 |
25.10MB |
5. Activation Functions.srt |
5.26KB |
5. Activation Functions.vtt |
4.58KB |
5. An Invaluable Coding Tip.mp4 |
23.05MB |
5. An Invaluable Coding Tip.srt |
3.21KB |
5. An Invaluable Coding Tip.vtt |
2.78KB |
5. A Note on Boolean Values.mp4 |
11.25MB |
5. A Note on Boolean Values.srt |
2.92KB |
5. A Note on Boolean Values.vtt |
2.55KB |
5. An Overview of RNNs.mp4 |
25.27MB |
5. An Overview of RNNs.srt |
3.71KB |
5. An Overview of RNNs.vtt |
3.30KB |
5. Basic NN Example Exercises.html |
1.37KB |
5. Binary and One-Hot Encoding.mp4 |
28.95MB |
5. Binary and One-Hot Encoding.srt |
4.81KB |
5. Binary and One-Hot Encoding.vtt |
4.18KB |
5. Business Analytics, Data Analytics, and Data Science An Introduction.mp4 |
64.51MB |
5. Business Analytics, Data Analytics, and Data Science An Introduction.srt |
10.63KB |
5. Business Analytics, Data Analytics, and Data Science An Introduction.vtt |
9.26KB |
5. Business Case Preprocessing Exercise.html |
383B |
5. Categorical Variables - Visualization Techniques.mp4 |
38.46MB |
5. Categorical Variables - Visualization Techniques.srt |
6.43KB |
5. Categorical Variables - Visualization Techniques.vtt |
5.66KB |
5. Conditional Statements and Functions.mp4 |
15.69MB |
5. Conditional Statements and Functions.srt |
3.52KB |
5. Conditional Statements and Functions.vtt |
3.05KB |
5. Geometrical Representation of the Linear Regression Model.mp4 |
5.12MB |
5. Geometrical Representation of the Linear Regression Model.srt |
1.64KB |
5. Geometrical Representation of the Linear Regression Model.vtt |
1.45KB |
5. How to Reassign Values.mp4 |
4.00MB |
5. How to Reassign Values.srt |
1.30KB |
5. How to Reassign Values.vtt |
1.13KB |
5. Learning Rate Schedules Visualized.mp4 |
9.11MB |
5. Learning Rate Schedules Visualized.srt |
2.17KB |
5. Learning Rate Schedules Visualized.vtt |
1.90KB |
5. Linear Algebra and Geometry.mp4 |
49.79MB |
5. Linear Algebra and Geometry.srt |
4.10KB |
5. Linear Algebra and Geometry.vtt |
3.54KB |
5. List Slicing.mp4 |
30.77MB |
5. List Slicing.srt |
5.55KB |
5. List Slicing.vtt |
4.83KB |
5. Lists with the range() Function.html |
161B |
5. MNIST Loss and Optimization Algorithm.mp4 |
25.86MB |
5. MNIST Loss and Optimization Algorithm.srt |
3.54KB |
5. MNIST Loss and Optimization Algorithm.vtt |
3.09KB |
5. N-Fold Cross Validation.mp4 |
20.70MB |
5. N-Fold Cross Validation.srt |
4.18KB |
5. N-Fold Cross Validation.vtt |
3.67KB |
5. Pros and Cons of K-Means Clustering.mp4 |
37.71MB |
5. Pros and Cons of K-Means Clustering.srt |
4.62KB |
5. Pros and Cons of K-Means Clustering.vtt |
4.01KB |
5. Python Strings.mp4 |
30.76MB |
5. Python Strings.srt |
7.45KB |
5. Python Strings.vtt |
6.46KB |
5. Rejection Region and Significance Level.html |
161B |
5. Student's T Distribution.mp4 |
35.43MB |
5. Student's T Distribution.srt |
4.14KB |
5. Student's T Distribution.vtt |
3.68KB |
5. Techniques for Working with Big Data.html |
161B |
5. Test for Significance of the Model (F-Test).mp4 |
16.42MB |
5. Test for Significance of the Model (F-Test).srt |
2.56KB |
5. Test for Significance of the Model (F-Test).vtt |
2.23KB |
5. The Normal Distribution.html |
161B |
5. Types of File Formats, supporting Tensors.mp4 |
20.34MB |
5. Types of File Formats, supporting Tensors.srt |
3.45KB |
5. Types of File Formats, supporting Tensors.vtt |
3.00KB |
5. Types of Machine Learning.mp4 |
45.11MB |
5. Types of Machine Learning.srt |
5.24KB |
5. Types of Machine Learning.vtt |
4.62KB |
5. What is the Standard Library.mp4 |
18.04MB |
5. What is the Standard Library.srt |
3.57KB |
5. What is the Standard Library.vtt |
3.15KB |
5. Why Jupyter.mp4 |
44.31MB |
5. Why Jupyter.srt |
4.64KB |
5. Why Jupyter.vtt |
4.10KB |
6.1 2.3. Categorical variables. Visualization techniques_exercise_solution.xlsx.xlsx |
41.11KB |
6.1 3.4. Standard normal distribution_lesson.xlsx.xlsx |
10.38KB |
6.1 Basic NN Example with TensorFlow (Part 2).html |
154B |
6.1 Creating a Data Provider (Class).html |
134B |
6.1 Creating Functions Containing a Few Arguments - Resources.html |
134B |
6.1 TensorFlow MNIST Part 4 with Comments.html |
159B |
6.1 Tuples - Resources.html |
134B |
6.1 Use Conditional Statements and Loops Together - Resources.html |
134B |
6.2 2.3. Categorical variables. Visualization techniques_exercise.xlsx.xlsx |
15.24KB |
6. Activation Functions Softmax Activation.mp4 |
25.92MB |
6. Activation Functions Softmax Activation.srt |
4.46KB |
6. Activation Functions Softmax Activation.vtt |
3.89KB |
6. Adaptive Learning Rate Schedules ( AdaGrad and RMSprop ).mp4 |
26.35MB |
6. Adaptive Learning Rate Schedules ( AdaGrad and RMSprop ).srt |
5.21KB |
6. Adaptive Learning Rate Schedules ( AdaGrad and RMSprop ).vtt |
4.57KB |
6. A Note on Boolean Values.html |
161B |
6. An Overview of non-NN Approaches.mp4 |
44.77MB |
6. An Overview of non-NN Approaches.srt |
5.12KB |
6. An Overview of non-NN Approaches.vtt |
4.56KB |
6. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.mp4 |
38.49MB |
6. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.srt |
7.36KB |
6. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.vtt |
6.47KB |
6. Business Analytics, Data Analytics, and Data Science An Introduction.html |
161B |
6. Calculating the Accuracy of the Model.mp4 |
43.90MB |
6. Calculating the Accuracy of the Model.srt |
5.19KB |
6. Calculating the Accuracy of the Model.vtt |
4.51KB |
6. Categorical Variables Exercise.html |
81B |
6. Conditional Statements and Loops.mp4 |
16.09MB |
6. Conditional Statements and Loops.srt |
3.59KB |
6. Conditional Statements and Loops.vtt |
3.15KB |
6. Creating a Data Provider.mp4 |
76.34MB |
6. Creating a Data Provider.srt |
7.75KB |
6. Creating a Data Provider.vtt |
6.80KB |
6. Early Stopping or When to Stop Training.mp4 |
24.17MB |
6. Early Stopping or When to Stop Training.srt |
6.86KB |
6. Early Stopping or When to Stop Training.vtt |
6.01KB |
6. Functions Containing a Few Arguments.mp4 |
7.58MB |
6. Functions Containing a Few Arguments.srt |
1.31KB |
6. Functions Containing a Few Arguments.vtt |
1.13KB |
6. How to Reassign Values.html |
161B |
6. Linear Algebra and Geometry.html |
161B |
6. OLS Assumptions.mp4 |
21.85MB |
6. OLS Assumptions.srt |
3.04KB |
6. OLS Assumptions.vtt |
2.67KB |
6. Python Packages Installation.mp4 |
40.59MB |
6. Python Packages Installation.srt |
5.62KB |
6. Python Packages Installation.vtt |
4.89KB |
6. Python Strings.html |
161B |
6. Real Life Examples of Big Data.mp4 |
22.03MB |
6. Real Life Examples of Big Data.srt |
1.88KB |
6. Real Life Examples of Big Data.vtt |
1.64KB |
6. Student's T Distribution.html |
161B |
6. The Standard Normal Distribution.mp4 |
22.51MB |
6. The Standard Normal Distribution.srt |
3.94KB |
6. The Standard Normal Distribution.vtt |
3.45KB |
6. To Standardize or to not Standardize.mp4 |
30.11MB |
6. To Standardize or to not Standardize.srt |
5.89KB |
6. To Standardize or to not Standardize.vtt |
5.14KB |
6. Tuples.mp4 |
16.67MB |
6. Tuples.srt |
3.39KB |
6. Tuples.vtt |
2.96KB |
6. Type I Error and Type II Error.mp4 |
43.93MB |
6. Type I Error and Type II Error.srt |
5.67KB |
6. Type I Error and Type II Error.vtt |
4.90KB |
6. Types of Machine Learning.html |
161B |
6. Understanding Logistic Regression Tables.mp4 |
30.55MB |
6. Understanding Logistic Regression Tables.srt |
5.56KB |
6. Understanding Logistic Regression Tables.vtt |
4.84KB |
6. What is the Standard Library.html |
161B |
6. Why Jupyter.html |
161B |
7.1 2.4. Numerical variables. Frequency distribution table_lesson.xlsx.xlsx |
11.32KB |
7.1 3.11. Population variance unknown, t-score_lesson.xlsx.xlsx |
10.78KB |
7.1 3.4. Standard normal distribution_exercise.xlsx.xlsx |
11.84KB |
7.1 365_DataScience_Diagram.pdf.pdf |
323.08KB |
7.1 Add Comments - Resources.html |
134B |
7.1 All In - Conditional Statements, Functions, and Loops - Resources.html |
134B |
7.1 Arrays in Python Notebook.html |
181B |
7.1 Basic NN Example with TensorFlow (Part 3).html |
154B |
7.1 Dictionaries - Resources.html |
134B |
7.1 Notable Built-In Functions in Python - Resources.html |
134B |
7.1 Simple linear regression - Lecture.html |
134B |
7.1 TensorFlow Business Case Model Outline.html |
134B |
7.1 TensorFlow MNIST Part 5 with Comments.html |
159B |
7.2 3.11. The t-table.xlsx.xlsx |
15.85KB |
7.2 3.4. Standard normal distribution_exercise_solution.xlsx.xlsx |
23.73KB |
7.2 365_DataScience.png.png |
6.92MB |
7.2 Simple linear regression - Exercise.html |
134B |
7. Adam (Adaptive Moment Estimation).mp4 |
22.36MB |
7. Adam (Adaptive Moment Estimation).srt |
3.33KB |
7. Adam (Adaptive Moment Estimation).vtt |
2.92KB |
7. Add Comments.mp4 |
5.01MB |
7. Add Comments.srt |
1.71KB |
7. Add Comments.vtt |
1.49KB |
7. Arrays in Python - A Convenient Way To Represent Matrices.mp4 |
26.12MB |
7. Arrays in Python - A Convenient Way To Represent Matrices.srt |
5.94KB |
7. Arrays in Python - A Convenient Way To Represent Matrices.vtt |
5.14KB |
7. Backpropagation.mp4 |
34.95MB |
7. Backpropagation.srt |
4.47KB |
7. Backpropagation.vtt |
3.91KB |
7. Basic NN Example with TF Loss Function and Gradient Descent.mp4 |
32.51MB |
7. Basic NN Example with TF Loss Function and Gradient Descent.srt |
4.83KB |
7. Basic NN Example with TF Loss Function and Gradient Descent.vtt |
4.21KB |
7. Built-in Functions in Python.mp4 |
22.02MB |
7. Built-in Functions in Python.srt |
4.21KB |
7. Built-in Functions in Python.vtt |
3.68KB |
7. Business Case Model Outline.mp4 |
53.13MB |
7. Business Case Model Outline.srt |
6.94KB |
7. Business Case Model Outline.vtt |
6.07KB |
7. Business Intelligence (BI) Techniques.mp4 |
89.94MB |
7. Business Intelligence (BI) Techniques.srt |
8.63KB |
7. Business Intelligence (BI) Techniques.vtt |
7.57KB |
7. Conditional Statements, Functions, and Loops.mp4 |
9.48MB |
7. Conditional Statements, Functions, and Loops.srt |
2.41KB |
7. Conditional Statements, Functions, and Loops.vtt |
2.09KB |
7. Confidence Intervals; Population Variance Unknown; t-score.mp4 |
32.21MB |
7. Confidence Intervals; Population Variance Unknown; t-score.srt |
5.71KB |
7. Confidence Intervals; Population Variance Unknown; t-score.vtt |
5.00KB |
7. Continuing with BI, ML, and AI.mp4 |
108.98MB |
7. Continuing with BI, ML, and AI.srt |
11.88KB |
7. Continuing with BI, ML, and AI.vtt |
10.43KB |
7. Dictionaries.mp4 |
25.04MB |
7. Dictionaries.srt |
4.21KB |
7. Dictionaries.vtt |
3.63KB |
7. First Regression in Python.mp4 |
44.57MB |
7. First Regression in Python.srt |
7.91KB |
7. First Regression in Python.vtt |
6.91KB |
7. Importing Modules in Python.mp4 |
19.93MB |
7. Importing Modules in Python.srt |
4.82KB |
7. Importing Modules in Python.vtt |
4.17KB |
7. Installing Python and Jupyter.mp4 |
54.41MB |
7. Installing Python and Jupyter.srt |
7.13KB |
7. Installing Python and Jupyter.vtt |
6.23KB |
7. MNIST Batching and Early Stopping.mp4 |
12.85MB |
7. MNIST Batching and Early Stopping.srt |
2.93KB |
7. MNIST Batching and Early Stopping.vtt |
2.56KB |
7. Numerical Variables - Frequency Distribution Table.mp4 |
25.98MB |
7. Numerical Variables - Frequency Distribution Table.srt |
4.36KB |
7. Numerical Variables - Frequency Distribution Table.vtt |
3.83KB |
7. OLS Assumptions.html |
161B |
7. Relationship between Clustering and Regression.mp4 |
9.93MB |
7. Relationship between Clustering and Regression.srt |
2.18KB |
7. Relationship between Clustering and Regression.vtt |
1.92KB |
7. The Linear Model (Linear Algebraic Version).mp4 |
28.44MB |
7. The Linear Model (Linear Algebraic Version).srt |
3.88KB |
7. The Linear Model (Linear Algebraic Version).vtt |
3.43KB |
7. The Standard Normal Distribution Exercise.html |
81B |
7. Type I Error and Type II Error.html |
161B |
7. What do the Odds Actually Mean.mp4 |
32.29MB |
7. What do the Odds Actually Mean.srt |
4.79KB |
7. What do the Odds Actually Mean.vtt |
4.18KB |
8.1 2.4. Numerical variables. Frequency distribution table_exercise_solution.xlsx.xlsx |
13.15KB |
8.1 3.11. Population variance unknown, t-score_exercise.xlsx.xlsx |
10.62KB |
8.1 4.4. Test for the mean. Population variance known_lesson.xlsx.xlsx |
10.96KB |
8.1 Basic NN Example with TensorFlow (Complete).html |
156B |
8.1 Binary predictors.html |
134B |
8.1 Iterating over Dictionaries - Resources.html |
134B |
8.1 Market segmentation example.html |
134B |
8.1 Simple Linear Regression Exercise.html |
134B |
8.1 TensorFlow Business Case Optimization.html |
134B |
8.1 TensorFlow MNIST Part 6 with Comments.html |
159B |
8.1 Tensors Notebook.html |
148B |
8.2 2.4. Numerical variables. Frequency distribution table_exercise.xlsx.xlsx |
11.75KB |
8.2 3.11. Population variance unknown, t-score_exercise_solution.xlsx.xlsx |
11.10KB |
8. A1 Linearity.mp4 |
12.61MB |
8. A1 Linearity.srt |
2.36KB |
8. A1 Linearity.vtt |
2.07KB |
8. Add Comments.html |
161B |
8. Backpropagation picture.mp4 |
19.51MB |
8. Backpropagation picture.srt |
3.98KB |
8. Backpropagation picture.vtt |
3.44KB |
8. Basic NN Example with TF Model Output.mp4 |
37.39MB |
8. Basic NN Example with TF Model Output.srt |
7.93KB |
8. Basic NN Example with TF Model Output.vtt |
6.87KB |
8. Binary Predictors in a Logistic Regression.mp4 |
38.43MB |
8. Binary Predictors in a Logistic Regression.srt |
5.42KB |
8. Binary Predictors in a Logistic Regression.vtt |
4.75KB |
8. Business Case Optimization.mp4 |
41.52MB |
8. Business Case Optimization.srt |
6.60KB |
8. Business Case Optimization.vtt |
5.76KB |
8. Business Intelligence (BI) Techniques.html |
161B |
8. Central Limit Theorem.mp4 |
62.88MB |
8. Central Limit Theorem.srt |
5.64KB |
8. Central Limit Theorem.vtt |
4.95KB |
8. Confidence Intervals; Population Variance Unknown; t-score; Exercise.html |
81B |
8. Continuing with BI, ML, and AI.html |
161B |
8. Dictionaries.html |
161B |
8. First Regression in Python Exercise.html |
76B |
8. How to Iterate over Dictionaries.mp4 |
16.98MB |
8. How to Iterate over Dictionaries.srt |
3.88KB |
8. How to Iterate over Dictionaries.vtt |
3.34KB |
8. Importing Modules in Python.html |
161B |
8. Market Segmentation with Cluster Analysis (Part 1).mp4 |
43.01MB |
8. Market Segmentation with Cluster Analysis (Part 1).srt |
7.53KB |
8. Market Segmentation with Cluster Analysis (Part 1).vtt |
6.53KB |
8. MNIST Learning.mp4 |
46.69MB |
8. MNIST Learning.srt |
10.20KB |
8. MNIST Learning.vtt |
8.89KB |
8. Numerical Variables Exercise.html |
81B |
8. Python Functions.html |
161B |
8. Test for the Mean. Population Variance Known.mp4 |
54.22MB |
8. Test for the Mean. Population Variance Known.srt |
8.15KB |
8. Test for the Mean. Population Variance Known.vtt |
7.12KB |
8. The Linear Model.html |
161B |
8. Understanding Jupyter's Interface - the Notebook Dashboard.mp4 |
13.79MB |
8. Understanding Jupyter's Interface - the Notebook Dashboard.srt |
3.74KB |
8. Understanding Jupyter's Interface - the Notebook Dashboard.vtt |
3.25KB |
8. What is a Tensor.mp4 |
22.53MB |
8. What is a Tensor.srt |
3.61KB |
8. What is a Tensor.vtt |
3.17KB |
9.1 2.5. The Histogram_lesson.xlsx.xlsx |
18.63KB |
9.1 365_DataScience.png.png |
6.93MB |
9.1 4.4. Test for the mean. Population variance known_exercise.xlsx.xlsx |
11.03KB |
9.1 Accuracy.html |
134B |
9.1 Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf.pdf |
182.36KB |
9.1 Basic NN Example with TensorFlow Exercise 2.4 Solution.html |
162B |
9.1 Line Continuation - Resources.html |
134B |
9.1 Market segmentation example (Part 2).html |
134B |
9.1 TensorFlow Business Case Interpretation.html |
134B |
9.1 TensorFlow MNIST Complete Code with Comments.html |
152B |
9.2 4.4. Test for the mean. Population variance known_exercise_solution.xlsx.xlsx |
11.22KB |
9.2 Basic NN Example with TensorFlow Exercise 2.1 Solution.html |
162B |
9.3 Basic NN Example with TensorFlow (All Exercises).html |
154B |
9.4 Basic NN Example with TensorFlow Exercise 3 Solution.html |
160B |
9.5 Basic NN Example with TensorFlow Exercise 2.2 Solution.html |
162B |
9.6 Basic NN Example with TensorFlow Exercise 4 Solution.html |
160B |
9.7 Basic NN Example with TensorFlow Exercise 1 Solution.html |
160B |
9.8 Basic NN Example with TensorFlow Exercise 2.3 Solution.html |
162B |
9. A1 Linearity.html |
161B |
9. A Breakdown of our Data Science Infographic.mp4 |
67.74MB |
9. A Breakdown of our Data Science Infographic.srt |
5.11KB |
9. A Breakdown of our Data Science Infographic.vtt |
4.45KB |
9. Backpropagation - A Peek into the Mathematics of Optimization.html |
539B |
9. Basic NN Example with TF Exercises.html |
1.59KB |
9. Business Case Interpretation.mp4 |
25.74MB |
9. Business Case Interpretation.srt |
2.94KB |
9. Business Case Interpretation.vtt |
2.60KB |
9. Calculating the Accuracy of the Model.mp4 |
32.85MB |
9. Calculating the Accuracy of the Model.srt |
4.13KB |
9. Calculating the Accuracy of the Model.vtt |
3.63KB |
9. Central Limit Theorem.html |
161B |
9. Margin of Error.mp4 |
59.09MB |
9. Margin of Error.srt |
6.21KB |
9. Margin of Error.vtt |
5.45KB |
9. Market Segmentation with Cluster Analysis (Part 2).mp4 |
56.11MB |
9. Market Segmentation with Cluster Analysis (Part 2).srt |
9.19KB |
9. Market Segmentation with Cluster Analysis (Part 2).vtt |
7.96KB |
9. MNIST Results and Testing.mp4 |
62.77MB |
9. MNIST Results and Testing.srt |
8.17KB |
9. MNIST Results and Testing.vtt |
7.15KB |
9. Prerequisites for Coding in the Jupyter Notebooks.mp4 |
30.58MB |
9. Prerequisites for Coding in the Jupyter Notebooks.srt |
7.79KB |
9. Prerequisites for Coding in the Jupyter Notebooks.vtt |
6.80KB |
9. Real Life Examples of Business Intelligence (BI).mp4 |
29.54MB |
9. Real Life Examples of Business Intelligence (BI).srt |
2.13KB |
9. Real Life Examples of Business Intelligence (BI).vtt |
1.89KB |
9. Test for the Mean. Population Variance Known Exercise.html |
81B |
9. The Histogram.mp4 |
13.78MB |
9. The Histogram.srt |
3.01KB |
9. The Histogram.vtt |
2.67KB |
9. The Linear Model with Multiple Inputs.mp4 |
25.11MB |
9. The Linear Model with Multiple Inputs.srt |
3.10KB |
9. The Linear Model with Multiple Inputs.vtt |
2.74KB |
9. Understanding Line Continuation.mp4 |
2.35MB |
9. Understanding Line Continuation.srt |
1.14KB |
9. Understanding Line Continuation.vtt |
1.00KB |
9. Using Seaborn for Graphs.mp4 |
12.24MB |
9. Using Seaborn for Graphs.srt |
1.48KB |
9. Using Seaborn for Graphs.vtt |
1.30KB |
9. What is a Tensor.html |
161B |