Torrent Info
Title [Tutorialsplanet.NET] Udemy - Machine Learning, Deep Learning and Bayesian Learning
Category
Size 5.54GB

Files List
Please note that this page does not hosts or makes available any of the listed filenames. You cannot download any of those files from here.
[Tutorialsplanet.NET].url 128B
[Tutorialsplanet.NET].url 128B
[Tutorialsplanet.NET].url 128B
[Tutorialsplanet.NET].url 128B
[Tutorialsplanet.NET].url 128B
001 Intro_en.vtt 865B
001 Intro_en.vtt 5.39KB
001 Intro_en.vtt 473B
001 Intro_en.vtt 3.18KB
001 Intro_en.vtt 1.19KB
001 Intro.mp4 2.89MB
001 Intro.mp4 10.37MB
001 Intro.mp4 632.60KB
001 Intro.mp4 5.97MB
001 Intro.mp4 2.52MB
001 Introduction_en.vtt 2.22KB
001 Introduction_en.vtt 1.23KB
001 Introduction_en.vtt 2.57KB
001 Introduction.mp4 41.80MB
001 Introduction.mp4 2.23MB
001 Introduction.mp4 25.31MB
001 Introduction and Terminology_en.vtt 8.34KB
001 Introduction and Terminology.mp4 18.13MB
001 Introduction to Transformers_en.vtt 1.63KB
001 Introduction to Transformers.mp4 3.41MB
001 Kaggle part 1_en.vtt 2.63KB
001 Kaggle part 1.mp4 6.75MB
001 Principal Component Analysis (PCA) theory_en.vtt 8.98KB
001 Principal Component Analysis (PCA) theory.mp4 20.54MB
001 Some advice on your journey_en.vtt 3.78KB
001 Some advice on your journey.mp4 13.56MB
001 Transfer Learning Introduction_en.vtt 1.99KB
001 Transfer Learning Introduction.mp4 4.46MB
001 Word2vec and Embeddings_en.vtt 8.33KB
001 Word2vec and Embeddings.mp4 43.96MB
001 Your reviews are important to me!.mp4 2.05MB
002 Basic Data Structures_en.vtt 6.41KB
002 Basic Data Structures.mp4 21.89MB
002 Bayesian Learning Distributions_en.vtt 10.45KB
002 Bayesian Learning Distributions.mp4 35.95MB
002 Coco Dataset + Augmentations for Segmentation with Torchvision_en.vtt 5.94KB
002 Coco Dataset + Augmentations for Segmentation with Torchvision.mp4 18.90MB
002 DL theory part 1_en.vtt 6.15KB
002 DL theory part 1.mp4 17.23MB
002 Fashion MNIST feed forward net for benchmarking_en.vtt 3.50KB
002 Fashion MNIST feed forward net for benchmarking.mp4 19.66MB
002 Fashion MNIST PCA_en.vtt 10.46KB
002 Fashion MNIST PCA.mp4 102.09MB
002 How to tackle this course_en.vtt 6.21KB
002 How to tackle this course.mp4 48.85MB
002 Kaggle + Word2Vec_en.vtt 10.54KB
002 Kaggle + Word2Vec.mp4 27.79MB
002 Kaggle part 2_en.vtt 3.27KB
002 Kaggle part 2.mp4 11.13MB
002 Kaggle problem description_en.vtt 2.79KB
002 Kaggle problem description.mp4 9.19MB
002 ----------- Numpy -------------.html 129B
002 Pytorch TensorDataset_en.vtt 5.01KB
002 Pytorch TensorDataset.mp4 12.40MB
002 Saving Models_en.vtt 3.12KB
002 Saving Models.mp4 7.56MB
002 Stop words and Term Frequency_en.vtt 4.94KB
002 Stop words and Term Frequency.mp4 10.70MB
002 The illustrated Transformer (blogpost by Jay Alammar)_en.vtt 8.95KB
002 The illustrated Transformer (blogpost by Jay Alammar).mp4 23.59MB
003 Bayes rule for population mean estimation_en.vtt 8.98KB
003 Bayes rule for population mean estimation.mp4 50.16MB
003 Dictionaries_en.vtt 3.80KB
003 Dictionaries.mp4 18.79MB
003 DL theory part 2_en.vtt 3.94KB
003 DL theory part 2.mp4 22.80MB
003 Encoder Transformer Models The Maths_en.vtt 5.59KB
003 Encoder Transformer Models The Maths.mp4 28.66MB
003 FastAPI intro_en.vtt 5.31KB
003 FastAPI intro.mp4 11.64MB
003 Gradient Descent_en.vtt 16.58KB
003 Gradient Descent.mp4 43.40MB
003 Installations and sign ups_en.vtt 4.75KB
003 Installations and sign ups.mp4 42.79MB
003 Keras Conv2D layer_en.vtt 8.57KB
003 Keras Conv2D layer.mp4 44.46MB
003 K-means_en.vtt 7.61KB
003 K-means.mp4 22.30MB
003 Pytorch Dataset and DataLoaders_en.vtt 5.73KB
003 Pytorch Dataset and DataLoaders.mp4 35.35MB
003 PyTorch datasets + Torchvision_en.vtt 4.19KB
003 PyTorch datasets + Torchvision.mp4 14.72MB
003 Term Frequency - Inverse Document Frequency (Tf - Idf) theory_en.vtt 3.04KB
003 Term Frequency - Inverse Document Frequency (Tf - Idf) theory.mp4 6.05MB
003 Theory part 1_en.vtt 6.74KB
003 Theory part 1.mp4 13.54MB
003 Unet Architecture overview_en.vtt 6.37KB
003 Unet Architecture overview.mp4 14.70MB
003 Word2Vec keras Model API_en.vtt 13.27KB
003 Word2Vec keras Model API.mp4 45.20MB
004 Bayesian learning Population estimation pymc3 way_en.vtt 8.86KB
004 Bayesian learning Population estimation pymc3 way.mp4 70.57MB
004 BERT - The theory_en.vtt 3.77KB
004 BERT - The theory.mp4 8.14MB
004 Deep Learning with PyTorch nn.Sequential models_en.vtt 5.70KB
004 Deep Learning with PyTorch nn.Sequential models.mp4 11.04MB
004 FastAPI serving model_en.vtt 7.51KB
004 FastAPI serving model.mp4 29.27MB
004 Financial News Sentiment Classifier_en.vtt 9.99KB
004 Financial News Sentiment Classifier.mp4 33.71MB
004 Jupyter Notebooks_en.vtt 4.94KB
004 Jupyter Notebooks.mp4 8.71MB
004 Kmeans part 1_en.vtt 11.79KB
004 Kmeans part 1.mp4 78.37MB
004 Model fitting and discussion of results_en.vtt 2.91KB
004 Model fitting and discussion of results.mp4 17.41MB
004 Other clustering methods_en.vtt 7.17KB
004 Other clustering methods.mp4 48.05MB
004 Python functions (methods)_en.vtt 5.55KB
004 Python functions (methods).mp4 27.58MB
004 PyTorch Model Architecture_en.vtt 3.58KB
004 PyTorch Model Architecture.mp4 13.55MB
004 PyTorch transfer learning with ResNet_en.vtt 4.43KB
004 PyTorch transfer learning with ResNet.mp4 15.43MB
004 Recurrent Neural Nets - Theory_en.vtt 10.55KB
004 Recurrent Neural Nets - Theory.mp4 19.06MB
004 Tensorflow + Keras demo problem 1_en.vtt 16.43KB
004 Tensorflow + Keras demo problem 1.mp4 43.33MB
004 Theory part 2 + code_en.vtt 6.28KB
004 Theory part 2 + code.mp4 27.28MB
005 Activation functions_en.vtt 5.51KB
005 Activation functions.mp4 15.37MB
005 Coin Toss Example with Pymc3_en.vtt 8.03KB
005 Coin Toss Example with Pymc3.mp4 70.71MB
005 Course Material.html 130B
005 DBSCAN theory_en.vtt 6.90KB
005 DBSCAN theory.mp4 13.21MB
005 Deep Learning - Long Short Term Memory (LSTM) Nets_en.vtt 11.78KB
005 Deep Learning - Long Short Term Memory (LSTM) Nets.mp4 90.97MB
005 Deep Learning with Pytorch Loss functions_en.vtt 8.69KB
005 Deep Learning with Pytorch Loss functions.mp4 52.44MB
005 Dropout theory and code_en.vtt 6.99KB
005 Dropout theory and code.mp4 23.67MB
005 Kaggle Multi-lingual Toxic Comment Classification Challenge_en.vtt 1.97KB
005 Kaggle Multi-lingual Toxic Comment Classification Challenge.mp4 6.82MB
005 Kmeans part 2_en.vtt 19.71KB
005 Kmeans part 2.mp4 63.19MB
005 NLTK + Stemming_en.vtt 7.82KB
005 NLTK + Stemming.mp4 45.59MB
005 Numpy functions_en.vtt 10.64KB
005 Numpy functions.mp4 62.44MB
005 PyTorch Hooks_en.vtt 7.29KB
005 PyTorch Hooks.mp4 24.69MB
005 PyTorch Lightning Model_en.vtt 3.94KB
005 PyTorch Lightning Model.mp4 9.42MB
005 Streamlit Intro_en.vtt 2.56KB
005 Streamlit Intro.mp4 5.95MB
005 Titanic dataset_en.vtt 15.21KB
005 Titanic dataset.mp4 116.30MB
006 Broadcasting_en.vtt 9.64KB
006 Broadcasting.mp4 27.13MB
006 Conditional statements_en.vtt 3.92KB
006 Conditional statements.mp4 12.60MB
006 Data Setup for Bayesian Linear Regression_en.vtt 4.71KB
006 Data Setup for Bayesian Linear Regression.mp4 17.11MB
006 Deep Learning - Stacking LSTMs + GRUs_en.vtt 2.15KB
006 Deep Learning - Stacking LSTMs + GRUs.mp4 5.03MB
006 Deep Learning with Pytorch Stochastic Gradient Descent_en.vtt 8.07KB
006 Deep Learning with Pytorch Stochastic Gradient Descent.mp4 79.46MB
006 First example with Relu_en.vtt 5.40KB
006 First example with Relu.mp4 32.62MB
006 Gaussian Mixture Models (GMM) theory_en.vtt 7.88KB
006 Gaussian Mixture Models (GMM) theory.mp4 19.99MB
006 MaxPool (and comparison to stride)_en.vtt 5.39KB
006 MaxPool (and comparison to stride).mp4 17.68MB
006 N-grams_en.vtt 4.04KB
006 N-grams.mp4 13.79MB
006 PyTorch Hooks Step through with breakpoints_en.vtt 8.80KB
006 PyTorch Hooks Step through with breakpoints.mp4 67.56MB
006 PyTorch Lightning Trainer + Model evaluation_en.vtt 6.33KB
006 PyTorch Lightning Trainer + Model evaluation.mp4 50.24MB
006 Sklearn classification prelude_en.vtt 5.26KB
006 Sklearn classification prelude.mp4 14.31MB
006 Streamlit functions_en.vtt 6.07KB
006 Streamlit functions.mp4 20.79MB
006 Tokenizers and data prep for BERT models_en.vtt 10.79KB
006 Tokenizers and data prep for BERT models.mp4 29.06MB
007 Bayesian Linear Regression with pymc3_en.vtt 9.97KB
007 Bayesian Linear Regression with pymc3.mp4 60.07MB
007 Cifar-10_en.vtt 10.08KB
007 Cifar-10.mp4 27.28MB
007 CLIP model_en.vtt 7.32KB
007 CLIP model.mp4 18.74MB
007 Deep Learning for Cassava Leaf Classification_en.vtt 1.07KB
007 Deep Learning for Cassava Leaf Classification.mp4 4.14MB
007 Deep Learning with Pytorch Optimizers_en.vtt 3.40KB
007 Deep Learning with Pytorch Optimizers.mp4 10.19MB
007 Distilbert (Smaller BERT) model_en.vtt 10.77KB
007 Distilbert (Smaller BERT) model.mp4 48.78MB
007 For loops_en.vtt 4.17KB
007 For loops.mp4 12.38MB
007 MNIST and Softmax_en.vtt 10.43KB
007 MNIST and Softmax.mp4 55.76MB
007 PyTorch Weighted CrossEntropy Loss_en.vtt 9.06KB
007 PyTorch Weighted CrossEntropy Loss.mp4 65.19MB
007 ---------------- Scikit Learn -------------------------------------.html 72B
007 Sklearn classification_en.vtt 14.46KB
007 Sklearn classification.mp4 89.99MB
007 Transfer Learning - GLOVE vectors_en.vtt 11.45KB
007 Transfer Learning - GLOVE vectors.mp4 74.57MB
007 Word (feature) importance_en.vtt 3.75KB
007 Word (feature) importance.mp4 12.41MB
008 Bayesian Rolling Regression - Problem setup_en.vtt 5.60KB
008 Bayesian Rolling Regression - Problem setup.mp4 14.84MB
008 Cassava Leaf Dataset_en.vtt 4.85KB
008 Cassava Leaf Dataset.mp4 15.28MB
008 Dealing with missing values_en.vtt 5.75KB
008 Dealing with missing values.mp4 50.76MB
008 Deep Learning Input Normalisation_en.vtt 3.16KB
008 Deep Learning Input Normalisation.mp4 10.35MB
008 Dictionaries again_en.vtt 3.11KB
008 Dictionaries again.mp4 6.17MB
008 Intro_en.vtt 4.95KB
008 Intro.mp4 35.38MB
008 Nose Tip detection with CNNs_en.vtt 12.48KB
008 Nose Tip detection with CNNs.mp4 68.69MB
008 Pytorch Lightning + DistilBERT for classification_en.vtt 17.26KB
008 Pytorch Lightning + DistilBERT for classification.mp4 102.68MB
008 Pytorch Model API_en.vtt 5.50KB
008 Pytorch Model API.mp4 33.24MB
008 Sequence to Sequence Introduction + Data Prep_en.vtt 7.99KB
008 Sequence to Sequence Introduction + Data Prep.mp4 80.10MB
008 Spacy intro_en.vtt 5.58KB
008 Spacy intro.mp4 33.22MB
008 Weights and Biases Logging images_en.vtt 1.92KB
008 Weights and Biases Logging images.mp4 15.83MB
009 Bayesian Rolling regression - pymc3 way_en.vtt 9.26KB
009 Bayesian Rolling regression - pymc3 way.mp4 54.76MB
009 Data Augmentation with Torchvision Transforms_en.vtt 5.90KB
009 Data Augmentation with Torchvision Transforms.mp4 56.52MB
009 Feature Extraction with Spacy (using Pandas)_en.vtt 9.84KB
009 Feature Extraction with Spacy (using Pandas).mp4 76.46MB
009 Linear Regresson Part 1_en.vtt 12.25KB
009 Linear Regresson Part 1.mp4 90.54MB
009 -------------------------------- Pandas --------------------------------.html 61B
009 Pytorch in GPUs_en.vtt 2.57KB
009 Pytorch in GPUs.mp4 4.97MB
009 Semantic Segmentation training with PyTorch Lightning_en.vtt 16.21KB
009 Semantic Segmentation training with PyTorch Lightning.mp4 130.17MB
009 Sequence to Sequence model + Keras Model API_en.vtt 8.73KB
009 Sequence to Sequence model + Keras Model API.mp4 30.48MB
009 Softmax theory_en.vtt 5.52KB
009 Softmax theory.mp4 58.32MB
009 --------- Time Series -------------------.html 255B
010 Batch Norm_en.vtt 5.66KB
010 Batch Norm.mp4 17.04MB
010 Bayesian Rolling Regression - forecasting_en.vtt 5.34KB
010 Bayesian Rolling Regression - forecasting.mp4 30.34MB
010 Classification Example_en.vtt 4.28KB
010 Classification Example.mp4 24.10MB
010 Deep Learning Intro to Pytorch Lightning_en.vtt 9.27KB
010 Deep Learning Intro to Pytorch Lightning.mp4 52.37MB
010 Intro_en.vtt 2.41KB
010 Intro_en.vtt 5.91KB
010 Intro.mp4 5.02MB
010 Intro.mp4 11.41MB
010 Linear Regression Part 2_en.vtt 11.21KB
010 Linear Regression Part 2.mp4 71.55MB
010 Sequence to Sequence models Prediction step_en.vtt 13.13KB
010 Sequence to Sequence models Prediction step.mp4 104.69MB
010 Train vs Test Augmentations + DataLoader parameters_en.vtt 3.31KB
010 Train vs Test Augmentations + DataLoader parameters.mp4 7.73MB
011 Batch Norm Theory_en.vtt 8.29KB
011 Batch Norm Theory.mp4 53.89MB
011 Classification and Regression Trees_en.vtt 6.44KB
011 Classification and Regression Trees.mp4 19.98MB
011 Deep Learning Transfer Learning Model with ResNet_en.vtt 3.30KB
011 Deep Learning Transfer Learning Model with ResNet.mp4 8.01MB
011 Loss functions_en.vtt 7.15KB
011 Loss functions.mp4 46.45MB
011 Over-sampling_en.vtt 5.81KB
011 Over-sampling.mp4 32.84MB
011 Pandas simple functions_en.vtt 11.39KB
011 Pandas simple functions.mp4 38.33MB
011 Variational Bayes Intro_en.vtt 3.22KB
011 Variational Bayes Intro.mp4 8.64MB
012 CART part 2_en.vtt 20.53KB
012 CART part 2.mp4 166.49MB
012 FB Prophet part 1_en.vtt 9.77KB
012 FB Prophet part 1.mp4 78.03MB
012 Pandas Subsetting_en.vtt 6.27KB
012 Pandas Subsetting.mp4 22.05MB
012 -------- Regularization ------------.html 218B
012 Setting up PyTorch Lightning for training_en.vtt 3.53KB
012 Setting up PyTorch Lightning for training.mp4 8.36MB
012 Variational Bayes Linear Classification_en.vtt 7.51KB
012 Variational Bayes Linear Classification.mp4 44.30MB
013 Cross Entropy Loss for Imbalanced Classes_en.vtt 3.95KB
013 Cross Entropy Loss for Imbalanced Classes.mp4 8.50MB
013 FB Prophet part 2_en.vtt 4.09KB
013 FB Prophet part 2.mp4 24.45MB
013 Introduction_en.vtt 2.62KB
013 Introduction.mp4 8.35MB
013 Pandas loc and iloc_en.vtt 7.62KB
013 Pandas loc and iloc.mp4 41.82MB
013 Random Forest theory_en.vtt 2.53KB
013 Random Forest theory.mp4 4.82MB
013 Variational Bayesian Inference Result Analysis_en.vtt 3.75KB
013 Variational Bayesian Inference Result Analysis.mp4 7.37MB
014 Minibatch Variational Bayes_en.vtt 3.86KB
014 Minibatch Variational Bayes.mp4 11.05MB
014 MSE recap_en.vtt 6.14KB
014 MSE recap.mp4 18.30MB
014 Pandas loc and iloc 2_en.vtt 5.21KB
014 Pandas loc and iloc 2.mp4 13.84MB
014 PyTorch Test dataset setup and evaluation_en.vtt 2.87KB
014 PyTorch Test dataset setup and evaluation.mp4 7.10MB
014 Random Forest Code_en.vtt 6.66KB
014 Random Forest Code.mp4 36.74MB
014 Theory behind FB Prophet_en.vtt 5.89KB
014 Theory behind FB Prophet.mp4 16.86MB
015 Deep Bayesian Networks_en.vtt 3.17KB
015 Deep Bayesian Networks.mp4 7.27MB
015 Gradient Boosted Machines_en.vtt 9.70KB
015 Gradient Boosted Machines.mp4 67.61MB
015 L2 Loss Ridge Regression intro_en.vtt 3.57KB
015 L2 Loss Ridge Regression intro.mp4 10.04MB
015 ------------ Model Diagnostics -----.html 112B
015 Pandas map and apply_en.vtt 8.21KB
015 Pandas map and apply.mp4 31.43MB
015 WandB for logging experiments_en.vtt 5.39KB
015 WandB for logging experiments.mp4 21.51MB
016 Deep Bayesian Networks - analysis_en.vtt 4.07KB
016 Deep Bayesian Networks - analysis.mp4 10.49MB
016 Overfitting_en.vtt 6.99KB
016 Overfitting.mp4 19.33MB
016 Pandas groupby_en.vtt 7.04KB
016 Pandas groupby.mp4 18.34MB
016 Ridge regression (L2 penalised regression)_en.vtt 7.90KB
016 Ridge regression (L2 penalised regression).mp4 46.97MB
017 Cross Validation_en.vtt 8.26KB
017 Cross Validation.mp4 53.72MB
017 ----- Plotting --------.html 47B
017 S&P500 data preparation for L1 loss_en.vtt 7.13KB
017 S&P500 data preparation for L1 loss.mp4 25.22MB
018 L1 Penalised Regression (Lasso)_en.vtt 5.60KB
018 L1 Penalised Regression (Lasso).mp4 31.42MB
018 Plotting resources (notebooks).html 92B
018 Stratified K Fold_en.vtt 9.92KB
018 Stratified K Fold.mp4 58.11MB
019 Area Under Curve (AUC) Part 1_en.vtt 9.21KB
019 Area Under Curve (AUC) Part 1.mp4 84.11MB
019 L1 L2 Penalty theory why it works_en.vtt 3.78KB
019 L1 L2 Penalty theory why it works.mp4 23.22MB
019 Line plot_en.vtt 3.24KB
019 Line plot.mp4 8.55MB
020 Area Under Curve (AUC) Part 2_en.vtt 6.96KB
020 Area Under Curve (AUC) Part 2.mp4 19.50MB
020 Plot multiple lines_en.vtt 3.91KB
020 Plot multiple lines.mp4 45.39MB
021 Histograms_en.vtt 7.87KB
021 Histograms.mp4 21.62MB
022 Scatter Plots_en.vtt 6.39KB
022 Scatter Plots.mp4 18.60MB
023 Subplots_en.vtt 6.00KB
023 Subplots.mp4 15.31MB
024 Seaborn + pair plots_en.vtt 7.95KB
024 Seaborn + pair plots.mp4 49.67MB
30889860-course-code-material.zip 26.20MB
31237618-03-0-plotting.zip 2.80MB
31283222-multi-plot.py 440B
31762302-06-0-reguralisation.zip 2.56MB
31919076-bayesian-inference.zip 1.80MB
32725408-09-tensorflow.zip 2.66MB
34142844-04-pairplots.ipynb 200.49KB
external-assets-links.txt 122B
external-assets-links.txt 52B
external-assets-links.txt 264B
Distribution statistics by country
Russia (RU) 1
Total 1
IP List List of IP addresses which were distributed this torrent