Please note that this page does not hosts or makes available any of the listed filenames. You
cannot download any of those files from here.
|
[Tutorialsplanet.NET].url |
128B |
[Tutorialsplanet.NET].url |
128B |
[Tutorialsplanet.NET].url |
128B |
[Tutorialsplanet.NET].url |
128B |
[Tutorialsplanet.NET].url |
128B |
001 Intro_en.vtt |
865B |
001 Intro_en.vtt |
5.39KB |
001 Intro_en.vtt |
473B |
001 Intro_en.vtt |
3.18KB |
001 Intro_en.vtt |
1.19KB |
001 Intro.mp4 |
2.89MB |
001 Intro.mp4 |
10.37MB |
001 Intro.mp4 |
632.60KB |
001 Intro.mp4 |
5.97MB |
001 Intro.mp4 |
2.52MB |
001 Introduction_en.vtt |
2.22KB |
001 Introduction_en.vtt |
1.23KB |
001 Introduction_en.vtt |
2.57KB |
001 Introduction.mp4 |
41.80MB |
001 Introduction.mp4 |
2.23MB |
001 Introduction.mp4 |
25.31MB |
001 Introduction and Terminology_en.vtt |
8.34KB |
001 Introduction and Terminology.mp4 |
18.13MB |
001 Introduction to Transformers_en.vtt |
1.63KB |
001 Introduction to Transformers.mp4 |
3.41MB |
001 Kaggle part 1_en.vtt |
2.63KB |
001 Kaggle part 1.mp4 |
6.75MB |
001 Principal Component Analysis (PCA) theory_en.vtt |
8.98KB |
001 Principal Component Analysis (PCA) theory.mp4 |
20.54MB |
001 Some advice on your journey_en.vtt |
3.78KB |
001 Some advice on your journey.mp4 |
13.56MB |
001 Transfer Learning Introduction_en.vtt |
1.99KB |
001 Transfer Learning Introduction.mp4 |
4.46MB |
001 Word2vec and Embeddings_en.vtt |
8.33KB |
001 Word2vec and Embeddings.mp4 |
43.96MB |
001 Your reviews are important to me!.mp4 |
2.05MB |
002 Basic Data Structures_en.vtt |
6.41KB |
002 Basic Data Structures.mp4 |
21.89MB |
002 Bayesian Learning Distributions_en.vtt |
10.45KB |
002 Bayesian Learning Distributions.mp4 |
35.95MB |
002 Coco Dataset + Augmentations for Segmentation with Torchvision_en.vtt |
5.94KB |
002 Coco Dataset + Augmentations for Segmentation with Torchvision.mp4 |
18.90MB |
002 DL theory part 1_en.vtt |
6.15KB |
002 DL theory part 1.mp4 |
17.23MB |
002 Fashion MNIST feed forward net for benchmarking_en.vtt |
3.50KB |
002 Fashion MNIST feed forward net for benchmarking.mp4 |
19.66MB |
002 Fashion MNIST PCA_en.vtt |
10.46KB |
002 Fashion MNIST PCA.mp4 |
102.09MB |
002 How to tackle this course_en.vtt |
6.21KB |
002 How to tackle this course.mp4 |
48.85MB |
002 Kaggle + Word2Vec_en.vtt |
10.54KB |
002 Kaggle + Word2Vec.mp4 |
27.79MB |
002 Kaggle part 2_en.vtt |
3.27KB |
002 Kaggle part 2.mp4 |
11.13MB |
002 Kaggle problem description_en.vtt |
2.79KB |
002 Kaggle problem description.mp4 |
9.19MB |
002 ----------- Numpy -------------.html |
129B |
002 Pytorch TensorDataset_en.vtt |
5.01KB |
002 Pytorch TensorDataset.mp4 |
12.40MB |
002 Saving Models_en.vtt |
3.12KB |
002 Saving Models.mp4 |
7.56MB |
002 Stop words and Term Frequency_en.vtt |
4.94KB |
002 Stop words and Term Frequency.mp4 |
10.70MB |
002 The illustrated Transformer (blogpost by Jay Alammar)_en.vtt |
8.95KB |
002 The illustrated Transformer (blogpost by Jay Alammar).mp4 |
23.59MB |
003 Bayes rule for population mean estimation_en.vtt |
8.98KB |
003 Bayes rule for population mean estimation.mp4 |
50.16MB |
003 Dictionaries_en.vtt |
3.80KB |
003 Dictionaries.mp4 |
18.79MB |
003 DL theory part 2_en.vtt |
3.94KB |
003 DL theory part 2.mp4 |
22.80MB |
003 Encoder Transformer Models The Maths_en.vtt |
5.59KB |
003 Encoder Transformer Models The Maths.mp4 |
28.66MB |
003 FastAPI intro_en.vtt |
5.31KB |
003 FastAPI intro.mp4 |
11.64MB |
003 Gradient Descent_en.vtt |
16.58KB |
003 Gradient Descent.mp4 |
43.40MB |
003 Installations and sign ups_en.vtt |
4.75KB |
003 Installations and sign ups.mp4 |
42.79MB |
003 Keras Conv2D layer_en.vtt |
8.57KB |
003 Keras Conv2D layer.mp4 |
44.46MB |
003 K-means_en.vtt |
7.61KB |
003 K-means.mp4 |
22.30MB |
003 Pytorch Dataset and DataLoaders_en.vtt |
5.73KB |
003 Pytorch Dataset and DataLoaders.mp4 |
35.35MB |
003 PyTorch datasets + Torchvision_en.vtt |
4.19KB |
003 PyTorch datasets + Torchvision.mp4 |
14.72MB |
003 Term Frequency - Inverse Document Frequency (Tf - Idf) theory_en.vtt |
3.04KB |
003 Term Frequency - Inverse Document Frequency (Tf - Idf) theory.mp4 |
6.05MB |
003 Theory part 1_en.vtt |
6.74KB |
003 Theory part 1.mp4 |
13.54MB |
003 Unet Architecture overview_en.vtt |
6.37KB |
003 Unet Architecture overview.mp4 |
14.70MB |
003 Word2Vec keras Model API_en.vtt |
13.27KB |
003 Word2Vec keras Model API.mp4 |
45.20MB |
004 Bayesian learning Population estimation pymc3 way_en.vtt |
8.86KB |
004 Bayesian learning Population estimation pymc3 way.mp4 |
70.57MB |
004 BERT - The theory_en.vtt |
3.77KB |
004 BERT - The theory.mp4 |
8.14MB |
004 Deep Learning with PyTorch nn.Sequential models_en.vtt |
5.70KB |
004 Deep Learning with PyTorch nn.Sequential models.mp4 |
11.04MB |
004 FastAPI serving model_en.vtt |
7.51KB |
004 FastAPI serving model.mp4 |
29.27MB |
004 Financial News Sentiment Classifier_en.vtt |
9.99KB |
004 Financial News Sentiment Classifier.mp4 |
33.71MB |
004 Jupyter Notebooks_en.vtt |
4.94KB |
004 Jupyter Notebooks.mp4 |
8.71MB |
004 Kmeans part 1_en.vtt |
11.79KB |
004 Kmeans part 1.mp4 |
78.37MB |
004 Model fitting and discussion of results_en.vtt |
2.91KB |
004 Model fitting and discussion of results.mp4 |
17.41MB |
004 Other clustering methods_en.vtt |
7.17KB |
004 Other clustering methods.mp4 |
48.05MB |
004 Python functions (methods)_en.vtt |
5.55KB |
004 Python functions (methods).mp4 |
27.58MB |
004 PyTorch Model Architecture_en.vtt |
3.58KB |
004 PyTorch Model Architecture.mp4 |
13.55MB |
004 PyTorch transfer learning with ResNet_en.vtt |
4.43KB |
004 PyTorch transfer learning with ResNet.mp4 |
15.43MB |
004 Recurrent Neural Nets - Theory_en.vtt |
10.55KB |
004 Recurrent Neural Nets - Theory.mp4 |
19.06MB |
004 Tensorflow + Keras demo problem 1_en.vtt |
16.43KB |
004 Tensorflow + Keras demo problem 1.mp4 |
43.33MB |
004 Theory part 2 + code_en.vtt |
6.28KB |
004 Theory part 2 + code.mp4 |
27.28MB |
005 Activation functions_en.vtt |
5.51KB |
005 Activation functions.mp4 |
15.37MB |
005 Coin Toss Example with Pymc3_en.vtt |
8.03KB |
005 Coin Toss Example with Pymc3.mp4 |
70.71MB |
005 Course Material.html |
130B |
005 DBSCAN theory_en.vtt |
6.90KB |
005 DBSCAN theory.mp4 |
13.21MB |
005 Deep Learning - Long Short Term Memory (LSTM) Nets_en.vtt |
11.78KB |
005 Deep Learning - Long Short Term Memory (LSTM) Nets.mp4 |
90.97MB |
005 Deep Learning with Pytorch Loss functions_en.vtt |
8.69KB |
005 Deep Learning with Pytorch Loss functions.mp4 |
52.44MB |
005 Dropout theory and code_en.vtt |
6.99KB |
005 Dropout theory and code.mp4 |
23.67MB |
005 Kaggle Multi-lingual Toxic Comment Classification Challenge_en.vtt |
1.97KB |
005 Kaggle Multi-lingual Toxic Comment Classification Challenge.mp4 |
6.82MB |
005 Kmeans part 2_en.vtt |
19.71KB |
005 Kmeans part 2.mp4 |
63.19MB |
005 NLTK + Stemming_en.vtt |
7.82KB |
005 NLTK + Stemming.mp4 |
45.59MB |
005 Numpy functions_en.vtt |
10.64KB |
005 Numpy functions.mp4 |
62.44MB |
005 PyTorch Hooks_en.vtt |
7.29KB |
005 PyTorch Hooks.mp4 |
24.69MB |
005 PyTorch Lightning Model_en.vtt |
3.94KB |
005 PyTorch Lightning Model.mp4 |
9.42MB |
005 Streamlit Intro_en.vtt |
2.56KB |
005 Streamlit Intro.mp4 |
5.95MB |
005 Titanic dataset_en.vtt |
15.21KB |
005 Titanic dataset.mp4 |
116.30MB |
006 Broadcasting_en.vtt |
9.64KB |
006 Broadcasting.mp4 |
27.13MB |
006 Conditional statements_en.vtt |
3.92KB |
006 Conditional statements.mp4 |
12.60MB |
006 Data Setup for Bayesian Linear Regression_en.vtt |
4.71KB |
006 Data Setup for Bayesian Linear Regression.mp4 |
17.11MB |
006 Deep Learning - Stacking LSTMs + GRUs_en.vtt |
2.15KB |
006 Deep Learning - Stacking LSTMs + GRUs.mp4 |
5.03MB |
006 Deep Learning with Pytorch Stochastic Gradient Descent_en.vtt |
8.07KB |
006 Deep Learning with Pytorch Stochastic Gradient Descent.mp4 |
79.46MB |
006 First example with Relu_en.vtt |
5.40KB |
006 First example with Relu.mp4 |
32.62MB |
006 Gaussian Mixture Models (GMM) theory_en.vtt |
7.88KB |
006 Gaussian Mixture Models (GMM) theory.mp4 |
19.99MB |
006 MaxPool (and comparison to stride)_en.vtt |
5.39KB |
006 MaxPool (and comparison to stride).mp4 |
17.68MB |
006 N-grams_en.vtt |
4.04KB |
006 N-grams.mp4 |
13.79MB |
006 PyTorch Hooks Step through with breakpoints_en.vtt |
8.80KB |
006 PyTorch Hooks Step through with breakpoints.mp4 |
67.56MB |
006 PyTorch Lightning Trainer + Model evaluation_en.vtt |
6.33KB |
006 PyTorch Lightning Trainer + Model evaluation.mp4 |
50.24MB |
006 Sklearn classification prelude_en.vtt |
5.26KB |
006 Sklearn classification prelude.mp4 |
14.31MB |
006 Streamlit functions_en.vtt |
6.07KB |
006 Streamlit functions.mp4 |
20.79MB |
006 Tokenizers and data prep for BERT models_en.vtt |
10.79KB |
006 Tokenizers and data prep for BERT models.mp4 |
29.06MB |
007 Bayesian Linear Regression with pymc3_en.vtt |
9.97KB |
007 Bayesian Linear Regression with pymc3.mp4 |
60.07MB |
007 Cifar-10_en.vtt |
10.08KB |
007 Cifar-10.mp4 |
27.28MB |
007 CLIP model_en.vtt |
7.32KB |
007 CLIP model.mp4 |
18.74MB |
007 Deep Learning for Cassava Leaf Classification_en.vtt |
1.07KB |
007 Deep Learning for Cassava Leaf Classification.mp4 |
4.14MB |
007 Deep Learning with Pytorch Optimizers_en.vtt |
3.40KB |
007 Deep Learning with Pytorch Optimizers.mp4 |
10.19MB |
007 Distilbert (Smaller BERT) model_en.vtt |
10.77KB |
007 Distilbert (Smaller BERT) model.mp4 |
48.78MB |
007 For loops_en.vtt |
4.17KB |
007 For loops.mp4 |
12.38MB |
007 MNIST and Softmax_en.vtt |
10.43KB |
007 MNIST and Softmax.mp4 |
55.76MB |
007 PyTorch Weighted CrossEntropy Loss_en.vtt |
9.06KB |
007 PyTorch Weighted CrossEntropy Loss.mp4 |
65.19MB |
007 ---------------- Scikit Learn -------------------------------------.html |
72B |
007 Sklearn classification_en.vtt |
14.46KB |
007 Sklearn classification.mp4 |
89.99MB |
007 Transfer Learning - GLOVE vectors_en.vtt |
11.45KB |
007 Transfer Learning - GLOVE vectors.mp4 |
74.57MB |
007 Word (feature) importance_en.vtt |
3.75KB |
007 Word (feature) importance.mp4 |
12.41MB |
008 Bayesian Rolling Regression - Problem setup_en.vtt |
5.60KB |
008 Bayesian Rolling Regression - Problem setup.mp4 |
14.84MB |
008 Cassava Leaf Dataset_en.vtt |
4.85KB |
008 Cassava Leaf Dataset.mp4 |
15.28MB |
008 Dealing with missing values_en.vtt |
5.75KB |
008 Dealing with missing values.mp4 |
50.76MB |
008 Deep Learning Input Normalisation_en.vtt |
3.16KB |
008 Deep Learning Input Normalisation.mp4 |
10.35MB |
008 Dictionaries again_en.vtt |
3.11KB |
008 Dictionaries again.mp4 |
6.17MB |
008 Intro_en.vtt |
4.95KB |
008 Intro.mp4 |
35.38MB |
008 Nose Tip detection with CNNs_en.vtt |
12.48KB |
008 Nose Tip detection with CNNs.mp4 |
68.69MB |
008 Pytorch Lightning + DistilBERT for classification_en.vtt |
17.26KB |
008 Pytorch Lightning + DistilBERT for classification.mp4 |
102.68MB |
008 Pytorch Model API_en.vtt |
5.50KB |
008 Pytorch Model API.mp4 |
33.24MB |
008 Sequence to Sequence Introduction + Data Prep_en.vtt |
7.99KB |
008 Sequence to Sequence Introduction + Data Prep.mp4 |
80.10MB |
008 Spacy intro_en.vtt |
5.58KB |
008 Spacy intro.mp4 |
33.22MB |
008 Weights and Biases Logging images_en.vtt |
1.92KB |
008 Weights and Biases Logging images.mp4 |
15.83MB |
009 Bayesian Rolling regression - pymc3 way_en.vtt |
9.26KB |
009 Bayesian Rolling regression - pymc3 way.mp4 |
54.76MB |
009 Data Augmentation with Torchvision Transforms_en.vtt |
5.90KB |
009 Data Augmentation with Torchvision Transforms.mp4 |
56.52MB |
009 Feature Extraction with Spacy (using Pandas)_en.vtt |
9.84KB |
009 Feature Extraction with Spacy (using Pandas).mp4 |
76.46MB |
009 Linear Regresson Part 1_en.vtt |
12.25KB |
009 Linear Regresson Part 1.mp4 |
90.54MB |
009 -------------------------------- Pandas --------------------------------.html |
61B |
009 Pytorch in GPUs_en.vtt |
2.57KB |
009 Pytorch in GPUs.mp4 |
4.97MB |
009 Semantic Segmentation training with PyTorch Lightning_en.vtt |
16.21KB |
009 Semantic Segmentation training with PyTorch Lightning.mp4 |
130.17MB |
009 Sequence to Sequence model + Keras Model API_en.vtt |
8.73KB |
009 Sequence to Sequence model + Keras Model API.mp4 |
30.48MB |
009 Softmax theory_en.vtt |
5.52KB |
009 Softmax theory.mp4 |
58.32MB |
009 --------- Time Series -------------------.html |
255B |
010 Batch Norm_en.vtt |
5.66KB |
010 Batch Norm.mp4 |
17.04MB |
010 Bayesian Rolling Regression - forecasting_en.vtt |
5.34KB |
010 Bayesian Rolling Regression - forecasting.mp4 |
30.34MB |
010 Classification Example_en.vtt |
4.28KB |
010 Classification Example.mp4 |
24.10MB |
010 Deep Learning Intro to Pytorch Lightning_en.vtt |
9.27KB |
010 Deep Learning Intro to Pytorch Lightning.mp4 |
52.37MB |
010 Intro_en.vtt |
2.41KB |
010 Intro_en.vtt |
5.91KB |
010 Intro.mp4 |
5.02MB |
010 Intro.mp4 |
11.41MB |
010 Linear Regression Part 2_en.vtt |
11.21KB |
010 Linear Regression Part 2.mp4 |
71.55MB |
010 Sequence to Sequence models Prediction step_en.vtt |
13.13KB |
010 Sequence to Sequence models Prediction step.mp4 |
104.69MB |
010 Train vs Test Augmentations + DataLoader parameters_en.vtt |
3.31KB |
010 Train vs Test Augmentations + DataLoader parameters.mp4 |
7.73MB |
011 Batch Norm Theory_en.vtt |
8.29KB |
011 Batch Norm Theory.mp4 |
53.89MB |
011 Classification and Regression Trees_en.vtt |
6.44KB |
011 Classification and Regression Trees.mp4 |
19.98MB |
011 Deep Learning Transfer Learning Model with ResNet_en.vtt |
3.30KB |
011 Deep Learning Transfer Learning Model with ResNet.mp4 |
8.01MB |
011 Loss functions_en.vtt |
7.15KB |
011 Loss functions.mp4 |
46.45MB |
011 Over-sampling_en.vtt |
5.81KB |
011 Over-sampling.mp4 |
32.84MB |
011 Pandas simple functions_en.vtt |
11.39KB |
011 Pandas simple functions.mp4 |
38.33MB |
011 Variational Bayes Intro_en.vtt |
3.22KB |
011 Variational Bayes Intro.mp4 |
8.64MB |
012 CART part 2_en.vtt |
20.53KB |
012 CART part 2.mp4 |
166.49MB |
012 FB Prophet part 1_en.vtt |
9.77KB |
012 FB Prophet part 1.mp4 |
78.03MB |
012 Pandas Subsetting_en.vtt |
6.27KB |
012 Pandas Subsetting.mp4 |
22.05MB |
012 -------- Regularization ------------.html |
218B |
012 Setting up PyTorch Lightning for training_en.vtt |
3.53KB |
012 Setting up PyTorch Lightning for training.mp4 |
8.36MB |
012 Variational Bayes Linear Classification_en.vtt |
7.51KB |
012 Variational Bayes Linear Classification.mp4 |
44.30MB |
013 Cross Entropy Loss for Imbalanced Classes_en.vtt |
3.95KB |
013 Cross Entropy Loss for Imbalanced Classes.mp4 |
8.50MB |
013 FB Prophet part 2_en.vtt |
4.09KB |
013 FB Prophet part 2.mp4 |
24.45MB |
013 Introduction_en.vtt |
2.62KB |
013 Introduction.mp4 |
8.35MB |
013 Pandas loc and iloc_en.vtt |
7.62KB |
013 Pandas loc and iloc.mp4 |
41.82MB |
013 Random Forest theory_en.vtt |
2.53KB |
013 Random Forest theory.mp4 |
4.82MB |
013 Variational Bayesian Inference Result Analysis_en.vtt |
3.75KB |
013 Variational Bayesian Inference Result Analysis.mp4 |
7.37MB |
014 Minibatch Variational Bayes_en.vtt |
3.86KB |
014 Minibatch Variational Bayes.mp4 |
11.05MB |
014 MSE recap_en.vtt |
6.14KB |
014 MSE recap.mp4 |
18.30MB |
014 Pandas loc and iloc 2_en.vtt |
5.21KB |
014 Pandas loc and iloc 2.mp4 |
13.84MB |
014 PyTorch Test dataset setup and evaluation_en.vtt |
2.87KB |
014 PyTorch Test dataset setup and evaluation.mp4 |
7.10MB |
014 Random Forest Code_en.vtt |
6.66KB |
014 Random Forest Code.mp4 |
36.74MB |
014 Theory behind FB Prophet_en.vtt |
5.89KB |
014 Theory behind FB Prophet.mp4 |
16.86MB |
015 Deep Bayesian Networks_en.vtt |
3.17KB |
015 Deep Bayesian Networks.mp4 |
7.27MB |
015 Gradient Boosted Machines_en.vtt |
9.70KB |
015 Gradient Boosted Machines.mp4 |
67.61MB |
015 L2 Loss Ridge Regression intro_en.vtt |
3.57KB |
015 L2 Loss Ridge Regression intro.mp4 |
10.04MB |
015 ------------ Model Diagnostics -----.html |
112B |
015 Pandas map and apply_en.vtt |
8.21KB |
015 Pandas map and apply.mp4 |
31.43MB |
015 WandB for logging experiments_en.vtt |
5.39KB |
015 WandB for logging experiments.mp4 |
21.51MB |
016 Deep Bayesian Networks - analysis_en.vtt |
4.07KB |
016 Deep Bayesian Networks - analysis.mp4 |
10.49MB |
016 Overfitting_en.vtt |
6.99KB |
016 Overfitting.mp4 |
19.33MB |
016 Pandas groupby_en.vtt |
7.04KB |
016 Pandas groupby.mp4 |
18.34MB |
016 Ridge regression (L2 penalised regression)_en.vtt |
7.90KB |
016 Ridge regression (L2 penalised regression).mp4 |
46.97MB |
017 Cross Validation_en.vtt |
8.26KB |
017 Cross Validation.mp4 |
53.72MB |
017 ----- Plotting --------.html |
47B |
017 S&P500 data preparation for L1 loss_en.vtt |
7.13KB |
017 S&P500 data preparation for L1 loss.mp4 |
25.22MB |
018 L1 Penalised Regression (Lasso)_en.vtt |
5.60KB |
018 L1 Penalised Regression (Lasso).mp4 |
31.42MB |
018 Plotting resources (notebooks).html |
92B |
018 Stratified K Fold_en.vtt |
9.92KB |
018 Stratified K Fold.mp4 |
58.11MB |
019 Area Under Curve (AUC) Part 1_en.vtt |
9.21KB |
019 Area Under Curve (AUC) Part 1.mp4 |
84.11MB |
019 L1 L2 Penalty theory why it works_en.vtt |
3.78KB |
019 L1 L2 Penalty theory why it works.mp4 |
23.22MB |
019 Line plot_en.vtt |
3.24KB |
019 Line plot.mp4 |
8.55MB |
020 Area Under Curve (AUC) Part 2_en.vtt |
6.96KB |
020 Area Under Curve (AUC) Part 2.mp4 |
19.50MB |
020 Plot multiple lines_en.vtt |
3.91KB |
020 Plot multiple lines.mp4 |
45.39MB |
021 Histograms_en.vtt |
7.87KB |
021 Histograms.mp4 |
21.62MB |
022 Scatter Plots_en.vtt |
6.39KB |
022 Scatter Plots.mp4 |
18.60MB |
023 Subplots_en.vtt |
6.00KB |
023 Subplots.mp4 |
15.31MB |
024 Seaborn + pair plots_en.vtt |
7.95KB |
024 Seaborn + pair plots.mp4 |
49.67MB |
30889860-course-code-material.zip |
26.20MB |
31237618-03-0-plotting.zip |
2.80MB |
31283222-multi-plot.py |
440B |
31762302-06-0-reguralisation.zip |
2.56MB |
31919076-bayesian-inference.zip |
1.80MB |
32725408-09-tensorflow.zip |
2.66MB |
34142844-04-pairplots.ipynb |
200.49KB |
external-assets-links.txt |
122B |
external-assets-links.txt |
52B |
external-assets-links.txt |
264B |