Torrent Info
Title 2025 Data Science AI Masters Py To Gen AI
Category
Size 46.65GB

Files List
Please note that this page does not hosts or makes available any of the listed filenames. You cannot download any of those files from here.
02. - Python+Installation+Guide.pdf 841.95KB
100 Types of Data.mp4 10.97MB
101 Types of Analysis.mp4 12.03MB
102 Univariate Analysis.mp4 54.11MB
103 Bivariate Analysis.mp4 35.65MB
104 Multivariate Analysis.mp4 5.23MB
105 Numerical Analysis.mp4 19.41MB
106 Analysis Practicals.mp4 211.54MB
107 Derived Metrics.mp4 26.53MB
108 Feature Binning (Theory).mp4 44.16MB
109 Feature Binning (Practicals).mp4 71.01MB
10 Datatypes Operators.mp4 364.22MB
10 - Power+BI+Ebook.pdf 14.38MB
10 - RAG+with+GrokAI.ipynb 20.04KB
10 - RAG+with+Ollama.ipynb 10.00KB
10 - RAGPaper.pdf 864.57KB
10 - RAGPaper (1).pdf 864.57KB
110 Feature Encoding (Theory).mp4 83.76MB
111 Feature Encoding (Practicals).mp4 169.81MB
112 Case Study.mp4 79.59MB
113 Data Exploration.mp4 151.44MB
114 Data Cleaning.mp4 73.51MB
115 Univariate Analysis.mp4 97.59MB
116 Bivariate Analysis Part 1.mp4 129.32MB
117 Bivariate Analysis Part 2.mp4 54.46MB
118 EDA Report.mp4 35.83MB
11 Lists.mp4 465.60MB
120 Installation.mp4 59.09MB
121 Data Architect - File server vs client server.mp4 119.34MB
122 Introduction to SQL.mp4 164.50MB
123 Constraints in SQL.mp4 289.40MB
124 Table Basics - DDLs.mp4 396.54MB
125 Table Basics - DQLs.mp4 290.03MB
126 Table Basics - DMLs.mp4 461.59MB
127 Joins.mp4 448.42MB
128 Data Import Export.mp4 545.58MB
129 Aggregation Functions.mp4 211.19MB
12 Tuples.mp4 424.24MB
130 String functions.mp4 287.89MB
131 Date Time Functions.mp4 233.88MB
132 Regular Expressions.mp4 160.70MB
133 Nested Queries.mp4 263.49MB
134 Views.mp4 222.76MB
135 Stored Procedures.mp4 439.12MB
136 Windows Function.mp4 365.77MB
137 SQL Python connectivity.mp4 341.27MB
138 Agenda.mp4 13.74MB
139 Introduction to ML.mp4 32.17MB
13 Sets.mp4 220.60MB
140 Types of ML.mp4 104.93MB
141 Use Cases Part 1.mp4 19.87MB
142 Use Cases Part 2.mp4 8.04MB
143 Pre-Requisites Features.mp4 88.74MB
144 Pre-Requisites Train-Test Split.mp4 115.75MB
145 Pre-Requisites Feature Scaling.mp4 74.24MB
146 Pre-Requisites Standardization Example.mp4 22.66MB
147 Pre-Requisites Normalization Example.mp4 13.95MB
148 Pre-Requisites Feature Encoding.mp4 83.76MB
149 Pre-Req Feature Encoding (Practicals).mp4 78.84MB
14 Dictionary.mp4 297.26MB
150 Regression Intro to Regression Models.mp4 38.90MB
151 Regression Regression Metrics.mp4 151.37MB
152 Regression Regression Metrics (Practicals).mp4 102.58MB
153 Regression Simple Linear Regression.mp4 55.94MB
154 Regression Multiple Linear Regression.mp4 51.48MB
155 Regression Linear Regression (Practicals).mp4 210.80MB
156 Regress Multi Linear Regress (Practicals).mp4 96.24MB
157 Regression Polynomial Regression.mp4 39.25MB
158 Regression Polynomial Regress (Practicals).mp4 176.58MB
159 Regression Bias Variance Tradeoff.mp4 30.95MB
15 Loops & Iterations.mp4 336.17MB
160 Regression Ridge Regression.mp4 55.15MB
161 Regression Lasso Regression.mp4 43.86MB
162 Regress Lasso, Ridge Regress (Practicals).mp4 335.38MB
163 Classification Intro to Classification.mp4 41.27MB
164 Classification Types of Classification.mp4 25.69MB
165 Classification Log Loss.mp4 63.61MB
166 Classification Confusion Matrix.mp4 72.79MB
167 Classification AUC ROC Curve.mp4 48.57MB
168 Classification Classification Report.mp4 47.22MB
169 Classification kNN Classifier.mp4 80.80MB
16 Functions.mp4 393.85MB
170 Classification kNN Classifier Example.mp4 78.01MB
171 Classification Practicals Part 1.mp4 100.52MB
172 Classification kNN Classifier (Practicals).mp4 115.41MB
173 Classification Decision Tree.mp4 72.98MB
174 Class.. Decision Tree (Entropy based).mp4 112.46MB
175 Classification Decision Tree (gini based).mp4 104.23MB
176 Classification Decision Tree (Practicals).mp4 66.53MB
177 Classification Decision Tree (Visualizing).mp4 160.32MB
178 Classification Random Forest Classifier.mp4 40.94MB
179 Class.. Random Forest Classifier (Practs).mp4 46.69MB
17 Map Reduce Filter.mp4 514.75MB
180 Classification Naive Bayes Classifier.mp4 89.90MB
181 Classification SVM Classifier Part 1.mp4 71.78MB
182 Classification SVM Classifier Part 2.mp4 60.17MB
183 Classification Logistic Regression.mp4 119.15MB
184 Classification Practicals so far.mp4 218.70MB
185 Class.. Issues in Classification (Part 1).mp4 48.41MB
186 Class.. Issues in Classification (Part 2).mp4 80.24MB
187 Classification Project.mp4 308.88MB
188 Ensemble Intro to Ensemble Learning.mp4 117.94MB
189 Ensemble Bagging.mp4 50.65MB
18 File Handling.mp4 327.29MB
190 Ensemble Bagging vs Random Forest.mp4 91.07MB
191 Ensemble Bagging (Practicals #1).mp4 241.19MB
192 Ensemble Bagging (Practicals #2).mp4 178.06MB
193 Ensemble Boosting.mp4 41.91MB
194 Ensemble Ada Boost.mp4 97.89MB
195 Ensemble Gradient Boost.mp4 20.82MB
196 Ensemble CF vs LF.mp4 47.15MB
197 Ensemble Cross Entropy.mp4 22.06MB
198 Ensemble Xtreme Gradient Boosting (XGB).mp4 94.38MB
199 Ensemble Project.mp4 210.58MB
19 Control Structures.mp4 171.90MB
1 Welcome Page.mp4 51.49MB
200 Clustering Introduction to Clustering.mp4 104.01MB
201 Clustering kMeans Clustering.mp4 121.01MB
2025 Data Science & AI Masters From Python To Gen AI ~ Udemy - Satyajit Pattnaiko.txt 228B
202 Clustering kMeans Clustering (Practicals).mp4 133.40MB
203 Clustering Hierarchical Clustering.mp4 81.94MB
204 Clustering Hierarchy Cluster (Practicals).mp4 106.49MB
205 Clustering Mean Shift Clustering.mp4 73.35MB
206 Feature Engineering Introduction.mp4 87.40MB
207 Feature Engineering RFE and SFS.mp4 29.05MB
208 Feature Engineering RFE (Practicals).mp4 190.89MB
209 Feature Eng.. Successive Feature Selection.mp4 180.08MB
20 OOPs.mp4 335.18MB
210 Feature Engineering Chi-Square.mp4 31.70MB
211 Feature Eng.. Chi-Square (Practicals).mp4 54.64MB
212 Feat Eng Principal Component Analysis.mp4 258.21MB
213 Feat Eng Principal Component Analy (Practls).mp4 79.70MB
214 Feat Eng Linear Discriminant Analysis.mp4 54.25MB
215 Feat Eng Linear Discriminant Analysis (Practls).mp4 84.87MB
216 Feature Engineering kPCA & QDA.mp4 53.51MB
217 Feature Engineering kPCA & QDA (Practicals).mp4 50.71MB
218 Hyper Parameter Optimization (HPO) Basics.mp4 76.02MB
219 Hyper Parameter Optimization Manual HPO.mp4 31.87MB
21 NumPy.mp4 485.43MB
220 HPO GridSearch vs RandomizedSearch.mp4 70.77MB
221 HPO Manual HPO (Practicals).mp4 164.77MB
222 HPO RandomizedSearchCV (Practicals).mp4 138.78MB
223 HPO GridSearchCV (Practicals).mp4 60.41MB
224 Introduction to TSA.mp4 23.29MB
225 Time Series vs Regression.mp4 77.14MB
226 Time Series Analysis.mp4 14.58MB
227 Anomaly Detection.mp4 29.89MB
228 Components of Time Series.mp4 46.34MB
229 Decomposition.mp4 6.46MB
22 Pandas.mp4 567.40MB
230 Decomposition (Practicals).mp4 46.48MB
231 AdditiveMultiplicative Decomp.mp4 38.94MB
232 Stationarity.mp4 28.53MB
233 Testing TS Stationarity.mp4 43.64MB
234 Transformation.mp4 21.42MB
235 Introduction to Pre-Processing.mp4 17.81MB
236 Handle Missing Value.mp4 58.55MB
237 Handle Missing Value (Practicals).mp4 92.12MB
238 Outlier Treatment.mp4 59.77MB
239 3-Sigma Technique.mp4 102.73MB
23 Data Visualization.mp4 113.44MB
240 Feature Scaling.mp4 74.24MB
241 Feature Scaling Standardization.mp4 22.67MB
242 Feature Scaling Normalization.mp4 13.95MB
243 Feature Scaling (Practicals).mp4 111.60MB
244 Feature Encoding.mp4 83.77MB
245 Feature Encoding (Practicals).mp4 78.85MB
246 Models - Algorithms.mp4 5.79MB
247 Models - ARIMA Part 1.mp4 11.35MB
248 Models - ARIMA Part 2.mp4 32.11MB
249 Models - AR Theory.mp4 41.67MB
24 Matplotlib.mp4 449.69MB
250 Models - MA Theory.mp4 46.00MB
251 Models - ACFPACF Plots.mp4 45.36MB
252 Models - Find p,d,q in ARIMA.mp4 11.88MB
253 Models - ARIMA (Practicals Part 1).mp4 90.90MB
254 Models - ARIMA (Practicals Part 2).mp4 85.74MB
255 Models - ARIMA (Final).mp4 70.73MB
256 Models - Decomposition.mp4 31.81MB
257 Models - ACFPACF.mp4 21.56MB
258 Models - Best Transformation.mp4 72.32MB
259 Models - Grid Search (Part 1).mp4 90.15MB
25 Seaborn.mp4 325.23MB
260 Models - Grid Search (Part 2).mp4 16.93MB
261 Models - Final Model Building.mp4 83.57MB
262 Models - Facebook Prophet (Part 1).mp4 52.00MB
263 Models - Facebook Prophet (Part 2).mp4 84.67MB
264 Models - Facebook Prophet (Part 3).mp4 51.95MB
265 Mods - Multi Variate Time Series Analy.mp4 42.59MB
266 Mods - Facebook Prophet Uni v Multi.mp4 118.20MB
267 Introduction to Metrics.mp4 29.98MB
268 Forecasting Evaluation Metrics.mp4 6.72MB
269 Mean Squarred Error.mp4 7.04MB
270 Root Mean Squarred Error.mp4 7.10MB
271 Mean Absolute Percentage Error.mp4 16.31MB
272 Proj 1 - Energy Forecasting Part 1.mp4 25.59MB
273 Proj 1 - Energy Forecasting Part 2.mp4 53.23MB
274 Proj 1 - Energy Forecasting Part 3.mp4 77.66MB
275 Proj 2 - Stock Market Prediction Pt 1.mp4 30.64MB
276 Proj 2 - Stock Market Prediction Pt 2.mp4 37.68MB
277 Proj 2 - Stock Market Prediction Pt 3.mp4 152.52MB
278 Proj 3 - Demand Forecasting Part 1.mp4 24.07MB
279 Proj 3 - Demand Forecasting Part 2.mp4 113.42MB
27 Introduction.mp4 42.33MB
280 Proj 3 - Demand Forecasting Part 3.mp4 94.14MB
281 Proj 3 - Demand Forecasting Part 4.mp4 10.83MB
282 Proj 3 - Demand Forecasting Part 5.mp4 141.06MB
283 Proj 3 - Demand Forecasting Part 6.mp4 79.80MB
285 Introduction to Deep Learning.mp4 10.62MB
286 Understanding Deep Learning.mp4 92.76MB
287 What is a Neuron.mp4 132.66MB
288 Activation Functions.mp4 70.41MB
289 Activation Function Step Function.mp4 91.35MB
28 Types of Data (Agenda).mp4 3.18MB
290 Activation Function Linear Function.mp4 170.98MB
291 Activation Function Sigmoid Function.mp4 93.51MB
292 Activation Function TanH Function.mp4 45.91MB
293 Activation Function ReLu Function.mp4 148.45MB
294 Backpropagation & Forward Pass.mp4 212.37MB
295 Gradient Descent.mp4 107.42MB
296 Artificial Neural Networks Intuition.mp4 28.24MB
297 Artificial Neural Networks Practicals.mp4 140.78MB
298 Artificial NN Hyper Param Optimize.mp4 101.91MB
299 Convolutional Neural Networks (CNN).mp4 123.11MB
29 Descriptive Stats.mp4 79.79MB
300 CNN Steps in CNN.mp4 176.23MB
301 CNN Architecture Explained.mp4 253.06MB
302 CNN Image Augmentation.mp4 205.75MB
303 CNN Batch size vs iterations vs epochs.mp4 120.93MB
304 CNN Practicals.mp4 308.33MB
305 CNN Model Summary & Parameters.mp4 113.47MB
306 CNN Project (X-Ray detection).mp4 260.89MB
307 Recurrent Neural Networks (RNN) Basics.mp4 35.18MB
308 RNN Types of RNN.mp4 19.00MB
309 RNN Vanishing, Exploding Gradient Prob.mp4 94.64MB
30 Inferential Stats.mp4 13.38MB
310 RNN LSTMs.mp4 36.19MB
311 RNN LSTMs (Practicals).mp4 88.98MB
312 Pre-Trained Models.mp4 171.97MB
313 Pre-Trained Models (Practicals).mp4 214.15MB
314 Pre-Trained Models VGG16.mp4 75.88MB
315 Pre-Trained Models MobileNet.mp4 46.76MB
316 Transfer Learning.mp4 39.19MB
317 Proj Pneumonia Detection X-Ray Img.mp4 124.27MB
319 Intro to NLP Introduction.mp4 59.10MB
31 Qualitative Data.mp4 50.03MB
320 Intro to NLP Introduction continued.mp4 46.87MB
321 Intro to NLP Key Challenges.mp4 67.52MB
322 Intro to NLP Linguistics.mp4 31.11MB
323 NLP Basics Case Folding.mp4 27.96MB
324 NLP Basics SCR.mp4 89.81MB
325 NLP Basics Handling Contractions.mp4 64.58MB
326 NLP Basics Tokenization.mp4 38.86MB
327 NLP Basics Stop Word Removal.mp4 40.58MB
328 NLP Basics nGrams.mp4 52.28MB
329 NLP Basics Vectorization.mp4 24.37MB
32 Quantitative Data.mp4 20.51MB
330 NLP Basics Word Embeddings.mp4 14.51MB
331 NLP Basics Bag of Words.mp4 50.68MB
332 NLP Basics Bag of Words (Practicals).mp4 154.60MB
333 NLP Basics TF-IDF.mp4 68.59MB
334 NLP Basics TF-IDF (Practicals).mp4 150.40MB
335 NLP Part of Speech Tag, Named Entity Recog.mp4 57.27MB
336 NLP Basics NER (Practicals).mp4 96.94MB
337 Word Embeddings Word2Vec Introduction.mp4 23.68MB
338 Word Embeddings Word2Vec Part 2.mp4 13.59MB
339 Word Embeddings Pre-Trained Word2Vec.mp4 62.30MB
33 Sampling Techniques (Agenda).mp4 7.62MB
340 Word Embeddings Word2Vec Intuition.mp4 37.53MB
341 Word Embed Word2Vec - Check X Features.mp4 65.76MB
342 Word Embeddings Word2Vec CBOW.mp4 103.25MB
343 Word Embed Word2Vec Skip Grams.mp4 55.89MB
344 Word Embeddings GloVe.mp4 79.39MB
345 Word Embeddings FastText.mp4 141.98MB
346 Word Embeddings Cosine Similarity.mp4 94.96MB
347 Neural Networks (NN) LSTMs Part 1.mp4 73.43MB
348 NN LSTMs Part 2 (Architecture).mp4 106.95MB
349 NN LSTMs Part 3 (Deep Dive).mp4 28.26MB
34 Population vs Sample.mp4 17.90MB
350 NN LSTMs Part 4 Pointwise Operation.mp4 34.74MB
351 NN LSTMs Part 5 (forget gate).mp4 61.76MB
352 NN LSTMs Part 6 (inpute gate).mp4 115.02MB
353 NN LSTMs Part 7 (output gate).mp4 49.50MB
354 NN LSTMs Part 8 (Practicals #1).mp4 219.76MB
355 NN LSTMs Part 9 (Practicals #2).mp4 90.07MB
356 NN LSTMs Part 10 (Practicals #3).mp4 112.51MB
357 NN GRU Part 1.mp4 19.82MB
358 NN GRU Part 2.mp4 146.16MB
359 NN GRU Part 3 (reset gate).mp4 41.27MB
35 Why Sampling is important.mp4 17.00MB
360 NN GRU Part 4 (update gate).mp4 44.60MB
361 NN GRU Part 5 (Practicals).mp4 105.53MB
362 NN Bi-Directional LSTMs.mp4 116.33MB
364 Transformer Types.mp4 127.41MB
365 Introduction to Transformers.mp4 145.80MB
366 Self Attention.mp4 125.40MB
367 Encoder Architecture.mp4 47.99MB
368 Contextual Embeddings.mp4 30.20MB
369 Decoder Architecture.mp4 31.39MB
36 Types of Sampling.mp4 20.74MB
370 Introduction to BERT.mp4 72.09MB
371 Configurations of BERT.mp4 25.37MB
372 BERT Fine Tuning.mp4 21.34MB
373 BERT Pre Tuning (Masked LM).mp4 50.10MB
374 BERT Input Embeddings.mp4 62.12MB
375 ARLM vs AELM.mp4 43.40MB
376 RoBERTa.mp4 60.41MB
377 DistilBERT.mp4 92.38MB
378 AlBERT.mp4 112.40MB
379 Introduction to GPT (Decoder Only).mp4 30.54MB
37 Cluster Random Sampling.mp4 30.59MB
380 GPT Architecture.mp4 27.73MB
381 GPT Masked Multi Head Attention.mp4 85.96MB
382 GPT Blocks.mp4 48.92MB
383 GPT Training.mp4 54.63MB
385 LLM Basics Context Window.mp4 56.20MB
386 LLM Basics Prompt.mp4 63.94MB
387 LLM Basics Prompt Engineering.mp4 119.88MB
388 LLM Basics Prompt Tuning.mp4 57.09MB
389 LLM Basics Prompt Structures.mp4 106.90MB
38 Probability Sampling.mp4 40.69MB
390 RAGs Introduction to RAG.mp4 5.72MB
391 RAGs What and Why.mp4 119.24MB
392 RAGs Use Cases.mp4 138.77MB
393 RAGs Paper Explanation.mp4 53.32MB
394 RAGs Architecture Explanation.mp4 106.51MB
395 RAGs Detailed Architect Walk-thru.mp4 74.79MB
396 RAGs Practical Use Cases.mp4 256.53MB
397 LangChain.mp4 83.30MB
398 Intro Prompt Engineering.mp4 80.96MB
399 Types of Prompting.mp4 90.41MB
39 Non probability sampling.mp4 31.45MB
400 Few Shot Limitations.mp4 50.66MB
401 Chain of Thoughts Prompting.mp4 45.02MB
402 Vector Databases.mp4 86.44MB
403 Vector Database vs Vector Index.mp4 60.82MB
404 How Vector Databases works.mp4 72.07MB
405 Vector Database (Practicals).mp4 260.83MB
406 LSH.mp4 85.36MB
407 Model Overview Ollama.mp4 310.61MB
408 Getting Started Ollama.mp4 316.98MB
409 Model Testing Ollama.mp4 384.54MB
40 Population Sampling.mp4 56.37MB
410 Python Implementation Ollama.mp4 131.64MB
411 RAG Systems Ollama.mp4 69.04MB
412 RAG Systems (Practicals) Ollama.mp4 219.26MB
413 Model Overview LLM APIs.mp4 198.55MB
414 RAG Systems with xAI LLM APIs.mp4 34.15MB
415 RAG Sys w xAI (Practicals) LLM APIs.mp4 141.55MB
416 Deployment Basics.mp4 27.39MB
417 Introduction to Flask.mp4 72.20MB
418 Flask Basic App.mp4 88.42MB
419 Model Building (Breast Cancer Predict).mp4 135.84MB
41 Why n-1 and not n.mp4 32.83MB
420 Flask App (Breast Cancer Prediction).mp4 187.83MB
421 AWS.mp4 58.89MB
422 AWS Deploy (Breast Cancer Predict).mp4 238.25MB
423 Introduction to Data Engineering.mp4 3.25MB
424 What is ETL.mp4 39.27MB
425 ETL Tools.mp4 25.14MB
426 What is Data Warehouse.mp4 26.63MB
427 Benefits of Data Warehouse.mp4 18.90MB
428 Data Warehouse Structure.mp4 19.13MB
429 Why do we need Staging.mp4 30.38MB
42 Descriptive Analytics (Agenda).mp4 4.97MB
430 What are Data Marts.mp4 11.84MB
431 Data Lake.mp4 22.44MB
432 Data lake vs Data Warehouse.mp4 28.52MB
433 Elements of Datalake.mp4 14.58MB
434 ChatScholar (EdTech Project).mp4 399.70MB
435 Research RAG Chatbot.mp4 295.13MB
436 Auto AI Claims Processing - Gen AI.mp4 403.93MB
437 PDF RAG(s) Chatbot Web Scrape Data.mp4 309.70MB
438 AI Career Coach Part 1.mp4 93.98MB
439 AI Career Coach Part 2.mp4 112.49MB
43 Measures of Central Tendency.mp4 9.09MB
440 AI Career Coach Part 3.mp4 223.18MB
441 Sustainability Chatbot (GROK AI).mp4 379.46MB
442 ML Interview Prep.mp4 49.21MB
443 ML Interview #1.mp4 178.00MB
444 ML Interview #2.mp4 204.99MB
445 ML Interview #3.mp4 145.65MB
446 ML Interview #4.mp4 143.18MB
447 ML Interview #5.mp4 98.43MB
448 ML Interview #6.mp4 151.35MB
449 ML Interview #7.mp4 117.27MB
44 Mean.mp4 26.98MB
450 ML Interview #8.mp4 137.44MB
451 ML Interview #9.mp4 182.60MB
452 ML Interview #10.mp4 136.39MB
453 DL Interview #1.mp4 162.63MB
454 DL Interview #2.mp4 110.60MB
455 DL Interview #3.mp4 94.54MB
456 DL Interview #4.mp4 102.47MB
457 DL Interview #5.mp4 118.68MB
458 DL Interview #6.mp4 148.35MB
459 DL Interview #7.mp4 55.11MB
45 Median.mp4 36.45MB
460 DL Interview #8.mp4 139.98MB
461 DL Interview #9.mp4 58.59MB
462 DL Interview #10.mp4 136.64MB
463 Gen AI Interview #1.mp4 76.82MB
464 Gen AI Interview #2.mp4 90.47MB
465 Gen AI Interview #3.mp4 157.71MB
466 Gen AI Interview #4.mp4 126.79MB
467 Gen AI Interview #5.mp4 122.87MB
468 Gen AI Interview #6.mp4 144.05MB
469 Gen AI Interview #7.mp4 116.41MB
46 Mode.mp4 28.12MB
470 Gen AI Interview #8.mp4 150.24MB
471 Gen AI Interview #9.mp4 149.16MB
472 Gen AI Interview #10.mp4 156.04MB
473 Gen AI Interview #2.mp4 90.47MB
474 Gen AI Interview #3.mp4 157.71MB
475 Gen AI Interview #4.mp4 126.79MB
476 Gen AI Interview #5.mp4 122.87MB
477 Gen AI Interview #6.mp4 144.05MB
478 Gen AI Interview #7.mp4 116.41MB
479 Gen AI Interview #8.mp4 150.24MB
47 Measures of Dispersion.mp4 21.57MB
480 Gen AI Interview #9.mp4 149.16MB
481 Gen AI Interview #10.mp4 156.04MB
48 Range.mp4 7.26MB
49 IQR.mp4 19.47MB
50 Variance Standard Deviation.mp4 56.38MB
51 Mean Deviation.mp4 18.94MB
52 Probability (Agenda).mp4 4.67MB
53 Probability.mp4 41.99MB
54 Addition Rule.mp4 45.38MB
55 Independent Events.mp4 25.97MB
56 Cumulative Probability.mp4 29.42MB
57 Conditional Probability.mp4 57.91MB
58 Bayes Theorem 1.mp4 9.45MB
59 Bayes Theorem 2.mp4 24.97MB
5 Let's install Python together!!.mp4 273.19MB
60 Probability Distrubution (Agenda).mp4 10.38MB
61 Uniform Distribution.mp4 44.12MB
62 Binomial Distribution.mp4 70.84MB
63 Poisson Distribution.mp4 18.84MB
64 Normal Distribution Part 1.mp4 77.48MB
65 Normal Distribution Part 2.mp4 34.26MB
66 Skewness.mp4 25.21MB
67 Kurtosis.mp4 14.06MB
68 Calc Prob w Z-score - Normal Distrib Pt 1.mp4 49.64MB
69 Calc Prob w Z-score - Normal Distrib Pt 2.mp4 46.98MB
6 Google Colab, what's that.mp4 51.36MB
70 Calc Prob w Z-score - Normal Distrib Pt 3.mp4 27.00MB
71 Covariance & Correlation (Agenda).mp4 2.68MB
72 Covariance.mp4 54.35MB
73 Correlation.mp4 86.55MB
74 Covariance VS Correlation.mp4 26.64MB
75 Hypothesis Testing.mp4 52.89MB
76 Tailed Tests.mp4 16.83MB
77 p-value.mp4 32.00MB
78 Types of Test.mp4 26.87MB
79 T Test.mp4 51.26MB
7 Let's leverage chatGPT for help!!.mp4 70.76MB
80 Z Test.mp4 67.39MB
81 Chi Square Test.mp4 67.34MB
82 ANOVA.mp4 68.94MB
83 Correlation Test (Practicals).mp4 44.60MB
85 Agenda.mp4 15.24MB
86 DA,DS Processes.mp4 24.27MB
87 What is EDA.mp4 27.14MB
88 Visualization.mp4 30.52MB
89 Steps involved in EDA (Data Sourcing).mp4 28.80MB
8 Introduction to Python.mp4 94.25MB
90 Steps involved in EDA (Data Cleaning).mp4 30.44MB
91 Handle Missing Values (Theory).mp4 58.52MB
92 Handle Missing Values (Practicals).mp4 92.11MB
93 Feature Scaling (Theory).mp4 74.23MB
94 Standardization Example.mp4 22.66MB
95 Normalization Example.mp4 13.95MB
96 Feature Scaling (Practicals).mp4 111.56MB
97 Outlier Treatment (Theory).mp4 59.81MB
98 Outlier Treatment (Practicals).mp4 102.74MB
99 Invalid Data.mp4 42.51MB
9 Variables & Keywords.mp4 352.33MB