Torrent Info
Title Beginning Data Science (Track)
Category
Size 3.59GB

Files List
Please note that this page does not hosts or makes available any of the listed filenames. You cannot download any of those files from here.
[TGx]Downloaded from torrentgalaxy.to .txt 585B
0 460B
0.Importing Data.webm 9.01MB
0.Welcome.webm 39.76MB
01. Accessing an API with Python.webm 32.28MB
01. An Intelligent Spider.webm 19.85MB
01. Cleaning A Spreadsheet.webm 35.38MB
01. Complex Relationships.webm 18.73MB
01. Controlling Conversion.webm 19.70MB
01. Everyone Loves Charlotte.webm 27.89MB
01. Examples and Features.webm 12.81MB
01. Functions.webm 30.28MB
01. Indexing.webm 48.99MB
01. Installation and Creating Your First Notebook.webm 17.66MB
01. Installing scikit-learn using Anaconda.webm 18.02MB
01. Introducing Tuples.webm 7.81MB
01. Iterate over Dictionaries.webm 6.28MB
01. Iteration.webm 11.04MB
01. Lets Chat About Sequences.webm 11.60MB
01. Making Better Decisions with Data Analysis.webm 22.24MB
01. Moving Forward.webm 4.88MB
01. New Way of Thinking.webm 55.23MB
01. Numeric.webm 27.06MB
01. Our Data Set - Flower Power.webm 19.09MB
01. Packing.webm 13.49MB
01. Problem Discussion.webm 13.14MB
01. Project Breakdown.webm 17.06MB
01. Recap of Functions.webm 11.44MB
01. Sequence Operations.webm 7.81MB
01. Summarizing Data Maximum, Minimum, Range.webm 17.91MB
01. The Application.webm 18.62MB
01. The Project.webm 17.47MB
01. Understanding Metrics.webm 28.73MB
01. Welcome.webm 46.30MB
01. Welcome.webm 35.87MB
01. Welcome.webm 19.16MB
01. Welcome.webm 16.24MB
01. Welcome to Matplotlib.webm 13.19MB
01. What Are Objects And Classes.webm 29.96MB
01. What is a dictionary.webm 15.55MB
01. What is Anaconda and why use it.webm 21.77MB
01. What Is Cleaning Data.webm 16.69MB
01. What is Data Scraping.webm 31.01MB
01. What is Machine Learning.webm 22.40MB
01. What Problems Does Netflix Have.webm 29.49MB
01. Where is it Being Used.webm 14.11MB
02. Add Items.webm 10.15MB
02. Boolean Array Indexing.webm 45.36MB
02. Characteristics of Big Data.webm 10.04MB
02. Cleaning A Spreadsheet Part 2.webm 21.28MB
02. Comparing and Combining Dice.webm 17.75MB
02. Context.webm 17.35MB
02. Creation.webm 10.18MB
02. Data is Everywhere.webm 25.82MB
02. Decision Process.webm 20.41MB
02. Defining a Function.webm 3.93MB
02. Defining Terms.webm 20.44MB
02. Dictionary Syntax and KeyValue Pairs.webm 12.19MB
02. Functions Recap and Cheat Sheet.md 1.38KB
02. Gather Information.webm 12.63MB
02. Gathering Weather Data.webm 8.34MB
02. Getting Setup.webm 17.49MB
02. Getting Started with Charting.webm 10.19MB
02. How Does Netflix Apply Big Data Tools to Solve these Problems.webm 17.38MB
02. Installing Anaconda.webm 17.66MB
02. Installing Scrapy.webm 11.90MB
02. Iterating with Basic For Loops.webm 8.72MB
02. Labels and Classifiers.webm 10.90MB
02. Lets Make a Class!.webm 7.62MB
02. Loading a Dataset.webm 14.41MB
02. Math.webm 13.95MB
02. Mutability.webm 14.51MB
02. Packing, a Practical Example.webm 5.36MB
02. Packing with Dictionaries.webm 6.16MB
02. Recap.webm 8.99MB
02. Returning Values.webm 24.82MB
02. Running Code in Cells.webm 12.40MB
02. Running Scripts.webm 14.24MB
02. Scatter Plot.webm 17.23MB
02. Scraping APIs.webm 22.92MB
02. Slices.webm 6.99MB
02. Strings and Operators.webm 14.02MB
02. Summarizing Data Mean, Median, Mode.webm 9.26MB
02. Super-Duper!.webm 16.84MB
02. Supervised and Unsupervised Learning.webm 29.39MB
02. Types of Data.webm 22.40MB
02. Universal Functions.webm 42.94MB
02. Web Page Anatomy.webm 18.79MB
03. Accessing Keys and Values.webm 6.29MB
03. Addition.webm 13.26MB
03. All About Returns.webm 8.22MB
03. Analyzing Data Spread.webm 9.54MB
03. Analyzing the Data.webm 14.43MB
03. Bad Data Types.webm 17.52MB
03. Beautiful Soup.webm 27.18MB
03. Branch and Loop.webm 19.29MB
03. Calling a Function.webm 3.11MB
03. Calling the API.webm 25.47MB
03. Cleaning A CSV.webm 22.81MB
03. Crawling Spiders.webm 19.59MB
03. Creating a Spreadsheet.webm 17.91MB
03. Display the List.webm 13.87MB
03. Domain Data Storage.webm 34.58MB
03. Emulating Built-ins.webm 24.24MB
03. Expecting Exceptions.webm 18.57MB
03. Giving a Hand.webm 19.73MB
03. Graphs and Charts.webm 25.31MB
03. Histogram.webm 18.01MB
03. Introducing Arrays.webm 38.46MB
03. Iterating with Enumerate.webm 7.08MB
03. Len, Min, and Max.webm 4.42MB
03. Machine Learning Frameworks.webm 18.93MB
03. Making Predictions with a Classifier.webm 11.34MB
03. Methods.webm 14.04MB
03. Multiple Superclasses.webm 31.27MB
03. Problem Summary and Presentation.webm 8.88MB
03. Routines in Action.webm 38.46MB
03. Slicing.webm 28.20MB
03. Split and Join.webm 13.41MB
03. String Methods.webm 13.39MB
03. The Importance of Big Data.webm 22.77MB
03. The Legend of Charting.webm 10.76MB
03. The Python Shell.webm 20.53MB
03. Tuples vs. Lists.md 2.06KB
03. Unpacking.webm 4.50MB
03. Unpacking with Dictionaries.md 1.16KB
03. Using conda to Install Packages.webm 9.35MB
03. Using Scrapers for Site Testing.webm 22.21MB
03. Wrapping Up.webm 27.63MB
04. Arguments and Parameters.webm 6.65MB
04. Booleans.webm 17.58MB
04. Box Plot.webm 14.64MB
04. Chart Types & Reasons to Use.webm 18.92MB
04. Cleaning A CSV Part 2.webm 24.40MB
04. Common Issues with Data Scraping.md 1.67KB
04. Creating the Study Log.webm 29.11MB
04. Domain Computations.webm 29.31MB
04. Exploring Our New Problems.webm 41.33MB
04. Family Tree.webm 20.08MB
04. Getting Good Data is Hard.webm 37.57MB
04. Handle Exceptions.webm 19.96MB
04. Indexing.webm 31.57MB
04. Is Our Data Normal.webm 10.71MB
04. Iterating with Ranges.webm 6.38MB
04. Lets Talk About Scope.webm 10.96MB
04. Machine Learning Review.webm 7.79MB
04. Manipulation.webm 43.46MB
04. Membership Testing.webm 4.12MB
04. Method Arguments.webm 13.49MB
04. miniconda.webm 20.41MB
04. More Soup in the Tureen.webm 23.56MB
04. Multidimensional Lists.webm 14.17MB
04. Other Languages.webm 20.20MB
04. Plotting.webm 38.74MB
04. Presenting Your Findings.webm 30.37MB
04. Raising Exceptions.webm 15.95MB
04. Saving the Data.webm 22.30MB
04. Subclassing Built-ins.webm 28.47MB
04. Syntax and Errors.webm 23.06MB
04. The Endless Web.webm 38.37MB
04. Tuple Syntax.md 2.58KB
04. Unpacking, a Practical Example.webm 5.00MB
04. Update and Mutate Dictionaries.webm 6.29MB
04. Wrap Up.webm 6.09MB
04. Yatzy Scoring.webm 14.14MB
05. Being a Good Citizen.webm 31.17MB
05. Cleaner Code Through Refactoring.webm 21.10MB
05. Cleaning A CSV Part 3.webm 23.96MB
05. Constructicons.webm 19.30MB
05. Count and Index.webm 6.86MB
05. Deletion.webm 14.60MB
05. Design.webm 31.53MB
05. Domain Infrastructure.webm 17.49MB
05. Function Gotchas.md 1.56KB
05. If, Else and Elif.webm 22.88MB
05. Multidimensional Arrays.webm 35.33MB
05. No Problem.webm 17.91MB
05. Saving Your Work.webm 12.02MB
05. Variables.webm 20.28MB
05. Visualizing Data.webm 15.99MB
05. Where to Now.webm 15.72MB
05. While Loops.webm 24.61MB
05. Wrapping Up.webm 7.32MB
06. Charting Our Data Part 1.webm 9.12MB
06. Cleaning A CSV Part 4.webm 23.67MB
06. Code Challenges.md 908B
06. Code Samples Membership Testing, Count, and Index.md 1.19KB
06. Comparisons.webm 25.42MB
06. For Loops.webm 11.23MB
06. Multiple Arguments and Parameters.webm 5.99MB
06. Special Methods.webm 19.91MB
06. Wrapping Up.webm 18.82MB
07. Charting Our Data Part 2.webm 12.63MB
07. Concatenation and Multiplication.webm 4.42MB
07. Input and Coding Style.webm 25.83MB
08. Sequence Operations Cheat Sheet.md 2.70KB
1 18B
1.Manipulation.webm 5.47MB
1.Meet Series.webm 11.99MB
10 27.09KB
100 668.93KB
101 792.05KB
102 962.99KB
103 160.64KB
104 313.50KB
105 782.21KB
106 11.69KB
107 50.48KB
108 282.29KB
109 459.41KB
11 178.97KB
110 369.48KB
111 407.34KB
112 500.90KB
113 583.45KB
114 599.29KB
115 779.86KB
116 848.53KB
117 883.57KB
118 913.26KB
119 984.44KB
12 142.57KB
120 1008.15KB
121 56.20KB
122 137.87KB
123 294.89KB
124 322.00KB
125 521.76KB
126 526.46KB
127 608.60KB
128 627.79KB
129 760.48KB
13 131.03KB
130 827.43KB
131 876.32KB
132 199.63KB
133 378.44KB
134 380.59KB
135 611.91KB
136 833.25KB
137 1005.76KB
138 11.19KB
139 97.99KB
14 100.00KB
140 410.93KB
141 413.63KB
142 575.69KB
143 680.04KB
144 790.62KB
145 978.30KB
146 39.29KB
147 100.69KB
148 245.99KB
149 292.25KB
15 691.00KB
150 830.84KB
151 841.17KB
152 872.00KB
153 978.18KB
154 468.83KB
155 661.55KB
156 759.41KB
157 901.70KB
158 1010.96KB
159 13.85KB
16 430.66KB
160 54.32KB
161 126.58KB
162 290.39KB
163 680.91KB
164 797.92KB
165 191.76KB
166 198.24KB
167 217.53KB
168 390.13KB
169 695.27KB
17 9.65KB
170 943.54KB
171 10.51KB
172 141.91KB
173 356.87KB
174 638.46KB
175 723.65KB
176 725.83KB
177 737.19KB
178 861.25KB
179 934.37KB
18 439.49KB
180 5.28KB
181 540.16KB
182 654.10KB
183 1022.22KB
184 126.71KB
185 231.42KB
186 512.76KB
187 593.20KB
188 597.71KB
189 903.19KB
19 483.69KB
190 1022.10KB
191 71.54KB
192 909.23KB
193 776.87KB
194 798.56KB
2 1.09KB
2.Combining DataFrames.webm 8.95MB
2.Vectorization and Broadcasting Review.webm 13.69MB
20 33.01KB
21 853.43KB
22 70.04KB
23 645.43KB
24 732.80KB
25 37.71KB
26 524.99KB
27 623.31KB
28 708.01KB
29 46.56KB
3 9.59KB
3.Meet DataFrames.webm 11.60MB
3.Until Next Time.webm 13.71MB
30 279.46KB
31 547.17KB
32 819.34KB
33 107.85KB
34 373.94KB
35 843.50KB
36 966.53KB
37 170.81KB
38 181.91KB
39 542.52KB
4 1.54KB
4.Onwards.webm 4.77MB
40 597.42KB
41 707.29KB
42 189.06KB
43 401.23KB
44 617.91KB
45 782.92KB
46 36.26KB
47 342.20KB
48 449.01KB
49 963.93KB
5 7.70KB
50 82.93KB
51 119.89KB
52 198.07KB
53 232.08KB
54 610.04KB
55 619.19KB
56 718.02KB
57 783.27KB
58 809.43KB
59 232.99KB
6 37.18KB
60 738.35KB
61 926.24KB
62 480.99KB
63 570.97KB
64 600.08KB
65 606.82KB
66 737.48KB
67 824.04KB
68 942.46KB
69 35.92KB
7 23.08KB
70 94.06KB
71 150.15KB
72 277.28KB
73 304.35KB
74 415.72KB
75 717.50KB
76 725.56KB
77 857.89KB
78 934.23KB
79 76.64KB
8 4.28KB
80 84.76KB
81 180.01KB
82 218.34KB
83 271.99KB
84 386.48KB
85 442.19KB
86 1007.75KB
87 1018.63KB
88 88.30KB
89 90.04KB
9 2.66KB
90 90.60KB
91 256.22KB
92 345.02KB
93 351.44KB
94 434.99KB
95 495.82KB
96 522.19KB
97 525.19KB
98 538.50KB
99 630.18KB
About This Course.png 300.66KB
Accessing a DataFrame.png 718.01KB
Accessing a Series.png 680.00KB
Beginning Data Science.md 6.65KB
Combining DataFrames.png 1.21MB
Common Issues with Data Scraping.md 1.67KB
Creating a DataFrame.png 465.05KB
Creating a Series.png 511.47KB
Data Analysis Basics.md 3.91KB
Data from APIs.md 1.02KB
Exploration Methods.png 1.22MB
Functions, Packing, and Unpacking.md 4.17KB
Grouping.png 945.93KB
Handling Duplicated and Missing Data.png 862.95KB
intro_matplotlib.zip 265.59KB
intro_matplotlib.zip 265.59KB
intro_matplotlib.zip 265.59KB
Introducing Dictionaries.md 2.89KB
Introducing Lists.md 3.54KB
Introducing Tuples.md 1.83KB
Introduction to Anaconda.md 1.13KB
Introduction to Big Data.md 4.20KB
Introduction to Data Visualization with Matplotlib.md 4.51KB
Introduction to NumPy.md 4.41KB
Jupyter Notebooks.md 1.24KB
Learning SQL.md 495B
Machine Learning Basics.md 3.36KB
Manipulating Text.png 725.39KB
Manipulation Techniques.png 1.24MB
marathon_results_2017.csv 4.00MB
ML-machine-learning-basics.zip 614B
More Visualization.md 1.01KB
Object-Oriented+Python+2.zip 130.13KB
Object-Oriented+Python+2.zip 130.13KB
Object-Oriented+Python+2.zip 130.13KB
Object-Oriented+Python+2.zip 130.13KB
Object-Oriented Python.md 7.13KB
Optional Challenge #1 - Top Referrers.png 393.99KB
Optional Challenge #2 - Update Users.png 399.39KB
Optional Challenge #3 - Verified Email List.png 419.33KB
Preparing Data for Analysis.md 2.31KB
preparing-data-for-analysis-student.zip 38.00KB
Python Basics.md 5.63KB
python-introducing-pandas-1.2.0.zip 88.32KB
python-intro-to-numpy.zip 57.71KB
python-intro-to-numpy.zip 57.71KB
python-intro-to-numpy.zip 57.71KB
Python Sequences.md 3.48KB
scraping_data_from_the_web.zip 37.26KB
scraping_data_from_the_web.zip 37.26KB
scraping_data_from_the_web.zip 37.26KB
Scraping Data From the Web.md 4.08KB
Selecting Data.png 751.58KB
Series Vectorization and Broadcasting.png 553.42KB
TutsNode.com.txt 63B
Distribution statistics by country
Russia (RU) 1
China (CN) 1
Total 2
IP List List of IP addresses which were distributed this torrent