Torrent Info
Title Tensorflow 2.0 Deep Learning and Artificial Intelligence
Category
Size 6.89GB
Files List
Please note that this page does not hosts or makes available any of the listed filenames. You cannot download any of those files from here.
[TGx]Downloaded from torrentgalaxy.to .txt 585B
0 66B
1 260B
1. Artificial Neural Networks Section Introduction.mp4 29.82MB
1. Artificial Neural Networks Section Introduction.srt 7.90KB
1. Beginner's Coding Tips.mp4 75.71MB
1. Beginner's Coding Tips.srt 19.02KB
1. Deep Reinforcement Learning Section Introduction.mp4 38.05MB
1. Deep Reinforcement Learning Section Introduction.srt 8.60KB
1. Differences Between Tensorflow 1.x and Tensorflow 2.x.mp4 38.68MB
1. Differences Between Tensorflow 1.x and Tensorflow 2.x.srt 12.20KB
1. Embeddings.mp4 52.56MB
1. Embeddings.srt 16.20KB
1. GAN Theory.mp4 87.16MB
1. GAN Theory.srt 20.71KB
1. Gradient Descent.mp4 34.92MB
1. Gradient Descent.srt 9.77KB
1. How to Choose Hyperparameters.mp4 37.92MB
1. How to Choose Hyperparameters.srt 8.71KB
1. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4 150.59MB
1. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.srt 14.69KB
1. How to Succeed in this Course (Long Version).mp4 35.22MB
1. How to Succeed in this Course (Long Version).srt 14.61KB
1. Introduction.mp4 34.81MB
1. Introduction.srt 5.70KB
1. Intro to Google Colab, how to use a GPU or TPU for free.mp4 53.84MB
1. Intro to Google Colab, how to use a GPU or TPU for free.srt 14.13KB
1. Mean Squared Error.mp4 33.77MB
1. Mean Squared Error.srt 11.21KB
1. Recommender Systems with Deep Learning Theory.mp4 68.66MB
1. Recommender Systems with Deep Learning Theory.srt 17.40KB
1. Reinforcement Learning Stock Trader Introduction.mp4 26.04MB
1. Reinforcement Learning Stock Trader Introduction.srt 6.84KB
1. Sequence Data.mp4 90.15MB
1. Sequence Data.srt 24.02KB
1. Transfer Learning Theory.mp4 55.13MB
1. Transfer Learning Theory.srt 10.66KB
1. What is a Web Service (Tensorflow Serving pt 1).mp4 27.78MB
1. What is a Web Service (Tensorflow Serving pt 1).srt 7.71KB
1. What is Convolution (part 1).mp4 79.77MB
1. What is Convolution (part 1).srt 20.16KB
1. What is Machine Learning.mp4 65.50MB
1. What is Machine Learning.srt 18.45KB
1. What is the Appendix.mp4 16.38MB
1. What is the Appendix.srt 3.75KB
10 1023.65KB
10. ANN for Regression.mp4 69.27MB
10. ANN for Regression.srt 12.78KB
10. Batch Normalization.mp4 21.11MB
10. Batch Normalization.srt 6.53KB
10. Epsilon-Greedy.mp4 40.11MB
10. Epsilon-Greedy.srt 7.49KB
10. GRU and LSTM (pt 2).mp4 50.36MB
10. GRU and LSTM (pt 2).srt 14.28KB
10. Help! Why is the code slower on my machine.mp4 42.46MB
10. Help! Why is the code slower on my machine.srt 11.72KB
10. Why Keras.mp4 26.51MB
10. Why Keras.srt 5.77KB
100 763.80KB
101 119.38KB
102 231.53KB
103 26.77KB
104 292.89KB
105 305.20KB
106 438.91KB
107 186.10KB
108 280.15KB
109 312.70KB
11 430.21KB
11. A More Challenging Sequence.mp4 64.65MB
11. A More Challenging Sequence.srt 9.60KB
11. Improving CIFAR-10 Results.mp4 72.91MB
11. Improving CIFAR-10 Results.srt 13.17KB
11. Q-Learning.mp4 61.83MB
11. Q-Learning.srt 17.91KB
11. Suggestion Box.mp4 27.12MB
11. Suggestion Box.srt 4.75KB
110 901.13KB
111 241.71KB
112 683.72KB
113 229.97KB
114 373.09KB
115 730.25KB
116 899.63KB
117 497.62KB
118 979.29KB
119 19.09KB
12 474.85KB
12. Deep Q-Learning DQN (pt 1).mp4 56.27MB
12. Deep Q-Learning DQN (pt 1).srt 16.43KB
12. Demo of the Long Distance Problem.mp4 124.05MB
12. Demo of the Long Distance Problem.srt 23.06KB
120 23.79KB
121 985.73KB
122 325.09KB
123 714.83KB
124 32.91KB
125 750.86KB
126 887.27KB
127 913.42KB
128 433.49KB
129 587.24KB
13 144.86KB
13. Deep Q-Learning DQN (pt 2).mp4 49.60MB
13. Deep Q-Learning DQN (pt 2).srt 13.21KB
13. RNN for Image Classification (Theory).mp4 29.12MB
13. RNN for Image Classification (Theory).srt 5.99KB
130 416.94KB
131 639.12KB
14 236.64KB
14. How to Learn Reinforcement Learning.mp4 37.70MB
14. How to Learn Reinforcement Learning.srt 7.62KB
14. RNN for Image Classification (Code).mp4 23.30MB
14. RNN for Image Classification (Code).srt 4.19KB
15 298.03KB
15. Stock Return Predictions using LSTMs (pt 1).mp4 67.11MB
15. Stock Return Predictions using LSTMs (pt 1).srt 15.71KB
16 721.01KB
16. Stock Return Predictions using LSTMs (pt 2).mp4 32.97MB
16. Stock Return Predictions using LSTMs (pt 2).srt 6.50KB
17 123.49KB
17. Stock Return Predictions using LSTMs (pt 3).mp4 67.34MB
17. Stock Return Predictions using LSTMs (pt 3).srt 14.42KB
18 301.93KB
18. Other Ways to Forecast.mp4 28.33MB
18. Other Ways to Forecast.srt 7.18KB
19 952.59KB
2 245B
2. Anaconda Environment Setup.mp4 180.90MB
2. Anaconda Environment Setup.srt 19.96KB
2. Beginners Rejoice The Math in This Course is Optional.mp4 68.52MB
2. Beginners Rejoice The Math in This Course is Optional.srt 17.02KB
2. Binary Cross Entropy.mp4 23.68MB
2. Binary Cross Entropy.srt 7.26KB
2. BONUS Lecture.mp4 37.79MB
2. BONUS Lecture.srt 7.87KB
2. Code Preparation (Classification Theory).mp4 59.80MB
2. Code Preparation (Classification Theory).srt 20.26KB
2. Code Preparation (NLP).mp4 57.04MB
2. Code Preparation (NLP).srt 16.82KB
2. Constants and Basic Computation.mp4 40.30MB
2. Constants and Basic Computation.srt 9.63KB
2. Data and Environment.mp4 50.97MB
2. Data and Environment.srt 15.69KB
2. Elements of a Reinforcement Learning Problem.mp4 98.59MB
2. Elements of a Reinforcement Learning Problem.srt 26.19KB
2. Forecasting.mp4 46.75MB
2. Forecasting.srt 13.35KB
2. GAN Code.mp4 78.30MB
2. GAN Code.srt 14.88KB
2. How to Code Yourself (part 1).mp4 71.85MB
2. How to Code Yourself (part 1).srt 22.13KB
2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4 105.61MB
2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.srt 31.63KB
2. Outline.mp4 73.67MB
2. Outline.srt 17.10KB
2. Recommender Systems with Deep Learning Code.mp4 58.81MB
2. Recommender Systems with Deep Learning Code.srt 11.70KB
2. Some Pre-trained Models (VGG, ResNet, Inception, MobileNet).mp4 31.57MB
2. Some Pre-trained Models (VGG, ResNet, Inception, MobileNet).srt 7.29KB
2. Stochastic Gradient Descent.mp4 22.97MB
2. Stochastic Gradient Descent.srt 5.40KB
2. Tensorflow 2.0 in Google Colab.mp4 40.65MB
2. Tensorflow 2.0 in Google Colab.srt 9.48KB
2. Tensorflow Serving pt 2.mp4 104.99MB
2. Tensorflow Serving pt 2.srt 20.42KB
2. What is Convolution (part 2).mp4 22.27MB
2. What is Convolution (part 2).srt 7.25KB
2. Where Are The Exercises.mp4 25.98MB
2. Where Are The Exercises.srt 5.41KB
20 335.23KB
21 420.79KB
22 91.99KB
23 154.55KB
24 309.91KB
25 554.63KB
26 567.77KB
27 578.01KB
28 742.93KB
29 353.06KB
3 545.40KB
3.1 Colab Notebooks.html 157B
3.2 Github Link.html 120B
3. Autoregressive Linear Model for Time Series Prediction.mp4 71.70MB
3. Autoregressive Linear Model for Time Series Prediction.srt 14.23KB
3. Categorical Cross Entropy.mp4 31.70MB
3. Categorical Cross Entropy.srt 9.62KB
3. Classification Notebook.mp4 54.54MB
3. Classification Notebook.srt 9.40KB
3. Forward Propagation.mp4 46.70MB
3. Forward Propagation.srt 12.20KB
3. How to Code Yourself (part 2).mp4 49.14MB
3. How to Code Yourself (part 2).srt 12.98KB
3. Installing NVIDIA GPU-Accelerated Deep Learning Libraries on your Home Computer.mp4 167.30MB
3. Installing NVIDIA GPU-Accelerated Deep Learning Libraries on your Home Computer.srt 32.01KB
3. Large Datasets and Data Generators.mp4 36.56MB
3. Large Datasets and Data Generators.srt 8.80KB
3. Links to TF2.0 Notebooks.html 8.11KB
3. Machine Learning and AI Prerequisite Roadmap (pt 1).mp4 79.71MB
3. Machine Learning and AI Prerequisite Roadmap (pt 1).srt 16.11KB
3. Momentum.mp4 34.25MB
3. Momentum.srt 7.84KB
3. Replay Buffer.mp4 24.04MB
3. Replay Buffer.srt 6.94KB
3. States, Actions, Rewards, Policies.mp4 43.33MB
3. States, Actions, Rewards, Policies.srt 11.32KB
3. Tensorflow Lite (TFLite).mp4 42.59MB
3. Tensorflow Lite (TFLite).srt 11.03KB
3. Text Preprocessing.mp4 28.76MB
3. Text Preprocessing.srt 6.15KB
3. Uploading your own data to Google Colab.mp4 73.59MB
3. Uploading your own data to Google Colab.srt 11.98KB
3. Variables and Gradient Tape.mp4 56.05MB
3. Variables and Gradient Tape.srt 13.58KB
3. What is Convolution (part 3).mp4 27.64MB
3. What is Convolution (part 3).srt 8.01KB
3. Where to get the code.mp4 62.91MB
3. Where to get the code.srt 15.36KB
30 492.17KB
31 3.19KB
32 673.47KB
33 909.01KB
34 488.94KB
35 512.71KB
36 362.37KB
37 95.66KB
38 172.05KB
39 208.31KB
4 852.44KB
4. 2 Approaches to Transfer Learning.mp4 20.58MB
4. 2 Approaches to Transfer Learning.srt 5.96KB
4. Build Your Own Custom Model.mp4 58.55MB
4. Build Your Own Custom Model.srt 13.28KB
4. Code Preparation (Regression Theory).mp4 27.29MB
4. Code Preparation (Regression Theory).srt 9.07KB
4. Convolution on Color Images.mp4 69.44MB
4. Convolution on Color Images.srt 20.56KB
4. Machine Learning and AI Prerequisite Roadmap (pt 2).mp4 108.17MB
4. Machine Learning and AI Prerequisite Roadmap (pt 2).srt 23.01KB
4. Markov Decision Processes (MDPs).mp4 49.35MB
4. Markov Decision Processes (MDPs).srt 12.65KB
4. Program Design and Layout.mp4 25.98MB
4. Program Design and Layout.srt 8.64KB
4. Proof that the Linear Model Works.mp4 16.20MB
4. Proof that the Linear Model Works.srt 4.56KB
4. Proof that using Jupyter Notebook is the same as not using it.mp4 69.45MB
4. Proof that using Jupyter Notebook is the same as not using it.srt 14.22KB
4. Text Classification with LSTMs.mp4 50.68MB
4. Text Classification with LSTMs.srt 9.80KB
4. The Geometrical Picture.mp4 56.43MB
4. The Geometrical Picture.srt 11.51KB
4. Variable and Adaptive Learning Rates.mp4 34.85MB
4. Variable and Adaptive Learning Rates.srt 15.15KB
4. Where can I learn about Numpy, Scipy, Matplotlib, Pandas, and Scikit-Learn.mp4 38.93MB
4. Where can I learn about Numpy, Scipy, Matplotlib, Pandas, and Scikit-Learn.srt 11.53KB
4. Why is Google the King of Distributed Computing.mp4 44.93MB
4. Why is Google the King of Distributed Computing.srt 11.25KB
40 197.48KB
41 465.07KB
42 547.13KB
43 982.01KB
44 582.80KB
45 745.81KB
46 977.70KB
47 895.29KB
48 906.04KB
49 472.70KB
5 403.99KB
5. Activation Functions.mp4 80.54MB
5. Activation Functions.srt 22.64KB
5. Adam (pt 1).mp4 55.12MB
5. Adam (pt 1).srt 16.67KB
5. CNN Architecture.mp4 80.58MB
5. CNN Architecture.srt 27.89KB
5. CNNs for Text.mp4 40.40MB
5. CNNs for Text.srt 10.09KB
5. Code pt 1.mp4 39.55MB
5. Code pt 1.srt 7.21KB
5. How to Succeed in this Course.mp4 43.75MB
5. How to Succeed in this Course.srt 8.28KB
5. Is Theano Dead.mp4 40.76MB
5. Is Theano Dead.srt 12.63KB
5. Recurrent Neural Networks.mp4 83.00MB
5. Recurrent Neural Networks.srt 25.59KB
5. Regression Notebook.mp4 57.47MB
5. Regression Notebook.srt 12.13KB
5. The Return.mp4 21.13MB
5. The Return.srt 6.26KB
5. Training with Distributed Strategies.mp4 43.54MB
5. Training with Distributed Strategies.srt 8.53KB
5. Transfer Learning Code (pt 1).mp4 66.52MB
5. Transfer Learning Code (pt 1).srt 13.76KB
50 165.18KB
51 92.57KB
52 241.16KB
53 450.47KB
54 498.10KB
55 534.88KB
56 975.51KB
57 28.25KB
58 82.61KB
59 329.98KB
6 8.50KB
6. Adam (pt 2).mp4 52.76MB
6. Adam (pt 2).srt 14.48KB
6. CNN Code Preparation.mp4 76.88MB
6. CNN Code Preparation.srt 19.65KB
6. Code pt 2.mp4 68.00MB
6. Code pt 2.srt 11.75KB
6. Multiclass Classification.mp4 41.38MB
6. Multiclass Classification.srt 10.98KB
6. RNN Code Preparation.mp4 18.43MB
6. RNN Code Preparation.srt 7.14KB
6. Text Classification with CNNs.mp4 39.62MB
6. Text Classification with CNNs.srt 6.63KB
6. The Neuron.mp4 42.57MB
6. The Neuron.srt 12.46KB
6. Transfer Learning Code (pt 2).mp4 46.05MB
6. Transfer Learning Code (pt 2).srt 10.43KB
6. Using the TPU.mp4 45.24MB
6. Using the TPU.srt 6.96KB
6. Value Functions and the Bellman Equation.mp4 43.56MB
6. Value Functions and the Bellman Equation.srt 12.51KB
60 659.72KB
61 407.58KB
62 666.07KB
63 877.25KB
64 48.82KB
65 292.23KB
66 251.99KB
67 310.46KB
68 968.86KB
69 781.20KB
7 416.76KB
7. CNN for Fashion MNIST.mp4 42.79MB
7. CNN for Fashion MNIST.srt 7.99KB
7. Code pt 3.mp4 52.05MB
7. Code pt 3.srt 7.75KB
7. How does a model learn.mp4 47.95MB
7. How does a model learn.srt 14.00KB
7. How to Represent Images.mp4 70.46MB
7. How to Represent Images.srt 15.60KB
7. RNN for Time Series Prediction.mp4 74.07MB
7. RNN for Time Series Prediction.srt 11.21KB
7. What does it mean to “learn”.mp4 31.71MB
7. What does it mean to “learn”.srt 8.92KB
70 74.80KB
71 253.83KB
72 451.70KB
73 469.10KB
74 688.29KB
75 214.27KB
76 262.15KB
77 419.43KB
78 442.69KB
79 552.37KB
8 873.98KB
8. CNN for CIFAR-10.mp4 29.69MB
8. CNN for CIFAR-10.srt 5.38KB
8. Code Preparation (ANN).mp4 50.92MB
8. Code Preparation (ANN).srt 16.30KB
8. Code pt 4.mp4 52.51MB
8. Code pt 4.srt 8.37KB
8. Making Predictions.mp4 33.88MB
8. Making Predictions.srt 7.99KB
8. Paying Attention to Shapes.mp4 52.48MB
8. Paying Attention to Shapes.srt 9.88KB
8. Solving the Bellman Equation with Reinforcement Learning (pt 1).mp4 42.74MB
8. Solving the Bellman Equation with Reinforcement Learning (pt 1).srt 12.41KB
80 632.44KB
81 247.46KB
82 354.32KB
83 613.22KB
84 720.29KB
85 914.24KB
86 385.15KB
87 462.87KB
88 72.99KB
89 322.64KB
9 858.23KB
9. ANN for Image Classification.mp4 47.71MB
9. ANN for Image Classification.srt 9.93KB
9. Data Augmentation.mp4 34.95MB
9. Data Augmentation.srt 11.24KB
9. GRU and LSTM (pt 1).mp4 79.86MB
9. GRU and LSTM (pt 1).srt 22.80KB
9. Reinforcement Learning Stock Trader Discussion.mp4 16.59MB
9. Reinforcement Learning Stock Trader Discussion.srt 4.39KB
9. Saving and Loading a Model.mp4 29.73MB
9. Saving and Loading a Model.srt 4.93KB
9. Solving the Bellman Equation with Reinforcement Learning (pt 2).mp4 52.91MB
9. Solving the Bellman Equation with Reinforcement Learning (pt 2).srt 14.88KB
90 969.66KB
91 78.95KB
92 212.72KB
93 303.98KB
94 446.44KB
95 801.07KB
96 50.05KB
97 82.45KB
98 153.54KB
99 192.06KB
TutsNode.com.txt 63B
Distribution statistics by country
India (IN) 4
Bangladesh (BD) 1
Rwanda (RW) 1
Poland (PL) 1
Brazil (BR) 1
Hungary (HU) 1
United States (US) 1
Denmark (DK) 1
Total 11
IP List List of IP addresses which were distributed this torrent