Torrent Info
Title [FreeCourseSite.com] Udemy - The Data Science Course 2021 Complete Data Science Bootcamp
Category
Size 7.79GB

Files List
Please note that this page does not hosts or makes available any of the listed filenames. You cannot download any of those files from here.
001 Applying Traditional Data, Big Data, BI, Traditional Data Science and ML__en.srt 9.14KB
001 Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.mp4 21.73MB
001 A Practical Example_ What You Will Learn in This Course__en.srt 6.41KB
001 A Practical Example_ What You Will Learn in This Course.mp4 13.08MB
001 Are You Sure You're All Set_.html 513B
001 Basic NN Example (Part 1)__en.srt 4.52KB
001 Basic NN Example (Part 1).mp4 5.14MB
001 Bonus Lecture_ Next Steps.html 2.84KB
001 Business Case_ Exploring the Dataset and Identifying Predictors__en.srt 10.50KB
001 Business Case_ Exploring the Dataset and Identifying Predictors.mp4 51.38MB
001 Business Case_ Getting Acquainted with the Dataset__en.srt 10.62KB
001 Business Case_ Getting Acquainted with the Dataset.mp4 60.26MB
001 Comparison Operators__en.srt 2.50KB
001 Comparison Operators.mp4 3.12MB
001 Data Science and Business Buzzwords_ Why are there so Many___en.srt 6.77KB
001 Data Science and Business Buzzwords_ Why are there so Many_.mp4 54.72MB
001 Debunking Common Misconceptions__en.srt 5.43KB
001 Debunking Common Misconceptions.mp4 16.43MB
001 Defining a Function in Python__en.srt 2.43KB
001 Defining a Function in Python.mp4 3.23MB
001 EXERCISE - Age vs Probability.html 367B
001 Exploring the Problem with a Machine Learning Mindset__en.srt 4.63KB
001 Exploring the Problem with a Machine Learning Mindset.mp4 11.08MB
001 Finding the Job - What to Expect and What to Look for__en.srt 4.34KB
001 Finding the Job - What to Expect and What to Look for.mp4 9.48MB
001 For Loops__en.srt 6.69KB
001 For Loops.mp4 23.58MB
001 Fundamentals of Combinatorics__en.srt 1.35KB
001 Fundamentals of Combinatorics.mp4 3.21MB
001 Fundamentals of Probability Distributions__en.srt 7.92KB
001 Fundamentals of Probability Distributions.mp4 19.28MB
001 Game Plan for this Python, SQL, and Tableau Business Exercise__en.srt 5.54KB
001 Game Plan for this Python, SQL, and Tableau Business Exercise.mp4 15.80MB
001 How to Install TensorFlow 2.0__en.srt 6.52KB
001 How to Install TensorFlow 2.0.mp4 27.34MB
001 Introduction__en.srt 1.63KB
001 Introduction.mp4 2.93MB
001 Introduction to Cluster Analysis__en.srt 4.77KB
001 Introduction to Cluster Analysis.mp4 10.66MB
001 Introduction to Logistic Regression__en.srt 1.71KB
001 Introduction to Logistic Regression.mp4 4.41MB
001 Introduction to Neural Networks__en.srt 6.09KB
001 Introduction to Neural Networks.mp4 10.37MB
001 Introduction to pandas Series__en.srt 10.67KB
001 Introduction to pandas Series.mp4 22.22MB
001 Introduction to Programming__en.srt 6.93KB
001 Introduction to Programming.mp4 14.33MB
001 Introduction to Regression Analysis__en.srt 2.22KB
001 Introduction to Regression Analysis.mp4 2.92MB
001 K-Means Clustering__en.srt 6.48KB
001 K-Means Clustering.mp4 10.53MB
001 Lists__en.srt 10.05KB
001 Lists.mp4 20.50MB
001 MNIST_ The Dataset__en.srt 3.48KB
001 MNIST_ The Dataset.mp4 4.06MB
001 MNIST_ What is the MNIST Dataset___en.srt 3.52KB
001 MNIST_ What is the MNIST Dataset_.mp4 4.23MB
001 Multiple Linear Regression__en.srt 3.32KB
001 Multiple Linear Regression.mp4 5.54MB
001 Necessary Programming Languages and Software Used in Data Science__en.srt 7.35KB
001 Necessary Programming Languages and Software Used in Data Science.mp4 19.54MB
001 Null vs Alternative Hypothesis__en.srt 7.35KB
001 Null vs Alternative Hypothesis.mp4 80.83MB
001 Object Oriented Programming__en.srt 6.10KB
001 Object Oriented Programming.mp4 8.42MB
001 Population and Sample__en.srt 5.59KB
001 Population and Sample.mp4 10.89MB
001 Practical Example_ Descriptive Statistics__en.srt 20.91KB
001 Practical Example_ Descriptive Statistics.mp4 37.17MB
001 Practical Example_ Hypothesis Testing__en.srt 8.71KB
001 Practical Example_ Hypothesis Testing.mp4 16.30MB
001 Practical Example_ Inferential Statistics__en.srt 13.73KB
001 Practical Example_ Inferential Statistics.mp4 22.10MB
001 Practical Example_ Linear Regression (Part 1)__en.srt 14.94KB
001 Practical Example_ Linear Regression (Part 1).mp4 84.84MB
001 Preprocessing Introduction__en.srt 3.81KB
001 Preprocessing Introduction.mp4 8.98MB
001 Probability in Finance__en.srt 9.80KB
001 Probability in Finance.mp4 39.66MB
001 READ ME____.html 564B
001 Sets and Events__en.srt 5.37KB
001 Sets and Events.mp4 17.44MB
001 Stochastic Gradient Descent__en.srt 4.74KB
001 Stochastic Gradient Descent.mp4 7.62MB
001 Summary on What You've Learned__en.srt 5.25KB
001 Summary on What You've Learned.mp4 9.66MB
001 Techniques for Working with Traditional Data__en.srt 10.70KB
001 Techniques for Working with Traditional Data.mp4 105.52MB
001 The Basic Probability Formula__en.srt 9.04KB
001 The Basic Probability Formula.mp4 29.13MB
001 The IF Statement__en.srt 3.53KB
001 The IF Statement.mp4 5.33MB
001 The Linear Regression Model__en.srt 6.83KB
001 The Linear Regression Model.mp4 13.16MB
001 The Reason Behind These Disciplines__en.srt 6.56KB
001 The Reason Behind These Disciplines.mp4 12.41MB
001 Types of Clustering__en.srt 4.74KB
001 Types of Clustering.mp4 7.57MB
001 Types of Data__en.srt 6.14KB
001 Types of Data.mp4 42.47MB
001 Using Arithmetic Operators in Python__en.srt 4.28KB
001 Using Arithmetic Operators in Python.mp4 7.28MB
001 Using the .format() Method__en.srt 12.34KB
001 Using the .format() Method.mp4 21.67MB
001 Variables__en.srt 4.53KB
001 Variables.mp4 8.93MB
001 What are Confidence Intervals___en.srt 3.29KB
001 What are Confidence Intervals_.mp4 28.38MB
001 What are Data, Servers, Clients, Requests, and Responses__en.srt 5.92KB
001 What are Data, Servers, Clients, Requests, and Responses.mp4 19.17MB
001 What is a Layer___en.srt 2.44KB
001 What is a Layer_.mp4 3.47MB
001 What is a Matrix___en.srt 4.42KB
001 What is a Matrix_.mp4 11.70MB
001 What is Initialization___en.srt 3.60KB
001 What is Initialization_.mp4 17.42MB
001 What is Overfitting___en.srt 5.73KB
001 What is Overfitting_.mp4 10.50MB
001 What is sklearn and How is it Different from Other Packages__en.srt 3.38KB
001 What is sklearn and How is it Different from Other Packages.mp4 6.24MB
001 What to Expect from the Following Sections_.html 2.43KB
001 What to Expect from this Part___en.srt 4.61KB
001 What to Expect from this Part_.mp4 7.56MB
002 Adjusted R-Squared__en.srt 7.57KB
002 Adjusted R-Squared.mp4 34.22MB
002 Analyzing Age vs Probability in Tableau__en.srt 10.22KB
002 Analyzing Age vs Probability in Tableau.mp4 38.69MB
002 A Simple Example in Python__en.srt 5.91KB
002 A Simple Example in Python.mp4 21.91MB
002 A Simple Example of Clustering__en.srt 902B
002 A Simple Example of Clustering_en.vtt 8.25KB
002 A Simple Example of Clustering.mp4 26.08MB
002 Basic NN Example (Part 2)__en.srt 6.90KB
002 Basic NN Example (Part 2).mp4 15.23MB
002 Business Case_ Outlining the Solution__en.srt 1.93KB
002 Business Case_ Outlining the Solution__en.srt 2.50KB
002 Business Case_ Outlining the Solution.mp4 2.21MB
002 Business Case_ Outlining the Solution.mp4 2.89MB
002 Computing Expected Values__en.srt 6.71KB
002 Computing Expected Values.mp4 29.24MB
002 Confidence Intervals; Population Variance Known; Z-score__en.srt 10.26KB
002 Confidence Intervals; Population Variance Known; Z-score.mp4 52.21MB
002 Correlation vs Regression__en.srt 2.03KB
002 Correlation vs Regression.mp4 3.75MB
002 Creating the Targets for the Logistic Regression__en.srt 8.56KB
002 Creating the Targets for the Logistic Regression.mp4 32.50MB
002 Dendrogram__en.srt 7.28KB
002 Dendrogram.mp4 17.34MB
002 Deploying the 'absenteeism_module' - Part I__en.srt 4.86KB
002 Deploying the 'absenteeism_module' - Part I.mp4 8.38MB
002 Further Reading on Null and Alternative Hypothesis.html 2.23KB
002 How are we Going to Approach this Section___en.srt 1.56KB
002 How are we Going to Approach this Section__en.vtt 2.56KB
002 How are we Going to Approach this Section_.mp4 4.03MB
002 How to Create a Function with a Parameter__en.srt 4.30KB
002 How to Create a Function with a Parameter.mp4 8.29MB
002 How to Install TensorFlow 1__en.srt 2.70KB
002 How to Install TensorFlow 1_en.vtt 2.91KB
002 How to Install TensorFlow 1.mp4 3.71MB
002 Importing the Absenteeism Data in Python__en.srt 3.89KB
002 Importing the Absenteeism Data in Python.mp4 18.03MB
002 Iterating Over Range Objects__en.srt 6.04KB
002 Iterating Over Range Objects.mp4 7.85MB
002 Levels of Measurement__en.srt 4.72KB
002 Levels of Measurement.mp4 31.44MB
002 Logical and Identity Operators__en.srt 5.94KB
002 Logical and Identity Operators.mp4 19.00MB
002 MNIST_ How to Tackle the MNIST__en.srt 3.78KB
002 MNIST_ How to Tackle the MNIST__en.srt 3.72KB
002 MNIST_ How to Tackle the MNIST.mp4 7.66MB
002 MNIST_ How to Tackle the MNIST.mp4 7.68MB
002 Modules and Packages__en.srt 1.34KB
002 Modules and Packages.mp4 1.71MB
002 Numbers and Boolean Values in Python__en.srt 3.62KB
002 Numbers and Boolean Values in Python.mp4 4.61MB
002 Permutations and How to Use Them__en.srt 4.24KB
002 Permutations and How to Use Them.mp4 13.97MB
002 Practical Example_ Descriptive Statistics Exercise.html 81B
002 Practical Example_ Hypothesis Testing Exercise.html 81B
002 Practical Example_ Inferential Statistics Exercise.html 81B
002 Practical Example_ Linear Regression (Part 2)__en.srt 5.00KB
002 Practical Example_ Linear Regression (Part 2)_en.vtt 7.11KB
002 Practical Example_ Linear Regression (Part 2).mp4 31.90MB
002 Probability in Statistics__en.srt 8.62KB
002 Probability in Statistics.mp4 14.26MB
002 Problems with Gradient Descent__en.srt 2.92KB
002 Problems with Gradient Descent.mp4 3.51MB
002 Real Life Examples of Traditional Data__en.srt 2.22KB
002 Real Life Examples of Traditional Data.mp4 13.92MB
002 Scalars and Vectors__en.srt 3.83KB
002 Scalars and Vectors.mp4 8.39MB
002 Some Examples of Clusters__en.srt 6.20KB
002 Some Examples of Clusters.mp4 35.12MB
002 TensorFlow Outline and Comparison with Other Libraries__en.srt 1.50KB
002 TensorFlow Outline and Comparison with Other Libraries_en.vtt 4.74KB
002 TensorFlow Outline and Comparison with Other Libraries.mp4 14.94MB
002 The Business Task__en.srt 3.72KB
002 The Business Task.mp4 6.80MB
002 The Double Equality Sign__en.srt 1.77KB
002 The Double Equality Sign.mp4 2.72MB
002 The ELSE Statement__en.srt 3.11KB
002 The ELSE Statement.mp4 5.25MB
002 Training the Model__en.srt 4.42KB
002 Training the Model.mp4 7.57MB
002 Types of Basic Preprocessing__en.srt 1.72KB
002 Types of Basic Preprocessing.mp4 2.40MB
002 Types of Probability Distributions__en.srt 9.72KB
002 Types of Probability Distributions.mp4 28.69MB
002 Types of Simple Initializations__en.srt 3.82KB
002 Types of Simple Initializations.mp4 5.73MB
002 Underfitting and Overfitting for Classification__en.srt 2.69KB
002 Underfitting and Overfitting for Classification.mp4 13.53MB
002 Using Methods__en.srt 8.35KB
002 Using Methods.mp4 23.42MB
002 Ways Sets Can Interact__en.srt 4.40KB
002 Ways Sets Can Interact.mp4 19.02MB
002 What's Further out there in terms of Machine Learning__en.srt 2.64KB
002 What's Further out there in terms of Machine Learning.mp4 3.71MB
002 What are Data Connectivity, APIs, and Endpoints___en.srt 8.51KB
002 What are Data Connectivity, APIs, and Endpoints_.mp4 58.83MB
002 What Does the Course Cover__en.srt 5.10KB
002 What Does the Course Cover.mp4 49.69MB
002 What is a Deep Net___en.srt 3.30KB
002 What is a Deep Net_.mp4 11.06MB
002 What is a Distribution__en.srt 6.13KB
002 What is a Distribution.mp4 16.90MB
002 What is the difference between Analysis and Analytics__en.srt 5.03KB
002 What is the difference between Analysis and Analytics.mp4 8.01MB
002 While Loops and Incrementing__en.srt 6.18KB
002 While Loops and Incrementing.mp4 20.20MB
002 Why Python___en.srt 6.85KB
002 Why Python_.mp4 11.77MB
002 Working with Methods in Python - Part I__en.srt 6.92KB
002 Working with Methods in Python - Part I.mp4 16.80MB
003 A Note on Installing Packages in Anaconda.html 2.28KB
003 A Note on Multicollinearity.html 849B
003 A Simple Example of Clustering - Exercise.html 87B
003 Basic NN Example (Part 3)__en.srt 4.39KB
003 Basic NN Example (Part 3).mp4 15.68MB
003 Business Analytics, Data Analytics, and Data Science_ An Introduction__en.srt 11.00KB
003 Business Analytics, Data Analytics, and Data Science_ An Introduction.mp4 49.96MB
003 Business Case_ Balancing the Dataset__en.srt 4.72KB
003 Business Case_ Balancing the Dataset.mp4 26.19MB
003 Categorical Variables - Visualization Techniques__en.srt 6.44KB
003 Categorical Variables - Visualization Techniques.mp4 36.65MB
003 Characteristics of Discrete Distributions__en.srt 2.51KB
003 Characteristics of Discrete Distributions.mp4 9.25MB
003 Checking the Content of the Data Set__en.srt 7.12KB
003 Checking the Content of the Data Set.mp4 54.27MB
003 Confidence Intervals; Population Variance Known; Z-score; Exercise.html 81B
003 DeepMind and Deep Learning.html 1.04KB
003 Defining a Function in Python - Part II__en.srt 2.88KB
003 Defining a Function in Python - Part II.mp4 6.45MB
003 Deploying the 'absenteeism_module' - Part II__en.srt 429B
003 Deploying the 'absenteeism_module' - Part II_en.vtt 6.76KB
003 Deploying the 'absenteeism_module' - Part II.mp4 25.99MB
003 Difference between Classification and Clustering__en.srt 3.34KB
003 Difference between Classification and Clustering.mp4 9.53MB
003 Digging into a Deep Net__en.srt 6.73KB
003 Digging into a Deep Net.mp4 19.14MB
003 Download All Resources and Important FAQ.html 21.36KB
003 EXERCISE - Reasons vs Probability.html 385B
003 Frequency__en.srt 6.28KB
003 Frequency.mp4 36.39MB
003 Geometrical Representation of the Linear Regression Model__en.srt 1.66KB
003 Geometrical Representation of the Linear Regression Model.mp4 1.75MB
003 Heatmaps__en.srt 6.24KB
003 Heatmaps.mp4 25.71MB
003 How to Reassign Values__en.srt 1.39KB
003 How to Reassign Values.mp4 1.86MB
003 Intersection of Sets__en.srt 2.49KB
003 Intersection of Sets.mp4 8.78MB
003 Introducing the Data Set__en.srt 4.13KB
003 Introducing the Data Set.mp4 15.29MB
003 Introduction to Nested For Loops__en.srt 8.30KB
003 Introduction to Nested For Loops.mp4 12.26MB
003 Linear Algebra and Geometry__en.srt 4.07KB
003 Linear Algebra and Geometry.mp4 13.56MB
003 List Slicing__en.srt 5.22KB
003 List Slicing.mp4 19.17MB
003 Lists with the range() Function__en.srt 8.03KB
003 Lists with the range() Function.mp4 14.50MB
003 Logistic vs Logit Function__en.srt 4.89KB
003 Logistic vs Logit Function.mp4 43.96MB
003 MNIST_ Importing the Relevant Packages and Loading the Data__en.srt 3.01KB
003 MNIST_ Importing the Relevant Packages and Loading the Data.mp4 12.24MB
003 MNIST_ Relevant Packages__en.srt 2.25KB
003 MNIST_ Relevant Packages.mp4 7.88MB
003 Momentum__en.srt 3.59KB
003 Momentum.mp4 5.01MB
003 Multiple Linear Regression Exercise.html 76B
003 Probability in Data Science__en.srt 6.64KB
003 Probability in Data Science.mp4 23.94MB
003 Python Strings__en.srt 7.10KB
003 Python Strings.mp4 19.74MB
003 Rejection Region and Significance Level__en.srt 9.09KB
003 Rejection Region and Significance Level.mp4 38.20MB
003 Selecting the Inputs for the Logistic Regression__en.srt 3.42KB
003 Selecting the Inputs for the Logistic Regression.mp4 4.64MB
003 Simple Linear Regression with sklearn__en.srt 1.06KB
003 Simple Linear Regression with sklearn_en.vtt 6.71KB
003 Simple Linear Regression with sklearn.mp4 31.65MB
003 Simple Operations with Factorials__en.srt 3.56KB
003 Simple Operations with Factorials.mp4 13.98MB
003 Standardization__en.srt 6.20KB
003 Standardization.mp4 11.95MB
003 State-of-the-Art Method - (Xavier) Glorot Initialization__en.srt 3.67KB
003 State-of-the-Art Method - (Xavier) Glorot Initialization.mp4 4.18MB
003 Taking a Closer Look at APIs__en.srt 10.60KB
003 Taking a Closer Look at APIs.mp4 65.29MB
003 Techniques for Working with Big Data__en.srt 5.74KB
003 Techniques for Working with Big Data.mp4 60.48MB
003 TensorFlow 1 vs TensorFlow 2__en.srt 3.76KB
003 TensorFlow 1 vs TensorFlow 2.mp4 14.95MB
003 The ELIF Statement__en.srt 6.60KB
003 The ELIF Statement.mp4 14.25MB
003 The Importance of Working with a Balanced Dataset__en.srt 4.72KB
003 The Importance of Working with a Balanced Dataset.mp4 21.60MB
003 The Normal Distribution__en.srt 5.01KB
003 The Normal Distribution.mp4 16.16MB
003 Types of Machine Learning__en.srt 5.31KB
003 Types of Machine Learning.mp4 9.81MB
003 What is the Standard Library___en.srt 3.66KB
003 What is the Standard Library_.mp4 4.87MB
003 What is Validation___en.srt 4.90KB
003 What is Validation_.mp4 8.14MB
003 Why Jupyter___en.srt 4.63KB
003 Why Jupyter_.mp4 7.96MB
003 Working with Methods in Python - Part II__en.srt 3.60KB
003 Working with Methods in Python - Part II.mp4 5.77MB
004 Add Comments__en.srt 1.80KB
004 Add Comments.mp4 2.41MB
004 Analyzing Reasons vs Probability in Tableau__en.srt 9.68KB
004 Analyzing Reasons vs Probability in Tableau.mp4 40.24MB
004 A Note on Boolean Values__en.srt 2.91KB
004 A Note on Boolean Values.mp4 3.26MB
004 A Note on TensorFlow 2 Syntax__en.srt 1.41KB
004 A Note on TensorFlow 2 Syntax.mp4 2.34MB
004 An overview of CNNs__en.srt 6.71KB
004 An overview of CNNs.mp4 30.47MB
004 Arrays in Python - A Convenient Way To Represent Matrices__en.srt 6.03KB
004 Arrays in Python - A Convenient Way To Represent Matrices.mp4 19.01MB
004 Basic NN Example (Part 4)__en.srt 10.56KB
004 Basic NN Example (Part 4).mp4 30.06MB
004 Building a Logistic Regression__en.srt 3.43KB
004 Building a Logistic Regression.mp4 8.61MB
004 Business Case_ Preprocessing__en.srt 348B
004 Business Case_ Preprocessing_en.vtt 11.75KB
004 Business Case_ Preprocessing.mp4 74.39MB
004 Business Case_ Preprocessing the Data__en.srt 348B
004 Business Case_ Preprocessing the Data_en.vtt 11.73KB
004 Business Case_ Preprocessing the Data.mp4 73.82MB
004 Categorical Variables Exercise.html 81B
004 Clustering Categorical Data__en.srt 3.32KB
004 Clustering Categorical Data.mp4 10.35MB
004 Communication between Software Products through Text Files__en.srt 5.51KB
004 Communication between Software Products through Text Files.mp4 9.28MB
004 Conditional Statements and Loops__en.srt 7.67KB
004 Conditional Statements and Loops.mp4 21.94MB
004 Confidence Interval Clarifications__en.srt 5.80KB
004 Confidence Interval Clarifications.mp4 18.56MB
004 Continuing with BI, ML, and AI__en.srt 11.96KB
004 Continuing with BI, ML, and AI.mp4 35.94MB
004 Discrete Distributions_ The Uniform Distribution__en.srt 2.84KB
004 Discrete Distributions_ The Uniform Distribution.mp4 10.08MB
004 Events and Their Complements__en.srt 7.16KB
004 Events and Their Complements.mp4 11.40MB
004 Exporting the Obtained Data Set as a _.csv.html 964B
004 How to Use a Function within a Function__en.srt 2.07KB
004 How to Use a Function within a Function.mp4 3.25MB
004 Importing Modules in Python__en.srt 4.45KB
004 Importing Modules in Python.mp4 8.53MB
004 Installing Python and Jupyter__en.srt 9.11KB
004 Installing Python and Jupyter.mp4 32.86MB
004 Introduction to Terms with Multiple Meanings__en.srt 4.09KB
004 Introduction to Terms with Multiple Meanings.mp4 18.04MB
004 Learning Rate Schedules, or How to Choose the Optimal Learning Rate__en.srt 6.12KB
004 Learning Rate Schedules, or How to Choose the Optimal Learning Rate.mp4 12.03MB
004 Math Prerequisites__en.srt 4.18KB
004 Math Prerequisites.mp4 4.47MB
004 MNIST_ Model Outline__en.srt 8.95KB
004 MNIST_ Model Outline.mp4 34.69MB
004 MNIST_ Preprocess the Data - Create a Validation Set and Scale It__en.srt 6.61KB
004 MNIST_ Preprocess the Data - Create a Validation Set and Scale It.mp4 22.93MB
004 Non-Linearities and their Purpose__en.srt 3.80KB
004 Non-Linearities and their Purpose.mp4 9.74MB
004 Parameters and Arguments in pandas__en.srt 5.50KB
004 Parameters and Arguments in pandas.mp4 15.45MB
004 Practical Example_ Linear Regression (Part 3)__en.srt 4.19KB
004 Practical Example_ Linear Regression (Part 3).mp4 6.91MB
004 Preprocessing Categorical Data__en.srt 2.86KB
004 Preprocessing Categorical Data.mp4 5.34MB
004 Python Packages Installation__en.srt 4.57KB
004 Python Packages Installation_en.vtt 4.74KB
004 Python Packages Installation.mp4 23.70MB
004 Real Life Examples of Big Data__en.srt 1.90KB
004 Real Life Examples of Big Data.mp4 4.21MB
004 Simple Linear Regression with sklearn - A StatsModels-like Summary Table__en.srt 0B
004 Simple Linear Regression with sklearn - A StatsModels-like Summary Table_en.vtt 6.08KB
004 Simple Linear Regression with sklearn - A StatsModels-like Summary Table.mp4 28.88MB
004 Solving Variations with Repetition__en.srt 3.64KB
004 Solving Variations with Repetition.mp4 13.75MB
004 Standardizing the Data__en.srt 4.16KB
004 Standardizing the Data.mp4 15.14MB
004 TensorFlow Intro__en.srt 1.37KB
004 TensorFlow Intro_en.vtt 4.61KB
004 TensorFlow Intro.mp4 16.56MB
004 Test for Significance of the Model (F-Test)__en.srt 2.57KB
004 Test for Significance of the Model (F-Test).mp4 5.90MB
004 The Linear Model (Linear Algebraic Version)__en.srt 3.92KB
004 The Linear Model (Linear Algebraic Version).mp4 7.87MB
004 The Standard Normal Distribution__en.srt 4.15KB
004 The Standard Normal Distribution.mp4 8.62MB
004 Training, Validation, and Test Datasets__en.srt 3.41KB
004 Training, Validation, and Test Datasets.mp4 7.74MB
004 Triple Nested For Loops__en.srt 8.00KB
004 Triple Nested For Loops.mp4 19.40MB
004 Tuples__en.srt 7.24KB
004 Tuples.mp4 9.50MB
004 Type I Error and Type II Error__en.srt 5.26KB
004 Type I Error and Type II Error.mp4 18.17MB
004 Union of Sets__en.srt 6.08KB
004 Union of Sets.mp4 19.47MB
005 A Breakdown of our Data Science Infographic__en.srt 5.21KB
005 A Breakdown of our Data Science Infographic.mp4 33.95MB
005 Activation Functions__en.srt 5.33KB
005 Activation Functions.mp4 8.53MB
005 Actual Introduction to TensorFlow__en.srt 2.29KB
005 Actual Introduction to TensorFlow.mp4 6.17MB
005 A Note on Normalization.html 729B
005 An Overview of RNNs__en.srt 3.77KB
005 An Overview of RNNs.mp4 6.75MB
005 Basic NN Example Exercises.html 1.65KB
005 Binary and One-Hot Encoding__en.srt 4.78KB
005 Binary and One-Hot Encoding.mp4 8.36MB
005 Building a Logistic Regression - Exercise.html 87B
005 Business Case_ Preprocessing Exercise.html 379B
005 Business Case_ Preprocessing the Data - Exercise.html 370B
005 Business Intelligence (BI) Techniques__en.srt 8.92KB
005 Business Intelligence (BI) Techniques.mp4 51.34MB
005 Clustering Categorical Data - Exercise.html 87B
005 Conditional Statements, Functions, and Loops__en.srt 2.33KB
005 Conditional Statements, Functions, and Loops.mp4 2.91MB
005 Conditional Statements and Functions__en.srt 3.62KB
005 Conditional Statements and Functions.mp4 6.04MB
005 Dictionaries__en.srt 9.08KB
005 Dictionaries.mp4 24.91MB
005 Discrete Distributions_ The Bernoulli Distribution__en.srt 4.29KB
005 Discrete Distributions_ The Bernoulli Distribution.mp4 14.76MB
005 Dummies and Variance Inflation Factor - Exercise.html 76B
005 EXERCISE - Transportation Expense vs Probability.html 529B
005 First Regression in Python__en.srt 7.95KB
005 First Regression in Python.mp4 29.63MB
005 Learning Rate Schedules Visualized__en.srt 2.14KB
005 Learning Rate Schedules Visualized.mp4 2.34MB
005 List Comprehensions__en.srt 12.35KB
005 List Comprehensions.mp4 43.23MB
005 MNIST_ Loss and Optimization Algorithm__en.srt 3.60KB
005 MNIST_ Loss and Optimization Algorithm.mp4 11.56MB
005 MNIST_ Preprocess the Data - Scale the Test Data - Exercise.html 79B
005 Mutually Exclusive Sets__en.srt 2.65KB
005 Mutually Exclusive Sets.mp4 5.25MB
005 N-Fold Cross Validation__en.srt 4.29KB
005 N-Fold Cross Validation.mp4 5.14MB
005 Numerical Variables - Frequency Distribution Table__en.srt 4.39KB
005 Numerical Variables - Frequency Distribution Table.mp4 12.80MB
005 OLS Assumptions__en.srt 2.96KB
005 OLS Assumptions.mp4 5.12MB
005 Software Integration - Explained__en.srt 6.85KB
005 Software Integration - Explained.mp4 41.99MB
005 Solving Variations without Repetition__en.srt 4.74KB
005 Solving Variations without Repetition.mp4 14.76MB
005 Splitting the Data for Training and Testing__en.srt 8.47KB
005 Splitting the Data for Training and Testing.mp4 36.12MB
005 Student's T Distribution__en.srt 4.24KB
005 Student's T Distribution.mp4 13.33MB
005 Test for the Mean. Population Variance Known__en.srt 8.32KB
005 Test for the Mean. Population Variance Known.mp4 36.96MB
005 The Linear Model with Multiple Inputs__en.srt 3.21KB
005 The Linear Model with Multiple Inputs.mp4 7.77MB
005 The Standard Normal Distribution Exercise.html 81B
005 Types of File Formats Supporting TensorFlow__en.srt 3.56KB
005 Types of File Formats Supporting TensorFlow.mp4 7.25MB
005 Understanding Jupyter's Interface - the Notebook Dashboard__en.srt 3.70KB
005 Understanding Jupyter's Interface - the Notebook Dashboard.mp4 4.39MB
005 Understanding Line Continuation__en.srt 1.14KB
005 Understanding Line Continuation.mp4 1014.51KB
005 Using .unique() and .nunique()__en.srt 5.58KB
005 Using .unique() and .nunique().mp4 26.33MB
005 What's Regression Analysis - a Quick Refresher.html 2.80KB
005 What is a Tensor___en.srt 3.69KB
005 What is a Tensor_.mp4 11.61MB
006 A1_ Linearity__en.srt 2.38KB
006 A1_ Linearity.mp4 2.66MB
006 Activation Functions_ Softmax Activation__en.srt 4.51KB
006 Activation Functions_ Softmax Activation.mp4 8.42MB
006 Adaptive Learning Rate Schedules (AdaGrad and RMSprop )__en.srt 5.22KB
006 Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).mp4 8.24MB
006 Addition and Subtraction of Matrices__en.srt 4.00KB
006 Addition and Subtraction of Matrices.mp4 22.08MB
006 Analyzing Transportation Expense vs Probability in Tableau__en.srt 7.36KB
006 Analyzing Transportation Expense vs Probability in Tableau.mp4 10.87MB
006 An Invaluable Coding Tip__en.srt 3.15KB
006 An Invaluable Coding Tip.mp4 16.77MB
006 Anonymous (Lambda) Functions__en.srt 9.89KB
006 Anonymous (Lambda) Functions.mp4 33.71MB
006 An Overview of non-NN Approaches__en.srt 5.28KB
006 An Overview of non-NN Approaches.mp4 15.65MB
006 Business Case_ Load the Preprocessed Data__en.srt 4.83KB
006 Business Case_ Load the Preprocessed Data.mp4 13.80MB
006 Calculating the Accuracy of the Model__en.srt 5.34KB
006 Calculating the Accuracy of the Model.mp4 16.64MB
006 Central Limit Theorem__en.srt 5.68KB
006 Central Limit Theorem.mp4 22.86MB
006 Confidence Intervals; Population Variance Unknown; T-score__en.srt 5.67KB
006 Confidence Intervals; Population Variance Unknown; T-score.mp4 11.58MB
006 Creating a Data Provider__en.srt 7.77KB
006 Creating a Data Provider.mp4 56.23MB
006 Dependence and Independence of Sets__en.srt 3.46KB
006 Dependence and Independence of Sets.mp4 11.98MB
006 Discrete Distributions_ The Binomial Distribution__en.srt 8.68KB
006 Discrete Distributions_ The Binomial Distribution.mp4 24.94MB
006 Early Stopping or When to Stop Training__en.srt 6.79KB
006 Early Stopping or When to Stop Training.mp4 8.50MB
006 First Regression in Python Exercise.html 1.31KB
006 Fitting the Model and Assessing its Accuracy__en.srt 1.36KB
006 Fitting the Model and Assessing its Accuracy_en.vtt 6.35KB
006 Fitting the Model and Assessing its Accuracy.mp4 35.29MB
006 Functions Containing a Few Arguments__en.srt 1.33KB
006 Functions Containing a Few Arguments.mp4 2.24MB
006 How to Choose the Number of Clusters__en.srt 7.41KB
006 How to Choose the Number of Clusters.mp4 19.79MB
006 How to Iterate over Dictionaries__en.srt 7.60KB
006 How to Iterate over Dictionaries.mp4 16.46MB
006 Indexing Elements__en.srt 1.63KB
006 Indexing Elements.mp4 2.36MB
006 MNIST_ Preprocess the Data - Shuffle and Batch__en.srt 9.49KB
006 MNIST_ Preprocess the Data - Shuffle and Batch.mp4 32.71MB
006 Numerical Variables Exercise.html 81B
006 Outlining the Model with TensorFlow 2__en.srt 7.99KB
006 Outlining the Model with TensorFlow 2.mp4 26.99MB
006 Practical Example_ Linear Regression (Part 4)__en.srt 11.75KB
006 Practical Example_ Linear Regression (Part 4).mp4 29.84MB
006 Prerequisites for Coding in the Jupyter Notebooks__en.srt 7.66KB
006 Prerequisites for Coding in the Jupyter Notebooks.mp4 15.38MB
006 Real Life Examples of Business Intelligence (BI)__en.srt 2.14KB
006 Real Life Examples of Business Intelligence (BI).mp4 19.35MB
006 Simple Linear Regression with sklearn - Exercise.html 76B
006 Solving Combinations__en.srt 5.72KB
006 Solving Combinations.mp4 18.99MB
006 Test for the Mean. Population Variance Known Exercise.html 81B
006 The Linear model with Multiple Inputs and Multiple Outputs__en.srt 5.42KB
006 The Linear model with Multiple Inputs and Multiple Outputs.mp4 16.23MB
006 Types of File Formats, supporting Tensors__en.srt 3.30KB
006 Types of File Formats, supporting Tensors.mp4 8.90MB
006 Using .sort_values()__en.srt 5.54KB
006 Using .sort_values().mp4 13.20MB
006 Using a Statistical Approach towards the Solution to the Exercise__en.srt 2.93KB
006 Using a Statistical Approach towards the Solution to the Exercise.mp4 9.90MB
007 A2_ No Endogeneity__en.srt 5.27KB
007 A2_ No Endogeneity.mp4 8.99MB
007 Adam (Adaptive Moment Estimation)__en.srt 3.42KB
007 Adam (Adaptive Moment Estimation).mp4 6.88MB
007 Backpropagation__en.srt 4.48KB
007 Backpropagation.mp4 19.49MB
007 Basic NN Example with TF_ Inputs, Outputs, Targets, Weights, Biases__en.srt 7.56KB
007 Basic NN Example with TF_ Inputs, Outputs, Targets, Weights, Biases.mp4 28.00MB
007 Built-in Functions in Python__en.srt 4.29KB
007 Built-in Functions in Python.mp4 8.50MB
007 Business Case_ Load the Preprocessed Data - Exercise.html 79B
007 Business Case_ Model Outline__en.srt 7.09KB
007 Business Case_ Model Outline.mp4 42.48MB
007 Confidence Intervals; Population Variance Unknown; T-score; Exercise.html 81B
007 Creating a Summary Table with the Coefficients and Intercept__en.srt 6.66KB
007 Creating a Summary Table with the Coefficients and Intercept.mp4 26.98MB
007 Discrete Distributions_ The Poisson Distribution__en.srt 6.60KB
007 Discrete Distributions_ The Poisson Distribution.mp4 14.62MB
007 Dropping a Column from a DataFrame in Python__en.srt 7.75KB
007 Dropping a Column from a DataFrame in Python.mp4 41.30MB
007 Dummy Variables - Exercise.html 705B
007 Errors when Adding Matrices__en.srt 2.61KB
007 Errors when Adding Matrices.mp4 3.34MB
007 Graphical Representation of Simple Neural Networks__en.srt 2.83KB
007 Graphical Representation of Simple Neural Networks.mp4 6.35MB
007 How to Choose the Number of Clusters - Exercise.html 87B
007 Interpreting the Result and Extracting the Weights and Bias__en.srt 6.26KB
007 Interpreting the Result and Extracting the Weights and Bias.mp4 13.67MB
007 Introduction to pandas DataFrames - Part I__en.srt 7.08KB
007 Introduction to pandas DataFrames - Part I.mp4 10.60MB
007 MNIST_ Batching and Early Stopping__en.srt 2.83KB
007 MNIST_ Batching and Early Stopping.mp4 8.70MB
007 MNIST_ Preprocess the Data - Shuffle and Batch - Exercise.html 79B
007 Multiple Linear Regression with sklearn__en.srt 1013B
007 Multiple Linear Regression with sklearn_en.vtt 3.80KB
007 Multiple Linear Regression with sklearn.mp4 9.81MB
007 p-value__en.srt 5.37KB
007 p-value.mp4 33.08MB
007 Standard error__en.srt 1.92KB
007 Standard error.mp4 13.33MB
007 Structuring with Indentation__en.srt 2.18KB
007 Structuring with Indentation.mp4 2.80MB
007 Symmetry of Combinations__en.srt 4.22KB
007 Symmetry of Combinations.mp4 13.51MB
007 Techniques for Working with Traditional Methods__en.srt 11.32KB
007 Techniques for Working with Traditional Methods.mp4 74.75MB
007 The Conditional Probability Formula__en.srt 5.27KB
007 The Conditional Probability Formula.mp4 16.33MB
007 The Histogram__en.srt 3.12KB
007 The Histogram.mp4 3.85MB
007 Understanding Logistic Regression Tables__en.srt 5.52KB
007 Understanding Logistic Regression Tables.mp4 12.89MB
007 Using Seaborn for Graphs__en.srt 1.53KB
007 Using Seaborn for Graphs.mp4 7.37MB
008 A3_ Normality and Homoscedasticity__en.srt 6.58KB
008 A3_ Normality and Homoscedasticity.mp4 27.39MB
008 Backpropagation Picture__en.srt 4.27KB
008 Backpropagation Picture.mp4 7.68MB
008 Basic NN Example with TF_ Loss Function and Gradient Descent__en.srt 4.77KB
008 Basic NN Example with TF_ Loss Function and Gradient Descent.mp4 15.72MB
008 Business Case_ Learning and Interpreting the Result__en.srt 6.28KB
008 Business Case_ Learning and Interpreting the Result.mp4 27.77MB
008 Business Case_ Optimization__en.srt 6.46KB
008 Business Case_ Optimization.mp4 26.95MB
008 Calculating the Adjusted R-Squared in sklearn__en.srt 6.60KB
008 Calculating the Adjusted R-Squared in sklearn.mp4 16.92MB
008 Characteristics of Continuous Distributions__en.srt 8.88KB
008 Characteristics of Continuous Distributions.mp4 28.87MB
008 Customizing a TensorFlow 2 Model__en.srt 4.20KB
008 Customizing a TensorFlow 2 Model.mp4 16.78MB
008 Estimators and Estimates__en.srt 3.89KB
008 Estimators and Estimates.mp4 16.13MB
008 EXERCISE - Dropping a Column from a DataFrame in Python.html 864B
008 Histogram Exercise.html 81B
008 How to Interpret the Regression Table__en.srt 6.57KB
008 How to Interpret the Regression Table.mp4 28.72MB
008 Interpreting the Coefficients for Our Problem__en.srt 8.04KB
008 Interpreting the Coefficients for Our Problem.mp4 34.41MB
008 Introduction to pandas DataFrames - Part II__en.srt 7.61KB
008 Introduction to pandas DataFrames - Part II.mp4 17.83MB
008 Margin of Error__en.srt 6.27KB
008 Margin of Error.mp4 22.66MB
008 MNIST_ Learning__en.srt 9.95KB
008 MNIST_ Learning.mp4 31.88MB
008 MNIST_ Outline the Model__en.srt 7.26KB
008 MNIST_ Outline the Model.mp4 22.09MB
008 Practical Example_ Linear Regression (Part 5)__en.srt 10.44KB
008 Practical Example_ Linear Regression (Part 5).mp4 50.42MB
008 Pros and Cons of K-Means Clustering__en.srt 2.62KB
008 Pros and Cons of K-Means Clustering_en.vtt 4.07KB
008 Pros and Cons of K-Means Clustering.mp4 10.93MB
008 Real Life Examples of Traditional Methods__en.srt 3.53KB
008 Real Life Examples of Traditional Methods.mp4 21.17MB
008 Solving Combinations with Separate Sample Spaces__en.srt 3.81KB
008 Solving Combinations with Separate Sample Spaces.mp4 12.87MB
008 Test for the Mean. Population Variance Unknown__en.srt 6.20KB
008 Test for the Mean. Population Variance Unknown.mp4 19.72MB
008 The Law of Total Probability__en.srt 3.38KB
008 The Law of Total Probability.mp4 11.39MB
008 Transpose of a Matrix__en.srt 5.71KB
008 Transpose of a Matrix.mp4 20.49MB
008 Understanding Logistic Regression Tables - Exercise.html 87B
008 What is the Objective Function___en.srt 2.13KB
008 What is the Objective Function_.mp4 6.03MB
009 A4_ No Autocorrelation__en.srt 4.82KB
009 A4_ No Autocorrelation.mp4 7.67MB
009 Backpropagation - A Peek into the Mathematics of Optimization.html 539B
009 Basic NN Example with TF_ Model Output__en.srt 7.70KB
009 Basic NN Example with TF_ Model Output.mp4 17.09MB
009 Basic NN with TensorFlow_ Exercises.html 1.28KB
009 Business Case_ Interpretation__en.srt 2.91KB
009 Business Case_ Interpretation.mp4 18.59MB
009 Business Case_ Setting an Early Stopping Mechanism__en.srt 7.93KB
009 Business Case_ Setting an Early Stopping Mechanism.mp4 43.81MB
009 Calculating the Adjusted R-Squared in sklearn - Exercise.html 76B
009 Combinatorics in Real-Life_ The Lottery__en.srt 4.16KB
009 Combinatorics in Real-Life_ The Lottery.mp4 16.16MB
009 Common Objective Functions_ L2-norm Loss__en.srt 2.76KB
009 Common Objective Functions_ L2-norm Loss.mp4 4.47MB
009 Confidence intervals. Two means. Dependent samples__en.srt 8.18KB
009 Confidence intervals. Two means. Dependent samples.mp4 45.04MB
009 Continuous Distributions_ The Normal Distribution__en.srt 4.92KB
009 Continuous Distributions_ The Normal Distribution.mp4 19.67MB
009 Cross Tables and Scatter Plots__en.srt 6.70KB
009 Cross Tables and Scatter Plots.mp4 19.70MB
009 Decomposition of Variability__en.srt 4.20KB
009 Decomposition of Variability.mp4 8.62MB
009 Dot Product__en.srt 4.32KB
009 Dot Product.mp4 11.36MB
009 Linear Regression - Exercise.html 497B
009 Machine Learning (ML) Techniques__en.srt 8.94KB
009 Machine Learning (ML) Techniques.mp4 47.78MB
009 MNIST_ Results and Testing__en.srt 8.33KB
009 MNIST_ Results and Testing.mp4 38.19MB
009 MNIST_ Select the Loss and the Optimizer__en.srt 3.18KB
009 MNIST_ Select the Loss and the Optimizer.mp4 10.65MB
009 pandas DataFrames - Common Attributes__en.srt 6.25KB
009 pandas DataFrames - Common Attributes.mp4 29.80MB
009 SOLUTION - Dropping a Column from a DataFrame in Python.html 114B
009 Standardizing only the Numerical Variables (Creating a Custom Scaler)__en.srt 4.98KB
009 Standardizing only the Numerical Variables (Creating a Custom Scaler).mp4 28.02MB
009 Test for the Mean. Population Variance Unknown Exercise.html 81B
009 The Additive Rule__en.srt 2.79KB
009 The Additive Rule.mp4 10.89MB
009 To Standardize or not to Standardize__en.srt 6.08KB
009 To Standardize or not to Standardize.mp4 10.50MB
009 What do the Odds Actually Mean__en.srt 5.08KB
009 What do the Odds Actually Mean.mp4 11.38MB
010 A5_ No Multicollinearity__en.srt 4.69KB
010 A5_ No Multicollinearity.mp4 7.36MB
010 Analyzing the Reasons for Absence__en.srt 6.18KB
010 Analyzing the Reasons for Absence.mp4 27.63MB
010 A Recap of Combinatorics__en.srt 3.72KB
010 A Recap of Combinatorics.mp4 12.00MB
010 Basic NN Example with TF Exercises.html 1.58KB
010 Binary Predictors in a Logistic Regression__en.srt 5.70KB
010 Binary Predictors in a Logistic Regression.mp4 18.47MB
010 Business Case_ Testing the Model__en.srt 2.70KB
010 Business Case_ Testing the Model.mp4 4.39MB
010 Common Objective Functions_ Cross-Entropy Loss__en.srt 5.63KB
010 Common Objective Functions_ Cross-Entropy Loss.mp4 9.68MB
010 Confidence intervals. Two means. Dependent samples Exercise.html 81B
010 Continuous Distributions_ The Standard Normal Distribution__en.srt 5.41KB
010 Continuous Distributions_ The Standard Normal Distribution.mp4 20.72MB
010 Cross Tables and Scatter Plots Exercise.html 81B
010 Data Selection in pandas DataFrames__en.srt 10.04KB
010 Data Selection in pandas DataFrames.mp4 37.28MB
010 Dot Product of Matrices__en.srt 9.57KB
010 Dot Product of Matrices.mp4 26.42MB
010 Feature Selection (F-regression)__en.srt 6.73KB
010 Feature Selection (F-regression).mp4 15.68MB
010 Interpreting the Coefficients of the Logistic Regression__en.srt 7.30KB
010 Interpreting the Coefficients of the Logistic Regression.mp4 15.22MB
010 MNIST_ Exercises.html 2.16KB
010 MNIST_ Learning__en.srt 7.87KB
010 MNIST_ Learning.mp4 31.03MB
010 Relationship between Clustering and Regression__en.srt 2.25KB
010 Relationship between Clustering and Regression.mp4 2.42MB
010 Setting an Early Stopping Mechanism - Exercise.html 192B
010 Test for the Mean. Dependent Samples__en.srt 6.78KB
010 Test for the Mean. Dependent Samples.mp4 32.80MB
010 The Multiplication Law__en.srt 4.66KB
010 The Multiplication Law.mp4 19.80MB
010 Types of Machine Learning__en.srt 10.46KB
010 Types of Machine Learning.mp4 61.78MB
010 What is the OLS___en.srt 3.80KB
010 What is the OLS_.mp4 22.44MB
011 A Note on Calculation of P-values with sklearn.html 370B
011 A Practical Example of Combinatorics__en.srt 14.09KB
011 A Practical Example of Combinatorics.mp4 42.24MB
011 Backward Elimination or How to Simplify Your Model__en.srt 925B
011 Backward Elimination or How to Simplify Your Model_en.vtt 4.58KB
011 Backward Elimination or How to Simplify Your Model.mp4 31.96MB
011 Bayes' Law__en.srt 7.55KB
011 Bayes' Law.mp4 20.94MB
011 Binary Predictors in a Logistic Regression - Exercise.html 87B
011 Business Case_ A Comment on the Homework__en.srt 4.81KB
011 Business Case_ A Comment on the Homework_en.vtt 4.64KB
011 Business Case_ A Comment on the Homework.mp4 19.64MB
011 Business Case_ Testing the Model__en.srt 2.21KB
011 Business Case_ Testing the Model.mp4 8.19MB
011 Confidence intervals. Two means. Independent Samples (Part 1)__en.srt 6.10KB
011 Confidence intervals. Two means. Independent Samples (Part 1).mp4 12.00MB
011 Continuous Distributions_ The Students' T Distribution__en.srt 2.97KB
011 Continuous Distributions_ The Students' T Distribution.mp4 5.44MB
011 Dealing with Categorical Data - Dummy Variables__en.srt 8.16KB
011 Dealing with Categorical Data - Dummy Variables.mp4 35.09MB
011 Market Segmentation with Cluster Analysis (Part 1)__en.srt 7.32KB
011 Market Segmentation with Cluster Analysis (Part 1).mp4 21.16MB
011 Mean, median and mode__en.srt 5.99KB
011 Mean, median and mode.mp4 17.53MB
011 MNIST_ Solutions.html 2.22KB
011 MNIST - Exercises.html 1.98KB
011 Obtaining Dummies from a Single Feature__en.srt 10.28KB
011 Obtaining Dummies from a Single Feature.mp4 63.77MB
011 Optimization Algorithm_ 1-Parameter Gradient Descent__en.srt 8.75KB
011 Optimization Algorithm_ 1-Parameter Gradient Descent.mp4 22.70MB
011 pandas DataFrames - Indexing with .iloc[]__en.srt 8.07KB
011 pandas DataFrames - Indexing with .iloc[].mp4 23.54MB
011 Real Life Examples of Machine Learning (ML)__en.srt 2.96KB
011 Real Life Examples of Machine Learning (ML).mp4 22.44MB
011 R-Squared__en.srt 6.73KB
011 R-Squared.mp4 10.79MB
011 Test for the Mean. Dependent Samples Exercise.html 81B
011 Why is Linear Algebra Useful___en.srt 12.42KB
011 Why is Linear Algebra Useful_.mp4 86.18MB
012 A Practical Example of Bayesian Inference__en.srt 19.75KB
012 A Practical Example of Bayesian Inference.mp4 125.49MB
012 Business Case_ Final Exercise.html 433B
012 Business Case_ Final Exercise.html 441B
012 Calculating the Accuracy of the Model__en.srt 4.41KB
012 Calculating the Accuracy of the Model.mp4 20.28MB
012 Confidence intervals. Two means. Independent Samples (Part 1). Exercise.html 81B
012 Continuous Distributions_ The Chi-Squared Distribution__en.srt 2.90KB
012 Continuous Distributions_ The Chi-Squared Distribution.mp4 10.95MB
012 Creating a Summary Table with P-values__en.srt 3.04KB
012 Creating a Summary Table with P-values.mp4 6.45MB
012 Dealing with Categorical Data - Dummy Variables.html 76B
012 EXERCISE - Obtaining Dummies from a Single Feature.html 123B
012 Market Segmentation with Cluster Analysis (Part 2)__en.srt 9.28KB
012 Market Segmentation with Cluster Analysis (Part 2).mp4 34.08MB
012 Mean, Median and Mode Exercise.html 81B
012 MNIST_ Testing the Model__en.srt 6.07KB
012 MNIST_ Testing the Model.mp4 22.64MB
012 Optimization Algorithm_ n-Parameter Gradient Descent__en.srt 7.75KB
012 Optimization Algorithm_ n-Parameter Gradient Descent.mp4 16.35MB
012 pandas DataFrames - Indexing with .loc[]__en.srt 5.51KB
012 pandas DataFrames - Indexing with .loc[].mp4 20.72MB
012 Test for the mean. Independent Samples (Part 1)__en.srt 5.57KB
012 Test for the mean. Independent Samples (Part 1).mp4 7.57MB
012 Testing the Model We Created__en.srt 6.51KB
012 Testing the Model We Created.mp4 31.63MB
013 Calculating the Accuracy of the Model.html 87B
013 Confidence intervals. Two means. Independent Samples (Part 2)__en.srt 4.81KB
013 Confidence intervals. Two means. Independent Samples (Part 2).mp4 13.05MB
013 Continuous Distributions_ The Exponential Distribution__en.srt 4.20KB
013 Continuous Distributions_ The Exponential Distribution.mp4 15.76MB
013 How is Clustering Useful___en.srt 6.52KB
013 How is Clustering Useful_.mp4 36.49MB
013 Making Predictions with the Linear Regression__en.srt 4.54KB
013 Making Predictions with the Linear Regression.mp4 16.36MB
013 Multiple Linear Regression - Exercise.html 76B
013 Saving the Model and Preparing it for Deployment__en.srt 1.23KB
013 Saving the Model and Preparing it for Deployment_en.vtt 4.96KB
013 Saving the Model and Preparing it for Deployment.mp4 25.52MB
013 Skewness__en.srt 3.63KB
013 Skewness.mp4 9.92MB
013 SOLUTION - Obtaining Dummies from a Single Feature.html 117B
013 Test for the mean. Independent Samples (Part 1). Exercise.html 81B
014 ARTICLE - A Note on 'pickling'.html 2.11KB
014 Confidence intervals. Two means. Independent Samples (Part 2). Exercise.html 81B
014 Continuous Distributions_ The Logistic Distribution__en.srt 5.42KB
014 Continuous Distributions_ The Logistic Distribution.mp4 15.95MB
014 Dropping a Dummy Variable from the Data Set.html 2.31KB
014 EXERCISE_ Species Segmentation with Cluster Analysis (Part 1).html 87B
014 Feature Scaling (Standardization)__en.srt 7.79KB
014 Feature Scaling (Standardization).mp4 20.37MB
014 Skewness Exercise.html 81B
014 Test for the mean. Independent Samples (Part 2)__en.srt 5.47KB
014 Test for the mean. Independent Samples (Part 2).mp4 24.47MB
014 Underfitting and Overfitting__en.srt 4.88KB
014 Underfitting and Overfitting.mp4 7.25MB
015 A Practical Example of Probability Distributions__en.srt 20.29KB
015 A Practical Example of Probability Distributions.mp4 138.31MB
015 Confidence intervals. Two means. Independent Samples (Part 3)__en.srt 1.93KB
015 Confidence intervals. Two means. Independent Samples (Part 3).mp4 4.17MB
015 EXERCISE_ Species Segmentation with Cluster Analysis (Part 2).html 87B
015 EXERCISE - Saving the Model (and Scaler).html 284B
015 Feature Selection through Standardization of Weights__en.srt 7.47KB
015 Feature Selection through Standardization of Weights.mp4 27.16MB
015 More on Dummy Variables_ A Statistical Perspective__en.srt 1.74KB
015 More on Dummy Variables_ A Statistical Perspective.mp4 3.18MB
015 Test for the mean. Independent Samples (Part 2). Exercise.html 81B
015 Testing the Model__en.srt 6.46KB
015 Testing the Model.mp4 21.60MB
015 Variance__en.srt 7.87KB
015 Variance.mp4 20.21MB
016 Classifying the Various Reasons for Absence__en.srt 10.05KB
016 Classifying the Various Reasons for Absence.mp4 51.32MB
016 Predicting with the Standardized Coefficients__en.srt 5.81KB
016 Predicting with the Standardized Coefficients.mp4 18.34MB
016 Preparing the Deployment of the Model through a Module__en.srt 5.51KB
016 Preparing the Deployment of the Model through a Module.mp4 28.57MB
016 Testing the Model - Exercise.html 87B
016 Variance Exercise.html 522B
017 Feature Scaling (Standardization) - Exercise.html 76B
017 Standard Deviation and Coefficient of Variation__en.srt 6.62KB
017 Standard Deviation and Coefficient of Variation.mp4 20.14MB
017 Using .concat() in Python__en.srt 5.23KB
017 Using .concat() in Python.mp4 19.77MB
018 EXERCISE - Using .concat() in Python.html 189B
018 Standard Deviation and Coefficient of Variation Exercise.html 81B
018 Underfitting and Overfitting__en.srt 3.43KB
018 Underfitting and Overfitting.mp4 5.69MB
019 Covariance__en.srt 4.97KB
019 Covariance.mp4 18.41MB
019 SOLUTION - Using .concat() in Python.html 143B
019 Train - Test Split Explained__en.srt 9.82KB
019 Train - Test Split Explained.mp4 35.58MB
020 Covariance Exercise.html 81B
020 Reordering Columns in a Pandas DataFrame in Python__en.srt 1.87KB
020 Reordering Columns in a Pandas DataFrame in Python.mp4 7.18MB
021 Correlation Coefficient__en.srt 4.75KB
021 Correlation Coefficient.mp4 19.38MB
021 EXERCISE - Reordering Columns in a Pandas DataFrame in Python.html 161B
022 Correlation Coefficient Exercise.html 81B
022 SOLUTION - Reordering Columns in a Pandas DataFrame in Python.html 478B
023 Creating Checkpoints while Coding in Jupyter__en.srt 3.72KB
023 Creating Checkpoints while Coding in Jupyter.mp4 17.34MB
024 EXERCISE - Creating Checkpoints while Coding in Jupyter.html 137B
025 SOLUTION - Creating Checkpoints while Coding in Jupyter.html 118B
026 Analyzing the Dates from the Initial Data Set__en.srt 8.55KB
026 Analyzing the Dates from the Initial Data Set.mp4 40.13MB
027 Extracting the Month Value from the _Date_ Column__en.srt 7.93KB
027 Extracting the Month Value from the _Date_ Column.mp4 38.91MB
028 Extracting the Day of the Week from the _Date_ Column__en.srt 4.40KB
028 Extracting the Day of the Week from the _Date_ Column.mp4 9.12MB
029 EXERCISE - Removing the _Date_ Column.html 1.14KB
030 Analyzing Several _Straightforward_ Columns for this Exercise__en.srt 4.43KB
030 Analyzing Several _Straightforward_ Columns for this Exercise.mp4 12.23MB
031 Working on _Education_, _Children_, and _Pets___en.srt 5.65KB
031 Working on _Education_, _Children_, and _Pets_.mp4 19.69MB
032 Final Remarks of this Section__en.srt 2.52KB
032 Final Remarks of this Section.mp4 17.04MB
033 A Note on Exporting Your Data as a _.csv File.html 880B
13055412-2.3.Categorical-variables.Visualization-techniques-exercise.xlsx 15.24KB
13055414-2 3 Categorical-variables Visualization-techniques-exercise-solution xlsx 41.11KB
13055440-2.5.The-Histogram-lesson.xlsx 18.63KB
13055456-2.6.Cross-table-and-scatter-plot.xlsx 26.12KB
13055460-2.6.Cross-table-and-scatter-plot-exercise.xlsx 16.28KB
13055464-2.6.Cross-table-and-scatter-plot-exercise-solution.xlsx 40.44KB
13055474-2.7.Mean-median-and-mode-lesson.xlsx 10.49KB
13055484-2.7.Mean-median-and-mode-exercise.xlsx 10.87KB
13055486-2.7.Mean-median-and-mode-exercise-solution.xlsx 11.35KB
13055492-2.8.Skewness-lesson.xlsx 34.63KB
13055500-2.8.Skewness-exercise.xlsx 9.49KB
13055502-2.8.Skewness-exercise-solution.xlsx 19.78KB
13055510-2.9.Variance-lesson.xlsx 10.08KB
13055516-2.9.Variance-exercise.xlsx 10.83KB
13055520-2.9.Variance-exercise-solution.xlsx 11.05KB
13055774-2.3.Categorical-variables.Visualization-techniques-lesson.xlsx 30.77KB
13055786-2.5.The-Histogram-exercise.xlsx 15.50KB
13055790-2.5.The-Histogram-exercise-solution.xlsx 17.10KB
13055800-2.10.Standard-deviation-and-coefficient-of-variation-lesson.xlsx 10.97KB
13055814-2.11.Covariance-lesson.xlsx 24.92KB
13055822-2.11.Covariance-exercise.xlsx 20.23KB
13055824-2.11.Covariance-exercise-solution.xlsx 29.51KB
13055834-2.12.Correlation-exercise.xlsx 29.30KB
13055838-2.12.Correlation-exercise-solution.xlsx 29.48KB
13055898-3.2.What-is-a-distribution-lesson.xlsx 19.46KB
13055942-3.4.Standard-normal-distribution-lesson.xlsx 10.38KB
13056180-3.9.Population-variance-known-z-score-lesson.xlsx 11.21KB
13056196-3.9.Population-variance-known-z-score-exercise.xlsx 10.83KB
13056200-3.9.Population-variance-known-z-score-exercise-solution.xlsx 11.16KB
13056212-3.11.Population-variance-unknown-t-score-lesson.xlsx 10.78KB
13056216-3.11.The-t-table.xlsx 15.85KB
13056226-3.11.Population-variance-unknown-t-score-exercise.xlsx 10.62KB
13056228-3.11.Population-variance-unknown-t-score-exercise-solution.xlsx 11.10KB
13056236-3.13.Confidence-intervals.Two-means.Dependent-samples-lesson.xlsx 10.47KB
13056246-3 13 Confidence-intervals Two-means Dependent-samples-exercise xlsx 13.74KB
13056252-3 13 Confidence-intervals Two-means Dependent-samples-exercise-solution xlsx 14.24KB
13056280-3 14 Confidence-intervals Two-means Independent-samples-Part-1-lesson xlsx 9.83KB
13056290-3 14 Confidence-intervals Two-means Independent-samples-Part-1-exercise xlsx 9.83KB
13056292-3 14 Confidence-intervals Two-means Independent-samples-Part-1-exercise-solution xlsx 10.12KB
13056308-3 15 Confidence-intervals Two-means Independent-samples-Part-2-lesson xlsx 9.52KB
13056316-3 15 Confidence-intervals Two-means Independent-samples-Part-2-exercise xlsx 9.17KB
13056318-3 15 Confidence-intervals Two-means Independent-samples-Part-2-exercise-solution xlsx 9.79KB
13056326-3.17.Practical-example.Confidence-intervals-lesson.xlsx 1.74MB
13056520-4.4.Test-for-the-mean.Population-variance-known-lesson.xlsx 10.96KB
13056684-4.4.Test-for-the-mean.Population-variance-known-exercise.xlsx 11.03KB
13056688-4 4 Test-for-the-mean Population-variance-known-exercise-solution xlsx 11.22KB
13056708-4.6.Test-for-the-mean.Population-variance-unknown-exercise.xlsx 11.34KB
13056712-4.7.Test-for-the-mean.Dependent-samples-lesson.xlsx 9.79KB
13056716-4.7.Test-for-the-mean.Dependent-samples-exercise.xlsx 12.80KB
13056718-4.7.Test-for-the-mean.Dependent-samples-exercise-solution.xlsx 14.40KB
13056720-4.8.Test-for-the-mean.Independent-samples-Part-1-lesson.xlsx 9.63KB
13056726-4.9.Test-for-the-mean.Independent-samples-Part-2-lesson.xlsx 9.31KB
13070016-Course-Notes-Section-6.pdf 936.42KB
13070018-Course-Notes-Section-6.pdf 936.42KB
13070602-Shortcuts-for-Jupyter.pdf 619.17KB
13070604-Shortcuts-for-Jupyter.pdf 619.17KB
13070608-Shortcuts-for-Jupyter.pdf 619.17KB
13070978-Audiobooks-data.csv 710.77KB
13075156-365-DataScience-Diagram.pdf 323.08KB
13075162-365-DataScience-Diagram.pdf 323.08KB
13075166-365-DataScience.png 6.92MB
13075168-365-DataScience.png 6.92MB
13129220-2.13.Practical-example.Descriptive-statistics-lesson.xlsx 146.51KB
13737052-4.6.Test-for-the-mean.Population-variance-unknown-lesson.xlsx 14.54KB
13831264-Course-notes-inferential-statistics.pdf 382.32KB
13831266-Course-notes-inferential-statistics.pdf 382.32KB
14171114-3.4.Standard-normal-distribution-exercise.xlsx 11.99KB
14171118-3.4.Standard-normal-distribution-exercise-solution.xlsx 24.04KB
14679830-2.4.Numerical-variables.Frequency-distribution-table-lesson.xlsx 11.44KB
14812652-Course-notes-descriptive-statistics.pdf 482.21KB
14812660-Course-notes-descriptive-statistics.pdf 482.21KB
15271310-Absenteeism-data.csv 32.05KB
15271322-data-preprocessing-homework.pdf 134.47KB
15271330-df-preprocessed.csv 29.11KB
15364076-Absenteeism-preprocessed.csv 29.13KB
15451783-Example-bank-data.csv 6.21KB
15451889-Bank-data.csv 19.55KB
15451939-Bank-data.csv 19.55KB
15451967-Bank-data.csv 19.55KB
15452033-Bank-data.csv 19.55KB
15452035-Bank-data-testing.csv 8.30KB
15452987-Categorical.csv 10.34KB
15453017-Countries-exercise.csv 8.27KB
15453029-iris-dataset.csv 2.40KB
15453055-iris-dataset.csv 2.40KB
15453059-iris-with-answers.csv 3.63KB
15762096-Statistics-Glossary.xlsx 20.26KB
15870664-Python-Introduction-Course-Notes.pdf 2.03MB
16190540-4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2.xlsx 10.54KB
16190542-4 9 Test-for-the-mean Independent-samples-Part-2-exercise-2-solution xlsx 11.39KB
16200120-4.8.Test-for-the-mean.Independent-samples-Part-1-exercise.xlsx 10.77KB
16413674-3.9.The-z-table.xlsx 25.58KB
16413678-3.9.The-z-table.xlsx 25.58KB
16507136-FAQ-The-Data-Science-Course.pdf 306.10KB
16752952-Course-Notes-Section-2.pdf 578.08KB
16752958-Course-Notes-Section-2.pdf 578.08KB
16753580-Online-p-value-calculator.pdf 1.15MB
16753694-Statistics-PDF-with-Excel-Solutions-that-dont-visualize-properly pdf 289.12KB
16753696-Statistics-PDF-with-Excel-Solutions-that-dont-visualize-properly pdf 289.12KB
17187788-GD-function-example.xlsx 42.33KB
17431614-Course-Notes-Basic-Probability.pdf 371.05KB
17431618-Course-Notes-Combinatorics.pdf 226.12KB
17431622-Course-Notes-Bayesian-Inference.pdf 386.01KB
17431624-Symmetry-Explained.pdf 85.04KB
17431628-Solving-Integrals.pdf 343.85KB
17550252-Normal-Distribution-Exp-and-Var.pdf 144.08KB
17550452-Combinations-With-Repetition.pdf 207.41KB
17710210-4 6 Test-for-the-mean Population-variance-unknown-exercise-solution xlsx 12.63KB
17756226-Additional-Exercises-Combinatorics.pdf 106.58KB
17862366-Poisson-Expected-Value-and-Variance.pdf 145.99KB
17959056-3.17.Practical-example.Confidence-intervals-exercise.xlsx 1.73MB
17959058-3.17.Practical-example.Confidence-intervals-exercise-solution.xlsx 1.82MB
17970686-CDS-2017-2018-Hamilton.pdf 845.31KB
17971238-FIFA19.csv 8.64MB
17971248-FIFA19-post.csv 8.64MB
17971258-Daily-Views.xlsx 9.53KB
17971260-Daily-Views-post.xlsx 20.21KB
17971264-Customers-Membership.xlsx 9.69KB
17971268-Customers-Membership-post.xlsx 15.62KB
18029224-Glossary.xlsx 19.97KB
18041220-4 8 Test-for-the-mean Independent-samples-Part-1-exercise-solution xlsx 11.25KB
18886388-Bayesian-Homework.pdf 27.26KB
18886392-Bayesian-Homework-Solutions.pdf 30.35KB
19327638-Probability-in-Finance-Homework.pdf 110.68KB
19327648-Probability-in-Finance-Solutions.pdf 184.46KB
19527574-2.13.Practical-example.Descriptive-statistics-exercise.xlsx 120.27KB
19527576-2 13 Practical-example Descriptive-statistics-exercise-solution xlsx 146.38KB
19540858-Additional-Exercises-Combinatorics-Solutions.pdf 245.67KB
19664156-Audiobooks-data.csv 710.77KB
19880121-2.10.Standard-deviation-and-coefficient-of-variation-exercise.xlsx 11.61KB
19880123-2 10 Standard-deviation-and-coefficient-of-variation-exercise-solution xlsx 12.60KB
20945990-Course-Notes-Probability-Distributions.pdf 463.95KB
21198408-3.11.The-t-table.xlsx 15.85KB
21993772-Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf 182.38KB
22431075-Course-notes-hypothesis-testing.pdf 656.44KB
22431079-Course-notes-hypothesis-testing.pdf 656.44KB
22685780-Course-notes-regression-analysis.pdf 312.18KB
22685784-Course-notes-regression-analysis.pdf 312.18KB
23038654-2 4 Numerical-variables Frequency-distribution-table-exercise-solution xlsx 13.15KB
23224540-Probability-Cheat-Sheet.pdf 320.28KB
23412976-Course-Notes-Logistic-Regression.pdf 335.17KB
23413016-Course-Notes-Logistic-Regression.pdf 335.17KB
23413656-Course-Notes-Cluster-Analysis.pdf 208.65KB
23413662-Course-Notes-Cluster-Analysis.pdf 208.65KB
24453624-Absenteeism-predictions.csv 2.10KB
27047254-4.10.Hypothesis-testing-section-practical-example.xlsx 51.90KB
27047330-4.10.Hypothesis-testing-section-practical-example-exercise.xlsx 43.69KB
27047334-4 10 Hypothesis-testing-section-practical-example-exercise-solution xlsx 44.27KB
29535536-Additional-Python-Tools-Lectures.ipynb 13.47KB
29535540-Additional-Python-Tools-Exercises.ipynb 11.37KB
29535546-Additional-Python-Tools-Solutions.ipynb 25.49KB
29535548-Additional-Python-Tools-Lectures.ipynb 13.47KB
29535552-Additional-Python-Tools-Exercises.ipynb 11.37KB
29535554-Additional-Python-Tools-Solutions.ipynb 25.49KB
29544526-Variables-Lecture-Py3.ipynb 3.61KB
29544572-Numbers-and-Boolean-Values-Lecture-Py3.ipynb 3.36KB
29544578-Strings-Lecture-Py3.ipynb 7.56KB
29544582-Strings-Exercise-Py3.ipynb 2.61KB
29544586-Strings-Solution-Py3.ipynb 5.45KB
29544590-Numbers-and-Boolean-Values-Exercise-Py3.ipynb 2.29KB
29544594-Numbers-and-Boolean-Values-Solution-Py3.ipynb 3.23KB
29544602-Variables-Exercise-Py3.ipynb 2.23KB
29544612-Variables-Solution-Py3.ipynb 3.79KB
29544616-Arithmetic-Operators-Lecture-Py3.ipynb 3.53KB
29544618-Arithmetic-Operators-Exercise-Py3.ipynb 2.62KB
29544620-Arithmetic-Operators-Solution-Py3.ipynb 4.24KB
29544624-The-Double-Equality-Sign-Lecture-Py3.ipynb 1.45KB
29544630-The-Double-Equality-Sign-Exercise-Py3.ipynb 838B
29544632-The-Double-Equality-Sign-Solution-Py3.ipynb 1.14KB
29544648-Reassign-Values-Lecture-Py3.ipynb 3.08KB
29544656-Reassign-Values-Exercise-Py3.ipynb 1.67KB
29544658-Reassign-Values-Solution-Py3.ipynb 2.12KB
29544678-Add-Comments-Lecture-Py3.ipynb 1.03KB
29544682-Indexing-Elements-Lecture-Py3.ipynb 1.32KB
29544684-Indexing-Elements-Exercise-Py3.ipynb 1.35KB
29544694-Indexing-Elements-Solution-Py3.ipynb 2.17KB
29544712-Line-Continuation-Lecture-Py3.ipynb 779B
29544714-Line-Continuation-Exercise-Py3.ipynb 1.14KB
29544716-Line-Continuation-Solution-Py3.ipynb 1.50KB
29544720-Structure-Your-Code-with-Indentation-Lecture-Py3.ipynb 958B
29544724-Structure-Your-Code-with-Indentation-Exercise-Py3.ipynb 956B
29544728-Structure-Your-Code-with-Indentation-Solution-Py3.ipynb 1.50KB
29544734-Comparison-Operators-Lecture-Py3.ipynb 2.53KB
29544738-Comparison-Operators-Exercise-Py3.ipynb 1.61KB
29544744-Comparison-Operators-Solution-Py3.ipynb 2.41KB
29544754-Logical-and-Identity-Operators-Lecture-Py3.ipynb 5.86KB
29544770-Logical-and-Identity-Operators-Lecture-Py3.ipynb 5.86KB
29544776-Logical-and-Identity-Operators-Solution-Py3.ipynb 3.43KB
29544784-Introduction-to-the-If-Statement-Lecture-Py3.ipynb 1.14KB
29544788-Introduction-to-the-If-Statement-Exercise-Py3.ipynb 1.53KB
29544792-Introduction-to-the-If-Statement-Solution-Py3.ipynb 2.19KB
29544796-Add-an-Else-Statement-Lecture-Py3.ipynb 1.76KB
29544802-Add-an-Else-Statement-Exercise-Py3.ipynb 1.02KB
29544804-Add-an-Else-Statement-Solution-Py3.ipynb 1.40KB
29544814-Else-If-for-Brief-Elif-Lecture-Py3.ipynb 3.24KB
29544818-Else-If-for-Brief-Elif-Exercise-Py3.ipynb 1.75KB
29544822-Else-If-for-Brief-Elif-Solution-Py3.ipynb 2.40KB
29544828-A-Note-on-Boolean-Values-Lecture-Py3.ipynb 791B
29544842-Defining-a-Function-in-Python-Lecture-Py3.ipynb 868B
29544846-Creating-a-Function-with-a-Parameter-Lecture-Py3.ipynb 1.59KB
29544848-Creating-a-Function-with-a-Parameter-Exercise-Py3.ipynb 1.16KB
29544850-Creating-a-Function-with-a-Parameter-Solution-Py3.ipynb 1.79KB
29544866-Another-Way-to-Define-a-Function-Lecture-Py3.ipynb 3.29KB
29544868-Another-Way-to-Define-a-Function-Exercise-Py3.ipynb 1.24KB
29544874-Another-Way-to-Define-a-Function-Solution-Py3.ipynb 1.98KB
29544880-0.6.4-Using-a-Function-in-another-Function-Lecture-Py3.ipynb 1015B
29544888-0.6.4-Using-a-Function-in-another-Function-Exercise-Py3.ipynb 1.04KB
29544890-0.6.4-Using-a-Function-in-another-Function-Solution-Py3.ipynb 1.60KB
29544904-Combining-Conditional-Statements-and-Functions-Lecture-Py3.ipynb 1.29KB
29544906-Combining-Conditional-Statements-and-Functions-Exercise-Py3.ipynb 1.06KB
29544910-Combining-Conditional-Statements-and-Functions-Solution-Py3.ipynb 1.65KB
29544920-Creating-Functions-Containing-a-Few-Arguments-Lecture-Py3.ipynb 1.72KB
29544922-Notable-Built-In-Functions-in-Python-Lecture-Py3.ipynb 4.51KB
29544924-Notable-Built-In-Functions-in-Python-Exercise-Py3.ipynb 3.66KB
29544926-Notable-Built-In-Functions-in-Python-Solution-Py3.ipynb 5.52KB
29544928-Lists-Lecture-Py3.ipynb 2.70KB
29544930-Lists-Exercise-Py3.ipynb 2.14KB
29544932-Lists-Solution-Py3.ipynb 3.18KB
29544938-Help-Yourself-with-Methods-Lecture-Py3.ipynb 4.39KB
29544942-Help-Yourself-with-Methods-Exercise-Py3.ipynb 1.91KB
29544946-Help-Yourself-with-Methods-Solution-Py3.ipynb 2.83KB
29544952-List-Slicing-Lecture-Py3.ipynb 5.02KB
29544956-List-Slicing-Exercise-Py3.ipynb 2.79KB
29544960-List-Slicing-Solution-Py3.ipynb 4.26KB
29544972-Tuples-Lecture-Py3.ipynb 2.91KB
29544976-Tuples-Exercise-Py3.ipynb 2.07KB
29544978-Tuples-Solution-Py3.ipynb 4.61KB
29544988-Dictionaries-Lecture-Py3.ipynb 4.35KB
29544992-Dictionaries-Exercise-Py3.ipynb 2.92KB
29544994-Dictionaries-Solution-Py3.ipynb 6.16KB
29545008-For-Loops-Lecture-Py3.ipynb 1.26KB
29545010-For-Loops-Exercise-Py3.ipynb 1.28KB
29545018-For-Loops-Solution-Py3.ipynb 1.80KB
29545028-While-Loops-and-Incrementing-Lecture-Py3.ipynb 1.08KB
29545030-While-Loops-and-Incrementing-Exercise-Py3.ipynb 1.12KB
29545032-While-Loops-and-Incrementing-Solution-Py3.ipynb 1.75KB
29545042-Create-Lists-with-the-range-Function-Lecture-Py3.ipynb 1.34KB
29545046-Create-Lists-with-the-range-Function-Exercise-Py3.ipynb 1.45KB
29545048-Create-Lists-with-the-range-Function-Solution-Py3.ipynb 2.25KB
29545058-Use-Conditional-Statements-and-Loops-Together-Lecture-Py3.ipynb 1.95KB
29545070-Use-Conditional-Statements-and-Loops-Together-Exercise-Py3.ipynb 2.10KB
29545074-Use-Conditional-Statements-and-Loops-Together-Solution-Py3.ipynb 2.96KB
29545092-All-In-Lecture-Py3.ipynb 1.62KB
29545100-All-In-Exercise-Py3.ipynb 1.30KB
29545102-All-In-Solution-Py3.ipynb 1.90KB
29545116-Iterating-over-Dictionaries-Lecture-Py3.ipynb 1.08KB
29545118-Iterating-over-Dictionaries-Exercise-Py3.ipynb 2.19KB
29545120-Iterating-over-Dictionaries-Solution-Py3.ipynb 2.87KB
29545266-Absenteeism-predictions.csv 2.10KB
29545298-Absenteeism-Exercise-Preprocessing-df-reason-mod.ipynb 4.82KB
29545314-Absenteeism-Exercise-Preprocessing-ChP-df-date-reason-mod.ipynb 7.33KB
29545316-Absenteeism-Exercise-Removing-the-Date-Column-SOLUTION.ipynb 8.33KB
29545318-Absenteeism-Exercise-Preprocessing-LECTURES.ipynb 7.60MB
29545334-Absenteeism-Exercise-Preprocessing-df-preprocessed.ipynb 8.51KB
29545338-Absenteeism-Exercise-EXERCISES-and-SOLUTIONS.ipynb 4.13KB
29545348-Absenteeism-Exercise-Deploying-the-absenteeism-module.ipynb 973B
29545372-Absenteeism-Exercise-Integration.ipynb 62.35KB
29545374-absenteeism-module.py 6.62KB
29545382-Absenteeism-new-data.csv 1.87KB
29545384-model 1.01KB
29545388-scaler 1.86KB
29587970-1.01.Simple-linear-regression.csv 922B
29587976-Simple-linear-regression.ipynb 3.79KB
29588016-Simple-linear-regression-with-comments.ipynb 4.06KB
29588022-real-estate-price-size.csv 1.86KB
29588024-Simple-Linear-Regression-Exercise-Solution.ipynb 3.57KB
29588026-Simple-Linear-Regression-Exercise.ipynb 2.78KB
29588058-1.02.Multiple-linear-regression.csv 1.09KB
29588064-Multiple-linear-regression-and-Adjusted-R-squared.ipynb 2.15KB
29588066-Multiple-linear-regression-and-Adjusted-R-squared-with-comments ipynb 2.80KB
29588068-Multiple-Linear-Regression-Exercise-Solution.ipynb 13.39KB
29588072-Multiple-Linear-Regression-Exercise.ipynb 2.45KB
29588076-real-estate-price-size-year.csv 2.35KB
29588090-1.03.Dummies.csv 1.19KB
29588094-Dummy-Variables.ipynb 4.62KB
29588120-Dummy-variables-with-comments.ipynb 7.09KB
29588124-Multiple-Linear-Regression-with-Dummies-Exercise-Solution.ipynb 18.00KB
29588128-Multiple-Linear-Regression-with-Dummies-Exercise.ipynb 3.01KB
29588130-real-estate-price-size-year-view.csv 3.39KB
29588138-Making-predictions.ipynb 5.77KB
29588142-Making-predictions-with-comments.ipynb 9.41KB
29588160-1.01.Simple-linear-regression.csv 922B
29588164-sklearn-Simple-Linear-Regression.ipynb 4.92KB
29588166-sklearn-Simple-Linear-Regression-with-comments.ipynb 6.06KB
29588200-1.01.Simple-linear-regression.csv 922B
29588206-sklearn-Simple-Linear-Regression.ipynb 26.07KB
29588208-sklearn-Simple-Linear-Regression-with-comments.ipynb 28.35KB
29588240-1.02.Multiple-linear-regression.csv 1.07KB
29588244-sklearn-Multiple-Linear-Regression.ipynb 7.79KB
29588246-sklearn-Multiple-Linear-Regression-with-comments.ipynb 8.65KB
29588306-1.02.Multiple-linear-regression.csv 1.07KB
29588310-sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared.ipynb 9.11KB
29588312-sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-with-comments ipynb 10.41KB
29588320-1.02.Multiple-linear-regression.csv 1.07KB
29588324-sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-Exercise-Solution ipynb 10.31KB
29588328-sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-Exercise ipynb 9.83KB
29588334-1.02.Multiple-linear-regression.csv 1.07KB
29588340-sklearn-Feature-Selection-with-F-regression.ipynb 10.44KB
29588342-sklearn-Feature-Selection-with-F-regression-with-comments.ipynb 12.99KB
29588350-1.02.Multiple-linear-regression.csv 1.07KB
29588358-sklearn-How-to-properly-include-p-values.ipynb 12.71KB
29588366-1.02.Multiple-linear-regression.csv 1.07KB
29588370-sklearn-Multiple-Linear-Regression-Summary-Table.ipynb 13.71KB
29588372-sklearn-Multiple-Linear-Regression-Summary-Table-with-comments ipynb 16.63KB
29588378-real-estate-price-size-year.csv 2.35KB
29588380-sklearn-Multiple-Linear-Regression-Exercise-Solution.ipynb 15.44KB
29588382-sklearn-Multiple-Linear-Regression-Exercise.ipynb 5.67KB
29588388-1.02.Multiple-linear-regression.csv 1.07KB
29588392-sklearn-Feature-Selection-through-Feature-Scaling-Standardization-Part-1 ipynb 11.73KB
29588394-SKLEAR-1.IPY 12.87KB
29588398-1.02.Multiple-linear-regression.csv 1.07KB
29588400-sklearn-Feature-Selection-through-Feature-Scaling-Standardization-Part-2 ipynb 14.89KB
29588412-SKLEAR-1.IPY 16.79KB
29588414-1.02.Multiple-linear-regression.csv 1.07KB
29588416-sklearn-Making-Predictions-with-the-Standardized-Coefficients ipynb 29.75KB
29588422-sklearn-Making-Predictions-with-the-Standardized-Coefficients-with-comments ipynb 22.03KB
29588430-real-estate-price-size-year.csv 2.35KB
29588432-sklearn-Feature-Scaling-Exercise-Solution.ipynb 16.28KB
29588434-sklearn-Feature-Scaling-Exercise.ipynb 6.07KB
29588436-sklearn-Train-Test-Split.ipynb 7.23KB
29588440-sklearn-Train-Test-Split-with-comments.ipynb 9.05KB
29588446-1.04.Real-life-example.csv 219.83KB
29588452-sklearn-Linear-Regression-Practical-Example-Part-1.ipynb 166.91KB
29588454-sklearn-Linear-Regression-Practical-Example-Part-1-with-comments ipynb 171.38KB
29588460-1.04.Real-life-example.csv 219.83KB
29588462-sklearn-Linear-Regression-Practical-Example-Part-2.ipynb 328.74KB
29588466-sklearn-Linear-Regression-Practical-Example-Part-2-with-comments ipynb 335.63KB
29588552-sklearn-Linear-Regression-Practical-Example-Part-3.ipynb 343.58KB
29588558-sklearn-Linear-Regression-Practical-Example-Part-3-with-comments ipynb 351.47KB
29588598-1.04.Real-life-example.csv 219.83KB
29588602-sklearn-Dummies-and-VIF-Exercise-Solution.ipynb 370.22KB
29588604-sklearn-Dummies-and-VIF-Exercise.ipynb 344.62KB
29588606-1.04.Real-life-example.csv 219.83KB
29588612-sklearn-Linear-Regression-Practical-Example-Part-4.ipynb 397.23KB
29588618-sklearn-Linear-Regression-Practical-Example-Part-4-with-comments ipynb 407.59KB
29588624-1.04.Real-life-example.csv 219.83KB
29588626-sklearn-Linear-Regression-Practical-Example-Part-5.ipynb 698.36KB
29588630-sklearn-Linear-Regression-Practical-Example-Part-5-with-comments ipynb 711.05KB
29588638-2.01.Admittance.csv 1.58KB
29588642-Admittance.ipynb 3.54KB
29588644-Admittance-with-comments.ipynb 5.32KB
29588660-Admittance-regression-tables-fixed-error.ipynb 4.11KB
29588666-Admittance-regression.ipynb 2.09KB
29588668-Admittance-regression-summary-error.ipynb 2.48KB
29588676-Building-a-Logistic-Regression-Exercise.ipynb 2.92KB
29588678-Building-a-Logistic-Regression-Solution.ipynb 4.44KB
29588694-Understanding-Logistic-Regression-Tables-Exercise.ipynb 3.16KB
29588700-Understanding-Logistic-Regression-Tables-Solution.ipynb 4.79KB
29588712-2.02.Binary-predictors.csv 2.56KB
29588716-Binary-predictors.ipynb 2.41KB
29588826-Binary-Predictors-in-a-Logistic-Regression-Exercise.ipynb 2.54KB
29588832-Binary-Predictors-in-a-Logistic-Regression-Solution.ipynb 4.51KB
29588838-Accuracy.ipynb 3.63KB
29588842-Accuracy-with-comments.ipynb 11.67KB
29588854-Calculating-the-Accuracy-of-the-Model-Exercise.ipynb 5.39KB
29588856-Calculating-the-Accuracy-of-the-Model-Solution.ipynb 81.21KB
29588864-Testing-the-model.ipynb 5.77KB
29588872-2.03.Test-dataset.csv 322B
29588876-Testing-the-model-with-comments.ipynb 7.56KB
29588894-Testing-the-Model-Exercise.ipynb 6.79KB
29588898-Testing-the-Model-Solution.ipynb 111.10KB
29588934-3.01.Country-clusters.csv 200B
29588936-Country-clusters.ipynb 3.31KB
29588940-Country-clusters-with-comments.ipynb 5.80KB
29588950-Countries-exercise.csv 8.27KB
29588952-A-Simple-Example-of-Clustering-Exercise.ipynb 3.62KB
29588954-A-Simple-Example-of-Clustering-Solution.ipynb 4.65KB
29588960-Categorical-data.ipynb 3.35KB
29588968-Categorical-data-with-comments.ipynb 5.62KB
29588982-Clustering-Categorical-Data-Exercise.ipynb 3.78KB
29588986-Clustering-Categorical-Data-Solution.ipynb 4.90KB
29588998-Selecting-the-number-of-clusters.ipynb 4.53KB
29589000-Selecting-the-number-of-clusters-with-comments.ipynb 7.48KB
29589006-How-to-Choose-the-Number-of-Clusters-Exercise.ipynb 5.55KB
29589008-How-to-Choose-the-Number-of-Clusters-Solution.ipynb 8.49KB
29589020-Market-segmentation-example.ipynb 3.80KB
29589022-Market-segmentation-example-with-comments.ipynb 5.90KB
29589028-3.12.Example.csv 283B
29589036-Market-segmentation-example-Part2.ipynb 4.68KB
29589038-Market-segmentation-example-Part2-with-comments.ipynb 6.81KB
29589044-Species-Segmentation-with-Cluster-Analysis-Part-1-Exercise.ipynb 4.46KB
29589048-Species-Segmentation-with-Cluster-Analysis-Part-1-Solution.ipynb 7.35KB
29589052-Species-Segmentation-with-Cluster-Analysis-Part-2-Exercise.ipynb 10.74KB
29589056-Species-Segmentation-with-Cluster-Analysis-Part-2-Solution.ipynb 15.30KB
29589066-Heatmaps.ipynb 1.82KB
29589070-Heatmaps-with-comments.ipynb 17.66KB
29589074-Country-clusters-standardized.csv 244B
29589122-Scalars-Vectors-and-Matrices.ipynb 4.55KB
29589126-Tensors.ipynb 2.08KB
29589134-Adding-and-subtracting-matrices.ipynb 3.22KB
29589174-Errors-when-adding-scalars-vectors-and-matrices-in-Python.ipynb 3.17KB
29589180-Tranpose-of-a-matrix.ipynb 2.89KB
29589188-Dot-product.ipynb 2.13KB
29589194-Dot-product-Part-2.ipynb 3.60KB
29589208-Minimal-example-Part-1.ipynb 1.19KB
29589218-Minimal-example-Part-2.ipynb 3.65KB
29589230-Minimal-example-Part-3.ipynb 6.79KB
29589236-Minimal-example-Part-4-Complete.ipynb 11.41KB
29589260-Minimal-example-All-Exercises.ipynb 12.89KB
29589266-Minimal-example-Exercise-1-Solution.ipynb 69.00KB
29589272-Minimal-example-Exercise-2-Solution.ipynb 61.41KB
29589274-Minimal-example-Exercise-3.a.Solution.ipynb 67.89KB
29589278-Minimal-example-Exercise-3.b.Solution.ipynb 67.72KB
29589280-Minimal-example-Exercise-3.c.Solution.ipynb 70.13KB
29589288-Minimal-example-Exercise-3.d.Solution.ipynb 84.13KB
29589294-Minimal-example-Exercise-4-Solution.ipynb 66.52KB
29589298-Minimal-example-Exercise-5-Solution.ipynb 68.88KB
29589302-Minimal-example-Exercise-6.ipynb 61.76KB
29589304-Minimal-example-Exercise-6-Solution.ipynb 61.76KB
29589774-TensorFlow-Minimal-example-Part1.ipynb 1.66KB
29589782-TensorFlow-Minimal-example-Part2.ipynb 9.06KB
29589788-TensorFlow-Minimal-example-Part3.ipynb 76.52KB
29589804-TensorFlow-Minimal-example-complete.ipynb 76.85KB
29589808-TensorFlow-Minimal-example-complete-with-comments.ipynb 82.29KB
29589822-TensorFlow-Minimal-example-All-exercises.ipynb 83.62KB
29589824-TensorFlow-Minimal-example-Exercise-1-Solution.ipynb 27.96KB
29589828-TensorFlow-Minimal-Example-Exercise-2-1-Solution.ipynb 83.68KB
29589834-TensorFlow-Minimal-Example-Exercise-2-2-Solution.ipynb 77.52KB
29589836-TensorFlow-Minimal-Example-Exercise-3-Solution.ipynb 84.44KB
29589868-TensorFlow-MNIST-Part1-with-comments.ipynb 3.97KB
29589876-TensorFlow-MNIST-Part2-with-comments.ipynb 6.39KB
29589878-TensorFlow-MNIST-Part3-with-comments.ipynb 8.61KB
29589884-TensorFlow-MNIST-Part4-with-comments.ipynb 10.49KB
29589888-TensorFlow-MNIST-Part5-with-comments.ipynb 10.99KB
29589892-TensorFlow-MNIST-Part6-with-comments.ipynb 12.54KB
29589896-1.TensorFlow-MNIST-Width-Solution.ipynb 14.84KB
29589904-2.TensorFlow-MNIST-Depth-Solution.ipynb 15.31KB
29589908-3.TensorFlow-MNIST-Width-and-Depth-Solution.ipynb 15.30KB
29589912-4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb 15.11KB
29589920-5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb 14.74KB
29589928-6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb 15.12KB
29589932-7.TensorFlow-MNIST-Batch-size-Part-2-Solution.ipynb 15.18KB
29589934-8.TensorFlow-MNIST-Learning-rate-Part-1-Solution.ipynb 20.58KB
29589940-9.TensorFlow-MNIST-Learning-rate-Part-2-Solution.ipynb 15.80KB
29589948-TensorFlow-MNIST-All-Exercises.ipynb 16.65KB
29589952-TensorFlow-MNIST-around-98-percent-accuracy.ipynb 15.02KB
29589956-TensorFlow-MNIST-complete.ipynb 6.78KB
29589960-TensorFlow-MNIST-complete-with-comments.ipynb 14.51KB
29589970-TensorFlow-Audiobooks-Preprocessing.ipynb 5.58KB
29589978-TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb 11.19KB
29589984-TensorFlow-Audiobooks-Preprocessing-Exercise.ipynb 8.60KB
29589992-TensorFlow-Audiobooks-Preprocessing-Exercise-Solution.ipynb 10.04KB
29590000-TensorFlow-Audiobooks-Machine-Learning-Part1-with-comments.ipynb 4.61KB
29590002-TensorFlow-Audiobooks-Machine-Learning-Part2-with-comments.ipynb 19.69KB
29590006-TensorFlow-Audiobooks-Machine-Learning-Part3-with-comments.ipynb 10.06KB
29590012-TensorFlow-Audiobooks-Machine-Learning-with-comments.ipynb 11.95KB
29590020-TensorFlow-Audiobooks-Machine-Learning-with-comments.ipynb 11.95KB
29590038-5.3.TensorFlow-Minimal-example-Part-1.ipynb 3.36KB
29590046-5.4.TensorFlow-Minimal-example-Part-2.ipynb 6.17KB
29591380-5.5.TensorFlow-Minimal-example-Part-3.ipynb 8.65KB
29591408-5.6.TensorFlow-Minimal-example-complete.ipynb 12.15KB
29591428-TensorFlow-Minimal-Example-All-Exercises.ipynb 13.97KB
29591432-TensorFlow-Minimal-Example-Exercise-1-Solution.ipynb 23.63KB
29591442-TensorFlow-Minimal-Example-Exercise-2-1-Solution.ipynb 25.54KB
29591444-TensorFlow-Minimal-Example-Exercise-2-2-Solution.ipynb 25.51KB
29591454-TensorFlow-Minimal-Example-Exercise-2-3-Solution.ipynb 49.96KB
29591458-TensorFlow-Minimal-Example-Exercise-2-4-Solution.ipynb 21.75KB
29591464-TensorFlow-Minimal-Example-Exercise-3-Solution.ipynb 26.71KB
29591468-TensorFlow-Minimal-Example-Exercise-4-Solution.ipynb 26.98KB
29591484-12.3.TensorFlow-MNIST-with-comments-Part-1.ipynb 3.89KB
29591494-12.4.TensorFlow-MNIST-with-comments-Part-2.ipynb 6.10KB
29591504-12.5.TensorFlow-MNIST-with-comments-Part-3.ipynb 7.31KB
29591514-12.6.TensorFlow-MNIST-with-comments-Part-4.ipynb 7.90KB
29591520-12.7.TensorFlow-MNIST-with-comments-Part-5.ipynb 8.53KB
29591538-12.8.TensorFlow-MNIST-with-comments-Part-6.ipynb 11.50KB
29591550-12.9.TensorFlow-MNIST-with-comments.ipynb 13.03KB
29591622-TensorFlow-MNIST-Exercises-All.ipynb 15.47KB
29591632-0.TensorFlow-MNIST-take-note-of-time-Solution.ipynb 14.00KB
29591642-1.TensorFlow-MNIST-Width-Solution.ipynb 14.01KB
29591650-2.TensorFlow-MNIST-Depth-Solution.ipynb 14.87KB
29591654-3.TensorFlow-MNIST-Width-and-Depth-Solution.ipynb 16.81KB
29591658-4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb 14.35KB
29591660-5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb 13.93KB
29591668-6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb 14.26KB
29591682-7.TensorFlow-MNIST-Batch-size-Part-2-Solution.ipynb 14.16KB
29591686-8.TensorFlow-MNIST-Learning-rate-Part-1-Solution.ipynb 14.07KB
29591690-9.TensorFlow-MNIST-Learning-rate-Part-2-Solution.ipynb 15.21KB
29591694-TensorFlow-MNIST-around-98-percent-accuracy.ipynb 17.66KB
29591716-Audiobooks-data.csv 710.77KB
29591732-Audiobooks-data.csv 710.77KB
29591734-TensorFlow-Audiobooks-Preprocessing.ipynb 5.58KB
29591738-TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb 11.19KB
29591808-Audiobooks-data.csv 710.77KB
29591812-TensorFlow-Audiobooks-Machine-learning-Homework.ipynb 14.40KB
29591820-TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb 11.19KB
29591842-Audiobooks-data.csv 710.77KB
29591844-TensorFlow-Audiobooks-Machine-learning-Homework.ipynb 14.40KB
29591846-TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb 11.19KB
29591888-TensorFlow-Audiobooks-optimizing-the-algorithm.ipynb 10.64KB
29591892-TensorFlow-Audiobooks-optimizing-the-algorithm-with-comments.ipynb 12.73KB
29591894-TensorFlow-Audiobooks-optimizing-the-algorithm.ipynb 10.64KB
29591900-TensorFlow-Audiobooks-optimizing-the-algorithm-with-comments.ipynb 12.73KB
29591906-TensorFlow-Audiobooks-Outlining-the-model.ipynb 9.36KB
29591910-TensorFlow-Audiobooks-Outlining-the-model-with-comments.ipynb 10.34KB
29591940-Audiobooks-data.csv 710.77KB
29591944-TensorFlow-Audiobooks-Preprocessing-Exercise.ipynb 8.60KB
29591948-TensorFlow-Audiobooks-Preprocessing-Exercise-Solution.ipynb 10.03KB
33130180-real-estate-price-size.csv 1.86KB
33130182-Simple-Linear-Regression-with-sklearn-Exercise.ipynb 4.08KB
33130186-Simple-Linear-Regression-with-sklearn-Exercise-Solution.ipynb 26.61KB
35215106-365-Data-Science-Data-Science-Interview-Questions-Guide.pdf 15.56MB
external-assets-links.txt 101B
external-assets-links.txt 130B
external-assets-links.txt 774B
Distribution statistics by country
Total 0
IP List List of IP addresses which were distributed this torrent