Torrent Info
Title [GigaCourse.Com] Udemy - Python Machine Learning, Deep Learning, Pandas, Matplotlib
Category
Size 4.54GB

Files List
Please note that this page does not hosts or makes available any of the listed filenames. You cannot download any of those files from here.
[GigaCourse.Com].url 49B
[GigaCourse.Com].url 49B
[GigaCourse.Com].url 49B
[GigaCourse.Com].url 49B
[GigaCourse.Com].url 49B
001 AI, Machine Learning and Deep Learning.en.srt 5.69KB
001 AI, Machine Learning and Deep Learning.mp4 16.23MB
001 BONUS.html 30.16KB
001 Data Frame Attributes and Methods Part – I.en.srt 16.16KB
001 Data Frame Attributes and Methods Part – I.mp4 79.75MB
001 Data Types in Python.en.srt 14.07KB
001 Data Types in Python.mp4 41.08MB
001 Data Visualization with Python Masterclass.en.srt 3.67KB
001 Data Visualization with Python Masterclass.mp4 17.88MB
001 Installing Anaconda Distribution and Python.en.srt 4.79KB
001 Installing Anaconda Distribution and Python.mp4 37.54MB
001 Introduction to Deep Learning with Python.en.srt 5.88KB
001 Introduction to Deep Learning with Python.mp4 14.51MB
001 Logic of OOP.en.srt 5.30KB
001 Logic of OOP.mp4 16.38MB
001 Project - 1.en.srt 20.90KB
001 Project - 1.mp4 101.56MB
001 Understanding RNN and LSTM Networks.en.srt 15.14KB
001 Understanding RNN and LSTM Networks.mp4 50.85MB
001 What is Artificial Neural Network (ANN)_.en.srt 8.40KB
001 What is Artificial Neural Network (ANN)_.mp4 23.01MB
001 What is CNN_.en.srt 17.86KB
001 What is CNN_.mp4 72.43MB
001 What is Geoplotlib_.en.srt 10.58KB
001 What is Geoplotlib_.mp4 32.21MB
001 What is Numpy_.en.srt 7.64KB
001 What is Numpy_.mp4 26.74MB
001 What is Pandas_.en.srt 6.54KB
001 What is Pandas_.mp4 22.32MB
001 What is Seaborn_.en.srt 5.20KB
001 What is Seaborn_.mp4 12.89MB
001 What is Transfer Learning.en.srt 19.43KB
001 What is Transfer Learning.mp4 85.32MB
002 Anatomy of Neural Network.en.srt 10.74KB
002 Anatomy of Neural Network.mp4 42.28MB
002 Constructor.en.srt 7.16KB
002 Constructor.mp4 33.89MB
002 Controlling Figure Aesthetics.en.srt 11.19KB
002 Controlling Figure Aesthetics.mp4 39.19MB
002 Data Frame attributes and Methods Part – II.en.srt 11.88KB
002 Data Frame attributes and Methods Part – II.mp4 56.97MB
002 Example - 1.en.srt 9.95KB
002 Example - 1.mp4 36.40MB
002 History of Machine Learning.en.srt 8.05KB
002 History of Machine Learning.mp4 23.85MB
002 Operators in Python.en.srt 11.06KB
002 Operators in Python.mp4 29.62MB
002 Overview of Jupyter Notebook and Google Colab.en.srt 5.95KB
002 Overview of Jupyter Notebook and Google Colab.mp4 25.37MB
002 Project - 2.en.srt 21.62KB
002 Project - 2.mp4 169.25MB
002 Project Files and Course Documents.html 1.17KB
002 Series and Features.en.srt 19.46KB
002 Series and Features.mp4 83.55MB
002 Using Matplotlib.en.srt 7.85KB
002 Using Matplotlib.mp4 26.53MB
002 Why Numpy_.en.srt 5.05KB
002 Why Numpy_.mp4 13.64MB
003 Array and features.en.srt 11.94KB
003 Array and features.mp4 47.91MB
003 Conditionals.en.srt 10.03KB
003 Conditionals.mp4 34.63MB
003 Creating a Simple ANN.en.srt 15.10KB
003 Creating a Simple ANN.mp4 79.48MB
003 Data Frame attributes and Methods Part – III.en.srt 9.79KB
003 Data Frame attributes and Methods Part – III.mp4 48.05MB
003 Example.en.srt 10.01KB
003 Example.mp4 51.32MB
003 Example - 2.en.srt 19.26KB
003 Example - 2.mp4 76.27MB
003 Methods.en.srt 4.30KB
003 Methods.mp4 23.64MB
003 Project - 3.en.srt 15.51KB
003 Project - 3.mp4 82.34MB
003 Pyplot – Pylab - Matplotlib.en.srt 7.54KB
003 Pyplot – Pylab - Matplotlib.mp4 26.60MB
003 Turing Machine and Turing Test.en.srt 13.79KB
003 Turing Machine and Turing Test.mp4 40.90MB
004 Array’s Operators.en.srt 4.36KB
004 Array’s Operators.mp4 17.58MB
004 Color Palettes.en.srt 15.12KB
004 Color Palettes.mp4 45.42MB
004 Example - 3.en.srt 11.78KB
004 Example - 3.mp4 47.81MB
004 Figure, Subplot and Axes.en.srt 18.19KB
004 Figure, Subplot and Axes.mp4 65.66MB
004 Inheritance.en.srt 7.02KB
004 Inheritance.mp4 32.63MB
004 Loops.en.srt 12.43KB
004 Loops.mp4 49.10MB
004 Multi index.en.srt 12.49KB
004 Multi index.mp4 50.80MB
004 Project - 4.en.srt 15.20KB
004 Project - 4.mp4 72.26MB
004 Tensor Operations.en.srt 11.38KB
004 Tensor Operations.mp4 62.12MB
004 What is Deep Learning.en.srt 7.38KB
004 What is Deep Learning.mp4 20.53MB
005 Basic Plots in Seaborn.mp4 92.79MB
005 Figure Customization.en.srt 14.54KB
005 Figure Customization.mp4 59.06MB
005 Groupby Operations.en.srt 12.81KB
005 Groupby Operations.mp4 52.59MB
005 Learning representations from data.en.srt 13.93KB
005 Learning representations from data.mp4 34.90MB
005 Lists, Tuples, Dictionaries and Sets.en.srt 18.21KB
005 Lists, Tuples, Dictionaries and Sets.mp4 66.35MB
005 Numpy Functions.en.srt 19.86KB
005 Numpy Functions.mp4 78.52MB
005 Overriding and Overloading.en.srt 9.74KB
005 Overriding and Overloading.mp4 58.82MB
005 Tensor Operations 2.en.srt 8.26KB
005 Tensor Operations 2.mp4 29.78MB
006 Data Type Operators and Methods.en.srt 9.31KB
006 Data Type Operators and Methods.mp4 40.46MB
006 Indexing and Slicing.en.srt 8.99KB
006 Indexing and Slicing.mp4 40.39MB
006 Keras API.en.srt 8.26KB
006 Keras API.mp4 23.30MB
006 Missing Data and Data Munging Part I.en.srt 22.86KB
006 Missing Data and Data Munging Part I.mp4 79.35MB
006 Multi-Plots in Seaborn.en.srt 11.08KB
006 Multi-Plots in Seaborn.mp4 40.94MB
006 Plot Customization.en.srt 6.90KB
006 Plot Customization.mp4 25.75MB
006 Workflow of Machine Learning.en.srt 11.15KB
006 Workflow of Machine Learning.mp4 31.67MB
007 Grid, Spines, Ticks.en.srt 8.48KB
007 Grid, Spines, Ticks.mp4 22.39MB
007 Machine Learning Methods.en.srt 16.62KB
007 Machine Learning Methods.mp4 45.55MB
007 Missing Data and Data Munging Part II.en.srt 11.23KB
007 Missing Data and Data Munging Part II.mp4 40.79MB
007 Modules in Python.en.srt 5.53KB
007 Modules in Python.mp4 21.06MB
007 Numpy Exercises.en.srt 15.41KB
007 Numpy Exercises.mp4 74.18MB
007 Optimizers.en.srt 12.44KB
007 Optimizers.mp4 42.32MB
007 Regression Plots and Squarify.en.srt 16.11KB
007 Regression Plots and Squarify.mp4 56.50MB
008 Basic Plots in Matplotlib I.en.srt 31.55KB
008 Basic Plots in Matplotlib I.mp4 104.40MB
008 Dealing with Missing Data.en.srt 16.28KB
008 Dealing with Missing Data.mp4 69.23MB
008 Functions in Python.en.srt 9.29KB
008 Functions in Python.mp4 26.06MB
008 Supervised Machine Learning Methods - 1.en.srt 10.75KB
008 Supervised Machine Learning Methods - 1.mp4 30.94MB
008 Using Numpy in Linear Algebra.en.srt 31.85KB
008 Using Numpy in Linear Algebra.mp4 112.16MB
008 Using Numpy in Linear Algebra.mp4.vtx 442.50KB
008 What is TensorFlow.en.srt 20.79KB
008 What is TensorFlow.mp4 62.61MB
009 Basic Plots in Matplotlib II.en.srt 16.24KB
009 Basic Plots in Matplotlib II.mp4 51.52MB
009 Combining Data Frames Part – I.en.srt 18.01KB
009 Combining Data Frames Part – I.mp4 103.55MB
009 Exercise Analyse.en.srt 2.26KB
009 Exercise Analyse.mp4 5.70MB
009 NumExpr Guide.en.srt 8.00KB
009 NumExpr Guide.mp4 42.19MB
009 Supervised Machine Learning Methods - 2.en.srt 15.80KB
009 Supervised Machine Learning Methods - 2.mp4 55.36MB
010 Combining Data Frames Part – II.en.srt 18.13KB
010 Combining Data Frames Part – II.mp4 84.17MB
010 Exercise Solution.en.srt 6.65KB
010 Exercise Solution.mp4 47.69MB
010 Supervised Machine Learning Methods - 3.en.srt 16.38KB
010 Supervised Machine Learning Methods - 3.mp4 56.07MB
011 Supervised Machine Learning Methods - 4.en.srt 19.46KB
011 Supervised Machine Learning Methods - 4.mp4 70.31MB
011 Work with Dataset Files.en.srt 12.09KB
011 Work with Dataset Files.mp4 70.73MB
012 Unsupervised Machine Learning Methods.en.srt 27.60KB
012 Unsupervised Machine Learning Methods.mp4 87.94MB
013 Gathering data.en.srt 5.86KB
013 Gathering data.mp4 17.61MB
014 Data pre-processing.en.srt 6.51KB
014 Data pre-processing.mp4 25.97MB
015 Choosing the right algorithm and model.en.srt 9.21KB
015 Choosing the right algorithm and model.mp4 148.96MB
016 Training and testing the model.en.srt 6.48KB
016 Training and testing the model.mp4 83.89MB
017 Evaluation.en.srt 7.67KB
017 Evaluation.mp4 24.37MB
Distribution statistics by country
Total 0
IP List List of IP addresses which were distributed this torrent