Torrent Info
Title Deep Learning with TensorFlow 2.0
Category
Size 1.88GB

Files List
Please note that this page does not hosts or makes available any of the listed filenames. You cannot download any of those files from here.
[TGx]Downloaded from torrentgalaxy.to .txt 585B
001 Meet your instructors and why you should study machine learning_.en.srt 10.53KB
001 Meet your instructors and why you should study machine learning_.mp4 105.78MB
002 What does the course cover_.en.srt 6.45KB
002 What does the course cover_.mp4 16.35MB
003 Download All Resources and Important FAQ.html 1.75KB
004 Course-Notes-Section-2.pdf 927.67KB
004 Introduction to neural networks.en.srt 6.16KB
004 Introduction to neural networks.mp4 13.55MB
005 Course-Notes-Section-2.pdf 927.67KB
005 Training the model.en.srt 4.47KB
005 Training the model.mp4 8.81MB
006 Course-Notes-Section-2.pdf 927.67KB
006 Types of machine learning.en.srt 5.47KB
006 Types of machine learning.mp4 12.20MB
007 Course-Notes-Section-2.pdf 927.67KB
007 The linear model.en.srt 4.07KB
007 The linear model.mp4 9.12MB
008 Need Help with Linear Algebra_.html 1.69KB
009 Course-Notes-Section-2.pdf 927.67KB
009 The linear model. Multiple inputs.en.srt 3.21KB
009 The linear model. Multiple inputs.mp4 7.49MB
010 Course-Notes-Section-2.pdf 927.67KB
010 The linear model. Multiple inputs and multiple outputs.en.srt 5.67KB
010 The linear model. Multiple inputs and multiple outputs.mp4 38.28MB
011 Course-Notes-Section-2.pdf 927.67KB
011 Graphical representation.en.srt 2.80KB
011 Graphical representation.mp4 6.34MB
012 Course-Notes-Section-2.pdf 927.67KB
012 The objective function.en.srt 2.11KB
012 The objective function.mp4 5.71MB
013 Course-Notes-Section-2.pdf 927.67KB
013 L2-norm loss.en.srt 2.91KB
013 L2-norm loss.mp4 7.26MB
014 Course-Notes-Section-2.pdf 927.67KB
014 Cross-entropy loss.en.srt 5.55KB
014 Cross-entropy loss.mp4 11.35MB
015 Course-Notes-Section-2.pdf 927.67KB
015 GD-function-example.xlsx 42.33KB
015 One parameter gradient descent.en.srt 8.79KB
015 One parameter gradient descent.mp4 17.76MB
016 Course-Notes-Section-2.pdf 927.67KB
016 N-parameter gradient descent.en.srt 7.81KB
016 N-parameter gradient descent.mp4 39.45MB
017 Setting up the environment - An introduction - Do not skip, please!.en.srt 1.44KB
017 Setting up the environment - An introduction - Do not skip, please!.mp4 5.95MB
018 Why Python and why Jupyter_.en.srt 6.53KB
018 Why Python and why Jupyter_.mp4 32.06MB
019 Installing Anaconda.en.srt 4.76KB
019 Installing Anaconda.mp4 28.38MB
020 The Jupyter dashboard - part 1.en.srt 3.27KB
020 The Jupyter dashboard - part 1.mp4 8.70MB
021 The Jupyter dashboard - part 2.en.srt 7.04KB
021 The Jupyter dashboard - part 2.mp4 18.80MB
022 Jupyter Shortcuts.html 1.20KB
022 Shortcuts-for-Jupyter.pdf 619.17KB
023 Installing TensorFlow 2.en.srt 6.63KB
023 Installing TensorFlow 2.mp4 38.72MB
024 Installing packages - exercise.html 1.08KB
025 Installing packages - solution.html 1.14KB
026 Minimal example - part 1.en.srt 4.69KB
026 Minimal example - part 1.mp4 6.53MB
027 Minimal example - part 2.en.srt 7.13KB
027 Minimal example - part 2.mp4 10.70MB
028 Minimal example - part 3.en.srt 4.63KB
028 Minimal example - part 3.mp4 9.76MB
029 Minimal example - part 4.en.srt 11.29KB
029 Minimal example - part 4.mp4 20.80MB
030 Minimal example - Exercises.html 2.45KB
031 TensorFlow outline.en.srt 5.44KB
031 TensorFlow outline.mp4 33.53MB
032 TensorFlow 2 intro.en.srt 3.77KB
032 TensorFlow 2 intro.mp4 21.98MB
033 A Note on Coding in TensorFlow.en.srt 1.41KB
033 A Note on Coding in TensorFlow.mp4 6.76MB
034 Types of file formats in TensorFlow and data handling.en.srt 3.65KB
034 Types of file formats in TensorFlow and data handling.mp4 16.40MB
035 Model layout - inputs, outputs, targets, weights, biases, optimizer and loss.en.srt 8.13KB
035 Model layout - inputs, outputs, targets, weights, biases, optimizer and loss.mp4 34.68MB
036 Interpreting the result and extracting the weights and bias.en.srt 6.44KB
036 Interpreting the result and extracting the weights and bias.mp4 30.26MB
037 Cutomizing your model.en.srt 4.27KB
037 Cutomizing your model.mp4 22.90MB
038 Minimal example with TensorFlow - Exercises.html 2.25KB
039 Course-Notes-Section-6.pdf 936.42KB
039 Layers.en.srt 2.51KB
039 Layers.mp4 4.73MB
040 Course-Notes-Section-6.pdf 936.42KB
040 What is a deep net_.en.srt 3.41KB
040 What is a deep net_.mp4 6.72MB
041 Understanding deep nets in depth.en.srt 6.93KB
041 Understanding deep nets in depth.mp4 13.40MB
042 Why do we need non-linearities_.en.srt 3.96KB
042 Why do we need non-linearities_.mp4 8.95MB
043 Activation functions.en.srt 5.38KB
043 Activation functions.mp4 8.73MB
044 Softmax activation.en.srt 4.48KB
044 Softmax activation.mp4 7.37MB
045 Backpropagation.en.srt 4.56KB
045 Backpropagation.mp4 11.05MB
046 Backpropagation - visual representation.en.srt 4.18KB
046 Backpropagation - visual representation.mp4 6.84MB
047 Backpropagation. A peek into the Mathematics of Optimization.html 1.43KB
047 Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf 182.38KB
048 Underfitting and overfitting.en.srt 5.82KB
048 Underfitting and overfitting.mp4 11.05MB
049 Underfitting and overfitting - classification.en.srt 2.81KB
049 Underfitting and overfitting - classification.mp4 6.76MB
050 Training and validation.en.srt 5.06KB
050 Training and validation.mp4 9.23MB
051 Training, validation, and test.en.srt 3.71KB
051 Training, validation, and test.mp4 7.44MB
052 N-fold cross validation.en.srt 4.38KB
052 N-fold cross validation.mp4 6.98MB
053 Early stopping.en.srt 7.12KB
053 Early stopping.mp4 9.43MB
054 Initialization - Introduction.en.srt 3.68KB
054 Initialization - Introduction.mp4 8.03MB
055 Types of simple initializations.en.srt 3.81KB
055 Types of simple initializations.mp4 5.61MB
056 Xavier initialization.en.srt 3.86KB
056 Xavier initialization.mp4 5.82MB
057 Stochastic gradient descent.en.srt 5.09KB
057 Stochastic gradient descent.mp4 9.38MB
058 Gradient descent pitfalls.en.srt 2.93KB
058 Gradient descent pitfalls.mp4 4.30MB
059 Momentum.en.srt 3.66KB
059 Momentum.mp4 6.10MB
060 Learning rate schedules.en.srt 6.21KB
060 Learning rate schedules.mp4 10.30MB
061 Learning rate schedules. A picture.en.srt 2.25KB
061 Learning rate schedules. A picture.mp4 3.14MB
062 Adaptive learning rate schedules.en.srt 5.42KB
062 Adaptive learning rate schedules.mp4 8.86MB
063 Adaptive moment estimation.en.srt 3.47KB
063 Adaptive moment estimation.mp4 7.77MB
064 Preprocessing introduction.en.srt 4.00KB
064 Preprocessing introduction.mp4 8.42MB
065 Basic preprocessing.en.srt 1.73KB
065 Basic preprocessing.mp4 3.65MB
066 Standardization.en.srt 6.19KB
066 Standardization.mp4 8.32MB
067 Dealing with categorical data.en.srt 2.89KB
067 Dealing with categorical data.mp4 6.07MB
068 One-hot and binary encoding.en.srt 4.96KB
068 One-hot and binary encoding.mp4 6.24MB
069 The dataset.en.srt 3.72KB
069 The dataset.mp4 13.37MB
070 How to tackle the MNIST.en.srt 3.64KB
070 How to tackle the MNIST.mp4 18.67MB
071 Importing the relevant packages and load the data.en.srt 3.20KB
071 Importing the relevant packages and load the data.mp4 16.32MB
072 Preprocess the data - create a validation dataset and scale the data.en.srt 6.50KB
072 Preprocess the data - create a validation dataset and scale the data.mp4 29.05MB
073 Preprocess the data - scale the test data.html 997B
074 Preprocess the data - shuffle and batch the data.en.srt 9.61KB
074 Preprocess the data - shuffle and batch the data.mp4 41.54MB
075 Preprocess the data - shuffle and batch the data.html 1004B
076 Outline the model.en.srt 7.49KB
076 Outline the model.mp4 28.24MB
077 Select the loss and the optimizer.en.srt 3.14KB
077 Select the loss and the optimizer.mp4 13.89MB
078 Learning.en.srt 8.27KB
078 Learning.mp4 40.95MB
079 MNIST - exercises.html 2.86KB
080 MNIST - solutions.html 3.00KB
081 Testing the model.en.srt 6.26KB
081 Testing the model.mp4 29.54MB
082 Audiobooks-data.csv 625.21KB
082 Exploring the dataset and identifying predictors.en.srt 11.08KB
082 Exploring the dataset and identifying predictors.mp4 66.26MB
083 Outlining the business case solution.en.srt 2.08KB
083 Outlining the business case solution.mp4 7.31MB
084 Balancing the dataset.en.srt 4.67KB
084 Balancing the dataset.mp4 30.44MB
085 Audiobooks-data.csv 625.21KB
085 Preprocessing the data.en.srt 12.71KB
085 Preprocessing the data.mp4 84.29MB
086 Audiobooks-data.csv 625.21KB
086 Preprocessing exercise.html 1.27KB
087 Load the preprocessed data.en.srt 4.89KB
087 Load the preprocessed data.mp4 17.56MB
088 Load the preprocessed data - Exercise.html 991B
089 Learning and interpreting the result.en.srt 6.53KB
089 Learning and interpreting the result.mp4 31.15MB
090 Setting an early stopping mechanism.en.srt 8.11KB
090 Setting an early stopping mechanism.mp4 49.81MB
091 Setting an early stopping mechanism - Exercise.html 1.09KB
092 Testing the model.en.srt 2.12KB
092 Testing the model.mp4 10.80MB
093 Final exercise.html 1.30KB
094 What is a Matrix_.en.srt 4.51KB
094 What is a Matrix_.mp4 33.59MB
095 Scalars and Vectors.en.srt 3.93KB
095 Scalars and Vectors.mp4 33.84MB
096 Linear Algebra and Geometry.en.srt 4.27KB
096 Linear Algebra and Geometry.mp4 49.79MB
097 Scalars, Vectors and Matrices in Python.en.srt 6.38KB
097 Scalars, Vectors and Matrices in Python.mp4 26.66MB
098 Tensors.en.srt 3.75KB
098 Tensors.mp4 22.51MB
099 Addition and Subtraction of Matrices.en.srt 4.22KB
099 Addition and Subtraction of Matrices.mp4 32.60MB
100 Errors when Adding Matrices.en.srt 2.67KB
100 Errors when Adding Matrices.mp4 11.16MB
101 Transpose of a Matrix.en.srt 5.58KB
101 Transpose of a Matrix.mp4 38.08MB
102 Dot Product of Vectors.en.srt 4.45KB
102 Dot Product of Vectors.mp4 23.98MB
103 Dot Product of Matrices.en.srt 9.92KB
103 Dot Product of Matrices.mp4 49.38MB
104 Why is Linear Algebra Useful_.en.srt 12.24KB
104 Why is Linear Algebra Useful_.mp4 144.33MB
105 See how much you have learned.en.srt 5.40KB
105 See how much you have learned.mp4 13.95MB
106 What’s further out there in the machine and deep learning world.en.srt 2.64KB
106 What’s further out there in the machine and deep learning world.mp4 6.26MB
107 An overview of CNNs.en.srt 6.72KB
107 An overview of CNNs.mp4 10.92MB
108 How DeepMind uses deep learning.html 2.24KB
109 An overview of RNNs.en.srt 3.74KB
109 An overview of RNNs.mp4 4.86MB
110 An overview of non-NN approaches.en.srt 5.33KB
110 An overview of non-NN approaches.mp4 7.84MB
111 Bonus lecture_ Next steps.html 3.87KB
external-assets-links.txt 1.74KB
external-assets-links.txt 1.42KB
external-assets-links.txt 2.63KB
external-assets-links.txt 1.47KB
external-assets-links.txt 1.08KB
TutsNode.com.txt 63B
Distribution statistics by country
Taiwan (TW) 1
Thailand (TH) 1
Republic of Korea (KR) 1
United States (US) 1
Russia (RU) 1
Canada (CA) 1
Total 6
IP List List of IP addresses which were distributed this torrent