Torrent Info
Title [FreeCourseSite.com] Udemy - Complete Data Science & Machine Learning A-Z with Python
Category
Size 10.57GB

Files List
Please note that this page does not hosts or makes available any of the listed filenames. You cannot download any of those files from here.
[CourseClub.Me].url 122B
[CourseClub.Me].url 122B
[CourseClub.Me].url 122B
[FreeCourseSite.com].url 127B
[FreeCourseSite.com].url 127B
[FreeCourseSite.com].url 127B
[GigaCourse.Com].url 49B
[GigaCourse.Com].url 49B
[GigaCourse.Com].url 49B
1. Accessing and Making Files Available.mp4 34.61MB
1. Adding Columns to Pandas Data Frames.mp4 33.58MB
1. Classification vs Regression in Machine Learning.mp4 19.89MB
1. Competitions on Kaggle Lesson 1.mp4 188.17MB
1. Complete Data Science & Machine Learning A-Z with Python.html 266B
1. Concatenating Pandas Dataframes Concat Function.mp4 63.84MB
1. Courses in Kaggle.mp4 52.14MB
1. Creating a Pandas Series with a List.mp4 39.19MB
1. Creating NumPy Array with The Array() Function.mp4 29.50MB
1. Creating Pandas DataFrame with List.mp4 22.57MB
1. Datasets on Kaggle.mp4 133.23MB
1. Data Types in Python.mp4 47.07MB
1. Data Visualisation - Matplotlib Files.html 170B
1. Decision Tree Algorithm Theory.mp4 35.75MB
1. Dropping Columns with Low Correlation.mp4 26.83MB
1. Element Selection Operations in Pandas DataFrames Lesson 1.mp4 29.90MB
1. Examining Missing Values.mp4 45.79MB
1. Examining the Code Section in Kaggle Lesson 1.mp4 79.53MB
1. Examining the Data Set 3.mp4 39.11MB
1. First Step to the Hearth Attack Prediction Project.mp4 117.14MB
1. Hierarchical Clustering Algorithm Theory.mp4 28.55MB
1. Hyperparameter Optimization Theory.mp4 33.14MB
1. Indexing Numpy Arrays,.mp4 26.56MB
1. Installing Anaconda Distribution for Windows.mp4 118.32MB
1. Introduction to Data Visualization with Python.mp4 12.85MB
1. Introduction to NumPy Library.mp4 45.27MB
1. Introduction to Pandas Library.mp4 33.93MB
1. K-Fold Cross-Validation Theory.mp4 17.45MB
1. K Means Clustering Algorithm Theory.mp4 17.13MB
1. K Nearest Neighbors Algorithm Theory.mp4 28.66MB
1. Linear Regression Algorithm Theory in Machine Learning A-Z.mp4 34.06MB
1. Loading a Dataset from the Seaborn Library.mp4 37.72MB
1. Logic of Object Oriented Programming.mp4 17.38MB
1. Logistic Regression.mp4 29.34MB
1. Multi-Index and Index Hierarchy in Pandas DataFrames.mp4 42.66MB
1. Numeric Variables (Analysis with Distplot) Lesson 1.mp4 80.35MB
1. Numeric Variables – Target Variable (Analysis with FacetGrid) Lesson 1.mp4 49.37MB
1. Operations with Comparison Operators.mp4 21.14MB
1. Principal Component Analysis (PCA) Theory.mp4 37.96MB
1. Project Conclusion and Sharing.mp4 28.66MB
1. Random Forest Algorithm Theory.mp4 22.89MB
1. Required Python Libraries.mp4 63.55MB
1. Reshaping a NumPy Array Reshape() Function.mp4 26.16MB
1. Support Vector Machine Algorithm Theory.mp4 21.84MB
1. Unsupervised Learning Overview.mp4 16.91MB
1. User Page Review on Kaggle.mp4 81.50MB
1. What is Bias Variance Trade-Off.mp4 55.03MB
1. What is Discussion on Kaggle.mp4 40.63MB
1. What is Geoplotlib.mp4 34.18MB
1. What is Kaggle.mp4 129.67MB
1. What is Logistic Regression Algorithm in Machine Learning.mp4 27.84MB
1. What is Machine Learning.mp4 27.58MB
1. What is Matplotlib.mp4 19.06MB
1. What is Seaborn.mp4 13.59MB
1. What is Supervised Learning in Machine Learning.mp4 31.69MB
1. What is the Recommender System Part 1.mp4 23.04MB
10. Exercise - Solution in Python.mp4 51.89MB
10. Feature Scaling with the Robust Scaler Method for Machine Learning Algorithms.mp4 11.45MB
10. Numerical - Categorical Variables (Analysis with Swarm Plot) Lesson 2.mp4 68.08MB
10. Quiz.html 205B
10. Quiz.html 205B
10. Quiz.html 205B
11. Numerical - Categorical Variables (Analysis with Box Plot) Lesson 1.mp4 38.07MB
11. Quiz.html 205B
11. Separating Data into Test and Training Set.mp4 29.75MB
12. Numerical - Categorical Variables (Analysis with Box Plot) Lesson 2.mp4 35.47MB
12. Quiz.html 205B
13. Relationships between variables (Analysis with Heatmap) Lesson 1.mp4 36.36MB
14. Relationships between variables (Analysis with Heatmap) Lesson 2.mp4 90.67MB
15. Quiz.html 205B
2. Arithmetic Operations in Numpy.mp4 71.82MB
2. Competitions on Kaggle Lesson 2.mp4 191.68MB
2. Constructor in Object Oriented Programming (OOP).mp4 35.84MB
2. Controlling Figure Aesthetics in Seaborn.mp4 41.82MB
2. Creating a Pandas Series with a Dictionary.mp4 18.29MB
2. Creating NumPy Array with Zeros() Function.mp4 24.06MB
2. Creating Pandas DataFrame with NumPy Array.mp4 12.10MB
2. Cross Validation.mp4 30.21MB
2. Data Entry with Csv and Txt Files.mp4 64.34MB
2. Data Visualisation - Seaborn Files.html 170B
2. Decision Tree Algorithm with Python Part 1.mp4 31.53MB
2. Element Selection in Multi-Indexed DataFrames.mp4 24.58MB
2. Element Selection Operations in Pandas DataFrames Lesson 2.mp4 31.84MB
2. Examining the Code Section in Kaggle Lesson 2.mp4 105.81MB
2. Examining the Data Set 1.mp4 42.90MB
2. Examining Unique Values.mp4 44.54MB
2. Example - 1.mp4 38.85MB
2. FAQ about Kaggle.html 10.94KB
2. FAQ about Machine Learning, Data Science.html 15.29KB
2. FAQ regarding Data Visualization, Python.html 8.59KB
2. Hierarchical Clustering Algorithm with Python Part 2.mp4 35.52MB
2. Hyperparameter Optimization with Python.mp4 47.47MB
2. Identifying the Largest Element of a Numpy Array.mp4 15.12MB
2. K-Fold Cross-Validation with Python.mp4 34.67MB
2. K Means Clustering Algorithm with Python Part 1.mp4 29.96MB
2. K Nearest Neighbors Algorithm with Python Part 1.mp4 35.03MB
2. Linear Regression Algorithm With Python Part 1.mp4 76.17MB
2. Loading the Statistics Dataset in Data Science.mp4 10.00MB
2. Logistic Regression Algorithm with Python Part 1.mp4 72.22MB
2. Machine Learning Model Performance Evaluation Classification Error Metrics.mp4 100.26MB
2. Machine Learning Terminology.mp4 14.03MB
2. Merge Pandas Dataframes Merge() Function Lesson 1.mp4 57.29MB
2. Notebook Project Files Link regarding NumPy Python Programming Language Library.html 155B
2. Numeric Variables (Analysis with Distplot) Lesson 2.mp4 19.75MB
2. Numeric Variables – Target Variable (Analysis with FacetGrid) Lesson 2.mp4 35.64MB
2. Operators in Python.mp4 35.71MB
2. Pandas Project Files Link.html 180B
2. Pivot Tables in Pandas Library.mp4 54.23MB
2. Principal Component Analysis (PCA) with Python Part 1.mp4 26.02MB
2. Quiz.html 205B
2. Quiz.html 205B
2. Quiz.html 205B
2. Quiz.html 205B
2. Quiz.html 205B
2. Random Forest Algorithm with Pyhon Part 1.mp4 38.61MB
2. Ranking Among Users on Kaggle.mp4 107.04MB
2. Removing Rows and Columns from Pandas Data frames.mp4 15.56MB
2. Slicing One-Dimensional Numpy Arrays.mp4 22.27MB
2. Support Vector Machine Algorithm with Python Part 1.mp4 35.59MB
2. The Power of NumPy.mp4 59.87MB
2. Treasure in The Kaggle.mp4 74.64MB
2. Using Pyplot.mp4 28.22MB
2. Visualizing Outliers.mp4 34.89MB
2. What is the Recommender System Part 2.mp4 17.96MB
3. Aggregation Functions in Pandas DataFrames.mp4 90.69MB
3. Blog and Documentation Sections.mp4 40.85MB
3. Categoric Variables (Analysis with Pie Chart) Lesson 1.mp4 74.74MB
3. Categoric Variables – Target Variable (Analysis with Count Plot) Lesson 1.mp4 24.15MB
3. Conditionals in Python.mp4 41.23MB
3. Creating NumPy Array with Ones() Function.mp4 15.88MB
3. Creating Pandas DataFrame with Dictionary.mp4 15.84MB
3. Creating Pandas Series with NumPy Array.mp4 11.97MB
3. Data Entry with Excel Files.mp4 21.84MB
3. Data Visualisation - Geoplotlib.html 168B
3. Dealing with Outliers – Trtbps Variable Lesson 1.mp4 42.82MB
3. Decision Tree Algorithm with Python Part 2.mp4 48.92MB
3. Detecting Least Element of Numpy Array Min(), Ar.mp4 10.17MB
3. Evaluating Performance Regression Error Metrics in Python.mp4 45.70MB
3. Examining the Code Section in Kaggle Lesson 3.mp4 159.89MB
3. Example - 2.mp4 81.14MB
3. Example in Seaborn.mp4 54.90MB
3. Hierarchical Clustering Algorithm with Python Part 2.mp4 28.89MB
3. Initial analysis on the dataset.mp4 63.96MB
3. Installing Anaconda Distribution for MacOs.mp4 46.31MB
3. K Means Clustering Algorithm with Python Part 2.mp4 29.64MB
3. K Nearest Neighbors Algorithm with Python Part 2.mp4 59.37MB
3. Linear Regression Algorithm With Python Part 2.mp4 106.94MB
3. Logistic Regression Algorithm with Python Part 2.mp4 81.46MB
3. Machine Learning Project Files.html 254B
3. Merge Pandas Dataframes Merge() Function Lesson 2.mp4 30.55MB
3. Methods in Object Oriented Programming (OOP).mp4 25.10MB
3. Notebook Design to be Used in the Project.mp4 104.93MB
3. Null Values in Pandas Dataframes.mp4 66.96MB
3. Principal Component Analysis (PCA) with Python Part 2.mp4 8.42MB
3. Publishing Notebooks on Kaggle.mp4 38.20MB
3. Pyplot – Pylab - Matplotlib.mp4 28.37MB
3. Quiz.html 205B
3. Quiz.html 205B
3. Quiz.html 205B
3. Random Forest Algorithm with Pyhon Part 2.mp4 38.72MB
3. Registering on Kaggle and Member Login Procedures.mp4 43.48MB
3. Roc Curve and Area Under Curve (AUC).mp4 41.71MB
3. Selecting Elements Using the xs() Function in Multi-Indexed DataFrames.mp4 31.25MB
3. Separating variables (Numeric or Categorical).mp4 15.81MB
3. Slicing Two-Dimensional Numpy Arrays.mp4 34.27MB
3. Statistical Operations in Numpy.mp4 32.02MB
3. Support Vector Machine Algorithm with Python Part 2.mp4 41.72MB
3. Top Level Element Selection in Pandas DataFramesLesson 1.mp4 38.29MB
4. 6 Article Advice And Links about Numpy, Numpy Pyhon.html 4.19KB
4. Assigning Value to One-Dimensional Arrays.mp4 18.20MB
4. Categoric Variables (Analysis with Pie Chart) Lesson 2.mp4 84.06MB
4. Categoric Variables – Target Variable (Analysis with Count Plot) Lesson 2.mp4 56.27MB
4. Color Palettes in Seaborn.mp4 48.32MB
4. Concatenating Numpy Arrays Concatenate() Functio.mp4 38.36MB
4. Creating NumPy Array with Full() Function.mp4 11.18MB
4. Dealing with Outliers – Trtbps Variable Lesson 2.mp4 43.91MB
4. Decision Tree Algorithm with Python Part 3.mp4 14.72MB
4. Dropping Null Values Dropna() Function.mp4 34.54MB
4. Examining Statistics of Variables.mp4 91.37MB
4. Examining the Data Set 2.mp4 46.58MB
4. Examining the Properties of Pandas DataFrames.mp4 25.94MB
4. Example - 3.mp4 51.28MB
4. FAQ regarding Python.html 6.23KB
4. Figure, Subplot and Axex.mp4 69.89MB
4. Hyperparameter Optimization (with GridSearchCV).mp4 58.77MB
4. Inheritance in Object Oriented Programming (OOP).mp4 34.58MB
4. K Means Clustering Algorithm with Python Part 3.mp4 27.75MB
4. K Nearest Neighbors Algorithm with Python Part 3.mp4 31.40MB
4. Linear Regression Algorithm With Python Part 3.mp4 70.28MB
4. Logistic Regression Algorithm with Python Part 3.mp4 47.35MB
4. Loops in Python.mp4 58.81MB
4. Machine Learning With Python.mp4 92.24MB
4. Merge Pandas Dataframes Merge() Function Lesson 3.mp4 60.17MB
4. Object Types in Series.mp4 19.58MB
4. Outputting as an CSV Extension.mp4 35.70MB
4. Principal Component Analysis (PCA) with Python Part 3.mp4 37.25MB
4. Project Link File - Hearth Attack Prediction Project, Machine Learning.html 97B
4. Project Link File - Hearth Attack Prediction Project, Machine Learning.html 108B
4. Quiz.html 205B
4. Quiz.html 205B
4. Quiz.html 205B
4. Quiz.html 205B
4. Solving Second-Degree Equations with NumPy.mp4 24.20MB
4. Support Vector Machine Algorithm with Python Part 3.mp4 34.77MB
4. Top Level Element Selection in Pandas DataFramesLesson 2.mp4 31.41MB
4. What Should Be Done to Achieve Success in Kaggle.mp4 58.48MB
5. Assigning Value to Two-Dimensional Array.mp4 35.40MB
5. Basic Plots in Seaborn.mp4 98.84MB
5. Coordinated Use of Grouping and Aggregation Functions in Pandas Dataframes.mp4 88.12MB
5. Creating NumPy Array with Arange() Function.mp4 12.10MB
5. Dealing with Outliers – Thalach Variable.mp4 36.24MB
5. Decision Tree Algorithm.mp4 25.70MB
5. Decision Tree Algorithm with Python Part 4.mp4 42.49MB
5. Examining Numeric Variables Among Themselves (Analysis with Pair Plot) Lesson 1.mp4 28.31MB
5. Examining the Missing Data According to the Analysis Result.mp4 53.78MB
5. Examining the Primary Features of the Pandas Seri.mp4 18.94MB
5. Examining the Project Topic.mp4 76.51MB
5. FAQ regarding Machine Learning.html 6.59KB
5. Figure Customization.mp4 63.29MB
5. Filling Null Values Fillna() Function.mp4 51.62MB
5. Getting to Know the Kaggle Homepage.mp4 122.93MB
5. Installing Anaconda Distribution for Linux.mp4 114.75MB
5. K Means Clustering Algorithm with Python Part 4.mp4 29.03MB
5. Linear Regression Algorithm With Python Part 4.mp4 90.00MB
5. Lists, Tuples, Dictionaries and Sets in pyhton.mp4 75.33MB
5. Logistic Regression Algorithm with Python Part 4.mp4 47.17MB
5. Merge Pandas Dataframes Merge() Function Lesson 4.mp4 40.68MB
5. Outputting as an Excel File.mp4 19.74MB
5. Overriding and Overloading in Object Oriented Programming (OOP).mp4 62.70MB
5. Quiz.html 205B
5. Quiz.html 205B
5. Quiz.html 205B
5. Quiz.html 205B
5. Quiz.html 205B
5. Quiz.html 205B
5. Splitting One-Dimensional Numpy Arrays The Split.mp4 20.90MB
5. Support Vector Machine Algorithm with Python Part 4.mp4 37.55MB
5. Top Level Element Selection in Pandas DataFramesLesson 3.mp4 22.11MB
6. Advanced Aggregation Functions Aggregate() Function.mp4 29.22MB
6. Creating NumPy Array with Eye() Function.mp4 12.55MB
6. Data Type Operators and Methods in Python.mp4 43.86MB
6. Dealing with Outliers – Oldpeak Variable.mp4 36.06MB
6. Decision Tree Algorithm with Python Part 5.mp4 32.67MB
6. Element Selection with Conditional Operations in.mp4 46.37MB
6. Examining Numeric Variables Among Themselves (Analysis with Pair Plot) Lesson 2.mp4 47.14MB
6. Fancy Indexing of One-Dimensional Arrrays.mp4 20.49MB
6. Joining Pandas Dataframes Join() Function.mp4 56.05MB
6. Logistic Regression Algorithm with Python Part 5.mp4 39.35MB
6. Most Applied Methods on Pandas Series.mp4 48.21MB
6. Multi-Plots in Seaborn.mp4 42.98MB
6. Plot Customization.mp4 27.38MB
6. quiz.html 205B
6. Quiz.html 205B
6. Quiz.html 205B
6. Quiz.html 205B
6. Quiz.html 205B
6. Quiz.html 205B
6. Quiz.html 205B
6. Recognizing Variables In Dataset.mp4 126.87MB
6. Setting Index in Pandas DataFrames.mp4 39.70MB
6. Splitting Two-Dimensional Numpy Arrays Split(),.mp4 35.73MB
6. Support Vector Machine Algorithm.mp4 24.52MB
7. Advanced Aggregation Functions Filter() Function.mp4 24.45MB
7. Creating NumPy Array with Linspace() Function.mp4 7.34MB
7. Determining Distributions of Numeric Variables.mp4 25.17MB
7. Fancy Indexing of Two-Dimensional Arrrays.mp4 45.75MB
7. Feature Scaling with the Robust Scaler Method.mp4 35.20MB
7. Grid, Spines, Ticks.mp4 23.89MB
7. Indexing and Slicing Pandas Series.mp4 29.89MB
7. Modules in Python.mp4 23.95MB
7. Quiz.html 205B
7. Quiz.html 205B
7. Quiz.html 205B
7. Quiz.html 205B
7. Quiz.html 205B
7. Quiz.html 205B
7. Random Forest Algorithm.mp4 29.78MB
7. Regression Plots and Squarify in Seaborn.mp4 60.10MB
7. Sorting Numpy Arrays Sort() Function.mp4 17.02MB
8. Advanced Aggregation Functions Transform() Function.mp4 47.09MB
8. Basic Plots in Matplotlib I.mp4 111.17MB
8. Combining Fancy Index with Normal Indexing.mp4 12.65MB
8. Creating a New DataFrame with the Melt() Function.mp4 52.89MB
8. Creating NumPy Array with Random() Function.mp4 43.30MB
8. Functions in Python.mp4 28.93MB
8. Hyperparameter Optimization (with GridSearchCV).mp4 52.65MB
8. Quiz.html 205B
8. Quiz.html 205B
8. Quiz.html 205B
8. Transformation Operations on Unsymmetrical Data.mp4 24.01MB
9. Advanced Aggregation Functions Apply() Function.mp4 41.42MB
9. Applying One Hot Encoding Method to Categorical Variables.mp4 24.09MB
9. Basic Plots in Matplotlib II.mp4 54.82MB
9. Combining Fancy Index with Normal Slicing.mp4 16.46MB
9. Exercise - Analyse in Python.mp4 8.46MB
9. Numerical - Categorical Variables (Analysis with Swarm Plot) Lesson 1.mp4 41.72MB
9. Properties of NumPy Array.mp4 21.98MB
9. Quiz.html 205B
Distribution statistics by country
India (IN) 2
United States (US) 2
Mexico (MX) 1
Norway (NO) 1
Pakistan (PK) 1
Total 7
IP List List of IP addresses which were distributed this torrent