Torrent Info
Title [FTUForum.com] Udemy - Complete linear algebra theory and implementation
Category
Size 6.46GB

Files List
Please note that this page does not hosts or makes available any of the listed filenames. You cannot download any of those files from here.
1.1 linalg_eig.zip.zip 302.56KB
1.1 linalg_inverse.zip.zip 225.80KB
1.1 linalg_leastsquares.zip.zip 315.41KB
1.1 linalg_matrices.zip.zip 166.28KB
1.1 linalg_matrixDet.pdf.pdf 138.29KB
1.1 linalg_matrixMult.zip.zip 214.85KB
1.1 linalg_matrixRank.zip.zip 179.67KB
1.1 linalg_matrixSpaces.zip.zip 209.95KB
1.1 linalg_projorth.zip.zip 288.29KB
1.1 linalg_quadformDefinite.zip.zip 264.43KB
1.1 linalg_svd.zip.zip 330.96KB
1.1 linalg_systems.zip.zip 211.22KB
1.1 linalg_vectors.zip.zip 385.18KB
1. Bonus Links to related courses.html 2.27KB
1. Exercises.html 52B
1. Exercises + code.html 76B
1. Exercises + code.html 86B
1. Exercises + code.html 33B
1. Exercises + code.html 26B
1. Exercises + code.html 55B
1. Exercises + code.html 80B
1. Exercises + code.html 75B
1. Exercises + code.html 87B
1. Exercises + code.html 85B
1. Exercises + code.html 36B
1. Exercises + code.html 40B
1. Exercises + code.html 85B
1. What is linear algebra.mp4 64.83MB
1. What is linear algebra.srt 9.96KB
1. What is linear algebra.vtt 8.84KB
10. Code challenge Create matrix with desired condition number.mp4 78.72MB
10. Code challenge Create matrix with desired condition number.srt 14.61KB
10. Code challenge Create matrix with desired condition number.vtt 12.80KB
10. Code challenge pseudoinverse of invertible matrices.mp4 13.36MB
10. Code challenge pseudoinverse of invertible matrices.srt 3.98KB
10. Code challenge pseudoinverse of invertible matrices.vtt 3.48KB
10. Code challenge Pure and impure rotation matrices.mp4 65.02MB
10. Code challenge Pure and impure rotation matrices.srt 13.46KB
10. Code challenge Pure and impure rotation matrices.vtt 11.74KB
10. Code challenge rank of multiplied and summed matrices.mp4 29.96MB
10. Code challenge rank of multiplied and summed matrices.srt 8.38KB
10. Code challenge rank of multiplied and summed matrices.vtt 7.32KB
10. Complex matrices.mp4 6.77MB
10. Complex matrices.srt 2.35KB
10. Complex matrices.vtt 2.08KB
10. Matrix powers via diagonalization.mp4 99.58MB
10. Matrix powers via diagonalization.srt 19.99KB
10. Matrix powers via diagonalization.vtt 17.42KB
10. Proof A^TA is always positive (semi)definite.mp4 31.34MB
10. Proof A^TA is always positive (semi)definite.srt 7.86KB
10. Proof A^TA is always positive (semi)definite.vtt 6.93KB
10. Vector orthogonality.html 144B
11. Addition, equality, and transpose.html 144B
11. Additive and multiplicative matrix identities.mp4 25.26MB
11. Additive and multiplicative matrix identities.srt 6.33KB
11. Additive and multiplicative matrix identities.vtt 5.55KB
11. Eigenvectors of distinct eigenvalues.mp4 55.81MB
11. Eigenvectors of distinct eigenvalues.srt 10.84KB
11. Eigenvectors of distinct eigenvalues.vtt 9.51KB
11. Making a matrix full-rank by shifting.mp4 59.90MB
11. Making a matrix full-rank by shifting.srt 13.47KB
11. Making a matrix full-rank by shifting.vtt 11.75KB
11. Relative vector angles.html 144B
12. Additive and multiplicative symmetric matrices.mp4 54.23MB
12. Additive and multiplicative symmetric matrices.srt 14.53KB
12. Additive and multiplicative symmetric matrices.vtt 12.81KB
12. Code challenge dot product sign and scalar multiplication.mp4 44.81MB
12. Code challenge dot product sign and scalar multiplication.srt 14.41KB
12. Code challenge dot product sign and scalar multiplication.vtt 12.56KB
12. Code challenge is this vector in the span of this set.mp4 24.39MB
12. Code challenge is this vector in the span of this set.srt 8.85KB
12. Code challenge is this vector in the span of this set.vtt 7.73KB
12. Diagonal and trace.mp4 27.24MB
12. Diagonal and trace.srt 7.14KB
12. Diagonal and trace.vtt 6.35KB
12. Eigenvectors of repeated eigenvalues.mp4 64.79MB
12. Eigenvectors of repeated eigenvalues.srt 14.86KB
12. Eigenvectors of repeated eigenvalues.vtt 12.90KB
13. Code challenge is the dot product commutative.mp4 27.52MB
13. Code challenge is the dot product commutative.srt 9.30KB
13. Code challenge is the dot product commutative.vtt 8.11KB
13. Code challenge linearity of trace.mp4 36.24MB
13. Code challenge linearity of trace.srt 10.78KB
13. Code challenge linearity of trace.vtt 9.41KB
13. Eigendecomposition of symmetric matrices.mp4 73.79MB
13. Eigendecomposition of symmetric matrices.srt 18.14KB
13. Eigendecomposition of symmetric matrices.vtt 15.86KB
13. Hadamard (element-wise) multiplication.mp4 11.93MB
13. Hadamard (element-wise) multiplication.srt 3.17KB
13. Hadamard (element-wise) multiplication.vtt 2.82KB
14. Eigendecomposition of singular matrices.mp4 15.75MB
14. Eigendecomposition of singular matrices.srt 5.27KB
14. Eigendecomposition of singular matrices.vtt 4.68KB
14. Matrix operation equality.html 144B
14. Vector Hadamard multiplication.mp4 12.14MB
14. Vector Hadamard multiplication.srt 3.00KB
14. Vector Hadamard multiplication.vtt 2.67KB
15. Code challenge symmetry of combined symmetric matrices.mp4 34.19MB
15. Code challenge symmetry of combined symmetric matrices.srt 10.54KB
15. Code challenge symmetry of combined symmetric matrices.vtt 9.29KB
15. Code challenge trace and determinant, eigenvalues sum and product.mp4 24.12MB
15. Code challenge trace and determinant, eigenvalues sum and product.srt 6.90KB
15. Code challenge trace and determinant, eigenvalues sum and product.vtt 6.04KB
15. Outer product.mp4 42.03MB
15. Outer product.srt 10.50KB
15. Outer product.vtt 9.27KB
16. Generalized eigendecomposition.mp4 61.91MB
16. Generalized eigendecomposition.srt 13.38KB
16. Generalized eigendecomposition.vtt 11.74KB
16. Multiplication of two symmetric matrices.mp4 49.74MB
16. Multiplication of two symmetric matrices.srt 12.33KB
16. Multiplication of two symmetric matrices.vtt 10.84KB
16. Vector cross product.mp4 44.38MB
16. Vector cross product.srt 8.25KB
16. Vector cross product.vtt 7.29KB
17. Code challenge standard and Hadamard multiplication for diagonal matrices.mp4 19.94MB
17. Code challenge standard and Hadamard multiplication for diagonal matrices.srt 6.38KB
17. Code challenge standard and Hadamard multiplication for diagonal matrices.vtt 5.54KB
17. Vectors with complex numbers.mp4 32.89MB
17. Vectors with complex numbers.srt 10.02KB
17. Vectors with complex numbers.vtt 8.85KB
18. Frobenius dot product.mp4 45.14MB
18. Frobenius dot product.srt 10.32KB
18. Frobenius dot product.vtt 9.18KB
18. Hermitian transpose (a.k.a. conjugate transpose).mp4 55.50MB
18. Hermitian transpose (a.k.a. conjugate transpose).srt 15.02KB
18. Hermitian transpose (a.k.a. conjugate transpose).vtt 13.16KB
19. Interpreting and creating unit vectors.mp4 26.54MB
19. Interpreting and creating unit vectors.srt 6.77KB
19. Interpreting and creating unit vectors.vtt 5.97KB
19. What about matrix division.mp4 14.08MB
19. What about matrix division.srt 5.33KB
19. What about matrix division.vtt 4.72KB
2. Algebraic and geometric interpretations of vectors.mp4 47.98MB
2. Algebraic and geometric interpretations of vectors.srt 11.94KB
2. Algebraic and geometric interpretations of vectors.vtt 10.50KB
2. Column space of a matrix.mp4 86.50MB
2. Column space of a matrix.srt 19.80KB
2. Column space of a matrix.vtt 17.34KB
2. Determinant concept and applications.mp4 48.01MB
2. Determinant concept and applications.srt 8.78KB
2. Determinant concept and applications.vtt 7.80KB
2. Introduction to least-squares.mp4 106.77MB
2. Introduction to least-squares.srt 16.53KB
2. Introduction to least-squares.vtt 14.52KB
2. Introduction to standard matrix multiplication.mp4 45.31MB
2. Introduction to standard matrix multiplication.srt 10.21KB
2. Introduction to standard matrix multiplication.vtt 8.99KB
2. Linear algebra applications.mp4 29.58MB
2. Linear algebra applications.srt 7.44KB
2. Linear algebra applications.vtt 6.64KB
2. Matrix inverse Concept and applications.mp4 54.13MB
2. Matrix inverse Concept and applications.srt 14.92KB
2. Matrix inverse Concept and applications.vtt 13.06KB
2. Matrix terminology and dimensionality.mp4 40.84MB
2. Matrix terminology and dimensionality.srt 9.76KB
2. Matrix terminology and dimensionality.vtt 8.67KB
2. Projections in R^2.mp4 52.35MB
2. Projections in R^2.srt 12.31KB
2. Projections in R^2.vtt 10.71KB
2. Rank concepts, terms, and applications.mp4 62.87MB
2. Rank concepts, terms, and applications.srt 13.34KB
2. Rank concepts, terms, and applications.vtt 11.82KB
2. Singular value decomposition (SVD).mp4 74.40MB
2. Singular value decomposition (SVD).srt 15.56KB
2. Singular value decomposition (SVD).vtt 13.63KB
2. Systems of equations algebra and geometry.mp4 99.72MB
2. Systems of equations algebra and geometry.srt 18.55KB
2. Systems of equations algebra and geometry.vtt 16.13KB
2. The quadratic form in algebra.mp4 65.98MB
2. The quadratic form in algebra.srt 14.70KB
2. The quadratic form in algebra.vtt 12.97KB
2. What are eigenvalues and eigenvectors.mp4 85.51MB
2. What are eigenvalues and eigenvectors.srt 17.02KB
2. What are eigenvalues and eigenvectors.vtt 15.01KB
20. Code challenge dot products with unit vectors.mp4 44.88MB
20. Code challenge dot products with unit vectors.srt 12.93KB
20. Code challenge dot products with unit vectors.vtt 11.31KB
21. Dimensions and fields in linear algebra.mp4 38.74MB
21. Dimensions and fields in linear algebra.srt 9.66KB
21. Dimensions and fields in linear algebra.vtt 8.53KB
22. Subspaces.mp4 69.59MB
22. Subspaces.srt 18.65KB
22. Subspaces.vtt 16.36KB
23. Subspaces vs. subsets.mp4 29.06MB
23. Subspaces vs. subsets.srt 6.76KB
23. Subspaces vs. subsets.vtt 5.96KB
24. Span.mp4 59.92MB
24. Span.srt 13.79KB
24. Span.vtt 12.11KB
25. In the span.html 144B
26. Linear independence.mp4 75.69MB
26. Linear independence.srt 19.33KB
26. Linear independence.vtt 16.98KB
27. Basis.mp4 50.94MB
27. Basis.srt 14.11KB
27. Basis.vtt 12.49KB
3. Code challenge determinant of small and large singular matrices.mp4 25.04MB
3. Code challenge determinant of small and large singular matrices.srt 7.84KB
3. Code challenge determinant of small and large singular matrices.vtt 6.82KB
3. Code challenge SVD vs. eigendecomposition for square symmetric matrices.mp4 79.20MB
3. Code challenge SVD vs. eigendecomposition for square symmetric matrices.srt 15.65KB
3. Code challenge SVD vs. eigendecomposition for square symmetric matrices.vtt 13.60KB
3. Converting systems of equations to matrix equations.mp4 29.43MB
3. Converting systems of equations to matrix equations.srt 7.05KB
3. Converting systems of equations to matrix equations.vtt 6.20KB
3. Finding eigenvalues.mp4 73.11MB
3. Finding eigenvalues.srt 19.39KB
3. Finding eigenvalues.vtt 16.93KB
3. Four ways to think about matrix multiplication.mp4 37.76MB
3. Four ways to think about matrix multiplication.srt 12.58KB
3. Four ways to think about matrix multiplication.vtt 11.11KB
3. How best to learn from this course.mp4 26.98MB
3. How best to learn from this course.srt 5.67KB
3. How best to learn from this course.vtt 5.05KB
3. Inverse of a 2x2 matrix.mp4 26.55MB
3. Inverse of a 2x2 matrix.srt 7.20KB
3. Inverse of a 2x2 matrix.vtt 6.34KB
3. Least-squares via left inverse.mp4 49.10MB
3. Least-squares via left inverse.srt 12.76KB
3. Least-squares via left inverse.vtt 11.21KB
3. Matrix sizes and dimensionality.html 144B
3. Maximum possible rank..html 144B
3. Projections in R^N.mp4 75.55MB
3. Projections in R^N.srt 17.75KB
3. Projections in R^N.vtt 15.50KB
3. Row space of a matrix.mp4 19.31MB
3. Row space of a matrix.srt 5.60KB
3. Row space of a matrix.vtt 4.99KB
3. The quadratic form in geometry.mp4 64.71MB
3. The quadratic form in geometry.srt 14.66KB
3. The quadratic form in geometry.vtt 12.87KB
3. Vector addition and subtraction.mp4 25.82MB
3. Vector addition and subtraction.srt 7.45KB
3. Vector addition and subtraction.vtt 6.65KB
4. A zoo of matrices.mp4 55.12MB
4. A zoo of matrices.srt 14.14KB
4. A zoo of matrices.vtt 12.53KB
4. Code challenge matrix multiplication by layering.mp4 35.63MB
4. Code challenge matrix multiplication by layering.srt 10.27KB
4. Code challenge matrix multiplication by layering.vtt 8.95KB
4. Computing rank theory and practice.mp4 90.33MB
4. Computing rank theory and practice.srt 21.00KB
4. Computing rank theory and practice.vtt 18.36KB
4. Determinant of a 2x2 matrix.mp4 27.45MB
4. Determinant of a 2x2 matrix.srt 9.06KB
4. Determinant of a 2x2 matrix.vtt 7.90KB
4. Gaussian elimination.mp4 61.61MB
4. Gaussian elimination.srt 15.32KB
4. Gaussian elimination.vtt 13.49KB
4. Least-squares via orthogonal projection.mp4 34.74MB
4. Least-squares via orthogonal projection.srt 9.78KB
4. Least-squares via orthogonal projection.vtt 8.64KB
4. Null space and left null space of a matrix.mp4 64.13MB
4. Null space and left null space of a matrix.srt 16.73KB
4. Null space and left null space of a matrix.vtt 14.72KB
4. Orthogonal and parallel vector components.mp4 47.44MB
4. Orthogonal and parallel vector components.srt 14.19KB
4. Orthogonal and parallel vector components.vtt 12.49KB
4. Shortcut for eigenvalues of a 2x2 matrix.mp4 8.63MB
4. Shortcut for eigenvalues of a 2x2 matrix.srt 2.41KB
4. Shortcut for eigenvalues of a 2x2 matrix.vtt 2.13KB
4. SVD and the four subspaces.mp4 37.52MB
4. SVD and the four subspaces.srt 9.39KB
4. SVD and the four subspaces.vtt 8.22KB
4. The MCA algorithm to compute the inverse.mp4 52.46MB
4. The MCA algorithm to compute the inverse.srt 14.19KB
4. The MCA algorithm to compute the inverse.vtt 12.46KB
4. The normalized quadratic form.mp4 31.77MB
4. The normalized quadratic form.srt 7.88KB
4. The normalized quadratic form.vtt 6.95KB
4. Using MATLAB, Octave, or Python in this course.mp4 21.20MB
4. Using MATLAB, Octave, or Python in this course.srt 5.01KB
4. Using MATLAB, Octave, or Python in this course.vtt 4.47KB
4. Vector-scalar multiplication.mp4 29.42MB
4. Vector-scalar multiplication.srt 8.28KB
4. Vector-scalar multiplication.vtt 7.33KB
5. Can the matrices be concatenated.html 144B
5. Code challenge decompose vector to orthogonal components.mp4 47.57MB
5. Code challenge decompose vector to orthogonal components.srt 10.44KB
5. Code challenge decompose vector to orthogonal components.vtt 9.08KB
5. Code challenge eigenvalues of diagonal and triangular matrices.mp4 25.62MB
5. Code challenge eigenvalues of diagonal and triangular matrices.srt 6.98KB
5. Code challenge eigenvalues of diagonal and triangular matrices.vtt 6.08KB
5. Code challenge Visualize the normalized quadratic form.mp4 81.33MB
5. Code challenge Visualize the normalized quadratic form.srt 13.72KB
5. Code challenge Visualize the normalized quadratic form.vtt 12.01KB
5. Columnleft-null and rownull spaces are orthogonal.mp4 30.99MB
5. Columnleft-null and rownull spaces are orthogonal.srt 8.32KB
5. Columnleft-null and rownull spaces are orthogonal.vtt 7.31KB
5. Computing the inverse via row reduction.mp4 85.53MB
5. Computing the inverse via row reduction.srt 21.74KB
5. Computing the inverse via row reduction.vtt 18.91KB
5. Determinant of a 3x3 matrix.mp4 51.56MB
5. Determinant of a 3x3 matrix.srt 14.30KB
5. Determinant of a 3x3 matrix.vtt 12.55KB
5. Echelon form and pivots.mp4 26.42MB
5. Echelon form and pivots.srt 9.52KB
5. Echelon form and pivots.vtt 8.40KB
5. Least-squares via row-reduction.mp4 46.89MB
5. Least-squares via row-reduction.srt 13.20KB
5. Least-squares via row-reduction.vtt 11.62KB
5. Leaving reviews, course coupons.mp4 17.84MB
5. Leaving reviews, course coupons.srt 2.96KB
5. Leaving reviews, course coupons.vtt 2.71KB
5. Matrix multiplication with a diagonal matrix.mp4 18.55MB
5. Matrix multiplication with a diagonal matrix.srt 4.75KB
5. Matrix multiplication with a diagonal matrix.vtt 4.20KB
5. Rank of added and multiplied matrices.mp4 58.89MB
5. Rank of added and multiplied matrices.srt 13.92KB
5. Rank of added and multiplied matrices.vtt 12.22KB
5. Spectral theory of matrices.mp4 116.58MB
5. Spectral theory of matrices.srt 15.23KB
5. Spectral theory of matrices.vtt 13.43KB
5. Vector-vector multiplication the dot product.mp4 32.38MB
5. Vector-vector multiplication the dot product.srt 9.29KB
5. Vector-vector multiplication the dot product.vtt 8.18KB
6. Code challenge determinant of shifted matrices.mp4 62.47MB
6. Code challenge determinant of shifted matrices.srt 15.91KB
6. Code challenge determinant of shifted matrices.vtt 13.84KB
6. Code challenge dot products with matrix columns.mp4 23.05MB
6. Code challenge dot products with matrix columns.srt 8.74KB
6. Code challenge dot products with matrix columns.vtt 7.66KB
6. Code challenge eigenvalues of random matrices.mp4 39.64MB
6. Code challenge eigenvalues of random matrices.srt 8.16KB
6. Code challenge eigenvalues of random matrices.vtt 7.13KB
6. Code challenge inverse of a diagonal matrix.mp4 37.18MB
6. Code challenge inverse of a diagonal matrix.srt 11.14KB
6. Code challenge inverse of a diagonal matrix.vtt 9.77KB
6. Dimensions of columnrownull spaces.mp4 26.83MB
6. Dimensions of columnrownull spaces.srt 7.31KB
6. Dimensions of columnrownull spaces.vtt 6.65KB
6. Eigenvectors and the quadratic form surface.mp4 45.26MB
6. Eigenvectors and the quadratic form surface.srt 7.17KB
6. Eigenvectors and the quadratic form surface.vtt 6.36KB
6. Matrix addition and subtraction.mp4 27.07MB
6. Matrix addition and subtraction.srt 7.38KB
6. Matrix addition and subtraction.vtt 6.53KB
6. Model-predicted values and residuals.mp4 30.92MB
6. Model-predicted values and residuals.srt 8.29KB
6. Model-predicted values and residuals.vtt 7.29KB
6. Order-of-operations on matrices.mp4 36.81MB
6. Order-of-operations on matrices.srt 8.04KB
6. Order-of-operations on matrices.vtt 7.04KB
6. Orthogonal matrices.mp4 55.44MB
6. Orthogonal matrices.srt 16.99KB
6. Orthogonal matrices.vtt 14.92KB
6. Reduced row echelon form.mp4 61.34MB
6. Reduced row echelon form.srt 17.25KB
6. Reduced row echelon form.vtt 15.14KB
6. SVD for low-rank approximations.mp4 67.66MB
6. SVD for low-rank approximations.srt 13.09KB
6. SVD for low-rank approximations.vtt 11.39KB
6. What's the maximum possible rank.html 144B
7. Application of the normalized quadratic form PCA.mp4 130.97MB
7. Application of the normalized quadratic form PCA.srt 20.40KB
7. Application of the normalized quadratic form PCA.vtt 17.94KB
7. Code challenge RREF of matrices with different sizes and ranks.mp4 39.28MB
7. Code challenge RREF of matrices with different sizes and ranks.srt 10.58KB
7. Code challenge RREF of matrices with different sizes and ranks.vtt 9.25KB
7. Code challenge scalar multiplication and rank.mp4 55.71MB
7. Code challenge scalar multiplication and rank.srt 16.66KB
7. Code challenge scalar multiplication and rank.vtt 14.39KB
7. Convert singular values to percent variance.mp4 72.94MB
7. Convert singular values to percent variance.srt 14.54KB
7. Convert singular values to percent variance.vtt 12.73KB
7. Example of the four subspaces.mp4 50.25MB
7. Example of the four subspaces.srt 13.29KB
7. Example of the four subspaces.vtt 11.61KB
7. Finding eigenvectors.mp4 64.81MB
7. Finding eigenvectors.srt 15.08KB
7. Finding eigenvectors.vtt 13.29KB
7. Find matrix values for a given determinant.mp4 20.60MB
7. Find matrix values for a given determinant.srt 6.45KB
7. Find matrix values for a given determinant.vtt 5.67KB
7. Gram-Schmidt and QR decomposition.mp4 67.62MB
7. Gram-Schmidt and QR decomposition.srt 19.71KB
7. Gram-Schmidt and QR decomposition.vtt 17.14KB
7. Least-squares application 1.mp4 81.33MB
7. Least-squares application 1.srt 15.05KB
7. Least-squares application 1.vtt 13.17KB
7. Left inverse and right inverse.mp4 76.67MB
7. Left inverse and right inverse.srt 17.04KB
7. Left inverse and right inverse.vtt 14.88KB
7. Matrix-scalar multiplication.mp4 7.97MB
7. Matrix-scalar multiplication.srt 2.01KB
7. Matrix-scalar multiplication.vtt 1.80KB
7. Matrix-vector multiplication.mp4 75.83MB
7. Matrix-vector multiplication.srt 18.64KB
7. Matrix-vector multiplication.vtt 16.38KB
7. Vector length.mp4 23.82MB
7. Vector length.srt 7.19KB
7. Vector length.vtt 6.33KB
8. Code challenge is matrix-scalar multiplication a linear operation.mp4 25.27MB
8. Code challenge is matrix-scalar multiplication a linear operation.srt 6.89KB
8. Code challenge is matrix-scalar multiplication a linear operation.vtt 6.01KB
8. Code challenge reduced-rank matrix via multiplication.mp4 34.47MB
8. Code challenge reduced-rank matrix via multiplication.srt 9.81KB
8. Code challenge reduced-rank matrix via multiplication.vtt 8.54KB
8. Eigendecomposition by hand two examples.mp4 51.82MB
8. Eigendecomposition by hand two examples.srt 14.12KB
8. Eigendecomposition by hand two examples.vtt 12.31KB
8. Find the missing value!.html 144B
8. Least-squares application 2.mp4 133.29MB
8. Least-squares application 2.srt 23.05KB
8. Least-squares application 2.vtt 20.25KB
8. Matrix inverse via QR decomposition.mp4 13.39MB
8. Matrix inverse via QR decomposition.srt 2.79KB
8. Matrix inverse via QR decomposition.vtt 2.48KB
8. Matrix spaces after row reduction.mp4 39.52MB
8. Matrix spaces after row reduction.srt 9.83KB
8. Matrix spaces after row reduction.vtt 8.60KB
8. More on Ax=b and Ax=0.mp4 28.47MB
8. More on Ax=b and Ax=0.srt 8.70KB
8. More on Ax=b and Ax=0.vtt 7.66KB
8. Proof the inverse is unique.mp4 14.05MB
8. Proof the inverse is unique.srt 3.55KB
8. Proof the inverse is unique.vtt 3.14KB
8. Quadratic form of generalized eigendecomposition.mp4 65.29MB
8. Quadratic form of generalized eigendecomposition.srt 12.43KB
8. Quadratic form of generalized eigendecomposition.vtt 10.97KB
8. SVD, matrix inverse, and pseudoinverse.mp4 49.77MB
8. SVD, matrix inverse, and pseudoinverse.srt 11.74KB
8. SVD, matrix inverse, and pseudoinverse.vtt 10.31KB
8. Vector length in MATLAB.html 144B
9. 2D transformation matrices.mp4 52.49MB
9. 2D transformation matrices.srt 14.65KB
9. 2D transformation matrices.vtt 12.85KB
9. Code challenge Inverse via QR.mp4 47.85MB
9. Code challenge Inverse via QR.srt 9.30KB
9. Code challenge Inverse via QR.vtt 8.14KB
9. Condition number of a matrix.mp4 52.99MB
9. Condition number of a matrix.srt 10.45KB
9. Condition number of a matrix.vtt 9.22KB
9. Diagonalization.mp4 47.37MB
9. Diagonalization.srt 12.47KB
9. Diagonalization.vtt 10.99KB
9. Dot product geometry sign and orthogonality.mp4 77.18MB
9. Dot product geometry sign and orthogonality.srt 19.69KB
9. Dot product geometry sign and orthogonality.vtt 17.31KB
9. Matrix definiteness, geometry, and eigenvalues.mp4 53.06MB
9. Matrix definiteness, geometry, and eigenvalues.srt 10.18KB
9. Matrix definiteness, geometry, and eigenvalues.vtt 8.92KB
9. Pseudo-inverse, part 1.mp4 56.05MB
9. Pseudo-inverse, part 1.srt 9.93KB
9. Pseudo-inverse, part 1.vtt 8.73KB
9. Rank of A^TA and AA^T.mp4 45.03MB
9. Rank of A^TA and AA^T.srt 12.87KB
9. Rank of A^TA and AA^T.vtt 11.37KB
9. Transpose.mp4 31.32MB
9. Transpose.srt 8.30KB
9. Transpose.vtt 7.30KB
Discuss.FTUForum.com.url 294B
FreeCoursesOnline.Me.url 286B
FTUApps.com.url 239B
FTUForum.com.url 328B
How you can help Team-FTU.txt 237B
Distribution statistics by country
Norway (NO) 2
Italy (IT) 1
Switzerland (CH) 1
Russia (RU) 1
South Africa (ZA) 1
Total 6
IP List List of IP addresses which were distributed this torrent