Please note that this page does not hosts or makes available any of the listed filenames. You
cannot download any of those files from here.
|
[TGx]Downloaded from torrentgalaxy.to .txt |
585B |
0 |
39B |
1 |
411.25KB |
1.1 Material.pdf |
893.54KB |
1.1 ortools_ex.py |
1.19KB |
1. Congratulation.mp4 |
1.40MB |
1. Congratulation.srt |
775B |
1. CP Ortools.mp4 |
50.76MB |
1. CP Ortools.srt |
4.57KB |
1. Installing Python.mp4 |
13.90MB |
1. Installing Python.srt |
3.05KB |
1. Introduction.mp4 |
13.48MB |
1. Introduction.mp4 |
1.01MB |
1. Introduction.srt |
3.52KB |
1. Introduction.srt |
816B |
1. Lists, Tuples, and Dictionary.mp4 |
49.19MB |
1. Lists, Tuples, and Dictionary.srt |
9.28KB |
1. LP Introduction.mp4 |
6.26MB |
1. LP Introduction.srt |
3.37KB |
1. MILP Introduction.mp4 |
5.73MB |
1. MILP Introduction.srt |
2.23KB |
1. MINLP Introduction.mp4 |
2.56MB |
1. MINLP Introduction.srt |
1.20KB |
1. NLP Introduction.mp4 |
2.78MB |
1. NLP Introduction.srt |
1.32KB |
1. Pyomo Using other solvers (CBC).mp4 |
36.31MB |
1. Pyomo Using other solvers (CBC).srt |
3.68KB |
10 |
247.97KB |
11 |
401.54KB |
12 |
318.20KB |
13 |
283.23KB |
14 |
123.95KB |
15 |
11.67KB |
16 |
498.20KB |
17 |
426.57KB |
18 |
193.32KB |
19 |
263.83KB |
2 |
94.64KB |
2.1 ex_area.py |
562B |
2.1 inputs.xlsx |
9.40KB |
2.1 Ipopt-3.11.1-win64-intel13.1.zip |
9.89MB |
2.1 Material.pdf |
893.54KB |
2.1 pyomo_ex.py |
721B |
2.1 pyomo_ex.py |
672B |
2.2 pyomo_array_sum.py |
947B |
2.2 pyomo_ex.py |
698B |
2. Framework and Solvers.mp4 |
6.00MB |
2. Framework and Solvers.srt |
2.51KB |
2. Garden problem.mp4 |
37.99MB |
2. Garden problem.srt |
4.37KB |
2. If, For, While.mp4 |
54.71MB |
2. If, For, While.srt |
10.77KB |
2. MILP Pyomo.mp4 |
22.60MB |
2. MILP Pyomo.srt |
3.74KB |
2. MINLP Pyomo (Couenne).mp4 |
23.84MB |
2. MINLP Pyomo (Couenne).srt |
3.21KB |
2. NLP Pyomo (IPOPT).mp4 |
25.79MB |
2. NLP Pyomo (IPOPT).srt |
3.00KB |
2. Packages.mp4 |
3.47MB |
2. Packages.srt |
1.45KB |
2. Pyomo Summations.mp4 |
198.18MB |
2. Pyomo Summations.srt |
26.78KB |
2. What is optimization.mp4 |
23.25MB |
2. What is optimization.srt |
5.96KB |
20 |
358.72KB |
21 |
507.42KB |
22 |
213.40KB |
23 |
15.53KB |
24 |
164.94KB |
25 |
454.91KB |
26 |
30.19KB |
27 |
258.56KB |
28 |
412.37KB |
29 |
14.56KB |
3 |
423.77KB |
3.1 code.py |
106B |
3.1 ortools_ex.py |
405B |
3.1 ortools_ex.py |
406B |
3.1 pyomo_mindtpy_ex.py |
718B |
3.1 rotas_input.xlsx |
9.50KB |
3.1 scip_ex.py |
366B |
3.2 ex_rota.py |
1.49KB |
3.2 myFile.py |
99B |
3. Functions.mp4 |
24.98MB |
3. Functions.srt |
4.82KB |
3. IDE Spyder.mp4 |
13.80MB |
3. IDE Spyder.srt |
2.56KB |
3. LP Ortools.mp4 |
36.24MB |
3. LP Ortools.srt |
7.65KB |
3. MILP Ortools.mp4 |
7.27MB |
3. MILP Ortools.srt |
1.69KB |
3. MINLP Pyomo (decomposition using mindtpy).mp4 |
19.14MB |
3. MINLP Pyomo (decomposition using mindtpy).srt |
2.81KB |
3. NLP SCIP.mp4 |
11.63MB |
3. NLP SCIP.srt |
1.91KB |
3. Pyomo Pprint.mp4 |
19.54MB |
3. Pyomo Pprint.srt |
2.35KB |
3. Route problem.mp4 |
148.38MB |
3. Route problem.srt |
15.00KB |
30 |
466.78KB |
31 |
370.61KB |
32 |
101.74KB |
33 |
201.67KB |
34 |
20.71KB |
35 |
378.00KB |
36 |
299.63KB |
37 |
109.90KB |
38 |
232.39KB |
39 |
214.71KB |
4 |
130.92KB |
4.1 code.py |
184B |
4.1 ex_receita.py |
582B |
4.1 Pyomo - Optimization Modeling in Python (2017, Springer).pdf |
1.76MB |
4.1 scip_ex.py |
340B |
4.1 scip_ex.py |
335B |
4.1 scip_ex.py |
385B |
4.2 pyomo_manual3.pdf |
1.57MB |
4.3 pyomo_manual.pdf |
253.96KB |
4.4 pyomo_manual2.pdf |
10.21MB |
4. Jupyter NotebookLab.mp4 |
9.27MB |
4. Jupyter NotebookLab.srt |
2.88KB |
4. LP SCIP.mp4 |
44.38MB |
4. LP SCIP.srt |
6.53KB |
4. MILP SCIP.mp4 |
8.79MB |
4. MILP SCIP.srt |
1.92KB |
4. MINLP SCIP.mp4 |
7.75MB |
4. MINLP SCIP.srt |
1.26KB |
4. NLP Exercise, solve it by yourself.mp4 |
94.87MB |
4. Numpy.mp4 |
34.65MB |
4. Numpy.srt |
7.41KB |
4. Pyomo Manual.html |
59B |
4. Revenue problem.mp4 |
51.51MB |
4. Revenue problem.srt |
3.52KB |
40 |
255.81KB |
41 |
300.41KB |
42 |
237.33KB |
43 |
245.03KB |
44 |
1.38KB |
45 |
279.99KB |
46 |
26.63KB |
47 |
221.57KB |
48 |
452.73KB |
49 |
247.42KB |
5 |
267.33KB |
5.1 alg_gen.py |
878B |
5.1 code.py |
339B |
5.1 ex_opflinear.py |
1.90KB |
5.1 exercise_cos.py |
511B |
5. Exercises.html |
169B |
5. LP Gurobi, CPLEX, and GLPK.mp4 |
77.24MB |
5. LP Gurobi, CPLEX, and GLPK.srt |
10.79KB |
5. MILP Exercise, solve it by yourself.mp4 |
143.91MB |
5. MINLP Genetic Algorithm.mp4 |
37.01MB |
5. MINLP Genetic Algorithm.srt |
6.51KB |
5. NLP Exercise Solution.mp4 |
31.50MB |
5. NLP Exercise Solution.srt |
4.77KB |
5. Optimal power flow problem.mp4 |
127.59MB |
5. Optimal power flow problem.srt |
10.13KB |
5. Pandas.mp4 |
36.58MB |
5. Pandas.srt |
9.87KB |
50 |
439.14KB |
51 |
98.58KB |
52 |
505.42KB |
53 |
130.46KB |
6 |
150.30KB |
6.1 data.xlsx |
10.61KB |
6.1 exercise.py |
964B |
6.1 psopy_ex.py |
437B |
6.1 pyomo_ex.py |
653B |
6.2 pandas_excel.py |
334B |
6.3 output.xlsx |
4.89KB |
6. LP Pyomo.mp4 |
50.11MB |
6. LP Pyomo.srt |
8.28KB |
6. MILP Exercise solution.mp4 |
64.84MB |
6. MILP Exercise solution.srt |
8.26KB |
6. MINLP Particle Swarm (PSO).mp4 |
23.47MB |
6. MINLP Particle Swarm (PSO).srt |
3.55KB |
6. Pandas reading Excel.mp4 |
45.72MB |
6. Pandas reading Excel.srt |
7.98KB |
7 |
159.10KB |
7.1 code.py |
136B |
7.1 pulp_ex.py |
318B |
7. Graphs.mp4 |
19.99MB |
7. Graphs.srt |
4.03KB |
7. LP PuLP.mp4 |
23.56MB |
7. LP PuLP.srt |
4.85KB |
8 |
301.67KB |
8. Exercises.html |
169B |
8. Which solver and frameworks should we choose.mp4 |
7.71MB |
8. Which solver and frameworks should we choose.srt |
2.23KB |
9 |
505.36KB |
9.1 exercise.py |
742B |
9. LP Exercise, solve it by yourself.mp4 |
70.35MB |
TutsNode.com.txt |
63B |