|
Please note that this page does not hosts or makes available any of the listed filenames. You
cannot download any of those files from here.
|
| [TGx]Downloaded from torrentgalaxy.to .txt |
585B |
| 0 |
607.37KB |
| 01 - Programming Foundations of Classification and Regression LiveLessons (Machine Learning with Python for Everyone Series), Part 1 (Video Training) - Introduction.mp4 |
141.57MB |
| 02 - Topics.mp4 |
14.87MB |
| 03 - 1.1 Environment Installation.mp4 |
184.76MB |
| 04 - 1.2 Three Things You Can do with NumPy and matplotlib.mp4 |
283.13MB |
| 05 - 1.3 Three Things You Can Do with Pandas.mp4 |
263.92MB |
| 06 - 1.4 Three Things You Can Do with scikit-learn and Friends.mp4 |
242.64MB |
| 07 - Topics.mp4 |
17.35MB |
| 08 - 2.1 Probability.mp4 |
144.01MB |
| 09 - 2.2 Distributions.mp4 |
197.95MB |
| 1 |
161.34KB |
| 10 |
84.44KB |
| 10 - 2.3 Linear Combinations.mp4 |
464.41MB |
| 11 |
687.00KB |
| 11 - 2.4 Geometry, Part 1.mp4 |
291.94MB |
| 12 |
368.98KB |
| 12 - 2.5 Geometry, Part 2.mp4 |
379.76MB |
| 13 |
160.66KB |
| 13 - 2.6 Geometry, Part 3.mp4 |
116.65MB |
| 14 |
548.94KB |
| 14 - 2.7 When Computers and Math Meet.mp4 |
198.01MB |
| 15 |
881.87KB |
| 15 - Topics.mp4 |
14.51MB |
| 16 |
735.12KB |
| 16 - 3.1 Setup and the Iris Dataset.mp4 |
227.14MB |
| 17 |
802.99KB |
| 17 - 3.2 Accuracy.mp4 |
128.93MB |
| 18 |
1016.66KB |
| 18 - 3.3 k-Nearest Neighbors.mp4 |
189.39MB |
| 19 |
52.85KB |
| 19 - 3.4 Train Test Splitting and Fitting k-NN.mp4 |
363.87MB |
| 2 |
534.41KB |
| 20 |
626.68KB |
| 20 - 3.5 Naive Bayes.mp4 |
349.40MB |
| 21 |
243.65KB |
| 21 - Topics.mp4 |
14.59MB |
| 22 |
903.62KB |
| 22 - 4.1 Learning Evaluation.mp4 |
135.75MB |
| 23 |
633.31KB |
| 23 - 4.2 Resource Evaluation - Time.mp4 |
203.22MB |
| 24 |
1009.25KB |
| 24 - 4.3 Resource Evaluation - Memory.mp4 |
229.46MB |
| 25 |
441.26KB |
| 25 - 4.4 Scripts.mp4 |
402.48MB |
| 26 |
252.20KB |
| 26 - Topics.mp4 |
13.41MB |
| 27 |
653.25KB |
| 27 - 5.1 Setup and the Diabetes Dataset.mp4 |
291.86MB |
| 28 |
74.57KB |
| 28 - 5.2 Measures of Center.mp4 |
165.12MB |
| 29 |
361.33KB |
| 29 - 5.3 k-Nearest Neighbors for Regression.mp4 |
260.33MB |
| 3 |
241.67KB |
| 30 |
32.19KB |
| 30 - 5.4 Linear Regression, Part 1.mp4 |
451.84MB |
| 31 |
668.09KB |
| 31 - 5.5 Linear Regression, Part 2.mp4 |
161.38MB |
| 32 |
137.14KB |
| 32 - Topics.mp4 |
11.25MB |
| 33 |
416.49KB |
| 33 - 6.1 Optimization, Part 1.mp4 |
373.61MB |
| 34 |
496.67KB |
| 34 - 6.2 Optimization, Part 2.mp4 |
210.28MB |
| 35 |
599.95KB |
| 35 - 6.3 Learning Performance.mp4 |
129.36MB |
| 36 - 6.4 Resource Evaluation.mp4 |
235.84MB |
| 37 - Programming Foundations of Classification and Regression LiveLessons (Machine Learning with Python for Everyone Series), Part 1 (Video Training) - Summary.mp4 |
31.97MB |
| 4 |
397.62KB |
| 5 |
128.08KB |
| 6 |
612.08KB |
| 7 |
56.37KB |
| 8 |
147.35KB |
| 9 |
892.23KB |
| TutsNode.com.txt |
63B |