Torrent Info
Title Data Science Bookcamp, video edition
Category
Size 6.50GB
Files List
Please note that this page does not hosts or makes available any of the listed filenames. You cannot download any of those files from here.
[TGx]Downloaded from torrentgalaxy.to .txt 585B
0 890.79KB
1 939.58KB
10 718.23KB
100 687.47KB
100 - Chapter 20. Network-driven supervised machine learning.mp4 48.95MB
101 827.46KB
101 - Chapter 20. The basics of supervised machine learning.mp4 49.20MB
102 7.51KB
102 - Chapter 20. Measuring predicted label accuracy, Part 1.mp4 37.28MB
103 10.78KB
103 - Chapter 20. Measuring predicted label accuracy, Part 2.mp4 55.24MB
104 774.91KB
104 - Chapter 20. Optimizing KNN performance.mp4 35.68MB
105 454.37KB
105 - Chapter 20. Running a grid search using scikit-learn.mp4 39.33MB
106 589.82KB
106 - Chapter 20. Limitations of the KNN algorithm.mp4 63.16MB
107 740.84KB
107 - Chapter 21. Training linear classifiers with logistic regression.mp4 58.26MB
108 427.51KB
108 - Chapter 21. Training a linear classifier, Part 1.mp4 43.52MB
109 663.19KB
109 - Chapter 21. Training a linear classifier, Part 2.mp4 73.26MB
10 - Chapter 3. Using permutations to shuffle cards.mp4 35.40MB
11 755.90KB
110 735.31KB
110 - Chapter 21. Improving linear classification with logistic regression, Part 1.mp4 43.42MB
111 328.39KB
111 - Chapter 21. Improving linear classification with logistic regression, Part 2.mp4 43.12MB
112 617.38KB
112 - Chapter 21. Training linear classifiers using scikit-learn.mp4 49.64MB
113 376.21KB
113 - Chapter 21. Measuring feature importance with coefficients.mp4 93.13MB
114 632.63KB
114 - Chapter 22. Training nonlinear classifiers with decision tree techniques.mp4 65.20MB
115 744.55KB
115 - Chapter 22. Training a nested if_else model using two features.mp4 53.25MB
116 413.05KB
116 - Chapter 22. Deciding which feature to split on.mp4 57.23MB
117 784.19KB
117 - Chapter 22. Training if_else models with more than two features.mp4 57.79MB
118 57.11KB
118 - Chapter 22. Training decision tree classifiers using scikit-learn.mp4 51.86MB
119 905.53KB
119 - Chapter 22. Studying cancerous cells using feature importance.mp4 59.29MB
11 - Chapter 4. Case study 1 solution.mp4 34.27MB
12 840.00KB
120 554.27KB
120 - Chapter 22. Improving performance using random forest classification.mp4 57.38MB
121 619.10KB
121 - Chapter 22. Training random forest classifiers using scikit-learn.mp4 52.96MB
122 78.31KB
122 - Chapter 23. Case study 5 solution.mp4 32.94MB
123 235.59KB
123 - Chapter 23. Exploring the experimental observations.mp4 38.99MB
124 874.03KB
124 - Chapter 23. Training a predictive model using network features, Part 1.mp4 52.59MB
125 53.07KB
125 - Chapter 23. Training a predictive model using network features, Part 2.mp4 53.87MB
126 110.25KB
126 - Chapter 23. Adding profile features to the model.mp4 62.03MB
127 - Chapter 23. Optimizing performance across a steady set of features.mp4 42.55MB
128 - Chapter 23. Interpreting the trained model.mp4 64.17MB
12 - Chapter 4. Optimizing strategies using the sample space for a 10-card deck.mp4 47.10MB
13 284.28KB
13 - Case study 2 - Assessing online ad clicks for significance.mp4 31.40MB
14 642.27KB
14 - Chapter 5. Basic probability and statistical analysis using SciPy.mp4 76.23MB
15 833.63KB
15 - Chapter 5. Mean as a measure of centrality.mp4 36.58MB
16 218.31KB
16 - Chapter 5. Variance as a measure of dispersion.mp4 73.89MB
17 406.40KB
17 - Chapter 6. Making predictions using the central limit theorem and SciPy.mp4 58.61MB
18 714.45KB
18 - Chapter 6. Comparing two sampled normal curves.mp4 31.46MB
19 466.94KB
19 - Chapter 6. Determining the mean and variance of a population through random sampling.mp4 55.19MB
1 - Case study 1 - Finding the winning strategy in a card game.mp4 6.89MB
2 965.65KB
20 436.39KB
20 - Chapter 6. Computing the area beneath a normal curve.mp4 64.57MB
21 820.39KB
21 - Chapter 7. Statistical hypothesis testing.mp4 39.19MB
22 291.63KB
22 - Chapter 7. Assessing the divergence between sample mean and population mean.mp4 68.30MB
23 439.97KB
23 - Chapter 7. Data dredging - Coming to false conclusions through oversampling.mp4 79.88MB
24 850.33KB
24 - Chapter 7. Bootstrapping with replacement - Testing a hypothesis when the population variance is unknown 1.mp4 53.28MB
25 859.42KB
25 - Chapter 7. Bootstrapping with replacement - Testing a hypothesis when the population variance is unknown 2.mp4 52.78MB
26 56.04KB
26 - Chapter 7. Permutation testing - Comparing means of samples when the population parameters are unknown.mp4 43.69MB
27 670.01KB
27 - Chapter 8. Analyzing tables using Pandas.mp4 40.87MB
28 997.70KB
28 - Chapter 8. Retrieving table rows.mp4 38.24MB
29 268.60KB
29 - Chapter 8. Saving and loading table data.mp4 40.28MB
2 - Chapter 1. Computing probabilities using Python This section covers.mp4 56.75MB
3 618.37KB
30 619.14KB
30 - Chapter 9. Case study 2 solution.mp4 33.60MB
31 822.06KB
31 - Chapter 9. Determining statistical significance.mp4 43.58MB
32 115.18KB
32 - Case study 3 - Tracking disease outbreaks using news headlines.mp4 6.60MB
33 779.81KB
33 - Chapter 10. Clustering data into groups.mp4 61.40MB
34 968.05KB
34 - Chapter 10. K-means - A clustering algorithm for grouping data into K central groups.mp4 61.20MB
35 357.36KB
35 - Chapter 10. Using density to discover clusters.mp4 52.23MB
36 724.65KB
36 - Chapter 10. Clustering based on non-Euclidean distance.mp4 68.79MB
37 101.59KB
37 - Chapter 10. Analyzing clusters using Pandas.mp4 40.48MB
38 173.25KB
38 - Chapter 11. Geographic location visualization and analysis.mp4 46.58MB
39 403.17KB
39 - Chapter 11. Plotting maps using Cartopy.mp4 33.23MB
3 - Chapter 1. Problem 2 - Analyzing multiple die rolls.mp4 60.89MB
4 118.37KB
40 743.59KB
40 - Chapter 11. Visualizing maps.mp4 58.27MB
41 753.44KB
41 - Chapter 11. Location tracking using GeoNamesCache.mp4 62.35MB
42 15.05KB
42 - Chapter 11. Limitations of the GeoNamesCache library.mp4 69.19MB
43 213.06KB
43 - Chapter 12. Case study 3 solution.mp4 34.63MB
44 379.70KB
44 - Chapter 12. Visualizing and clustering the extracted location data.mp4 70.72MB
45 628.04KB
45 - Case study 4 - Using online job postings to improve your data science resume.mp4 23.95MB
46 637.24KB
46 - Chapter 13. Measuring text similarities.mp4 36.28MB
47 783.40KB
47 - Chapter 13. Simple text comparison.mp4 44.00MB
48 252.02KB
48 - Chapter 13. Replacing words with numeric values.mp4 42.07MB
49 414.79KB
49 - Chapter 13. Vectorizing texts using word counts.mp4 44.50MB
4 - Chapter 2. Plotting probabilities using Matplotlib.mp4 53.74MB
5 791.22KB
50 775.76KB
50 - Chapter 13. Using normalization to improve TF vector similarity.mp4 48.56MB
51 824.74KB
51 - Chapter 13. Using unit vector dot products to convert between relevance metrics.mp4 41.64MB
52 571.96KB
52 - Chapter 13. Basic matrix operations, Part 1.mp4 48.78MB
53 138.01KB
53 - Chapter 13. Basic matrix operations, Part 2.mp4 27.15MB
54 264.47KB
54 - Chapter 13. Computational limits of matrix multiplication.mp4 47.81MB
55 737.98KB
55 - Chapter 14. Dimension reduction of matrix data.mp4 61.74MB
56 763.31KB
56 - Chapter 14. Reducing dimensions using rotation, Part 1.mp4 38.99MB
57 958.02KB
57 - Chapter 14. Reducing dimensions using rotation, Part 2.mp4 37.56MB
58 14.01KB
58 - Chapter 14. Dimension reduction using PCA and scikit-learn.mp4 64.72MB
59 39.88KB
59 - Chapter 14. Clustering 4D data in two dimensions.mp4 54.44MB
5 - Chapter 2. Comparing multiple coin-flip probability distributions.mp4 65.57MB
6 812.11KB
60 228.00KB
60 - Chapter 14. Limitations of PCA.mp4 30.77MB
61 415.60KB
61 - Chapter 14. Computing principal components without rotation.mp4 47.80MB
62 786.46KB
62 - Chapter 14. Extracting eigenvectors using power iteration, Part 1.mp4 44.67MB
63 144.96KB
63 - Chapter 14. Extracting eigenvectors using power iteration, Part 2.mp4 34.38MB
64 444.56KB
64 - Chapter 14. Efficient dimension reduction using SVD and scikit-learn.mp4 68.60MB
65 369.03KB
65 - Chapter 15. NLP analysis of large text datasets.mp4 47.16MB
66 817.63KB
66 - Chapter 15. Vectorizing documents using scikit-learn.mp4 87.06MB
67 982.68KB
67 - Chapter 15. Ranking words by both post frequency and count, Part 1.mp4 56.59MB
68 46.62KB
68 - Chapter 15. Ranking words by both post frequency and count, Part 2.mp4 48.13MB
69 230.07KB
69 - Chapter 15. Computing similarities across large document datasets.mp4 60.24MB
6 - Chapter 3. Running random simulations in NumPy.mp4 36.35MB
7 943.40KB
70 451.69KB
70 - Chapter 15. Clustering texts by topic, Part 1.mp4 73.30MB
71 653.80KB
71 - Chapter 15. Clustering texts by topic, Part 2.mp4 87.08MB
72 890.39KB
72 - Chapter 15. Visualizing text clusters.mp4 58.90MB
73 199.54KB
73 - Chapter 15. Using subplots to display multiple word clouds, Part 1.mp4 50.57MB
74 207.09KB
74 - Chapter 15. Using subplots to display multiple word clouds, Part 2.mp4 58.83MB
75 415.57KB
75 - Chapter 16. Extracting text from web pages.mp4 39.55MB
76 856.97KB
76 - Chapter 16. The structure of HTML documents.mp4 62.95MB
77 923.38KB
77 - Chapter 16. Parsing HTML using Beautiful Soup, Part 1.mp4 40.42MB
78 230.11KB
78 - Chapter 16. Parsing HTML using Beautiful Soup, Part 2.mp4 46.78MB
79 428.93KB
79 - Chapter 17. Case study 4 solution.mp4 37.42MB
7 - Chapter 3. Computing confidence intervals using histograms and NumPy arrays.mp4 47.59MB
8 119.94KB
80 336.42KB
80 - Chapter 17. Exploring the HTML for skill descriptions.mp4 59.65MB
81 347.83KB
81 - Chapter 17. Filtering jobs by relevance.mp4 73.18MB
82 512.96KB
82 - Chapter 17. Clustering skills in relevant job postings.mp4 66.54MB
83 804B
83 - Chapter 17. Investigating the technical skill clusters.mp4 41.46MB
84 312.69KB
84 - Chapter 17. Exploring clusters at alternative values of K.mp4 69.37MB
85 432.10KB
85 - Chapter 17. Analyzing the 700 most relevant postings.mp4 40.95MB
86 489.73KB
86 - Case study 5 - Predicting future friendships from social network data.mp4 80.40MB
87 595.42KB
87 - Chapter 18. An introduction to graph theory and network analysis.mp4 74.88MB
88 900.74KB
88 - Chapter 18. Analyzing web networks using NetworkX, Part 1.mp4 30.92MB
89 457.18KB
89 - Chapter 18. Analyzing web networks using NetworkX, Part 2.mp4 53.06MB
8 - Chapter 3. Deriving probabilities from histograms.mp4 57.63MB
9 113.81KB
90 949.66KB
90 - Chapter 18. Utilizing undirected graphs to optimize the travel time between towns.mp4 57.39MB
91 366.51KB
91 - Chapter 18. Computing the fastest travel time between nodes, Part 1.mp4 32.12MB
92 552.72KB
92 - Chapter 18. Computing the fastest travel time between nodes, Part 2.mp4 49.04MB
93 53.45KB
93 - Chapter 19. Dynamic graph theory techniques for node ranking and social network analysis.mp4 75.08MB
94 133.05KB
94 - Chapter 19. Computing travel probabilities using matrix multiplication.mp4 40.21MB
95 527.65KB
95 - Chapter 19. Deriving PageRank centrality from probability theory.mp4 48.36MB
96 592.36KB
96 - Chapter 19. Computing PageRank centrality using NetworkX.mp4 44.66MB
97 733.27KB
97 - Chapter 19. Community detection using Markov clustering, Part 1.mp4 60.05MB
98 811.60KB
98 - Chapter 19. Community detection using Markov clustering, Part 2.mp4 75.21MB
99 457.38KB
99 - Chapter 19. Uncovering friend groups in social networks.mp4 57.99MB
9 - Chapter 3. Computing histograms in NumPy.mp4 52.99MB
TutsNode.com.txt 63B
Distribution statistics by country
Total 0
IP List List of IP addresses which were distributed this torrent