|
Please note that this page does not hosts or makes available any of the listed filenames. You
cannot download any of those files from here.
|
| .DS_Store |
6.00KB |
| .DS_Store |
6.00KB |
| .DS_Store |
6.00KB |
| .DS_Store |
6.00KB |
| .DS_Store |
6.00KB |
| .DS_Store |
6.00KB |
| 0_getting.py |
303B |
| 198810101_20151231.csv |
543.79KB |
| 1decision_tree_submit.py |
9.81KB |
| 1email_spam_tfidf_submit.py |
2.62KB |
| 1histogram.py |
529B |
| 1imputation.py |
3.25KB |
| 1one_hot_encode.py |
2.42KB |
| 1stock_price_prediction.py |
7.48KB |
| 20051201_20151210.csv |
644B |
| 2avazu_ctr.py |
2.06KB |
| 2clean_words.py |
723B |
| 2feature_selection.py |
1.12KB |
| 2linear_regression.py |
4.72KB |
| 2logistic_function.py |
833B |
| 2topic_categorization.py |
5.04KB |
| 3decision_tree_regression.py |
7.08KB |
| 3dimensionality_reduction.py |
635B |
| 3logistic_regression_from_scratch.py |
7.60KB |
| 3plot_rbf_kernels.py |
1.13KB |
| 3post_clustering.py |
919B |
| 4ctg.py |
1.14KB |
| 4generic_feature_engineering.py |
344B |
| 4random_forest_feature_selection.py |
1.68KB |
| 4support_vector_regression.py |
439B |
| 4topic_model.py |
998B |
| 5save_reuse_monitor_model.py |
1.00KB |
| 5scikit_logistic_regression.py |
5.24KB |
| Best Practices in Data Preparation Stage.mp4 |
31.86MB |
| Best Practices in the Deployment and Monitoring Stage.mp4 |
13.90MB |
| Best Practices in the Model Training, Evaluation, and Selection Stage.mp4 |
10.84MB |
| Best Practices in the Training Sets Generation Stage.mp4 |
20.46MB |
| Brief Overview of Advertising Click-Through Prediction.mp4 |
11.00MB |
| Brief Overview of the Stock Market And Stock Price.mp4 |
7.05MB |
| Choosing Between the Linear and the RBF Kernel.mp4 |
14.21MB |
| Classifier Performance Evaluation.mp4 |
36.98MB |
| Click-Through Prediction with Decision Tree.mp4 |
24.99MB |
| Click-Through Prediction with Logistic Regression by Gradient Descent.mp4 |
75.32MB |
| Clustering.mp4 |
10.44MB |
| config.py |
3.38KB |
| CTG.xls |
1.66MB |
| Data Acquisition and Feature Generation.mp4 |
12.29MB |
| Data Preprocessing.mp4 |
9.15MB |
| Decision Tree Classifier.mp4 |
36.69MB |
| Decision Tree Regression.mp4 |
27.45MB |
| email_spam.py |
10.28KB |
| Exploring Naïve Bayes.mp4 |
5.10MB |
| Feature Selection via Random Forest.mp4 |
16.04MB |
| Fetal State Classification with SVM.mp4 |
21.84MB |
| Getting Started with Classification.mp4 |
8.76MB |
| Getting the Newsgroups Data.mp4 |
14.10MB |
| globalnames |
1011B |
| history |
14B |
| Installing Software and Setting Up.mp4 |
22.01MB |
| Introduction to Machine Learning.mp4 |
13.02MB |
| Linear Regression.mp4 |
30.28MB |
| Logistic Regression Classifier.mp4 |
37.40MB |
| Machine Learning with Python.mp4 |
1.61MB |
| Machine Learning with Python.mp4 |
1.61MB |
| Model Tuning and cross-validation.mp4 |
18.26MB |
| News topic Classification with Support Vector Machine.mp4 |
36.37MB |
| objectdb |
2.21KB |
| One-Hot Encoding - Converting Categorical Features to Numerical.mp4 |
21.42MB |
| Predicting Stock Price with Regression Algorithms.mp4 |
24.42MB |
| Random Forest - Feature Bagging of Decision Tree.mp4 |
18.28MB |
| Recap and Inverse Document Frequency.mp4 |
16.63MB |
| Regression Performance Evaluation.mp4 |
12.72MB |
| Stock Price Prediction with Regression Algorithms.mp4 |
34.23MB |
| Support Vector Regression.mp4 |
8.09MB |
| The Course Overview.mp4 |
17.18MB |
| The Implementations of Decision Tree.mp4 |
22.81MB |
| The Implementations of SVM.mp4 |
19.68MB |
| The Kernels of SVM.mp4 |
11.79MB |
| The Mechanics of Naïve Bayes.mp4 |
7.33MB |
| The Mechanics of SVM.mp4 |
9.16MB |
| The Naïve Bayes Implementation.mp4 |
57.36MB |
| Thinking about Features.mp4 |
20.34MB |
| Topic Modeling.mp4 |
13.04MB |
| Touring Powerful NLP Libraries in Python.mp4 |
40.29MB |
| Understanding NLP.mp4 |
15.97MB |
| Visualization.mp4 |
11.53MB |