Torrent Info
Title [GigaCourse.Com] Udemy - A deep understanding of deep learning (with Python intro)
Category
Size 21.97GB

Files List
Please note that this page does not hosts or makes available any of the listed filenames. You cannot download any of those files from here.
[CourseClub.Me].url 122B
[CourseClub.Me].url 122B
[CourseClub.Me].url 122B
[CourseClub.Me].url 122B
[CourseClub.Me].url 122B
[CourseClub.Me].url 122B
[CourseClub.ME].url 122B
[GigaCourse.Com].url 49B
[GigaCourse.Com].url 49B
[GigaCourse.Com].url 49B
[GigaCourse.Com].url 49B
[GigaCourse.Com].url 49B
[GigaCourse.Com].url 49B
[GigaCourse.Com].url 49B
001 Anatomy of a torch dataset and dataloader_en.srt 25.42KB
001 Anatomy of a torch dataset and dataloader.mp4 135.84MB
001 Bonus content.html 3.64KB
001 Convolution concepts_en.srt 31.18KB
001 Convolution concepts.mp4 97.99MB
001 Downloading and using the code_en.srt 9.06KB
001 Downloading and using the code.mp4 45.65MB
001 DUDL-PythonCode.zip 660.79KB
001 Explanation of weight matrix sizes_en.srt 16.55KB
001 Explanation of weight matrix sizes.mp4 68.98MB
001 GAN What, why, and how_en.srt 22.67KB
001 GAN What, why, and how.mp4 89.74MB
001 How to learn from the Python tutorial_en.srt 4.67KB
001 How to learn from the Python tutorial.mp4 21.97MB
001 How to learn from this course_en.srt 12.48KB
001 How to learn from this course.mp4 54.97MB
001 How to learn topic _X_ in deep learning_en.srt 11.88KB
001 How to learn topic _X_ in deep learning.mp4 42.03MB
001 If-else statements_en.srt 20.84KB
001 If-else statements.mp4 66.80MB
001 Indexing_en.srt 17.40KB
001 Indexing.mp4 51.07MB
001 Inputs and outputs_en.srt 10.16KB
001 Inputs and outputs.mp4 29.49MB
001 Leveraging sequences in deep learning_en.srt 18.13KB
001 Leveraging sequences in deep learning.mp4 72.79MB
001 Overview of gradient descent_en.srt 20.10KB
001 Overview of gradient descent.mp4 68.44MB
001 Printing and string interpolation_en.srt 23.41KB
001 Printing and string interpolation.mp4 94.83MB
001 Project 1 A gratuitously complex adding machine_en.srt 10.33KB
001 Project 1 A gratuitously complex adding machine.mp4 48.55MB
001 Project 1 Import and classify CIFAR10_en.srt 10.17KB
001 Project 1 Import and classify CIFAR10.mp4 48.36MB
001 PyTorch or TensorFlow.html 1.07KB
001 Regularization Concept and methods_en.srt 18.35KB
001 Regularization Concept and methods.mp4 80.05MB
001 Should you watch the Python tutorial_en.srt 5.92KB
001 Should you watch the Python tutorial.mp4 23.77MB
001 The canonical CNN architecture_en.srt 15.12KB
001 The canonical CNN architecture.mp4 55.83MB
001 The perceptron and ANN architecture_en.srt 26.89KB
001 The perceptron and ANN architecture.mp4 85.84MB
001 Transfer learning What, why, and when_en.srt 23.86KB
001 Transfer learning What, why, and when.mp4 96.61MB
001 Two perspectives of the world_en.srt 9.91KB
001 Two perspectives of the world.mp4 40.01MB
001 What are autoencoders and what do they do_en.srt 16.30KB
001 What are autoencoders and what do they do.mp4 49.04MB
001 What are fully-connected and feedforward networks_en.srt 6.70KB
001 What are fully-connected and feedforward networks.mp4 25.53MB
001 What are metaparameters_en.srt 7.09KB
001 What are metaparameters.mp4 32.70MB
001 What is a GPU and why use it_en.srt 21.62KB
001 What is a GPU and why use it.mp4 88.73MB
001 What is an artificial neural network_en.srt 20.55KB
001 What is an artificial neural network.mp4 65.38MB
001 What is overfitting and is it as bad as they say_en.srt 17.66KB
001 What is overfitting and is it as bad as they say.mp4 73.13MB
001 What is style transfer and how does it work_en.srt 6.11KB
001 What is style transfer and how does it work.mp4 40.57MB
001 Will AI save us or destroy us_en.srt 13.83KB
001 Will AI save us or destroy us.mp4 65.92MB
002 Accuracy, precision, recall, F1_en.srt 17.32KB
002 Accuracy, precision, recall, F1.mp4 72.58MB
002 A geometric view of ANNs_en.srt 18.65KB
002 A geometric view of ANNs.mp4 70.88MB
002 A surprising demo of weight initializations_en.srt 23.00KB
002 A surprising demo of weight initializations.mp4 121.57MB
002 CNN to classify MNIST digits_en.srt 36.60KB
002 CNN to classify MNIST digits.mp4 200.33MB
002 Cross-validation_en.srt 24.05KB
002 Cross-validation.mp4 88.19MB
002 Data size and network size_en.srt 22.54KB
002 Data size and network size.mp4 135.67MB
002 Denoising MNIST_en.srt 21.93KB
002 Denoising MNIST.mp4 118.53MB
002 Example case studies_en.srt 8.83KB
002 Example case studies.mp4 52.92MB
002 Feature maps and convolution kernels_en.srt 13.45KB
002 Feature maps and convolution kernels.mp4 70.41MB
002 How models learn_en.srt 18.07KB
002 How models learn.mp4 72.79MB
002 How RNNs work_en.srt 20.96KB
002 How RNNs work.mp4 74.85MB
002 How to read academic DL papers_en.srt 24.46KB
002 How to read academic DL papers.mp4 141.85MB
002 If-else statements, part 2_en.srt 22.02KB
002 If-else statements, part 2.mp4 91.12MB
002 Implementation_en.srt 14.24KB
002 Implementation.mp4 76.60MB
002 Introduction to this section_en.srt 2.80KB
002 Introduction to this section.mp4 11.12MB
002 Linear GAN with MNIST_en.srt 30.76KB
002 Linear GAN with MNIST.mp4 169.90MB
002 My policy on code-sharing_en.srt 2.43KB
002 My policy on code-sharing.mp4 10.24MB
002 Plotting dots and lines_en.srt 17.02KB
002 Plotting dots and lines.mp4 53.87MB
002 Project 1 My solution_en.srt 16.30KB
002 Project 1 My solution_en.srt 16.52KB
002 Project 1 My solution.mp4 99.75MB
002 Project 1 My solution.mp4 118.60MB
002 Python libraries (numpy)_en.srt 19.26KB
002 Python libraries (numpy).mp4 63.39MB
002 Slicing_en.srt 17.26KB
002 Slicing.mp4 48.45MB
002 The Gram matrix (feature activation covariance)_en.srt 16.19KB
002 The Gram matrix (feature activation covariance).mp4 66.49MB
002 The MNIST dataset_en.srt 17.70KB
002 The MNIST dataset.mp4 101.38MB
002 The wine quality dataset_en.srt 24.77KB
002 The wine quality dataset.mp4 143.50MB
002 train() and eval() modes_en.srt 9.82KB
002 train() and eval() modes.mp4 38.34MB
002 Transfer learning MNIST - FMNIST_en.srt 14.02KB
002 Transfer learning MNIST - FMNIST.mp4 90.35MB
002 Using Udemy like a pro_en.srt 11.84KB
002 Using Udemy like a pro.mp4 54.37MB
002 Variables_en.srt 26.21KB
002 Variables.mp4 77.58MB
002 What about local minima_en.srt 16.54KB
002 What about local minima.mp4 67.08MB
003 ANN math part 1 (forward prop)_en.srt 21.38KB
003 ANN math part 1 (forward prop).mp4 73.12MB
003 APRF in code_en.srt 9.03KB
003 APRF in code.mp4 51.79MB
003 CNN on shifted MNIST_en.srt 11.66KB
003 CNN on shifted MNIST.mp4 58.34MB
003 CodeChallenge How many units_en.srt 27.80KB
003 CodeChallenge How many units.mp4 135.38MB
003 CodeChallenge letters to numbers_en.srt 19.77KB
003 CodeChallenge letters to numbers.mp4 118.74MB
003 CodeChallenge Linear GAN with FMNIST_en.srt 13.38KB
003 CodeChallenge Linear GAN with FMNIST.mp4 62.73MB
003 CodeChallenge Minibatch size in the wine dataset_en.srt 22.22KB
003 CodeChallenge Minibatch size in the wine dataset.mp4 118.79MB
003 CodeChallenge Run an experiment on the GPU_en.srt 9.43KB
003 CodeChallenge Run an experiment on the GPU.mp4 52.99MB
003 CodeChallenge unbalanced data_en.srt 28.21KB
003 CodeChallenge unbalanced data.mp4 166.26MB
003 Convolution in code_en.srt 29.39KB
003 Convolution in code.mp4 173.10MB
003 Dropout regularization_en.srt 30.42KB
003 Dropout regularization.mp4 138.39MB
003 FFN to classify digits_en.srt 31.66KB
003 FFN to classify digits.mp4 161.85MB
003 For loops_en.srt 24.28KB
003 For loops.mp4 87.13MB
003 Generalization_en.srt 8.50KB
003 Generalization.mp4 32.44MB
003 Gradient descent in 1D_en.srt 23.78KB
003 Gradient descent in 1D.mp4 119.29MB
003 Math and printing_en.srt 25.73KB
003 Math and printing.mp4 78.50MB
003 Project 2 CIFAR-autoencoder_en.srt 6.75KB
003 Project 2 CIFAR-autoencoder.mp4 33.37MB
003 Project 2 Predicting heart disease_en.srt 10.57KB
003 Project 2 Predicting heart disease.mp4 50.61MB
003 Python libraries (pandas)_en.srt 19.51KB
003 Python libraries (pandas).mp4 81.19MB
003 Some other possible ethical scenarios_en.srt 14.65KB
003 Some other possible ethical scenarios.mp4 66.25MB
003 Spectral theories in mathematics_en.srt 13.09KB
003 Spectral theories in mathematics.mp4 51.06MB
003 Subplot geometry_en.srt 22.24KB
003 Subplot geometry.mp4 86.78MB
003 Theory Why and how to initialize weights_en.srt 17.59KB
003 Theory Why and how to initialize weights.mp4 79.41MB
003 The RNN class in PyTorch_en.srt 25.94KB
003 The RNN class in PyTorch.mp4 122.98MB
003 The role of DL in science and knowledge_en.srt 22.48KB
003 The role of DL in science and knowledge.mp4 34.76MB
003 The style transfer algorithm_en.srt 14.54KB
003 The style transfer algorithm.mp4 67.31MB
004 AEs for occlusion_en.srt 24.48KB
004 AEs for occlusion.mp4 138.20MB
004 ANN math part 2 (errors, loss, cost)_en.srt 13.39KB
004 ANN math part 2 (errors, loss, cost).mp4 48.47MB
004 APRF example 1 wine quality_en.srt 18.52KB
004 APRF example 1 wine quality.mp4 107.35MB
004 Classify Gaussian blurs_en.srt 33.00KB
004 Classify Gaussian blurs.mp4 185.14MB
004 CNN GAN with Gaussians_en.srt 21.29KB
004 CNN GAN with Gaussians.mp4 135.70MB
004 CodeChallenge Binarized MNIST images_en.srt 7.10KB
004 CodeChallenge Binarized MNIST images.mp4 40.78MB
004 CodeChallenge unfortunate starting value_en.srt 15.37KB
004 CodeChallenge unfortunate starting value.mp4 77.09MB
004 CodeChallenge Weight variance inits_en.srt 17.75KB
004 CodeChallenge Weight variance inits.mp4 103.96MB
004 Convolution parameters (stride, padding)_en.srt 17.41KB
004 Convolution parameters (stride, padding).mp4 66.93MB
004 Cross-validation -- manual separation_en.srt 17.89KB
004 Cross-validation -- manual separation.mp4 98.30MB
004 Data normalization_en.srt 18.96KB
004 Data normalization.mp4 59.81MB
004 Dropout regularization in practice_en.srt 32.13KB
004 Dropout regularization in practice.mp4 183.23MB
004 Enumerate and zip_en.srt 15.41KB
004 Enumerate and zip.mp4 58.59MB
004 Famous CNN architectures_en.srt 8.39KB
004 Famous CNN architectures.mp4 41.28MB
004 Getting help on functions_en.srt 10.65KB
004 Getting help on functions.mp4 48.60MB
004 Lists (1 of 2)_en.srt 19.65KB
004 Lists (1 of 2).mp4 55.04MB
004 Making the graphs look nicer_en.srt 25.96KB
004 Making the graphs look nicer.mp4 107.66MB
004 Predicting alternating sequences_en.srt 27.77KB
004 Predicting alternating sequences.mp4 160.16MB
004 Project 2 My solution_en.srt 26.69KB
004 Project 2 My solution.mp4 155.73MB
004 Project 3 FMNIST_en.srt 4.93KB
004 Project 3 FMNIST.mp4 26.45MB
004 Running experiments to understand DL_en.srt 18.53KB
004 Running experiments to understand DL.mp4 74.84MB
004 Terms and datatypes in math and computers_en.srt 10.27KB
004 Terms and datatypes in math and computers.mp4 38.08MB
004 Transferring the screaming bathtub_en.srt 31.05KB
004 Transferring the screaming bathtub.mp4 216.82MB
004 What to do about unbalanced designs_en.srt 10.75KB
004 What to do about unbalanced designs.mp4 54.21MB
004 Will deep learning take our jobs_en.srt 14.35KB
004 Will deep learning take our jobs.mp4 75.14MB
005 Accountability and making ethical AI_en.srt 16.10KB
005 Accountability and making ethical AI.mp4 70.06MB
005 ANN math part 3 (backprop)_en.srt 14.71KB
005 ANN math part 3 (backprop).mp4 52.89MB
005 APRF example 2 MNIST_en.srt 16.52KB
005 APRF example 2 MNIST.mp4 98.62MB
005 Are artificial neurons like biological neurons_en.srt 23.29KB
005 Are artificial neurons like biological neurons.mp4 114.65MB
005 CodeChallenge Data normalization_en.srt 23.57KB
005 CodeChallenge Data normalization.mp4 96.25MB
005 CodeChallenge Gaussians with fewer layers_en.srt 8.61KB
005 CodeChallenge Gaussians with fewer layers.mp4 53.06MB
005 CodeChallenge sine wave extrapolation_en.srt 37.55KB
005 CodeChallenge sine wave extrapolation.mp4 195.67MB
005 CodeChallenge Style transfer with AlexNet_en.srt 10.07KB
005 CodeChallenge Style transfer with AlexNet.mp4 53.47MB
005 Continue_en.srt 9.71KB
005 Continue.mp4 33.03MB
005 Converting reality to numbers_en.srt 9.21KB
005 Converting reality to numbers.mp4 33.21MB
005 Creating functions_en.srt 29.69KB
005 Creating functions.mp4 88.43MB
005 Cross-validation -- scikitlearn_en.srt 29.31KB
005 Cross-validation -- scikitlearn.mp4 142.88MB
005 Data oversampling in MNIST_en.srt 23.24KB
005 Data oversampling in MNIST.mp4 122.59MB
005 Dropout example 2_en.srt 8.83KB
005 Dropout example 2.mp4 53.87MB
005 Examine feature map activations_en.srt 39.00KB
005 Examine feature map activations.mp4 260.56MB
005 Gradient descent in 2D_en.srt 20.74KB
005 Gradient descent in 2D.mp4 96.38MB
005 Lists (2 of 2)_en.srt 14.00KB
005 Lists (2 of 2).mp4 46.69MB
005 Project 3 FFN for missing data interpolation_en.srt 13.85KB
005 Project 3 FFN for missing data interpolation.mp4 45.39MB
005 Project 4 Psychometric functions in CNNs_en.srt 10.74KB
005 Project 4 Psychometric functions in CNNs_en.vtt 14.22KB
005 Project 4 Psychometric functions in CNNs.mp4 76.27MB
005 Seaborn_en.srt 15.11KB
005 Seaborn.mp4 59.72MB
005 The Conv2 class in PyTorch_en.srt 18.19KB
005 The Conv2 class in PyTorch.mp4 100.19MB
005 The importance of data normalization_en.srt 13.26KB
005 The importance of data normalization.mp4 64.65MB
005 The latent code of MNIST_en.srt 30.47KB
005 The latent code of MNIST.mp4 161.81MB
005 Transfer learning with ResNet-18_en.srt 23.64KB
005 Transfer learning with ResNet-18.mp4 148.46MB
005 Xavier and Kaiming initializations_en.srt 21.70KB
005 Xavier and Kaiming initializations.mp4 134.08MB
006 ANN for regression_en.srt 34.52KB
006 ANN for regression.mp4 135.50MB
006 Autoencoder with tied weights_en.srt 33.51KB
006 Autoencoder with tied weights.mp4 177.74MB
006 Batch normalization_en.srt 18.02KB
006 Batch normalization.mp4 76.81MB
006 CNN GAN with FMNIST_en.srt 8.88KB
006 CNN GAN with FMNIST.mp4 54.58MB
006 CodeChallenge 2D gradient ascent_en.srt 7.24KB
006 CodeChallenge 2D gradient ascent.mp4 39.36MB
006 CodeChallenge Choose the parameters_en.srt 9.75KB
006 CodeChallenge Choose the parameters.mp4 58.71MB
006 CodeChallenge MNIST with unequal groups_en.srt 12.25KB
006 CodeChallenge MNIST with unequal groups.mp4 25.07MB
006 CodeChallenge Softcode internal parameters_en.srt 24.12KB
006 CodeChallenge Softcode internal parameters.mp4 120.10MB
006 CodeChallenge VGG-16_en.srt 4.87KB
006 CodeChallenge VGG-16.mp4 20.28MB
006 CodeChallenge Xavier vs. Kaiming_en.srt 23.71KB
006 CodeChallenge Xavier vs. Kaiming.mp4 126.50MB
006 Cross-validation -- DataLoader_en.srt 27.51KB
006 Cross-validation -- DataLoader.mp4 172.32MB
006 Data noise augmentation (with devset+test)_en.srt 17.93KB
006 Data noise augmentation (with devset+test).mp4 106.09MB
006 Distributions of weights pre- and post-learning_en.srt 21.22KB
006 Distributions of weights pre- and post-learning.mp4 116.26MB
006 Global and local variable scopes_en.srt 18.92KB
006 Global and local variable scopes.mp4 65.96MB
006 Images_en.srt 24.74KB
006 Images.mp4 93.56MB
006 Initializing variables_en.srt 24.64KB
006 Initializing variables.mp4 91.05MB
006 More on RNNs Hidden states, embeddings_en.srt 22.04KB
006 More on RNNs Hidden states, embeddings.mp4 29.04MB
006 Project 3 My solution_en.srt 11.43KB
006 Project 3 My solution.mp4 75.48MB
006 Tuples_en.srt 11.55KB
006 Tuples.mp4 35.75MB
006 Vector and matrix transpose_en.srt 9.63KB
006 Vector and matrix transpose.mp4 37.66MB
006 Weight regularization (L1L2) math_en.srt 26.08KB
006 Weight regularization (L1L2) math.mp4 85.41MB
007 Batch normalization in practice_en.srt 10.64KB
007 Batch normalization in practice.mp4 61.76MB
007 Booleans_en.srt 26.63KB
007 Booleans.mp4 76.83MB
007 CodeChallenge CNN GAN with CIFAR_en.srt 11.22KB
007 CodeChallenge CNN GAN with CIFAR.mp4 60.77MB
007 CodeChallenge How wide the FC_en.srt 15.86KB
007 CodeChallenge How wide the FC.mp4 94.08MB
007 CodeChallenge Identically random weights_en.srt 17.26KB
007 CodeChallenge Identically random weights.mp4 88.17MB
007 CodeChallenge manipulate regression slopes_en.srt 27.25KB
007 CodeChallenge manipulate regression slopes.mp4 139.12MB
007 CodeChallenge MNIST and breadth vs. depth_en.srt 17.09KB
007 CodeChallenge MNIST and breadth vs. depth.mp4 95.21MB
007 Computation time_en.srt 13.73KB
007 Computation time.mp4 81.73MB
007 Copies and referents of variables_en.srt 6.98KB
007 Copies and referents of variables.mp4 23.78MB
007 Data feature augmentation_en.srt 27.30KB
007 Data feature augmentation.mp4 158.27MB
007 Export plots in low and high resolution_en.srt 10.94KB
007 Export plots in low and high resolution.mp4 17.17MB
007 GRU and LSTM_en.srt 32.14KB
007 GRU and LSTM.mp4 129.66MB
007 L2 regularization in practice_en.srt 18.27KB
007 L2 regularization in practice.mp4 110.47MB
007 OMG it's the dot product!_en.srt 13.43KB
007 OMG it's the dot product!.mp4 50.11MB
007 Parametric experiments on g.d_en.srt 26.16KB
007 Parametric experiments on g.d.mp4 135.61MB
007 Pretraining with autoencoders_en.srt 27.70KB
007 Pretraining with autoencoders.mp4 156.58MB
007 Single-line loops (list comprehension)_en.srt 20.91KB
007 Single-line loops (list comprehension).mp4 75.14MB
007 Splitting data into train, devset, test_en.srt 13.31KB
007 Splitting data into train, devset, test.mp4 79.21MB
007 Transpose convolution_en.srt 19.17KB
007 Transpose convolution.mp4 92.89MB
008 ANN for classifying qwerties_en.srt 32.73KB
008 ANN for classifying qwerties.mp4 151.12MB
008 Better performance in test than train_en.srt 11.54KB
008 Better performance in test than train.mp4 44.83MB
008 CIFAR10 with autoencoder-pretrained model_en.srt 24.93KB
008 CIFAR10 with autoencoder-pretrained model.mp4 153.34MB
008 Classes and object-oriented programming_en.srt 25.61KB
008 Classes and object-oriented programming.mp4 108.18MB
008 CodeChallenge Batch-normalize the qwerties_en.srt 7.23KB
008 CodeChallenge Batch-normalize the qwerties.mp4 41.43MB
008 CodeChallenge fixed vs. dynamic learning rate_en.srt 22.55KB
008 CodeChallenge fixed vs. dynamic learning rate.mp4 113.60MB
008 CodeChallenge Optimizers and MNIST_en.srt 9.56KB
008 CodeChallenge Optimizers and MNIST.mp4 46.26MB
008 Cross-validation on regression_en.srt 11.53KB
008 Cross-validation on regression.mp4 60.35MB
008 Dictionaries_en.srt 16.36KB
008 Dictionaries.mp4 50.67MB
008 Do autoencoders clean Gaussians_en.srt 23.50KB
008 Do autoencoders clean Gaussians.mp4 147.88MB
008 Freezing weights during learning_en.srt 18.54KB
008 Freezing weights during learning.mp4 93.15MB
008 Getting data into colab_en.srt 8.52KB
008 Getting data into colab.mp4 43.75MB
008 L1 regularization in practice_en.srt 16.79KB
008 L1 regularization in practice.mp4 99.44MB
008 Matrix multiplication_en.srt 19.84KB
008 Matrix multiplication.mp4 85.67MB
008 Maxmean pooling_en.srt 25.71KB
008 Maxmean pooling.mp4 89.07MB
008 The LSTM and GRU classes_en.srt 19.26KB
008 The LSTM and GRU classes.mp4 120.14MB
008 while loops_en.srt 26.87KB
008 while loops.mp4 91.10MB
009 Activation functions_en.srt 25.53KB
009 Activation functions.mp4 97.03MB
009 Broadcasting in numpy_en.srt 20.52KB
009 Broadcasting in numpy.mp4 71.05MB
009 CodeChallenge AEs and occluded Gaussians_en.srt 13.49KB
009 CodeChallenge AEs and occluded Gaussians.mp4 28.58MB
009 Learning rates comparison_en.srt 34.85KB
009 Learning rates comparison.mp4 168.64MB
009 Learning-related changes in weights_en.srt 31.55KB
009 Learning-related changes in weights.mp4 146.78MB
009 Lorem ipsum_en.srt 35.99KB
009 Lorem ipsum.mp4 192.53MB
009 Pooling in PyTorch_en.srt 18.90KB
009 Pooling in PyTorch.mp4 81.02MB
009 Save and load trained models_en.srt 8.61KB
009 Save and load trained models.mp4 55.71MB
009 Scrambled MNIST_en.srt 10.82KB
009 Scrambled MNIST.mp4 60.17MB
009 Softmax_en.srt 26.74KB
009 Softmax.mp4 95.96MB
009 Training in mini-batches_en.srt 16.24KB
009 Training in mini-batches.mp4 62.12MB
009 Vanishing and exploding gradients_en.srt 8.71KB
009 Vanishing and exploding gradients.mp4 30.24MB
010 Activation functions in PyTorch_en.srt 16.35KB
010 Activation functions in PyTorch.mp4 91.46MB
010 Batch training in action_en.srt 15.06KB
010 Batch training in action.mp4 89.10MB
010 CodeChallenge Custom loss functions_en.srt 28.77KB
010 CodeChallenge Custom loss functions.mp4 132.89MB
010 Function error checking and handling_en.srt 24.39KB
010 Function error checking and handling.mp4 99.87MB
010 Logarithms_en.srt 11.05KB
010 Logarithms.mp4 43.88MB
010 Multilayer ANN_en.srt 28.29KB
010 Multilayer ANN.mp4 144.70MB
010 Save the best-performing model_en.srt 21.15KB
010 Save the best-performing model.mp4 126.50MB
010 Shifted MNIST_en.srt 15.84KB
010 Shifted MNIST.mp4 77.91MB
010 Tangent Notebook revision history_en.srt 2.66KB
010 Tangent Notebook revision history.mp4 9.88MB
010 To pool or to stride_en.srt 13.75KB
010 To pool or to stride.mp4 55.51MB
010 Use default inits or apply your own_en.srt 6.12KB
010 Use default inits or apply your own.mp4 28.05MB
011 Activation functions comparison_en.srt 13.08KB
011 Activation functions comparison.mp4 73.90MB
011 CodeChallenge The mystery of the missing 7_en.srt 15.17KB
011 CodeChallenge The mystery of the missing 7.mp4 74.25MB
011 Discover the Gaussian parameters_en.srt 22.41KB
011 Discover the Gaussian parameters.mp4 136.65MB
011 Entropy and cross-entropy_en.srt 24.46KB
011 Entropy and cross-entropy.mp4 106.00MB
011 Image transforms_en.srt 23.01KB
011 Image transforms.mp4 129.90MB
011 Linear solutions to linear problems_en.srt 11.73KB
011 Linear solutions to linear problems.mp4 50.37MB
011 The importance of equal batch sizes_en.srt 9.12KB
011 The importance of equal batch sizes.mp4 60.11MB
011 Where to find online datasets_en.srt 7.89KB
011 Where to find online datasets.mp4 41.70MB
012 CodeChallenge Compare relu variants_en.srt 10.87KB
012 CodeChallenge Compare relu variants.mp4 63.97MB
012 CodeChallenge Effects of mini-batch size_en.srt 17.42KB
012 CodeChallenge Effects of mini-batch size.mp4 95.42MB
012 Creating and using custom DataLoaders_en.srt 25.50KB
012 Creating and using custom DataLoaders.mp4 139.53MB
012 Minmax and argminargmax_en.srt 17.49KB
012 Minmax and argminargmax.mp4 88.21MB
012 The EMNIST dataset (letter recognition)_en.srt 34.76KB
012 The EMNIST dataset (letter recognition).mp4 201.31MB
012 Universal approximation theorem_en.srt 11.28KB
012 Universal approximation theorem.mp4 49.18MB
012 Why multilayer linear models don't exist_en.srt 8.86KB
012 Why multilayer linear models don't exist.mp4 26.46MB
013 CodeChallenge Predict sugar_en.srt 24.06KB
013 CodeChallenge Predict sugar.mp4 122.10MB
013 Dropout in CNNs_en.srt 13.68KB
013 Dropout in CNNs.mp4 82.73MB
013 Mean and variance_en.srt 21.74KB
013 Mean and variance.mp4 81.42MB
013 Multi-output ANN (iris dataset)_en.srt 36.08KB
013 Multi-output ANN (iris dataset).mp4 186.77MB
014 CodeChallenge How low can you go_en.srt 9.58KB
014 CodeChallenge How low can you go.mp4 55.36MB
014 CodeChallenge more qwerties!_en.srt 17.13KB
014 CodeChallenge more qwerties!.mp4 95.10MB
014 Loss functions_en.srt 23.32KB
014 Loss functions.mp4 90.30MB
014 Random sampling and sampling variability_en.srt 15.75KB
014 Random sampling and sampling variability.mp4 85.42MB
015 CodeChallenge Varying number of channels_en.srt 18.92KB
015 CodeChallenge Varying number of channels.mp4 92.37MB
015 Comparing the number of hidden units_en.srt 14.09KB
015 Comparing the number of hidden units.mp4 71.15MB
015 Loss functions in PyTorch_en.srt 25.85KB
015 Loss functions in PyTorch.mp4 138.10MB
015 Reproducible randomness via seeding_en.srt 11.32KB
015 Reproducible randomness via seeding.mp4 69.70MB
016 Depth vs. breadth number of parameters_en.srt 24.75KB
016 Depth vs. breadth number of parameters.mp4 132.07MB
016 More practice with multioutput ANNs_en.srt 19.57KB
016 More practice with multioutput ANNs.mp4 99.80MB
016 So many possibilities! How to create a CNN_en.srt 6.27KB
016 So many possibilities! How to create a CNN.mp4 21.04MB
016 The t-test_en.srt 18.69KB
016 The t-test.mp4 81.36MB
017 Defining models using sequential vs. class_en.srt 18.45KB
017 Defining models using sequential vs. class.mp4 89.48MB
017 Derivatives intuition and polynomials_en.srt 23.48KB
017 Derivatives intuition and polynomials.mp4 80.30MB
017 Optimizers (minibatch, momentum)_en.srt 26.39KB
017 Optimizers (minibatch, momentum).mp4 98.07MB
018 Derivatives find minima_en.srt 11.71KB
018 Derivatives find minima.mp4 45.47MB
018 Model depth vs. breadth_en.srt 29.73KB
018 Model depth vs. breadth.mp4 158.91MB
018 SGD with momentum_en.srt 11.12KB
018 SGD with momentum.mp4 62.10MB
019 CodeChallenge convert sequential to class_en.srt 9.36KB
019 CodeChallenge convert sequential to class.mp4 51.44MB
019 Derivatives product and chain rules_en.srt 13.04KB
019 Derivatives product and chain rules.mp4 55.63MB
019 Optimizers (RMSprop, Adam)_en.srt 21.25KB
019 Optimizers (RMSprop, Adam).mp4 76.73MB
020 Diversity of ANN visual representations.html 517B
020 Optimizers comparison_en.srt 14.10KB
020 Optimizers comparison.mp4 86.88MB
021 CodeChallenge Optimizers and... something_en.srt 9.03KB
021 CodeChallenge Optimizers and... something.mp4 49.77MB
021 Reflection Are DL models understandable yet_en.srt 11.95KB
021 Reflection Are DL models understandable yet.mp4 58.59MB
022 CodeChallenge Adam with L2 regularization_en.srt 9.94KB
022 CodeChallenge Adam with L2 regularization.mp4 53.00MB
023 Learning rate decay_en.srt 17.23KB
023 Learning rate decay.mp4 96.90MB
024 How to pick the right metaparameters_en.srt 16.08KB
024 How to pick the right metaparameters.mp4 61.74MB
Distribution statistics by country
Singapore (SG) 3
Egypt (EG) 1
Kenya (KE) 1
Australia (AU) 1
India (IN) 1
China (CN) 1
Total 8
IP List List of IP addresses which were distributed this torrent