Torrent Info
Title [ DevCourseWeb.com ] Udemy - Numerical Methods and Optimization in Python
Category
Size 3.38GB

Files List
Please note that this page does not hosts or makes available any of the listed filenames. You cannot download any of those files from here.
001 Course material.html 58B
001 First steps in Python_en.vtt 6.43KB
001 First steps in Python.mp4 13.67MB
001 Floating point numbers_en.vtt 9.14KB
001 Floating point numbers.mp4 24.48MB
001 Gaussian elimination implementation I_en.vtt 11.52KB
001 Gaussian elimination implementation I.mp4 35.67MB
001 Graph representation of the WWW_en.vtt 6.51KB
001 Graph representation of the WWW.mp4 25.06MB
001 How to deal with differential equations_en.vtt 9.79KB
001 How to deal with differential equations.mp4 24.50MB
001 How to measure the running time of algorithms_en.vtt 12.61KB
001 How to measure the running time of algorithms.mp4 37.29MB
001 Integration introduction_en.vtt 3.81KB
001 Integration introduction.mp4 10.91MB
001 Introduction_en.vtt 2.44KB
001 Introduction.mp4 13.60MB
001 Matrix multiplication introduction_en.vtt 5.06KB
001 Matrix multiplication introduction.mp4 12.46MB
001 Portfolio optimization introduction_en.vtt 4.03KB
001 Portfolio optimization introduction.mp4 13.13MB
001 Python crash course introduction.html 441B
001 Root of functions introduction_en.vtt 4.06KB
001 Root of functions introduction.mp4 12.28MB
001 What are eigenvalues and eigenvectors_en.vtt 5.95KB
001 What are eigenvalues and eigenvectors.mp4 14.38MB
001 What are functions_en.vtt 5.22KB
001 What are functions.mp4 17.29MB
001 What is Gaussian elimination_en.vtt 6.82KB
001 What is Gaussian elimination.mp4 16.82MB
001 What is gradient descent_en.vtt 7.90KB
001 What is gradient descent.mp4 27.80MB
001 What is interpolation_en.vtt 10.79KB
001 What is interpolation.mp4 38.72MB
001 What is object oriented programming (OOP)_en.vtt 2.86KB
001 What is object oriented programming (OOP).mp4 12.50MB
001 What is Pandas_en.vtt 7.88KB
001 What is Pandas.mp4 25.43MB
001 What is the key advantage of NumPy_en.vtt 5.01KB
001 What is the key advantage of NumPy.mp4 17.18MB
001 What is the Monte-Carlo method_en.vtt 8.15KB
001 What is the Monte-Carlo method.mp4 30.11MB
002 Bisection method introduction_en.vtt 4.78KB
002 Bisection method introduction.mp4 10.17MB
002 Class and objects basics_en.vtt 3.25KB
002 Class and objects basics.mp4 10.48MB
002 Crawling the web with breadth-first search_en.vtt 8.30KB
002 Crawling the web with breadth-first search.mp4 25.88MB
002 Creating and updating arrays_en.vtt 8.47KB
002 Creating and updating arrays.mp4 33.76MB
002 Data structures introduction_en.vtt 3.98KB
002 Data structures introduction.mp4 13.84MB
002 Defining functions_en.vtt 6.14KB
002 Defining functions.mp4 18.85MB
002 Eigenvalues and eigenvectors implementation_en.vtt 3.51KB
002 Eigenvalues and eigenvectors implementation.mp4 10.84MB
002 Euler's method introduction_en.vtt 7.02KB
002 Euler's method introduction.mp4 12.94MB
002 First steps_en.vtt 3.40KB
002 First steps.mp4 10.44MB
002 GaussElimination.py 838B
002 Gaussian elimination illustration_en.vtt 7.85KB
002 Gaussian elimination illustration.mp4 13.62MB
002 Gaussian elimination implementation II_en.vtt 8.01KB
002 Gaussian elimination implementation II.mp4 29.57MB
002 GradientDescent.py 1.26KB
002 Gradient descent implementation_en.vtt 11.30KB
002 Gradient descent implementation.mp4 47.54MB
002 Interpolation illustration_en.vtt 6.65KB
002 Interpolation illustration.mp4 15.11MB
002 MatrixMultiplication.py 496B
002 Matrix multiplication implementation_en.vtt 6.41KB
002 Matrix multiplication implementation.mp4 20.57MB
002 MonteCarloIntegral.py 1.15KB
002 Monte-Carlo integral implementation I_en.vtt 9.51KB
002 Monte-Carlo integral implementation I.mp4 39.77MB
002 Portfolio optimization implementation_en.vtt 3.01KB
002 Portfolio optimization implementation.mp4 13.84MB
002 Precision and accuracy_en.vtt 3.46KB
002 Precision and accuracy.mp4 9.44MB
002 Rectangle method introduction_en.vtt 5.92KB
002 Rectangle method introduction.mp4 18.05MB
002 What are the basic data types_en.vtt 5.59KB
002 What are the basic data types.mp4 15.70MB
003 Applications of eigenvectors in machine learning_en.vtt 2.22KB
003 Applications of eigenvectors in machine learning.mp4 10.65MB
003 BisectionMethod.py 360B
003 Bisection method implementation_en.vtt 6.44KB
003 Bisection method implementation.mp4 24.12MB
003 Booleans_en.vtt 2.21KB
003 Booleans.mp4 6.78MB
003 Dimension of arrays_en.vtt 10.65KB
003 Dimension of arrays.mp4 36.26MB
003 Euler's method example_en.vtt 6.06KB
003 Euler's method example.mp4 19.65MB
003 EulerMethodExample1.py 449B
003 Gradient descent with momentum_en.vtt 4.71KB
003 Gradient descent with momentum.mp4 20.02MB
003 Interpolation implementation I_en.vtt 7.22KB
003 Interpolation implementation I.mp4 26.13MB
003 MonteCarloIntegral2.py 676B
003 Monte-Carlo integral implementation II_en.vtt 5.00KB
003 Monte-Carlo integral implementation II.mp4 24.52MB
003 Positional arguments and keyword arguments_en.vtt 11.69KB
003 Positional arguments and keyword arguments.mp4 46.11MB
003 RectangleIntegral.py 376B
003 Rectangle method implementation_en.vtt 6.82KB
003 Rectangle method implementation.mp4 22.38MB
003 Rounding errors_en.vtt 4.65KB
003 Rounding errors.mp4 14.12MB
003 Running time analysis of matrix multiplication_en.vtt 5.56KB
003 Running time analysis of matrix multiplication.mp4 27.04MB
003 Series_en.vtt 8.16KB
003 Series.mp4 26.94MB
003 The original formula_en.vtt 6.69KB
003 The original formula.mp4 17.78MB
003 Using the constructor_en.vtt 6.79KB
003 Using the constructor.mp4 33.59MB
003 What are array data structures I_en.vtt 8.05KB
003 What are array data structures I.mp4 24.99MB
003 What is pivoting_en.vtt 7.25KB
003 What is pivoting.mp4 19.76MB
004 Applications of Monte-Carlo simulations in finance_en.vtt 3.29KB
004 Applications of Monte-Carlo simulations in finance.mp4 14.29MB
004 Class variables and instance variables_en.vtt 4.91KB
004 Class variables and instance variables.mp4 31.01MB
004 DataFrames_en.vtt 6.08KB
004 DataFrames.mp4 18.45MB
004 Euler's method example - pendulum_en.vtt 12.94KB
004 Euler's method example - pendulum.mp4 34.00MB
004 EulerMethodExample2.py 421B
004 Gaussian elimination and singular matrixes_en.vtt 4.01KB
004 Gaussian elimination and singular matrixes.mp4 8.69MB
004 Indexes and slicing_en.vtt 9.38KB
004 Indexes and slicing.mp4 31.50MB
004 Interpolation implementation II_en.vtt 5.50KB
004 Interpolation implementation II.mp4 30.85MB
004 LagrangeInterpolation.py 2.12KB
004 Mathematical formulation of eigenvectors.html 261B
004 Matrix vector multiplication_en.vtt 4.65KB
004 Matrix vector multiplication.mp4 13.41MB
004 MatrixVectorMultiplication.py 423B
004 Newton method introduction_en.vtt 5.28KB
004 Newton method introduction.mp4 16.40MB
004 PageRank algorithm example_en.vtt 11.20KB
004 PageRank algorithm example.mp4 24.94MB
004 Returning values_en.vtt 2.71KB
004 Returning values.mp4 8.14MB
004 Speed consideration - C, Java and Python_en.vtt 7.64KB
004 Speed consideration - C, Java and Python.mp4 27.51MB
004 Stochastic gradient descent introduction_en.vtt 11.84KB
004 Stochastic gradient descent introduction.mp4 36.45MB
004 Strings_en.vtt 8.77KB
004 Strings.mp4 28.16MB
004 Trapezoidal integral introduction_en.vtt 7.74KB
004 Trapezoidal integral introduction.mp4 19.06MB
004 What are array data structures II_en.vtt 8.60KB
004 What are array data structures II.mp4 24.95MB
005 Applications of interpolation_en.vtt 2.90KB
005 Applications of interpolation.mp4 8.61MB
005 DataFrame operations_en.vtt 10.85KB
005 DataFrame operations.mp4 41.30MB
005 Euler's method example - pendulum with drag_en.vtt 4.67KB
005 Euler's method example - pendulum with drag.mp4 16.15MB
005 Inner product_en.vtt 4.86KB
005 Inner product.mp4 16.56MB
005 InnerProduct.py 386B
005 Lists in Python_en.vtt 6.42KB
005 Lists in Python.mp4 21.74MB
005 Mathematical formulation of Gaussian elimination.html 345B
005 Matrix representation of the problem_en.vtt 9.77KB
005 Matrix representation of the problem.mp4 29.07MB
005 Newton method implementation_en.vtt 4.70KB
005 Newton method implementation.mp4 15.79MB
005 NewtonRaphsonMethod.py 294B
005 Private variables and name mangling_en.vtt 5.08KB
005 Private variables and name mangling.mp4 19.13MB
005 Returning multiple values_en.vtt 3.37KB
005 Returning multiple values.mp4 12.17MB
005 StochasticGradientDescent.py 1.93KB
005 Stochastic gradient descent implementation I_en.vtt 24.44KB
005 Stochastic gradient descent implementation I.mp4 105.86MB
005 String slicing_en.vtt 7.44KB
005 String slicing.mp4 25.08MB
005 TrapezoidalIntegral.py 468B
005 Trapezoidal integral implementation_en.vtt 5.33KB
005 Trapezoidal integral implementation.mp4 17.61MB
005 Types_en.vtt 4.95KB
005 Types.mp4 19.29MB
006 Lists and NumPy arrays_en.vtt 5.14KB
006 Lists and NumPy arrays.mp4 19.40MB
006 Lists in Python - advanced operations_en.vtt 8.71KB
006 Lists in Python - advanced operations.mp4 39.32MB
006 Mathematical formulation of interpolation.html 265B
006 Mathematical formulation of root finding.html 271B
006 Reshape_en.vtt 8.85KB
006 Reshape.mp4 33.84MB
006 Runge-Kutta method introduction_en.vtt 5.03KB
006 Runge-Kutta method introduction.mp4 14.24MB
006 Simpson's method introduction_en.vtt 5.64KB
006 Simpson's method introduction.mp4 11.99MB
006 Speed comparison - DataFrame operations_en.vtt 4.91KB
006 Speed comparison - DataFrame operations.mp4 28.65MB
006 Stochastic gradient descent implementation II_en.vtt 6.37KB
006 Stochastic gradient descent implementation II.mp4 41.23MB
006 StochasticGradientDescentRegression.py 2.17KB
006 The random surfer model_en.vtt 5.66KB
006 The random surfer model.mp4 18.81MB
006 Type casting_en.vtt 4.66KB
006 Type casting.mp4 16.74MB
006 What is inheritance in OOP_en.vtt 4.14KB
006 What is inheritance in OOP.mp4 18.03MB
006 Yield operator_en.vtt 5.77KB
006 Yield operator.mp4 18.28MB
007 Lists in Python - list comprehension_en.vtt 6.12KB
007 Lists in Python - list comprehension.mp4 22.88MB
007 Matrix operations with NumPy_en.vtt 4.54KB
007 Matrix operations with NumPy.mp4 13.69MB
007 Operators_en.vtt 5.88KB
007 Operators.mp4 20.63MB
007 Reading CSV and text files_en.vtt 6.45KB
007 Reading CSV and text files.mp4 35.23MB
007 RungeKuttaExample1.py 648B
007 Runge-Kutta method example I_en.vtt 6.92KB
007 Runge-Kutta method example I.mp4 24.49MB
007 Simpson's method implementation_en.vtt 5.99KB
007 Simpson's method implementation.mp4 20.56MB
007 SimpsonMethod.py 511B
007 Stacking and merging arrays_en.vtt 7.34KB
007 Stacking and merging arrays.mp4 27.69MB
007 The super keyword_en.vtt 4.91KB
007 The super keyword.mp4 21.23MB
007 What are the most relevant built-in functions_en.vtt 4.92KB
007 What are the most relevant built-in functions.mp4 15.38MB
007 What are the problems with the random surfer model_en.vtt 4.08KB
007 What are the problems with the random surfer model.mp4 12.26MB
007 What is ADAGrad_en.vtt 7.54KB
007 What is ADAGrad.mp4 22.13MB
008 (!!!) Python lists and arrays.html 628B
008 ADAGrad implementation_en.vtt 13.63KB
008 ADAGrad implementation.mp4 63.99MB
008 Conditional statements_en.vtt 4.63KB
008 Conditional statements.mp4 17.81MB
008 Filter_en.vtt 4.22KB
008 Filter.mp4 15.24MB
008 Function (method) override_en.vtt 2.71KB
008 Function (method) override.mp4 18.17MB
008 GradientDescentAdaGrad.py 1.56KB
008 Mathematical formulation of numerical integration.html 245B
008 Operations_en.vtt 6.61KB
008 Operations.mp4 32.93MB
008 PageRank algorithm - the final formula_en.vtt 8.93KB
008 PageRank algorithm - the final formula.mp4 37.74MB
008 RungeKuttaExample2.py 663B
008 Runge-Kutta method example II_en.vtt 4.88KB
008 Runge-Kutta method example II.mp4 22.20MB
008 What is recursion_en.vtt 10.64KB
008 What is recursion.mp4 35.28MB
009 Data filtering_en.vtt 8.67KB
009 Data filtering.mp4 27.06MB
009 How to use multiple conditions_en.vtt 9.05KB
009 How to use multiple conditions.mp4 31.41MB
009 Local vs global variables_en.vtt 4.77KB
009 Local vs global variables.mp4 15.01MB
009 Mathematical formulation of numerical differentiation.html 251B
009 Measuring running time of lists.html 1.24KB
009 Power method_en.vtt 6.30KB
009 Power method.mp4 21.32MB
009 Running time comparison arrays and lists.html 1.34KB
009 What is polymorphism_en.vtt 5.25KB
009 What is polymorphism.mp4 21.16MB
009 What is RMSProp_en.vtt 4.31KB
009 What is RMSProp.mp4 19.12MB
010 ADAM optimizer introduction_en.vtt 5.23KB
010 ADAM optimizer introduction.mp4 12.31MB
010 Logical operators_en.vtt 3.97KB
010 Logical operators.mp4 17.60MB
010 Original scientific paper of PageRank algorithm.html 254B
010 Polymorphism and abstraction example_en.vtt 6.03KB
010 Polymorphism and abstraction example.mp4 33.27MB
010 The __main__ function_en.vtt 4.02KB
010 The __main__ function.mp4 14.81MB
010 Using the apply() function_en.vtt 7.95KB
010 Using the apply() function.mp4 30.85MB
010 What are tuples_en.vtt 4.32KB
010 What are tuples.mp4 14.73MB
011 ADAM.py 1.07KB
011 ADAM optimizer implementation_en.vtt 10.18KB
011 ADAM optimizer implementation.mp4 43.02MB
011 Loops - for loop_en.vtt 6.92KB
011 Loops - for loop.mp4 18.95MB
011 Modules_en.vtt 6.71KB
011 Modules.mp4 21.79MB
011 Mutability and immutability_en.vtt 5.25KB
011 Mutability and immutability.mp4 18.49MB
011 Speed comparison - loops and apply()_en.vtt 2.97KB
011 Speed comparison - loops and apply().mp4 17.77MB
012 Loops - while loop_en.vtt 4.88KB
012 Loops - while loop.mp4 14.41MB
012 Mathematical formulation of optimization algorithms in machine learning.html 275B
012 The __str__ function_en.vtt 3.51KB
012 The __str__ function.mp4 15.67MB
012 What are linked list data structures_en.vtt 10.30KB
012 What are linked list data structures.mp4 34.49MB
012 What is vectorization_en.vtt 7.52KB
012 What is vectorization.mp4 26.44MB
013 Comparing objects - overriding functions_en.vtt 9.05KB
013 Comparing objects - overriding functions.mp4 40.18MB
013 Doubly linked list implementation in Python_en.vtt 6.19KB
013 Doubly linked list implementation in Python.mp4 24.46MB
013 Vectorization example I_en.vtt 5.80KB
013 Vectorization example I.mp4 22.18MB
013 What are nested loops_en.vtt 3.03KB
013 What are nested loops.mp4 13.16MB
014 Enumerate_en.vtt 4.34KB
014 Enumerate.mp4 15.13MB
014 Hashing and O(1) running time complexity_en.vtt 9.73KB
014 Hashing and O(1) running time complexity.mp4 30.98MB
014 Vectorization example II_en.vtt 4.01KB
014 Vectorization example II.mp4 20.81MB
015 Break and continue_en.vtt 6.12KB
015 Break and continue.mp4 20.42MB
015 Dictionaries in Python_en.vtt 10.69KB
015 Dictionaries in Python.mp4 38.50MB
016 Calculating Fibonacci-numbers_en.vtt 2.89KB
016 Calculating Fibonacci-numbers.mp4 8.39MB
016 Sets in Python_en.vtt 9.56KB
016 Sets in Python.mp4 47.14MB
017 Sorting_en.vtt 11.36KB
017 Sorting.mp4 50.57MB
ADAM.py 1.07KB
BisectionMethod.py 360B
Bonus Resources.txt 386B
EigenvectorExample.py 117B
EulerMethodExample1.py 449B
EulerMethodExample2.py 421B
EulerMethodExample3.py 449B
GaussElimination.py 838B
Get Bonus Downloads Here.url 182B
GradientDescent.py 1.26KB
GradientDescentAdaGrad.py 1.56KB
GradientDescentMomentum.py 1.29KB
house_prices.csv 2.40MB
LagrangeInterpolation.py 2.12KB
MatrixMultiplication.py 496B
MatrixVectorMultiplication.py 423B
MonteCarloIntegral.py 1.15KB
MonteCarloIntegral2.py 676B
NewtonRaphsonMethod.py 294B
numerical_methods.pptx 3.03MB
NumPyOperations.py 224B
RectangleIntegral.py 376B
RungeKuttaExample1.py 648B
RungeKuttaExample2.py 663B
StochasticGradientDescent.py 1.93KB
StochasticGradientDescentRegression.py 2.17KB
TrapezoidalIntegral.py 468B
Distribution statistics by country
Total 0
IP List List of IP addresses which were distributed this torrent