Please note that this page does not hosts or makes available any of the listed filenames. You
cannot download any of those files from here.
|
001 Course material.html |
58B |
001 First steps in Python_en.vtt |
6.43KB |
001 First steps in Python.mp4 |
13.67MB |
001 Floating point numbers_en.vtt |
9.14KB |
001 Floating point numbers.mp4 |
24.48MB |
001 Gaussian elimination implementation I_en.vtt |
11.52KB |
001 Gaussian elimination implementation I.mp4 |
35.67MB |
001 Graph representation of the WWW_en.vtt |
6.51KB |
001 Graph representation of the WWW.mp4 |
25.06MB |
001 How to deal with differential equations_en.vtt |
9.79KB |
001 How to deal with differential equations.mp4 |
24.50MB |
001 How to measure the running time of algorithms_en.vtt |
12.61KB |
001 How to measure the running time of algorithms.mp4 |
37.29MB |
001 Integration introduction_en.vtt |
3.81KB |
001 Integration introduction.mp4 |
10.91MB |
001 Introduction_en.vtt |
2.44KB |
001 Introduction.mp4 |
13.60MB |
001 Matrix multiplication introduction_en.vtt |
5.06KB |
001 Matrix multiplication introduction.mp4 |
12.46MB |
001 Portfolio optimization introduction_en.vtt |
4.03KB |
001 Portfolio optimization introduction.mp4 |
13.13MB |
001 Python crash course introduction.html |
441B |
001 Root of functions introduction_en.vtt |
4.06KB |
001 Root of functions introduction.mp4 |
12.28MB |
001 What are eigenvalues and eigenvectors_en.vtt |
5.95KB |
001 What are eigenvalues and eigenvectors.mp4 |
14.38MB |
001 What are functions_en.vtt |
5.22KB |
001 What are functions.mp4 |
17.29MB |
001 What is Gaussian elimination_en.vtt |
6.82KB |
001 What is Gaussian elimination.mp4 |
16.82MB |
001 What is gradient descent_en.vtt |
7.90KB |
001 What is gradient descent.mp4 |
27.80MB |
001 What is interpolation_en.vtt |
10.79KB |
001 What is interpolation.mp4 |
38.72MB |
001 What is object oriented programming (OOP)_en.vtt |
2.86KB |
001 What is object oriented programming (OOP).mp4 |
12.50MB |
001 What is Pandas_en.vtt |
7.88KB |
001 What is Pandas.mp4 |
25.43MB |
001 What is the key advantage of NumPy_en.vtt |
5.01KB |
001 What is the key advantage of NumPy.mp4 |
17.18MB |
001 What is the Monte-Carlo method_en.vtt |
8.15KB |
001 What is the Monte-Carlo method.mp4 |
30.11MB |
002 Bisection method introduction_en.vtt |
4.78KB |
002 Bisection method introduction.mp4 |
10.17MB |
002 Class and objects basics_en.vtt |
3.25KB |
002 Class and objects basics.mp4 |
10.48MB |
002 Crawling the web with breadth-first search_en.vtt |
8.30KB |
002 Crawling the web with breadth-first search.mp4 |
25.88MB |
002 Creating and updating arrays_en.vtt |
8.47KB |
002 Creating and updating arrays.mp4 |
33.76MB |
002 Data structures introduction_en.vtt |
3.98KB |
002 Data structures introduction.mp4 |
13.84MB |
002 Defining functions_en.vtt |
6.14KB |
002 Defining functions.mp4 |
18.85MB |
002 Eigenvalues and eigenvectors implementation_en.vtt |
3.51KB |
002 Eigenvalues and eigenvectors implementation.mp4 |
10.84MB |
002 Euler's method introduction_en.vtt |
7.02KB |
002 Euler's method introduction.mp4 |
12.94MB |
002 First steps_en.vtt |
3.40KB |
002 First steps.mp4 |
10.44MB |
002 GaussElimination.py |
838B |
002 Gaussian elimination illustration_en.vtt |
7.85KB |
002 Gaussian elimination illustration.mp4 |
13.62MB |
002 Gaussian elimination implementation II_en.vtt |
8.01KB |
002 Gaussian elimination implementation II.mp4 |
29.57MB |
002 GradientDescent.py |
1.26KB |
002 Gradient descent implementation_en.vtt |
11.30KB |
002 Gradient descent implementation.mp4 |
47.54MB |
002 Interpolation illustration_en.vtt |
6.65KB |
002 Interpolation illustration.mp4 |
15.11MB |
002 MatrixMultiplication.py |
496B |
002 Matrix multiplication implementation_en.vtt |
6.41KB |
002 Matrix multiplication implementation.mp4 |
20.57MB |
002 MonteCarloIntegral.py |
1.15KB |
002 Monte-Carlo integral implementation I_en.vtt |
9.51KB |
002 Monte-Carlo integral implementation I.mp4 |
39.77MB |
002 Portfolio optimization implementation_en.vtt |
3.01KB |
002 Portfolio optimization implementation.mp4 |
13.84MB |
002 Precision and accuracy_en.vtt |
3.46KB |
002 Precision and accuracy.mp4 |
9.44MB |
002 Rectangle method introduction_en.vtt |
5.92KB |
002 Rectangle method introduction.mp4 |
18.05MB |
002 What are the basic data types_en.vtt |
5.59KB |
002 What are the basic data types.mp4 |
15.70MB |
003 Applications of eigenvectors in machine learning_en.vtt |
2.22KB |
003 Applications of eigenvectors in machine learning.mp4 |
10.65MB |
003 BisectionMethod.py |
360B |
003 Bisection method implementation_en.vtt |
6.44KB |
003 Bisection method implementation.mp4 |
24.12MB |
003 Booleans_en.vtt |
2.21KB |
003 Booleans.mp4 |
6.78MB |
003 Dimension of arrays_en.vtt |
10.65KB |
003 Dimension of arrays.mp4 |
36.26MB |
003 Euler's method example_en.vtt |
6.06KB |
003 Euler's method example.mp4 |
19.65MB |
003 EulerMethodExample1.py |
449B |
003 Gradient descent with momentum_en.vtt |
4.71KB |
003 Gradient descent with momentum.mp4 |
20.02MB |
003 Interpolation implementation I_en.vtt |
7.22KB |
003 Interpolation implementation I.mp4 |
26.13MB |
003 MonteCarloIntegral2.py |
676B |
003 Monte-Carlo integral implementation II_en.vtt |
5.00KB |
003 Monte-Carlo integral implementation II.mp4 |
24.52MB |
003 Positional arguments and keyword arguments_en.vtt |
11.69KB |
003 Positional arguments and keyword arguments.mp4 |
46.11MB |
003 RectangleIntegral.py |
376B |
003 Rectangle method implementation_en.vtt |
6.82KB |
003 Rectangle method implementation.mp4 |
22.38MB |
003 Rounding errors_en.vtt |
4.65KB |
003 Rounding errors.mp4 |
14.12MB |
003 Running time analysis of matrix multiplication_en.vtt |
5.56KB |
003 Running time analysis of matrix multiplication.mp4 |
27.04MB |
003 Series_en.vtt |
8.16KB |
003 Series.mp4 |
26.94MB |
003 The original formula_en.vtt |
6.69KB |
003 The original formula.mp4 |
17.78MB |
003 Using the constructor_en.vtt |
6.79KB |
003 Using the constructor.mp4 |
33.59MB |
003 What are array data structures I_en.vtt |
8.05KB |
003 What are array data structures I.mp4 |
24.99MB |
003 What is pivoting_en.vtt |
7.25KB |
003 What is pivoting.mp4 |
19.76MB |
004 Applications of Monte-Carlo simulations in finance_en.vtt |
3.29KB |
004 Applications of Monte-Carlo simulations in finance.mp4 |
14.29MB |
004 Class variables and instance variables_en.vtt |
4.91KB |
004 Class variables and instance variables.mp4 |
31.01MB |
004 DataFrames_en.vtt |
6.08KB |
004 DataFrames.mp4 |
18.45MB |
004 Euler's method example - pendulum_en.vtt |
12.94KB |
004 Euler's method example - pendulum.mp4 |
34.00MB |
004 EulerMethodExample2.py |
421B |
004 Gaussian elimination and singular matrixes_en.vtt |
4.01KB |
004 Gaussian elimination and singular matrixes.mp4 |
8.69MB |
004 Indexes and slicing_en.vtt |
9.38KB |
004 Indexes and slicing.mp4 |
31.50MB |
004 Interpolation implementation II_en.vtt |
5.50KB |
004 Interpolation implementation II.mp4 |
30.85MB |
004 LagrangeInterpolation.py |
2.12KB |
004 Mathematical formulation of eigenvectors.html |
261B |
004 Matrix vector multiplication_en.vtt |
4.65KB |
004 Matrix vector multiplication.mp4 |
13.41MB |
004 MatrixVectorMultiplication.py |
423B |
004 Newton method introduction_en.vtt |
5.28KB |
004 Newton method introduction.mp4 |
16.40MB |
004 PageRank algorithm example_en.vtt |
11.20KB |
004 PageRank algorithm example.mp4 |
24.94MB |
004 Returning values_en.vtt |
2.71KB |
004 Returning values.mp4 |
8.14MB |
004 Speed consideration - C, Java and Python_en.vtt |
7.64KB |
004 Speed consideration - C, Java and Python.mp4 |
27.51MB |
004 Stochastic gradient descent introduction_en.vtt |
11.84KB |
004 Stochastic gradient descent introduction.mp4 |
36.45MB |
004 Strings_en.vtt |
8.77KB |
004 Strings.mp4 |
28.16MB |
004 Trapezoidal integral introduction_en.vtt |
7.74KB |
004 Trapezoidal integral introduction.mp4 |
19.06MB |
004 What are array data structures II_en.vtt |
8.60KB |
004 What are array data structures II.mp4 |
24.95MB |
005 Applications of interpolation_en.vtt |
2.90KB |
005 Applications of interpolation.mp4 |
8.61MB |
005 DataFrame operations_en.vtt |
10.85KB |
005 DataFrame operations.mp4 |
41.30MB |
005 Euler's method example - pendulum with drag_en.vtt |
4.67KB |
005 Euler's method example - pendulum with drag.mp4 |
16.15MB |
005 Inner product_en.vtt |
4.86KB |
005 Inner product.mp4 |
16.56MB |
005 InnerProduct.py |
386B |
005 Lists in Python_en.vtt |
6.42KB |
005 Lists in Python.mp4 |
21.74MB |
005 Mathematical formulation of Gaussian elimination.html |
345B |
005 Matrix representation of the problem_en.vtt |
9.77KB |
005 Matrix representation of the problem.mp4 |
29.07MB |
005 Newton method implementation_en.vtt |
4.70KB |
005 Newton method implementation.mp4 |
15.79MB |
005 NewtonRaphsonMethod.py |
294B |
005 Private variables and name mangling_en.vtt |
5.08KB |
005 Private variables and name mangling.mp4 |
19.13MB |
005 Returning multiple values_en.vtt |
3.37KB |
005 Returning multiple values.mp4 |
12.17MB |
005 StochasticGradientDescent.py |
1.93KB |
005 Stochastic gradient descent implementation I_en.vtt |
24.44KB |
005 Stochastic gradient descent implementation I.mp4 |
105.86MB |
005 String slicing_en.vtt |
7.44KB |
005 String slicing.mp4 |
25.08MB |
005 TrapezoidalIntegral.py |
468B |
005 Trapezoidal integral implementation_en.vtt |
5.33KB |
005 Trapezoidal integral implementation.mp4 |
17.61MB |
005 Types_en.vtt |
4.95KB |
005 Types.mp4 |
19.29MB |
006 Lists and NumPy arrays_en.vtt |
5.14KB |
006 Lists and NumPy arrays.mp4 |
19.40MB |
006 Lists in Python - advanced operations_en.vtt |
8.71KB |
006 Lists in Python - advanced operations.mp4 |
39.32MB |
006 Mathematical formulation of interpolation.html |
265B |
006 Mathematical formulation of root finding.html |
271B |
006 Reshape_en.vtt |
8.85KB |
006 Reshape.mp4 |
33.84MB |
006 Runge-Kutta method introduction_en.vtt |
5.03KB |
006 Runge-Kutta method introduction.mp4 |
14.24MB |
006 Simpson's method introduction_en.vtt |
5.64KB |
006 Simpson's method introduction.mp4 |
11.99MB |
006 Speed comparison - DataFrame operations_en.vtt |
4.91KB |
006 Speed comparison - DataFrame operations.mp4 |
28.65MB |
006 Stochastic gradient descent implementation II_en.vtt |
6.37KB |
006 Stochastic gradient descent implementation II.mp4 |
41.23MB |
006 StochasticGradientDescentRegression.py |
2.17KB |
006 The random surfer model_en.vtt |
5.66KB |
006 The random surfer model.mp4 |
18.81MB |
006 Type casting_en.vtt |
4.66KB |
006 Type casting.mp4 |
16.74MB |
006 What is inheritance in OOP_en.vtt |
4.14KB |
006 What is inheritance in OOP.mp4 |
18.03MB |
006 Yield operator_en.vtt |
5.77KB |
006 Yield operator.mp4 |
18.28MB |
007 Lists in Python - list comprehension_en.vtt |
6.12KB |
007 Lists in Python - list comprehension.mp4 |
22.88MB |
007 Matrix operations with NumPy_en.vtt |
4.54KB |
007 Matrix operations with NumPy.mp4 |
13.69MB |
007 Operators_en.vtt |
5.88KB |
007 Operators.mp4 |
20.63MB |
007 Reading CSV and text files_en.vtt |
6.45KB |
007 Reading CSV and text files.mp4 |
35.23MB |
007 RungeKuttaExample1.py |
648B |
007 Runge-Kutta method example I_en.vtt |
6.92KB |
007 Runge-Kutta method example I.mp4 |
24.49MB |
007 Simpson's method implementation_en.vtt |
5.99KB |
007 Simpson's method implementation.mp4 |
20.56MB |
007 SimpsonMethod.py |
511B |
007 Stacking and merging arrays_en.vtt |
7.34KB |
007 Stacking and merging arrays.mp4 |
27.69MB |
007 The super keyword_en.vtt |
4.91KB |
007 The super keyword.mp4 |
21.23MB |
007 What are the most relevant built-in functions_en.vtt |
4.92KB |
007 What are the most relevant built-in functions.mp4 |
15.38MB |
007 What are the problems with the random surfer model_en.vtt |
4.08KB |
007 What are the problems with the random surfer model.mp4 |
12.26MB |
007 What is ADAGrad_en.vtt |
7.54KB |
007 What is ADAGrad.mp4 |
22.13MB |
008 (!!!) Python lists and arrays.html |
628B |
008 ADAGrad implementation_en.vtt |
13.63KB |
008 ADAGrad implementation.mp4 |
63.99MB |
008 Conditional statements_en.vtt |
4.63KB |
008 Conditional statements.mp4 |
17.81MB |
008 Filter_en.vtt |
4.22KB |
008 Filter.mp4 |
15.24MB |
008 Function (method) override_en.vtt |
2.71KB |
008 Function (method) override.mp4 |
18.17MB |
008 GradientDescentAdaGrad.py |
1.56KB |
008 Mathematical formulation of numerical integration.html |
245B |
008 Operations_en.vtt |
6.61KB |
008 Operations.mp4 |
32.93MB |
008 PageRank algorithm - the final formula_en.vtt |
8.93KB |
008 PageRank algorithm - the final formula.mp4 |
37.74MB |
008 RungeKuttaExample2.py |
663B |
008 Runge-Kutta method example II_en.vtt |
4.88KB |
008 Runge-Kutta method example II.mp4 |
22.20MB |
008 What is recursion_en.vtt |
10.64KB |
008 What is recursion.mp4 |
35.28MB |
009 Data filtering_en.vtt |
8.67KB |
009 Data filtering.mp4 |
27.06MB |
009 How to use multiple conditions_en.vtt |
9.05KB |
009 How to use multiple conditions.mp4 |
31.41MB |
009 Local vs global variables_en.vtt |
4.77KB |
009 Local vs global variables.mp4 |
15.01MB |
009 Mathematical formulation of numerical differentiation.html |
251B |
009 Measuring running time of lists.html |
1.24KB |
009 Power method_en.vtt |
6.30KB |
009 Power method.mp4 |
21.32MB |
009 Running time comparison arrays and lists.html |
1.34KB |
009 What is polymorphism_en.vtt |
5.25KB |
009 What is polymorphism.mp4 |
21.16MB |
009 What is RMSProp_en.vtt |
4.31KB |
009 What is RMSProp.mp4 |
19.12MB |
010 ADAM optimizer introduction_en.vtt |
5.23KB |
010 ADAM optimizer introduction.mp4 |
12.31MB |
010 Logical operators_en.vtt |
3.97KB |
010 Logical operators.mp4 |
17.60MB |
010 Original scientific paper of PageRank algorithm.html |
254B |
010 Polymorphism and abstraction example_en.vtt |
6.03KB |
010 Polymorphism and abstraction example.mp4 |
33.27MB |
010 The __main__ function_en.vtt |
4.02KB |
010 The __main__ function.mp4 |
14.81MB |
010 Using the apply() function_en.vtt |
7.95KB |
010 Using the apply() function.mp4 |
30.85MB |
010 What are tuples_en.vtt |
4.32KB |
010 What are tuples.mp4 |
14.73MB |
011 ADAM.py |
1.07KB |
011 ADAM optimizer implementation_en.vtt |
10.18KB |
011 ADAM optimizer implementation.mp4 |
43.02MB |
011 Loops - for loop_en.vtt |
6.92KB |
011 Loops - for loop.mp4 |
18.95MB |
011 Modules_en.vtt |
6.71KB |
011 Modules.mp4 |
21.79MB |
011 Mutability and immutability_en.vtt |
5.25KB |
011 Mutability and immutability.mp4 |
18.49MB |
011 Speed comparison - loops and apply()_en.vtt |
2.97KB |
011 Speed comparison - loops and apply().mp4 |
17.77MB |
012 Loops - while loop_en.vtt |
4.88KB |
012 Loops - while loop.mp4 |
14.41MB |
012 Mathematical formulation of optimization algorithms in machine learning.html |
275B |
012 The __str__ function_en.vtt |
3.51KB |
012 The __str__ function.mp4 |
15.67MB |
012 What are linked list data structures_en.vtt |
10.30KB |
012 What are linked list data structures.mp4 |
34.49MB |
012 What is vectorization_en.vtt |
7.52KB |
012 What is vectorization.mp4 |
26.44MB |
013 Comparing objects - overriding functions_en.vtt |
9.05KB |
013 Comparing objects - overriding functions.mp4 |
40.18MB |
013 Doubly linked list implementation in Python_en.vtt |
6.19KB |
013 Doubly linked list implementation in Python.mp4 |
24.46MB |
013 Vectorization example I_en.vtt |
5.80KB |
013 Vectorization example I.mp4 |
22.18MB |
013 What are nested loops_en.vtt |
3.03KB |
013 What are nested loops.mp4 |
13.16MB |
014 Enumerate_en.vtt |
4.34KB |
014 Enumerate.mp4 |
15.13MB |
014 Hashing and O(1) running time complexity_en.vtt |
9.73KB |
014 Hashing and O(1) running time complexity.mp4 |
30.98MB |
014 Vectorization example II_en.vtt |
4.01KB |
014 Vectorization example II.mp4 |
20.81MB |
015 Break and continue_en.vtt |
6.12KB |
015 Break and continue.mp4 |
20.42MB |
015 Dictionaries in Python_en.vtt |
10.69KB |
015 Dictionaries in Python.mp4 |
38.50MB |
016 Calculating Fibonacci-numbers_en.vtt |
2.89KB |
016 Calculating Fibonacci-numbers.mp4 |
8.39MB |
016 Sets in Python_en.vtt |
9.56KB |
016 Sets in Python.mp4 |
47.14MB |
017 Sorting_en.vtt |
11.36KB |
017 Sorting.mp4 |
50.57MB |
ADAM.py |
1.07KB |
BisectionMethod.py |
360B |
Bonus Resources.txt |
386B |
EigenvectorExample.py |
117B |
EulerMethodExample1.py |
449B |
EulerMethodExample2.py |
421B |
EulerMethodExample3.py |
449B |
GaussElimination.py |
838B |
Get Bonus Downloads Here.url |
182B |
GradientDescent.py |
1.26KB |
GradientDescentAdaGrad.py |
1.56KB |
GradientDescentMomentum.py |
1.29KB |
house_prices.csv |
2.40MB |
LagrangeInterpolation.py |
2.12KB |
MatrixMultiplication.py |
496B |
MatrixVectorMultiplication.py |
423B |
MonteCarloIntegral.py |
1.15KB |
MonteCarloIntegral2.py |
676B |
NewtonRaphsonMethod.py |
294B |
numerical_methods.pptx |
3.03MB |
NumPyOperations.py |
224B |
RectangleIntegral.py |
376B |
RungeKuttaExample1.py |
648B |
RungeKuttaExample2.py |
663B |
StochasticGradientDescent.py |
1.93KB |
StochasticGradientDescentRegression.py |
2.17KB |
TrapezoidalIntegral.py |
468B |