Torrent Info
Title [FreeCourseSite.com] Udemy - The Data Science Course 2022 Complete Data Science Bootcamp
Category
Size 8.42GB

Files List
Please note that this page does not hosts or makes available any of the listed filenames. You cannot download any of those files from here.
[CourseClub.Me].url 122B
[FreeCourseSite.com].url 127B
[GigaCourse.Com].url 49B
001 1.04.Real-life-example.csv 219.83KB
001 2.13.Practical-example.Descriptive-statistics-lesson.xlsx 146.51KB
001 3.17.Practical-example.Confidence-intervals-lesson.xlsx 1.74MB
001 365-Data-Science-Data-Science-Interview-Questions-Guide.pdf 15.56MB
001 4.10.Hypothesis-testing-section-practical-example.xlsx 51.90KB
001 Absenteeism-data.csv 32.05KB
001 Absenteeism-Exercise-Integration.ipynb 62.35KB
001 absenteeism-module.py 6.62KB
001 Absenteeism-new-data.csv 1.87KB
001 Absenteeism-predictions.csv 2.10KB
001 Absenteeism-preprocessed.csv 29.13KB
001 Additional-Python-Tools-Exercises.ipynb 11.37KB
001 Additional-Python-Tools-Lectures.ipynb 13.47KB
001 Additional-Python-Tools-Solutions.ipynb 25.49KB
001 Applying Traditional Data, Big Data, BI, Traditional Data Science and ML_en.vtt 8.01KB
001 Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.mp4 82.02MB
001 A Practical Example What You Will Learn in This Course_en.vtt 5.66KB
001 A Practical Example What You Will Learn in This Course.mp4 43.88MB
001 Are You Sure You're All Set.html 513B
001 Arithmetic-Operators-Exercise-Py3.ipynb 2.62KB
001 Arithmetic-Operators-Lecture-Py3.ipynb 3.53KB
001 Arithmetic-Operators-Solution-Py3.ipynb 4.24KB
001 Audiobooks-data.csv 710.77KB
001 Audiobooks-data.csv 710.77KB
001 Basic NN Example (Part 1)_en.vtt 3.95KB
001 Basic NN Example (Part 1).mp4 9.34MB
001 Bonus Lecture Next Steps.html 2.84KB
001 Business Case Exploring the Dataset and Identifying Predictors_en.vtt 9.22KB
001 Business Case Exploring the Dataset and Identifying Predictors.mp4 51.38MB
001 Business Case Getting Acquainted with the Dataset_en.vtt 9.30KB
001 Business Case Getting Acquainted with the Dataset.mp4 60.26MB
001 Comparison Operators_en.vtt 2.17KB
001 Comparison Operators.mp4 4.16MB
001 Comparison-Operators-Exercise-Py3.ipynb 1.61KB
001 Comparison-Operators-Lecture-Py3.ipynb 2.53KB
001 Comparison-Operators-Solution-Py3.ipynb 2.41KB
001 Course-Notes-Basic-Probability.pdf 371.05KB
001 Course-Notes-Bayesian-Inference.pdf 386.01KB
001 Course-Notes-Cluster-Analysis.pdf 208.65KB
001 Course-Notes-Combinatorics.pdf 226.12KB
001 Course-notes-descriptive-statistics.pdf 482.21KB
001 Course-notes-descriptive-statistics.pdf 482.21KB
001 Course-notes-hypothesis-testing.pdf 656.44KB
001 Course-notes-inferential-statistics.pdf 382.32KB
001 Course-Notes-Logistic-Regression.pdf 335.17KB
001 Course-Notes-Probability-Distributions.pdf 463.95KB
001 Course-notes-regression-analysis.pdf 312.18KB
001 Course-notes-regression-analysis.pdf 312.18KB
001 Course-Notes-Section-2.pdf 578.08KB
001 Course-Notes-Section-6.pdf 936.42KB
001 data-preprocessing-homework.pdf 134.47KB
001 Data Science and Business Buzzwords Why are there so Many_en.vtt 5.95KB
001 Data Science and Business Buzzwords Why are there so Many.mp4 54.72MB
001 Debunking Common Misconceptions_en.vtt 4.78KB
001 Debunking Common Misconceptions.mp4 57.86MB
001 Defining a Function in Python_en.vtt 2.14KB
001 Defining a Function in Python.mp4 3.23MB
001 Defining-a-Function-in-Python-Lecture-Py3.ipynb 868B
001 df-preprocessed.csv 29.11KB
001 EXERCISE - Age vs Probability.html 367B
001 Exploring the Problem with a Machine Learning Mindset_en.vtt 4.07KB
001 Exploring the Problem with a Machine Learning Mindset.mp4 11.08MB
001 Finding the Job - What to Expect and What to Look for_en.vtt 3.83KB
001 Finding the Job - What to Expect and What to Look for.mp4 33.09MB
001 For Loops_en.vtt 5.87KB
001 For Loops.mp4 23.58MB
001 For-Loops-Exercise-Py3.ipynb 1.28KB
001 For-Loops-Lecture-Py3.ipynb 1.26KB
001 For-Loops-Solution-Py3.ipynb 1.80KB
001 Fundamentals of Combinatorics_en.vtt 1.21KB
001 Fundamentals of Combinatorics.mp4 4.63MB
001 Fundamentals of Probability Distributions_en.vtt 6.99KB
001 Fundamentals of Probability Distributions.mp4 19.28MB
001 Game Plan for this Python, SQL, and Tableau Business Exercise_en.vtt 4.86KB
001 Game Plan for this Python, SQL, and Tableau Business Exercise.mp4 15.80MB
001 Glossary.xlsx 19.97KB
001 How to Install TensorFlow 2.0_en.vtt 5.70KB
001 How to Install TensorFlow 2.0.mp4 27.34MB
001 Introduction_en.vtt 1.44KB
001 Introduction.mp4 3.02MB
001 Introduction to Cluster Analysis_en.vtt 4.20KB
001 Introduction to Cluster Analysis.mp4 10.66MB
001 Introduction to Logistic Regression_en.vtt 1.51KB
001 Introduction to Logistic Regression.mp4 4.16MB
001 Introduction to Neural Networks_en.vtt 5.33KB
001 Introduction to Neural Networks.mp4 10.37MB
001 Introduction to pandas Series_en.vtt 9.33KB
001 Introduction to pandas Series.mp4 22.22MB
001 Introduction to Programming_en.vtt 6.11KB
001 Introduction to Programming.mp4 14.33MB
001 Introduction to Regression Analysis_en.vtt 1.96KB
001 Introduction to Regression Analysis.mp4 3.50MB
001 Introduction-to-the-If-Statement-Exercise-Py3.ipynb 1.53KB
001 Introduction-to-the-If-Statement-Lecture-Py3.ipynb 1.14KB
001 Introduction-to-the-If-Statement-Solution-Py3.ipynb 2.19KB
001 K-Means Clustering_en.vtt 5.64KB
001 K-Means Clustering.mp4 10.52MB
001 Lending-company.csv 112.43KB
001 Lists_en.vtt 8.75KB
001 Lists.mp4 20.50MB
001 Lists-Exercise-Py3.ipynb 2.14KB
001 Lists-Lecture-Py3.ipynb 2.70KB
001 Lists-Solution-Py3.ipynb 3.18KB
001 Location.csv 13.49KB
001 Minimal-example-Part-1.ipynb 1.19KB
001 MNIST The Dataset_en.vtt 3.06KB
001 MNIST The Dataset.mp4 4.40MB
001 MNIST What is the MNIST Dataset_en.vtt 3.09KB
001 MNIST What is the MNIST Dataset.mp4 4.65MB
001 model 1.01KB
001 Multiple Linear Regression_en.vtt 2.93KB
001 Multiple Linear Regression.mp4 5.54MB
001 Necessary Programming Languages and Software Used in Data Science_en.vtt 6.47KB
001 Necessary Programming Languages and Software Used in Data Science.mp4 66.73MB
001 Null vs Alternative Hypothesis_en.vtt 6.45KB
001 Null vs Alternative Hypothesis.mp4 80.83MB
001 Object Oriented Programming_en.vtt 5.35KB
001 Object Oriented Programming.mp4 8.42MB
001 pandas-Fundamentals-Exercises.ipynb 30.83KB
001 pandas-Fundamentals-Lectures.ipynb 21.31KB
001 pandas-Fundamentals-Solutions.ipynb 118.33KB
001 Population and Sample_en.vtt 4.91KB
001 Population and Sample.mp4 34.16MB
001 Practical Example Descriptive Statistics_en.vtt 18.19KB
001 Practical Example Descriptive Statistics.mp4 150.18MB
001 Practical Example Hypothesis Testing_en.vtt 7.64KB
001 Practical Example Hypothesis Testing.mp4 45.84MB
001 Practical Example Inferential Statistics_en.vtt 12.01KB
001 Practical Example Inferential Statistics.mp4 69.04MB
001 Practical Example Linear Regression (Part 1)_en.vtt 13.07KB
001 Practical Example Linear Regression (Part 1).mp4 84.83MB
001 Preprocessing Introduction_en.vtt 3.35KB
001 Preprocessing Introduction.mp4 8.98MB
001 Probability in Finance_en.vtt 8.66KB
001 Probability in Finance.mp4 39.66MB
001 Probability-in-Finance-Homework.pdf 110.68KB
001 Probability-in-Finance-Solutions.pdf 184.46KB
001 Python-Introduction-Course-Notes.pdf 2.03MB
001 READ ME!!!!.html 564B
001 Region.csv 10.22KB
001 Sales-products.csv 152.28KB
001 scaler 1.86KB
001 Sets and Events_en.vtt 4.70KB
001 Sets and Events.mp4 17.44MB
001 Shortcuts-for-Jupyter.pdf 619.17KB
001 Shortcuts-for-Jupyter.pdf 619.17KB
001 sklearn-Linear-Regression-Practical-Example-Part-1.ipynb 166.91KB
001 sklearn-Linear-Regression-Practical-Example-Part-1-with-comments.ipynb 171.38KB
001 Statistics-Glossary.xlsx 20.26KB
001 Stochastic Gradient Descent_en.vtt 4.14KB
001 Stochastic Gradient Descent.mp4 7.62MB
001 Summary on What You've Learned_en.vtt 4.65KB
001 Summary on What You've Learned.mp4 9.66MB
001 Techniques for Working with Traditional Data_en.vtt 9.36KB
001 Techniques for Working with Traditional Data.mp4 105.52MB
001 The Basic Probability Formula_en.vtt 7.95KB
001 The Basic Probability Formula.mp4 29.13MB
001 The IF Statement_en.vtt 3.09KB
001 The IF Statement.mp4 5.33MB
001 The Linear Regression Model_en.vtt 6.00KB
001 The Linear Regression Model.mp4 13.16MB
001 The Reason Behind These Disciplines_en.vtt 5.74KB
001 The Reason Behind These Disciplines.mp4 45.87MB
001 Types of Clustering_en.vtt 4.19KB
001 Types of Clustering.mp4 8.90MB
001 Types of Data_en.vtt 5.41KB
001 Types of Data.mp4 42.47MB
001 Using Arithmetic Operators in Python_en.vtt 3.75KB
001 Using Arithmetic Operators in Python.mp4 7.28MB
001 Using the .format() Method_en.vtt 10.80KB
001 Using the .format() Method.mp4 21.66MB
001 Variables_en.vtt 3.98KB
001 Variables.mp4 8.93MB
001 Variables-Exercise-Py3.ipynb 2.23KB
001 Variables-Lecture-Py3.ipynb 3.61KB
001 Variables-Solution-Py3.ipynb 3.79KB
001 What are Confidence Intervals_en.vtt 2.89KB
001 What are Confidence Intervals.mp4 28.38MB
001 What are Data, Servers, Clients, Requests, and Responses_en.vtt 5.21KB
001 What are Data, Servers, Clients, Requests, and Responses.mp4 19.17MB
001 What is a Layer_en.vtt 2.17KB
001 What is a Layer.mp4 4.96MB
001 What is a Matrix_en.vtt 3.88KB
001 What is a Matrix.mp4 11.70MB
001 What is Initialization_en.vtt 3.17KB
001 What is Initialization.mp4 17.42MB
001 What is Overfitting_en.vtt 5.04KB
001 What is Overfitting.mp4 10.50MB
001 What is sklearn and How is it Different from Other Packages_en.vtt 2.98KB
001 What is sklearn and How is it Different from Other Packages.mp4 6.24MB
001 What to Expect from the Following Sections.html 2.43KB
001 What to Expect from this Part_en.vtt 4.04KB
001 What to Expect from this Part.mp4 9.29MB
002 1.02.Multiple-linear-regression.csv 1.09KB
002 1.04.Real-life-example.csv 219.83KB
002 2.01.Admittance.csv 1.58KB
002 2.13.Practical-example.Descriptive-statistics-exercise.xlsx 120.27KB
002 2.13.Practical-example.Descriptive-statistics-exercise-solution.xlsx 146.38KB
002 3.01.Country-clusters.csv 200B
002 3.17.Practical-example.Confidence-intervals-exercise.xlsx 1.73MB
002 3.17.Practical-example.Confidence-intervals-exercise-solution.xlsx 1.82MB
002 3.2.What-is-a-distribution-lesson.xlsx 19.46KB
002 3.9.Population-variance-known-z-score-lesson.xlsx 11.21KB
002 3.9.The-z-table.xlsx 25.58KB
002 4.10.Hypothesis-testing-section-practical-example-exercise.xlsx 43.69KB
002 4.10.Hypothesis-testing-section-practical-example-exercise-solution.xlsx 44.27KB
002 Absenteeism-predictions.csv 2.10KB
002 Add-an-Else-Statement-Exercise-Py3.ipynb 1.02KB
002 Add-an-Else-Statement-Lecture-Py3.ipynb 1.76KB
002 Add-an-Else-Statement-Solution-Py3.ipynb 1.40KB
002 Adjusted R-Squared_en.vtt 6.66KB
002 Adjusted R-Squared.mp4 34.22MB
002 Admittance.ipynb 3.54KB
002 Admittance-with-comments.ipynb 5.32KB
002 Analyzing Age vs Probability in Tableau_en.vtt 8.91KB
002 Analyzing Age vs Probability in Tableau.mp4 38.69MB
002 A Simple Example in Python_en.vtt 5.16KB
002 A Simple Example in Python.mp4 21.91MB
002 A Simple Example of Clustering_en.vtt 8.25KB
002 A Simple Example of Clustering.mp4 26.08MB
002 Basic NN Example (Part 2)_en.vtt 5.99KB
002 Basic NN Example (Part 2).mp4 15.23MB
002 Business Case Outlining the Solution_en.vtt 1.69KB
002 Business Case Outlining the Solution_en.vtt 2.19KB
002 Business Case Outlining the Solution.mp4 2.95MB
002 Business Case Outlining the Solution.mp4 4.04MB
002 Computing Expected Values_en.vtt 5.93KB
002 Computing Expected Values.mp4 29.24MB
002 Confidence Intervals; Population Variance Known; Z-score_en.vtt 9.06KB
002 Confidence Intervals; Population Variance Known; Z-score.mp4 52.21MB
002 Correlation vs Regression_en.vtt 1.78KB
002 Correlation vs Regression.mp4 3.75MB
002 Country-clusters.ipynb 3.31KB
002 Country-clusters-with-comments.ipynb 5.80KB
002 Course-Notes-Cluster-Analysis.pdf 208.65KB
002 Course-notes-inferential-statistics.pdf 382.32KB
002 Course-Notes-Logistic-Regression.pdf 335.17KB
002 Course-Notes-Section-2.pdf 578.08KB
002 Course-Notes-Section-6.pdf 936.42KB
002 Creating-a-Function-with-a-Parameter-Exercise-Py3.ipynb 1.16KB
002 Creating-a-Function-with-a-Parameter-Lecture-Py3.ipynb 1.59KB
002 Creating-a-Function-with-a-Parameter-Solution-Py3.ipynb 1.79KB
002 Creating the Targets for the Logistic Regression_en.vtt 7.51KB
002 Creating the Targets for the Logistic Regression.mp4 32.50MB
002 Dendrogram_en.vtt 6.38KB
002 Dendrogram.mp4 17.34MB
002 Deploying the 'absenteeism_module' - Part I_en.vtt 4.27KB
002 Deploying the 'absenteeism_module' - Part I.mp4 16.93MB
002 Further Reading on Null and Alternative Hypothesis.html 2.23KB
002 Help-Yourself-with-Methods-Exercise-Py3.ipynb 1.91KB
002 Help-Yourself-with-Methods-Lecture-Py3.ipynb 4.39KB
002 Help-Yourself-with-Methods-Solution-Py3.ipynb 2.83KB
002 How are we Going to Approach this Section_en.vtt 2.56KB
002 How are we Going to Approach this Section.mp4 5.24MB
002 How to Create a Function with a Parameter_en.vtt 3.76KB
002 How to Create a Function with a Parameter.mp4 8.29MB
002 How to Install TensorFlow 1_en.vtt 2.91KB
002 How to Install TensorFlow 1.mp4 4.85MB
002 Importing the Absenteeism Data in Python_en.vtt 3.42KB
002 Importing the Absenteeism Data in Python.mp4 18.03MB
002 Iterating Over Range Objects_en.vtt 5.30KB
002 Iterating Over Range Objects.mp4 11.07MB
002 Levels of Measurement_en.vtt 4.16KB
002 Levels of Measurement.mp4 31.44MB
002 Logical and Identity Operators_en.vtt 5.12KB
002 Logical and Identity Operators.mp4 19.00MB
002 Logical-and-Identity-Operators-Lecture-Py3.ipynb 5.86KB
002 Logical-and-Identity-Operators-Solution-Py3.ipynb 3.43KB
002 Minimal-example-Part-2.ipynb 3.65KB
002 MNIST How to Tackle the MNIST_en.vtt 3.32KB
002 MNIST How to Tackle the MNIST_en.vtt 3.27KB
002 MNIST How to Tackle the MNIST.mp4 7.66MB
002 MNIST How to Tackle the MNIST.mp4 7.68MB
002 Modules and Packages_en.vtt 1.19KB
002 Modules and Packages.mp4 2.00MB
002 Multiple-linear-regression-and-Adjusted-R-squared.ipynb 2.15KB
002 Multiple-linear-regression-and-Adjusted-R-squared-with-comments.ipynb 2.80KB
002 Numbers-and-Boolean-Values-Exercise-Py3.ipynb 2.29KB
002 Numbers and Boolean Values in Python_en.vtt 3.15KB
002 Numbers and Boolean Values in Python.mp4 6.56MB
002 Numbers-and-Boolean-Values-Lecture-Py3.ipynb 3.36KB
002 Numbers-and-Boolean-Values-Solution-Py3.ipynb 3.23KB
002 Permutations and How to Use Them_en.vtt 3.74KB
002 Permutations and How to Use Them.mp4 13.97MB
002 Practical Example Descriptive Statistics Exercise.html 81B
002 Practical Example Hypothesis Testing Exercise.html 81B
002 Practical Example Inferential Statistics Exercise.html 81B
002 Practical Example Linear Regression (Part 2)_en.vtt 7.11KB
002 Practical Example Linear Regression (Part 2).mp4 31.90MB
002 Probability in Statistics_en.vtt 7.62KB
002 Probability in Statistics.mp4 18.37MB
002 Problems with Gradient Descent_en.vtt 2.56KB
002 Problems with Gradient Descent.mp4 3.51MB
002 Real Life Examples of Traditional Data_en.vtt 1.96KB
002 Real Life Examples of Traditional Data.mp4 13.92MB
002 Scalars and Vectors_en.vtt 3.35KB
002 Scalars and Vectors.mp4 8.39MB
002 sklearn-Linear-Regression-Practical-Example-Part-2.ipynb 328.74KB
002 sklearn-Linear-Regression-Practical-Example-Part-2-with-comments.ipynb 335.63KB
002 Some Examples of Clusters_en.vtt 5.41KB
002 Some Examples of Clusters.mp4 35.12MB
002 TensorFlow Outline and Comparison with Other Libraries_en.vtt 4.74KB
002 TensorFlow Outline and Comparison with Other Libraries.mp4 14.94MB
002 The Business Task_en.vtt 3.29KB
002 The Business Task.mp4 11.08MB
002 The Double Equality Sign_en.vtt 1.55KB
002 The Double Equality Sign.mp4 2.72MB
002 The-Double-Equality-Sign-Exercise-Py3.ipynb 838B
002 The-Double-Equality-Sign-Lecture-Py3.ipynb 1.45KB
002 The-Double-Equality-Sign-Solution-Py3.ipynb 1.14KB
002 The ELSE Statement_en.vtt 2.73KB
002 The ELSE Statement.mp4 5.25MB
002 Training the Model_en.vtt 3.89KB
002 Training the Model.mp4 7.57MB
002 Types of Basic Preprocessing_en.vtt 1.52KB
002 Types of Basic Preprocessing.mp4 3.19MB
002 Types of Probability Distributions_en.vtt 8.61KB
002 Types of Probability Distributions.mp4 28.69MB
002 Types of Simple Initializations_en.vtt 3.35KB
002 Types of Simple Initializations.mp4 5.73MB
002 Underfitting and Overfitting for Classification_en.vtt 2.36KB
002 Underfitting and Overfitting for Classification.mp4 13.53MB
002 Using Methods_en.vtt 7.32KB
002 Using Methods.mp4 23.41MB
002 Ways Sets Can Interact_en.vtt 3.90KB
002 Ways Sets Can Interact.mp4 19.02MB
002 What's Further out there in terms of Machine Learning_en.vtt 2.34KB
002 What's Further out there in terms of Machine Learning.mp4 4.73MB
002 What are Data Connectivity, APIs, and Endpoints_en.vtt 7.55KB
002 What are Data Connectivity, APIs, and Endpoints.mp4 58.83MB
002 What Does the Course Cover_en.vtt 4.52KB
002 What Does the Course Cover.mp4 49.69MB
002 What is a Deep Net_en.vtt 2.89KB
002 What is a Deep Net.mp4 11.06MB
002 What is a Distribution_en.vtt 5.32KB
002 What is a Distribution.mp4 16.90MB
002 What is the difference between Analysis and Analytics_en.vtt 4.40KB
002 What is the difference between Analysis and Analytics.mp4 11.05MB
002 While Loops and Incrementing_en.vtt 5.36KB
002 While Loops and Incrementing.mp4 20.20MB
002 While-Loops-and-Incrementing-Exercise-Py3.ipynb 1.12KB
002 While-Loops-and-Incrementing-Lecture-Py3.ipynb 1.08KB
002 While-Loops-and-Incrementing-Solution-Py3.ipynb 1.75KB
002 Why Python_en.vtt 6.04KB
002 Why Python.mp4 11.77MB
002 Working with Methods in Python - Part I_en.vtt 6.09KB
002 Working with Methods in Python - Part I.mp4 16.80MB
003 1.01.Simple-linear-regression.csv 922B
003 12.3.TensorFlow-MNIST-with-comments-Part-1.ipynb 3.89KB
003 2.3.Categorical-variables.Visualization-techniques-lesson.xlsx 30.77KB
003 3.9.Population-variance-known-z-score-exercise.xlsx 10.83KB
003 3.9.Population-variance-known-z-score-exercise-solution.xlsx 11.16KB
003 3.9.The-z-table.xlsx 25.58KB
003 365-DataScience-Diagram.pdf 323.08KB
003 A Note on Installing Packages in Anaconda.html 2.28KB
003 A Note on Multicollinearity.html 849B
003 Another-Way-to-Define-a-Function-Exercise-Py3.ipynb 1.24KB
003 Another-Way-to-Define-a-Function-Lecture-Py3.ipynb 3.29KB
003 Another-Way-to-Define-a-Function-Solution-Py3.ipynb 1.98KB
003 A Simple Example of Clustering - Exercise.html 87B
003 A-Simple-Example-of-Clustering-Exercise.ipynb 3.62KB
003 A-Simple-Example-of-Clustering-Solution.ipynb 4.65KB
003 Audiobooks-data.csv 710.77KB
003 Basic NN Example (Part 3)_en.vtt 3.85KB
003 Basic NN Example (Part 3).mp4 15.68MB
003 Business Analytics, Data Analytics, and Data Science An Introduction_en.vtt 9.53KB
003 Business Analytics, Data Analytics, and Data Science An Introduction.mp4 49.96MB
003 Business Case Balancing the Dataset_en.vtt 4.11KB
003 Business Case Balancing the Dataset.mp4 26.19MB
003 Categorical Variables - Visualization Techniques_en.vtt 5.68KB
003 Categorical Variables - Visualization Techniques.mp4 36.65MB
003 Characteristics of Discrete Distributions_en.vtt 2.21KB
003 Characteristics of Discrete Distributions.mp4 9.25MB
003 Checking the Content of the Data Set_en.vtt 6.22KB
003 Checking the Content of the Data Set.mp4 54.27MB
003 Confidence Intervals; Population Variance Known; Z-score; Exercise.html 81B
003 Countries-exercise.csv 8.27KB
003 Country-clusters-standardized.csv 244B
003 Course-notes-hypothesis-testing.pdf 656.44KB
003 Create-Lists-with-the-range-Function-Exercise-Py3.ipynb 1.45KB
003 Create-Lists-with-the-range-Function-Lecture-Py3.ipynb 1.34KB
003 Create-Lists-with-the-range-Function-Solution-Py3.ipynb 2.25KB
003 DeepMind and Deep Learning.html 1.04KB
003 Defining a Function in Python - Part II_en.vtt 2.54KB
003 Defining a Function in Python - Part II.mp4 6.45MB
003 Deploying the 'absenteeism_module' - Part II_en.vtt 6.76KB
003 Deploying the 'absenteeism_module' - Part II.mp4 25.99MB
003 Difference between Classification and Clustering_en.vtt 2.94KB
003 Difference between Classification and Clustering.mp4 9.53MB
003 Digging into a Deep Net_en.vtt 5.91KB
003 Digging into a Deep Net.mp4 19.14MB
003 Download-all-resources.url 97B
003 Download All Resources and Important FAQ.html 21.26KB
003 Else-If-for-Brief-Elif-Exercise-Py3.ipynb 1.75KB
003 Else-If-for-Brief-Elif-Lecture-Py3.ipynb 3.24KB
003 Else-If-for-Brief-Elif-Solution-Py3.ipynb 2.40KB
003 EXERCISE - Reasons vs Probability.html 385B
003 FAQ-The-Data-Science-Course.pdf 306.10KB
003 Frequency_en.vtt 5.58KB
003 Frequency.mp4 36.39MB
003 Geometrical Representation of the Linear Regression Model_en.vtt 1.47KB
003 Geometrical Representation of the Linear Regression Model.mp4 2.19MB
003 Heatmaps_en.vtt 5.42KB
003 Heatmaps.ipynb 1.82KB
003 Heatmaps.mp4 25.71MB
003 Heatmaps-with-comments.ipynb 17.66KB
003 How to Reassign Values_en.vtt 1.21KB
003 How to Reassign Values.mp4 1.86MB
003 Intersection of Sets_en.vtt 2.21KB
003 Intersection of Sets.mp4 8.78MB
003 Introducing the Data Set_en.vtt 3.65KB
003 Introducing the Data Set.mp4 15.29MB
003 Introduction to Nested For Loops_en.vtt 7.30KB
003 Introduction to Nested For Loops.mp4 12.26MB
003 Linear Algebra and Geometry_en.vtt 3.54KB
003 Linear Algebra and Geometry.mp4 13.56MB
003 List Slicing_en.vtt 4.63KB
003 List Slicing.mp4 19.17MB
003 List-Slicing-Exercise-Py3.ipynb 2.79KB
003 List-Slicing-Lecture-Py3.ipynb 5.02KB
003 List-Slicing-Solution-Py3.ipynb 4.26KB
003 Lists with the range() Function_en.vtt 7.07KB
003 Lists with the range() Function.mp4 14.50MB
003 Logistic vs Logit Function_en.vtt 4.30KB
003 Logistic vs Logit Function.mp4 43.96MB
003 Minimal-example-Part-3.ipynb 6.79KB
003 MNIST Importing the Relevant Packages and Loading the Data_en.vtt 2.65KB
003 MNIST Importing the Relevant Packages and Loading the Data.mp4 12.24MB
003 MNIST Relevant Packages_en.vtt 1.97KB
003 MNIST Relevant Packages.mp4 7.88MB
003 Momentum_en.vtt 3.15KB
003 Momentum.mp4 5.01MB
003 Multiple Linear Regression Exercise.html 76B
003 Multiple-Linear-Regression-Exercise.ipynb 2.45KB
003 Multiple-Linear-Regression-Exercise-Solution.ipynb 13.39KB
003 Probability-Cheat-Sheet.pdf 320.28KB
003 Probability in Data Science_en.vtt 5.87KB
003 Probability in Data Science.mp4 23.94MB
003 Python Strings_en.vtt 6.24KB
003 Python Strings.mp4 19.73MB
003 real-estate-price-size-year.csv 2.35KB
003 Reassign-Values-Exercise-Py3.ipynb 1.67KB
003 Reassign-Values-Lecture-Py3.ipynb 3.08KB
003 Reassign-Values-Solution-Py3.ipynb 2.12KB
003 Rejection Region and Significance Level_en.vtt 7.99KB
003 Rejection Region and Significance Level.mp4 38.20MB
003 Selecting the Inputs for the Logistic Regression_en.vtt 2.99KB
003 Selecting the Inputs for the Logistic Regression.mp4 9.81MB
003 Simple Linear Regression with sklearn_en.vtt 6.71KB
003 Simple Linear Regression with sklearn.mp4 31.65MB
003 Simple Operations with Factorials_en.vtt 3.15KB
003 Simple Operations with Factorials.mp4 13.98MB
003 sklearn-Simple-Linear-Regression.ipynb 4.92KB
003 sklearn-Simple-Linear-Regression-with-comments.ipynb 6.06KB
003 Standardization_en.vtt 5.50KB
003 Standardization.mp4 11.95MB
003 State-of-the-Art Method - (Xavier) Glorot Initialization_en.vtt 3.21KB
003 State-of-the-Art Method - (Xavier) Glorot Initialization.mp4 5.24MB
003 Strings-Exercise-Py3.ipynb 2.61KB
003 Strings-Lecture-Py3.ipynb 7.56KB
003 Strings-Solution-Py3.ipynb 5.45KB
003 Taking a Closer Look at APIs_en.vtt 9.31KB
003 Taking a Closer Look at APIs.mp4 65.29MB
003 Techniques for Working with Big Data_en.vtt 5.02KB
003 Techniques for Working with Big Data.mp4 60.48MB
003 TensorFlow 1 vs TensorFlow 2_en.vtt 3.30KB
003 TensorFlow 1 vs TensorFlow 2.mp4 14.94MB
003 TensorFlow-MNIST-Part1-with-comments.ipynb 3.97KB
003 The ELIF Statement_en.vtt 5.75KB
003 The ELIF Statement.mp4 14.25MB
003 The Importance of Working with a Balanced Dataset_en.vtt 4.11KB
003 The Importance of Working with a Balanced Dataset.mp4 21.60MB
003 The Normal Distribution_en.vtt 4.43KB
003 The Normal Distribution.mp4 16.16MB
003 Types of Machine Learning_en.vtt 4.69KB
003 Types of Machine Learning.mp4 9.81MB
003 What is the Standard Library_en.vtt 3.22KB
003 What is the Standard Library.mp4 4.87MB
003 What is Validation_en.vtt 4.28KB
003 What is Validation.mp4 8.14MB
003 Why Jupyter_en.vtt 4.10KB
003 Why Jupyter.mp4 7.96MB
003 Working with Methods in Python - Part II_en.vtt 3.19KB
003 Working with Methods in Python - Part II.mp4 8.99MB
004 0.6.4-Using-a-Function-in-another-Function-Exercise-Py3.ipynb 1.04KB
004 0.6.4-Using-a-Function-in-another-Function-Lecture-Py3.ipynb 1015B
004 0.6.4-Using-a-Function-in-another-Function-Solution-Py3.ipynb 1.60KB
004 1.01.Simple-linear-regression.csv 922B
004 12.4.TensorFlow-MNIST-with-comments-Part-2.ipynb 6.10KB
004 2.3.Categorical-variables.Visualization-techniques-exercise.xlsx 15.24KB
004 2.3.Categorical-variables.Visualization-techniques-exercise-solution.xlsx 41.11KB
004 3.4.Standard-normal-distribution-lesson.xlsx 10.38KB
004 365-DataScience.png 6.92MB
004 365-DataScience-Diagram.pdf 323.08KB
004 Absenteeism-Exercise-Deploying-the-absenteeism-module.ipynb 973B
004 Add Comments_en.vtt 1.57KB
004 Add Comments.mp4 2.41MB
004 Add-Comments-Lecture-Py3.ipynb 1.03KB
004 Admittance-regression.ipynb 2.09KB
004 Admittance-regression-summary-error.ipynb 2.48KB
004 Admittance-regression-tables-fixed-error.ipynb 4.11KB
004 Analyzing Reasons vs Probability in Tableau_en.vtt 8.49KB
004 Analyzing Reasons vs Probability in Tableau.mp4 40.24MB
004 A Note on Boolean Values_en.vtt 2.56KB
004 A Note on Boolean Values.mp4 4.24MB
004 A-Note-on-Boolean-Values-Lecture-Py3.ipynb 791B
004 A Note on TensorFlow 2 Syntax_en.vtt 1.25KB
004 A Note on TensorFlow 2 Syntax.mp4 2.76MB
004 An overview of CNNs_en.vtt 5.91KB
004 An overview of CNNs.mp4 30.47MB
004 Arrays in Python - A Convenient Way To Represent Matrices_en.vtt 5.26KB
004 Arrays in Python - A Convenient Way To Represent Matrices.mp4 19.01MB
004 Audiobooks-data.csv 710.77KB
004 Basic NN Example (Part 4)_en.vtt 9.28KB
004 Basic NN Example (Part 4).mp4 30.06MB
004 Building a Logistic Regression_en.vtt 3.00KB
004 Building a Logistic Regression.mp4 8.61MB
004 Business Case Preprocessing_en.vtt 11.75KB
004 Business Case Preprocessing.mp4 74.39MB
004 Business Case Preprocessing the Data_en.vtt 11.73KB
004 Business Case Preprocessing the Data.mp4 73.82MB
004 Categorical-data.ipynb 3.35KB
004 Categorical-data-with-comments.ipynb 5.62KB
004 Categorical Variables Exercise.html 81B
004 Clustering Categorical Data_en.vtt 2.88KB
004 Clustering Categorical Data.mp4 10.35MB
004 Communication between Software Products through Text Files_en.vtt 4.84KB
004 Communication between Software Products through Text Files.mp4 17.26MB
004 Conditional Statements and Loops_en.vtt 6.75KB
004 Conditional Statements and Loops.mp4 21.94MB
004 Confidence Interval Clarifications_en.vtt 5.13KB
004 Confidence Interval Clarifications.mp4 18.56MB
004 Continuing with BI, ML, and AI_en.vtt 10.51KB
004 Continuing with BI, ML, and AI.mp4 35.94MB
004 Discrete Distributions The Uniform Distribution_en.vtt 2.51KB
004 Discrete Distributions The Uniform Distribution.mp4 10.08MB
004 Events and Their Complements_en.vtt 6.28KB
004 Events and Their Complements.mp4 20.83MB
004 Exporting the Obtained Data Set as a .csv.html 964B
004 How to Use a Function within a Function_en.vtt 1.82KB
004 How to Use a Function within a Function.mp4 3.25MB
004 Importing Modules in Python_en.vtt 3.94KB
004 Importing Modules in Python.mp4 8.53MB
004 Installing Python and Jupyter_en.vtt 8.00KB
004 Installing Python and Jupyter.mp4 32.86MB
004 Introduction to Terms with Multiple Meanings_en.vtt 3.63KB
004 Introduction to Terms with Multiple Meanings.mp4 18.04MB
004 Learning Rate Schedules, or How to Choose the Optimal Learning Rate_en.vtt 5.38KB
004 Learning Rate Schedules, or How to Choose the Optimal Learning Rate.mp4 12.03MB
004 Math Prerequisites_en.vtt 3.64KB
004 Math Prerequisites.mp4 5.10MB
004 Minimal-example-Part-4-Complete.ipynb 11.41KB
004 MNIST Model Outline_en.vtt 7.85KB
004 MNIST Model Outline.mp4 34.69MB
004 MNIST Preprocess the Data - Create a Validation Set and Scale It_en.vtt 5.77KB
004 MNIST Preprocess the Data - Create a Validation Set and Scale It.mp4 22.93MB
004 Non-Linearities and their Purpose_en.vtt 3.34KB
004 Non-Linearities and their Purpose.mp4 9.74MB
004 Parameters and Arguments in pandas_en.vtt 4.89KB
004 Parameters and Arguments in pandas.mp4 15.45MB
004 Practical Example Linear Regression (Part 3)_en.vtt 3.70KB
004 Practical Example Linear Regression (Part 3).mp4 16.68MB
004 Preprocessing Categorical Data_en.vtt 2.51KB
004 Preprocessing Categorical Data.mp4 5.34MB
004 Python Packages Installation_en.vtt 4.74KB
004 Python Packages Installation.mp4 23.70MB
004 Real Life Examples of Big Data_en.vtt 1.66KB
004 Real Life Examples of Big Data.mp4 12.69MB
004 Scalars-Vectors-and-Matrices.ipynb 4.55KB
004 Simple Linear Regression with sklearn - A StatsModels-like Summary Table_en.vtt 6.08KB
004 Simple Linear Regression with sklearn - A StatsModels-like Summary Table.mp4 28.88MB
004 sklearn-Linear-Regression-Practical-Example-Part-3.ipynb 343.58KB
004 sklearn-Linear-Regression-Practical-Example-Part-3-.url 97B
004 sklearn-Linear-Regression-Practical-Example-Part-3-with-comments.ipynb 351.47KB
004 sklearn-Simple-Linear-Regression.ipynb 26.07KB
004 sklearn-Simple-Linear-Regression-with-comments.ipynb 28.35KB
004 Solving Variations with Repetition_en.vtt 3.21KB
004 Solving Variations with Repetition.mp4 13.75MB
004 Standardizing the Data_en.vtt 3.67KB
004 Standardizing the Data.mp4 15.14MB
004 Statistics-PDF-with-Excel-Solutions-that-dont-visualize-properly.pdf 289.12KB
004 TensorFlow-Audiobooks-Preprocessing.ipynb 5.58KB
004 TensorFlow-Audiobooks-Preprocessing.ipynb 5.58KB
004 TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb 11.19KB
004 TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb 11.19KB
004 TensorFlow Intro_en.vtt 4.61KB
004 TensorFlow Intro.mp4 16.56MB
004 Test for Significance of the Model (F-Test)_en.vtt 2.24KB
004 Test for Significance of the Model (F-Test).mp4 5.90MB
004 The Linear Model (Linear Algebraic Version)_en.vtt 3.47KB
004 The Linear Model (Linear Algebraic Version).mp4 7.87MB
004 The Standard Normal Distribution_en.vtt 3.65KB
004 The Standard Normal Distribution.mp4 8.62MB
004 Training, Validation, and Test Datasets_en.vtt 2.99KB
004 Training, Validation, and Test Datasets.mp4 7.74MB
004 Triple Nested For Loops_en.vtt 7.05KB
004 Triple Nested For Loops.mp4 19.40MB
004 Tuples_en.vtt 6.33KB
004 Tuples.mp4 16.27MB
004 Tuples-Exercise-Py3.ipynb 2.07KB
004 Tuples-Lecture-Py3.ipynb 2.91KB
004 Tuples-Solution-Py3.ipynb 4.61KB
004 Type I Error and Type II Error_en.vtt 4.64KB
004 Type I Error and Type II Error.mp4 18.17MB
004 Union of Sets_en.vtt 5.34KB
004 Union of Sets.mp4 19.47MB
004 Use-Conditional-Statements-and-Loops-Together-Exercise-Py3.ipynb 2.10KB
004 Use-Conditional-Statements-and-Loops-Together-Lecture-Py3.ipynb 1.95KB
004 Use-Conditional-Statements-and-Loops-Together-Solution-Py3.ipynb 2.96KB
005 1.01.Simple-linear-regression.csv 922B
005 1.04.Real-life-example.csv 219.83KB
005 12.5.TensorFlow-MNIST-with-comments-Part-3.ipynb 7.31KB
005 2.4.Numerical-variables.Frequency-distribution-table-lesson.xlsx 11.44KB
005 3.4.Standard-normal-distribution-exercise.xlsx 11.99KB
005 3.4.Standard-normal-distribution-exercise-solution.xlsx 24.04KB
005 365-DataScience.png 6.92MB
005 4.4.Test-for-the-mean.Population-variance-known-lesson.xlsx 10.96KB
005 A Breakdown of our Data Science Infographic_en.vtt 4.53KB
005 A Breakdown of our Data Science Infographic.mp4 33.95MB
005 Activation Functions_en.vtt 4.64KB
005 Activation Functions.mp4 8.53MB
005 Actual Introduction to TensorFlow_en.vtt 2.00KB
005 Actual Introduction to TensorFlow.mp4 6.17MB
005 All-In-Exercise-Py3.ipynb 1.30KB
005 All-In-Lecture-Py3.ipynb 1.62KB
005 All-In-Solution-Py3.ipynb 1.90KB
005 A Note on Normalization.html 729B
005 An Overview of RNNs_en.vtt 3.34KB
005 An Overview of RNNs.mp4 6.75MB
005 Audiobooks-data.csv 710.77KB
005 Basic NN Example Exercises.html 1.65KB
005 Binary and One-Hot Encoding_en.vtt 4.19KB
005 Binary and One-Hot Encoding.mp4 8.36MB
005 Building a Logistic Regression - Exercise.html 87B
005 Building-a-Logistic-Regression-Exercise.ipynb 2.92KB
005 Building-a-Logistic-Regression-Solution.ipynb 4.44KB
005 Business Case Preprocessing Exercise.html 379B
005 Business Case Preprocessing the Data - Exercise.html 370B
005 Business Intelligence (BI) Techniques_en.vtt 7.79KB
005 Business Intelligence (BI) Techniques.mp4 51.34MB
005 Categorical.csv 10.34KB
005 Clustering Categorical Data - Exercise.html 87B
005 Clustering-Categorical-Data-Exercise.ipynb 3.78KB
005 Clustering-Categorical-Data-Solution.ipynb 4.90KB
005 Combining-Conditional-Statements-and-Functions-Exercise-Py3.ipynb 1.06KB
005 Combining-Conditional-Statements-and-Functions-Lecture-Py3.ipynb 1.29KB
005 Combining-Conditional-Statements-and-Functions-Solution-Py3.ipynb 1.65KB
005 Conditional Statements, Functions, and Loops_en.vtt 2.05KB
005 Conditional Statements, Functions, and Loops.mp4 4.27MB
005 Conditional Statements and Functions_en.vtt 3.13KB
005 Conditional Statements and Functions.mp4 6.04MB
005 Dictionaries_en.vtt 7.82KB
005 Dictionaries.mp4 24.91MB
005 Dictionaries-Exercise-Py3.ipynb 2.92KB
005 Dictionaries-Lecture-Py3.ipynb 4.35KB
005 Dictionaries-Solution-Py3.ipynb 6.16KB
005 Discrete Distributions The Bernoulli Distribution_en.vtt 3.78KB
005 Discrete Distributions The Bernoulli Distribution.mp4 14.76MB
005 Dummies and Variance Inflation Factor - Exercise.html 76B
005 Example-bank-data.csv 6.21KB
005 EXERCISE - Transportation Expense vs Probability.html 529B
005 First Regression in Python_en.vtt 6.96KB
005 First Regression in Python.mp4 29.63MB
005 Learning Rate Schedules Visualized_en.vtt 1.89KB
005 Learning Rate Schedules Visualized.mp4 3.07MB
005 Line-Continuation-Exercise-Py3.ipynb 1.14KB
005 Line-Continuation-Lecture-Py3.ipynb 779B
005 Line-Continuation-Solution-Py3.ipynb 1.50KB
005 List Comprehensions_en.vtt 10.85KB
005 List Comprehensions.mp4 43.23MB
005 Minimal-example-All-Exercises.ipynb 12.89KB
005 Minimal-example-Exercise-1-Solution.ipynb 69.00KB
005 Minimal-example-Exercise-2-Solution.ipynb 61.41KB
005 Minimal-example-Exercise-3.a.Solution.ipynb 67.89KB
005 Minimal-example-Exercise-3.b.Solution.ipynb 67.72KB
005 Minimal-example-Exercise-3.c.Solution.ipynb 70.13KB
005 Minimal-example-Exercise-3.d.Solution.ipynb 84.13KB
005 Minimal-example-Exercise-4-Solution.ipynb 66.52KB
005 Minimal-example-Exercise-5-Solution.ipynb 68.88KB
005 Minimal-example-Exercise-6.ipynb 61.76KB
005 Minimal-example-Exercise-6-Solution.ipynb 61.76KB
005 MNIST Loss and Optimization Algorithm_en.vtt 3.14KB
005 MNIST Loss and Optimization Algorithm.mp4 11.55MB
005 MNIST Preprocess the Data - Scale the Test Data - Exercise.html 79B
005 Mutually Exclusive Sets_en.vtt 2.34KB
005 Mutually Exclusive Sets.mp4 8.57MB
005 N-Fold Cross Validation_en.vtt 3.77KB
005 N-Fold Cross Validation.mp4 6.03MB
005 Numerical Variables - Frequency Distribution Table_en.vtt 3.88KB
005 Numerical Variables - Frequency Distribution Table.mp4 12.80MB
005 OLS Assumptions_en.vtt 2.63KB
005 OLS Assumptions.mp4 5.12MB
005 Shortcuts-for-Jupyter.pdf 619.17KB
005 Simple-linear-regression.ipynb 3.79KB
005 Simple-linear-regression-with-comments.ipynb 4.06KB
005 sklearn-Dummies-and-VIF-Exercise.ipynb 344.62KB
005 sklearn-Dummies-and-VIF-Exercise-Solution.ipynb 370.22KB
005 Software Integration - Explained_en.vtt 6.03KB
005 Software Integration - Explained.mp4 41.99MB
005 Solving Variations without Repetition_en.vtt 4.16KB
005 Solving Variations without Repetition.mp4 14.76MB
005 Splitting the Data for Training and Testing_en.vtt 7.40KB
005 Splitting the Data for Training and Testing.mp4 36.12MB
005 Student's T Distribution_en.vtt 3.75KB
005 Student's T Distribution.mp4 13.33MB
005 TensorFlow-Audiobooks-Preprocessing-Exercise.ipynb 8.60KB
005 TensorFlow-Audiobooks-Preprocessing-Exercise.ipynb 8.60KB
005 TensorFlow-Audiobooks-Preprocessing-Exercise-Solution.ipynb 10.04KB
005 TensorFlow-Audiobooks-Preprocessing-Exercise-Solution.ipynb 10.03KB
005 TensorFlow-Minimal-example-Part1.ipynb 1.66KB
005 TensorFlow-MNIST-Part2-with-comments.ipynb 6.39KB
005 Tensors.ipynb 2.08KB
005 Test for the Mean. Population Variance Known_en.vtt 7.34KB
005 Test for the Mean. Population Variance Known.mp4 36.96MB
005 The Linear Model with Multiple Inputs_en.vtt 2.85KB
005 The Linear Model with Multiple Inputs.mp4 7.77MB
005 The Standard Normal Distribution Exercise.html 81B
005 Types of File Formats Supporting TensorFlow_en.vtt 3.08KB
005 Types of File Formats Supporting TensorFlow.mp4 7.25MB
005 Understanding Jupyter's Interface - the Notebook Dashboard_en.vtt 3.25KB
005 Understanding Jupyter's Interface - the Notebook Dashboard.mp4 6.06MB
005 Understanding Line Continuation_en.vtt 1.01KB
005 Understanding Line Continuation.mp4 1.20MB
005 Using .unique() and .nunique()_en.vtt 4.91KB
005 Using .unique() and .nunique().mp4 26.33MB
005 What's Regression Analysis - a Quick Refresher.html 2.80KB
005 What is a Tensor_en.vtt 3.24KB
005 What is a Tensor.mp4 11.61MB
006 1.04.Real-life-example.csv 219.83KB
006 12.6.TensorFlow-MNIST-with-comments-Part-4.ipynb 7.90KB
006 2.4.Numerical-variables.Frequency-distribution-table-exercise-solution.xlsx 13.15KB
006 3.11.Population-variance-unknown-t-score-lesson.xlsx 10.78KB
006 3.11.The-t-table.xlsx 15.85KB
006 4.4.Test-for-the-mean.Population-variance-known-exercise.xlsx 11.03KB
006 4.4.Test-for-the-mean.Population-variance-known-exercise-solution.xlsx 11.22KB
006 5.3.TensorFlow-Minimal-example-Part-1.ipynb 3.36KB
006 A1 Linearity_en.vtt 2.09KB
006 A1 Linearity.mp4 3.45MB
006 Activation Functions Softmax Activation_en.vtt 3.97KB
006 Activation Functions Softmax Activation.mp4 8.42MB
006 Adaptive Learning Rate Schedules (AdaGrad and RMSprop )_en.vtt 4.59KB
006 Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).mp4 8.24MB
006 Adding-and-subtracting-matrices.ipynb 3.22KB
006 Additional-Python-Tools-Exercises.ipynb 11.37KB
006 Additional-Python-Tools-Lectures.ipynb 13.47KB
006 Additional-Python-Tools-Solutions.ipynb 25.49KB
006 Addition and Subtraction of Matrices_en.vtt 3.49KB
006 Addition and Subtraction of Matrices.mp4 22.08MB
006 Analyzing Transportation Expense vs Probability in Tableau_en.vtt 6.45KB
006 Analyzing Transportation Expense vs Probability in Tableau.mp4 16.48MB
006 An Invaluable Coding Tip_en.vtt 2.74KB
006 An Invaluable Coding Tip.mp4 16.77MB
006 Anonymous (Lambda) Functions_en.vtt 8.75KB
006 Anonymous (Lambda) Functions.mp4 33.71MB
006 An Overview of non-NN Approaches_en.vtt 4.68KB
006 An Overview of non-NN Approaches.mp4 15.65MB
006 Business Case Load the Preprocessed Data_en.vtt 4.20KB
006 Business Case Load the Preprocessed Data.mp4 13.80MB
006 Calculating the Accuracy of the Model_en.vtt 4.64KB
006 Calculating the Accuracy of the Model.mp4 16.64MB
006 Central Limit Theorem_en.vtt 5.01KB
006 Central Limit Theorem.mp4 22.86MB
006 Combinations-With-Repetition.pdf 207.41KB
006 Confidence Intervals; Population Variance Unknown; T-score_en.vtt 5.00KB
006 Confidence Intervals; Population Variance Unknown; T-score.mp4 11.58MB
006 Creating a Data Provider_en.vtt 6.84KB
006 Creating a Data Provider.mp4 56.23MB
006 Creating-Functions-Containing-a-Few-Arguments-Lecture-Py3.ipynb 1.72KB
006 Dependence and Independence of Sets_en.vtt 3.05KB
006 Dependence and Independence of Sets.mp4 11.98MB
006 Discrete Distributions The Binomial Distribution_en.vtt 7.67KB
006 Discrete Distributions The Binomial Distribution.mp4 24.94MB
006 Early Stopping or When to Stop Training_en.vtt 5.98KB
006 Early Stopping or When to Stop Training.mp4 8.50MB
006 First Regression in Python Exercise.html 1.31KB
006 Fitting the Model and Assessing its Accuracy_en.vtt 6.35KB
006 Fitting the Model and Assessing its Accuracy.mp4 35.29MB
006 Functions Containing a Few Arguments_en.vtt 1.16KB
006 Functions Containing a Few Arguments.mp4 2.83MB
006 How to Choose the Number of Clusters_en.vtt 6.49KB
006 How to Choose the Number of Clusters.mp4 19.79MB
006 How to Iterate over Dictionaries_en.vtt 6.64KB
006 How to Iterate over Dictionaries.mp4 16.46MB
006 Indexing Elements_en.vtt 1.43KB
006 Indexing Elements.mp4 2.36MB
006 Indexing-Elements-Exercise-Py3.ipynb 1.35KB
006 Indexing-Elements-Lecture-Py3.ipynb 1.32KB
006 Indexing-Elements-Solution-Py3.ipynb 2.17KB
006 Iterating-over-Dictionaries-Exercise-Py3.ipynb 2.19KB
006 Iterating-over-Dictionaries-Lecture-Py3.ipynb 1.08KB
006 Iterating-over-Dictionaries-Solution-Py3.ipynb 2.87KB
006 MNIST Preprocess the Data - Shuffle and Batch_en.vtt 8.32KB
006 MNIST Preprocess the Data - Shuffle and Batch.mp4 32.71MB
006 Numerical Variables Exercise.html 81B
006 Outlining the Model with TensorFlow 2_en.vtt 6.99KB
006 Outlining the Model with TensorFlow 2.mp4 26.99MB
006 Practical Example Linear Regression (Part 4)_en.vtt 10.22KB
006 Practical Example Linear Regression (Part 4).mp4 29.84MB
006 Prerequisites for Coding in the Jupyter Notebooks_en.vtt 6.73KB
006 Prerequisites for Coding in the Jupyter Notebooks.mp4 15.38MB
006 real-estate-price-size.csv 1.86KB
006 real-estate-price-size.csv 1.86KB
006 Real Life Examples of Business Intelligence (BI)_en.vtt 1.90KB
006 Real Life Examples of Business Intelligence (BI).mp4 19.35MB
006 Selecting-the-number-of-clusters.ipynb 4.53KB
006 Selecting-the-number-of-clusters-with-comments.ipynb 7.48KB
006 Simple-Linear-Regression-Exercise.ipynb 2.78KB
006 Simple-Linear-Regression-Exercise-Solution.ipynb 3.57KB
006 Simple Linear Regression with sklearn - Exercise.html 76B
006 Simple-Linear-Regression-with-sklearn-Exercise.ipynb 4.08KB
006 Simple-Linear-Regression-with-sklearn-Exercise-Solution.ipynb 26.61KB
006 sklearn-Linear-Regression-Practical-Example-Part-4.ipynb 397.23KB
006 sklearn-Linear-Regression-Practical-Example-Part-4-with-comments.ipynb 407.59KB
006 Solving Combinations_en.vtt 5.05KB
006 Solving Combinations.mp4 18.99MB
006 TensorFlow-Minimal-example-Part2.ipynb 9.06KB
006 Test for the Mean. Population Variance Known Exercise.html 81B
006 The Linear model with Multiple Inputs and Multiple Outputs_en.vtt 4.81KB
006 The Linear model with Multiple Inputs and Multiple Outputs.mp4 16.23MB
006 Types of File Formats, supporting Tensors_en.vtt 2.90KB
006 Types of File Formats, supporting Tensors.mp4 8.90MB
006 Using .sort_values()_en.vtt 4.87KB
006 Using .sort_values().mp4 13.20MB
006 Using a Statistical Approach towards the Solution to the Exercise_en.vtt 2.55KB
006 Using a Statistical Approach towards the Solution to the Exercise.mp4 9.90MB
007 1.02.Multiple-linear-regression.csv 1.07KB
007 12.7.TensorFlow-MNIST-with-comments-Part-5.ipynb 8.53KB
007 2.5.The-Histogram-lesson.xlsx 18.63KB
007 3.11.Population-variance-unknown-t-score-exercise.xlsx 10.62KB
007 3.11.Population-variance-unknown-t-score-exercise-solution.xlsx 11.10KB
007 3.11.The-t-table.xlsx 15.85KB
007 5.4.TensorFlow-Minimal-example-Part-2.ipynb 6.17KB
007 A2 No Endogeneity_en.vtt 4.62KB
007 A2 No Endogeneity.mp4 8.99MB
007 Adam (Adaptive Moment Estimation)_en.vtt 2.98KB
007 Adam (Adaptive Moment Estimation).mp4 6.88MB
007 Backpropagation_en.vtt 3.94KB
007 Backpropagation.mp4 19.49MB
007 Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases_en.vtt 6.63KB
007 Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.mp4 28.00MB
007 Built-in Functions in Python_en.vtt 3.74KB
007 Built-in Functions in Python.mp4 8.50MB
007 Business Case Load the Preprocessed Data - Exercise.html 79B
007 Business Case Model Outline_en.vtt 6.19KB
007 Business Case Model Outline.mp4 42.48MB
007 Confidence Intervals; Population Variance Unknown; T-score; Exercise.html 81B
007 Countries-exercise.csv 8.27KB
007 Creating a Summary Table with the Coefficients and Intercept_en.vtt 5.81KB
007 Creating a Summary Table with the Coefficients and Intercept.mp4 26.98MB
007 Discrete Distributions The Poisson Distribution_en.vtt 5.85KB
007 Discrete Distributions The Poisson Distribution.mp4 14.62MB
007 Dropping a Column from a DataFrame in Python_en.vtt 6.79KB
007 Dropping a Column from a DataFrame in Python.mp4 41.30MB
007 Dummy Variables - Exercise.html 705B
007 Errors when Adding Matrices_en.vtt 2.30KB
007 Errors when Adding Matrices.mp4 6.46MB
007 Errors-when-adding-scalars-vectors-and-matrices-in-Python.ipynb 3.17KB
007 Graphical Representation of Simple Neural Networks_en.vtt 2.44KB
007 Graphical Representation of Simple Neural Networks.mp4 6.35MB
007 How to Choose the Number of Clusters - Exercise.html 87B
007 How-to-Choose-the-Number-of-Clusters-Exercise.ipynb 5.55KB
007 How-to-Choose-the-Number-of-Clusters-Solution.ipynb 8.49KB
007 Interpreting the Result and Extracting the Weights and Bias_en.vtt 5.48KB
007 Interpreting the Result and Extracting the Weights and Bias.mp4 13.67MB
007 Introduction to pandas DataFrames - Part I_en.vtt 6.22KB
007 Introduction to pandas DataFrames - Part I.mp4 10.60MB
007 MNIST Batching and Early Stopping_en.vtt 2.50KB
007 MNIST Batching and Early Stopping.mp4 8.70MB
007 MNIST Preprocess the Data - Shuffle and Batch - Exercise.html 79B
007 Multiple Linear Regression with sklearn_en.vtt 3.80KB
007 Multiple Linear Regression with sklearn.mp4 9.81MB
007 Notable-Built-In-Functions-in-Python-Exercise-Py3.ipynb 3.66KB
007 Notable-Built-In-Functions-in-Python-Lecture-Py3.ipynb 4.51KB
007 Notable-Built-In-Functions-in-Python-Solution-Py3.ipynb 5.52KB
007 Online-p-value-calculator.pdf 1.15MB
007 Poisson-Expected-Value-and-Variance.pdf 145.99KB
007 p-value_en.vtt 4.75KB
007 p-value.mp4 33.08MB
007 sklearn-Multiple-Linear-Regression.ipynb 7.79KB
007 sklearn-Multiple-Linear-Regression-with-comments.ipynb 8.65KB
007 Standard error_en.vtt 1.69KB
007 Standard error.mp4 13.33MB
007 Structure-Your-Code-with-Indentation-Exercise-Py3.ipynb 956B
007 Structure-Your-Code-with-Indentation-Lecture-Py3.ipynb 958B
007 Structure-Your-Code-with-Indentation-Solution-Py3.ipynb 1.50KB
007 Structuring with Indentation_en.vtt 1.92KB
007 Structuring with Indentation.mp4 2.80MB
007 Symmetry-Explained.pdf 85.04KB
007 Symmetry of Combinations_en.vtt 3.74KB
007 Symmetry of Combinations.mp4 13.50MB
007 Techniques for Working with Traditional Methods_en.vtt 9.84KB
007 Techniques for Working with Traditional Methods.mp4 74.75MB
007 TensorFlow-Audiobooks-Machine-Learning-Part1-with-comments.ipynb 4.61KB
007 TensorFlow-Audiobooks-Outlining-the-model.ipynb 9.36KB
007 TensorFlow-Audiobooks-Outlining-the-model-with-comments.ipynb 10.34KB
007 TensorFlow-Minimal-example-Part3.ipynb 76.52KB
007 TensorFlow-MNIST-Part3-with-comments.ipynb 8.61KB
007 The Conditional Probability Formula_en.vtt 4.66KB
007 The Conditional Probability Formula.mp4 16.33MB
007 The Histogram_en.vtt 2.77KB
007 The Histogram.mp4 9.59MB
007 Understanding Logistic Regression Tables_en.vtt 4.82KB
007 Understanding Logistic Regression Tables.mp4 12.89MB
007 Using Seaborn for Graphs_en.vtt 1.35KB
007 Using Seaborn for Graphs.mp4 7.37MB
008 1.02.Multiple-linear-regression.csv 1.07KB
008 1.04.Real-life-example.csv 219.83KB
008 12.8.TensorFlow-MNIST-with-comments-Part-6.ipynb 11.50KB
008 2.5.The-Histogram-exercise.xlsx 15.50KB
008 2.5.The-Histogram-exercise-solution.xlsx 17.10KB
008 4.6.Test-for-the-mean.Population-variance-unknown-lesson.xlsx 14.54KB
008 5.5.TensorFlow-Minimal-example-Part-3.ipynb 8.65KB
008 A3 Normality and Homoscedasticity_en.vtt 5.75KB
008 A3 Normality and Homoscedasticity.mp4 27.39MB
008 Backpropagation Picture_en.vtt 3.67KB
008 Backpropagation Picture.mp4 7.68MB
008 Bank-data.csv 19.55KB
008 Basic NN Example with TF Loss Function and Gradient Descent_en.vtt 4.17KB
008 Basic NN Example with TF Loss Function and Gradient Descent.mp4 15.72MB
008 Business Case Learning and Interpreting the Result_en.vtt 5.45KB
008 Business Case Learning and Interpreting the Result.mp4 27.77MB
008 Business Case Optimization_en.vtt 5.69KB
008 Business Case Optimization.mp4 26.95MB
008 Calculating the Adjusted R-Squared in sklearn_en.vtt 5.78KB
008 Calculating the Adjusted R-Squared in sklearn.mp4 16.92MB
008 Characteristics of Continuous Distributions_en.vtt 7.81KB
008 Characteristics of Continuous Distributions.mp4 28.87MB
008 Customizing a TensorFlow 2 Model_en.vtt 3.65KB
008 Customizing a TensorFlow 2 Model.mp4 16.78MB
008 Estimators and Estimates_en.vtt 3.40KB
008 Estimators and Estimates.mp4 16.13MB
008 EXERCISE - Dropping a Column from a DataFrame in Python.html 864B
008 Histogram Exercise.html 81B
008 How to Interpret the Regression Table_en.vtt 5.75KB
008 How to Interpret the Regression Table.mp4 28.72MB
008 Interpreting the Coefficients for Our Problem_en.vtt 7.06KB
008 Interpreting the Coefficients for Our Problem.mp4 34.40MB
008 Introduction to pandas DataFrames - Part II_en.vtt 6.70KB
008 Introduction to pandas DataFrames - Part II.mp4 17.83MB
008 Margin of Error_en.vtt 5.51KB
008 Margin of Error.mp4 22.66MB
008 MNIST Learning_en.vtt 8.74KB
008 MNIST Learning.mp4 31.87MB
008 MNIST Outline the Model_en.vtt 6.32KB
008 MNIST Outline the Model.mp4 22.09MB
008 Practical Example Linear Regression (Part 5)_en.vtt 9.20KB
008 Practical Example Linear Regression (Part 5).mp4 50.42MB
008 Pros and Cons of K-Means Clustering_en.vtt 4.07KB
008 Pros and Cons of K-Means Clustering.mp4 10.93MB
008 Real Life Examples of Traditional Methods_en.vtt 3.12KB
008 Real Life Examples of Traditional Methods.mp4 21.17MB
008 sklearn-Linear-Regression-Practical-Example-Part-5.ipynb 698.36KB
008 sklearn-Linear-Regression-Practical-Example-Part-5-with-comments.ipynb 711.05KB
008 sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared.ipynb 9.11KB
008 sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-with-comments.ipynb 10.41KB
008 Solving Combinations with Separate Sample Spaces_en.vtt 3.37KB
008 Solving Combinations with Separate Sample Spaces.mp4 12.87MB
008 Solving-Integrals.pdf 343.85KB
008 Statistics-PDF-with-Excel-Solutions-that-dont-visualize-properly.pdf 289.12KB
008 TensorFlow-Audiobooks-Machine-Learning-Part2-with-comments.ipynb 19.69KB
008 TensorFlow-Audiobooks-optimizing-the-algorithm.ipynb 10.64KB
008 TensorFlow-Audiobooks-optimizing-the-algorithm-with-comments.ipynb 12.73KB
008 TensorFlow-Minimal-example-complete.ipynb 76.85KB
008 TensorFlow-Minimal-example-complete-with-comments.ipynb 82.29KB
008 TensorFlow-MNIST-Part4-with-comments.ipynb 10.49KB
008 Test for the Mean. Population Variance Unknown_en.vtt 5.44KB
008 Test for the Mean. Population Variance Unknown.mp4 19.72MB
008 The Law of Total Probability_en.vtt 3.01KB
008 The Law of Total Probability.mp4 11.39MB
008 Tranpose-of-a-matrix.ipynb 2.89KB
008 Transpose of a Matrix_en.vtt 4.98KB
008 Transpose of a Matrix.mp4 20.49MB
008 Understanding Logistic Regression Tables - Exercise.html 87B
008 Understanding-Logistic-Regression-Tables-Exercise.ipynb 3.16KB
008 Understanding-Logistic-Regression-Tables-Solution.ipynb 4.79KB
008 What is the Objective Function_en.vtt 1.88KB
008 What is the Objective Function.mp4 6.03MB
009 1.02.Multiple-linear-regression.csv 1.07KB
009 12.9.TensorFlow-MNIST-with-comments.ipynb 13.03KB
009 2.6.Cross-table-and-scatter-plot.xlsx 26.12KB
009 3.13.Confidence-intervals.Two-means.Dependent-samples-lesson.xlsx 10.47KB
009 4.6.Test-for-the-mean.Population-variance-unknown-exercise.xlsx 11.34KB
009 4.6.Test-for-the-mean.Population-variance-unknown-exercise-solution.xlsx 12.63KB
009 5.6.TensorFlow-Minimal-example-complete.ipynb 12.15KB
009 A4 No Autocorrelation_en.vtt 4.23KB
009 A4 No Autocorrelation.mp4 7.67MB
009 Backpropagation - A Peek into the Mathematics of Optimization.html 539B
009 Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf 182.38KB
009 Basic NN Example with TF Model Output_en.vtt 6.71KB
009 Basic NN Example with TF Model Output.mp4 17.09MB
009 Basic NN with TensorFlow Exercises.html 1.28KB
009 Business Case Interpretation_en.vtt 2.58KB
009 Business Case Interpretation.mp4 18.59MB
009 Business Case Setting an Early Stopping Mechanism_en.vtt 6.98KB
009 Business Case Setting an Early Stopping Mechanism.mp4 43.81MB
009 Calculating the Adjusted R-Squared in sklearn - Exercise.html 76B
009 Combinatorics in Real-Life The Lottery_en.vtt 3.66KB
009 Combinatorics in Real-Life The Lottery.mp4 16.16MB
009 Common Objective Functions L2-norm Loss_en.vtt 2.44KB
009 Common Objective Functions L2-norm Loss.mp4 5.41MB
009 Confidence intervals. Two means. Dependent samples_en.vtt 7.23KB
009 Confidence intervals. Two means. Dependent samples.mp4 45.04MB
009 Continuous Distributions The Normal Distribution_en.vtt 4.34KB
009 Continuous Distributions The Normal Distribution.mp4 19.67MB
009 Cross Tables and Scatter Plots_en.vtt 5.91KB
009 Cross Tables and Scatter Plots.mp4 19.69MB
009 Decomposition of Variability_en.vtt 3.69KB
009 Decomposition of Variability.mp4 8.62MB
009 Dot Product_en.vtt 3.75KB
009 Dot-product.ipynb 2.13KB
009 Dot Product.mp4 11.36MB
009 Linear Regression - Exercise.html 497B
009 Logistic-Regression-prior-to-Custom-Scaler.url 182B
009 Machine Learning (ML) Techniques_en.vtt 7.83KB
009 Machine Learning (ML) Techniques.mp4 47.78MB
009 MNIST Results and Testing_en.vtt 7.26KB
009 MNIST Results and Testing.mp4 38.19MB
009 MNIST Select the Loss and the Optimizer_en.vtt 2.75KB
009 MNIST Select the Loss and the Optimizer.mp4 10.65MB
009 Normal-Distribution-Exp-and-Var.pdf 144.08KB
009 pandas DataFrames - Common Attributes_en.vtt 5.52KB
009 pandas DataFrames - Common Attributes.mp4 29.80MB
009 sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-Exercise.ipynb 9.83KB
009 sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-Exercise-Solution.ipynb 10.31KB
009 SOLUTION - Dropping a Column from a DataFrame in Python.html 114B
009 Standardizing only the Numerical Variables (Creating a Custom Scaler)_en.vtt 4.40KB
009 Standardizing only the Numerical Variables (Creating a Custom Scaler).mp4 28.02MB
009 TensorFlow-Audiobooks-Machine-Learning-Part3-with-comments.ipynb 10.06KB
009 TensorFlow-Audiobooks-optimizing-the-algorithm.ipynb 10.64KB
009 TensorFlow-Audiobooks-optimizing-the-algorithm-with-comments.ipynb 12.73KB
009 TensorFlow-Minimal-example-All-exercises.ipynb 83.62KB
009 TensorFlow-Minimal-example-Exercise-1-Solution.ipynb 27.96KB
009 TensorFlow-Minimal-Example-Exercise-2-1-Solution.ipynb 83.68KB
009 TensorFlow-Minimal-Example-Exercise-2-2-Solution.ipynb 77.52KB
009 TensorFlow-Minimal-Example-Exercise-3-Solution.ipynb 84.44KB
009 TensorFlow-MNIST-Part5-with-comments.ipynb 10.99KB
009 Test for the Mean. Population Variance Unknown Exercise.html 81B
009 The Additive Rule_en.vtt 2.48KB
009 The Additive Rule.mp4 10.89MB
009 To Standardize or not to Standardize_en.vtt 5.32KB
009 To Standardize or not to Standardize.mp4 10.50MB
009 What do the Odds Actually Mean_en.vtt 4.42KB
009 What do the Odds Actually Mean.mp4 11.38MB
010 1.02.Multiple-linear-regression.csv 1.07KB
010 2.02.Binary-predictors.csv 2.56KB
010 2.6.Cross-table-and-scatter-plot-exercise.xlsx 16.28KB
010 2.6.Cross-table-and-scatter-plot-exercise-solution.xlsx 40.44KB
010 3.13.Confidence-intervals.Two-means.Dependent-samples-exercise.xlsx 13.74KB
010 3.13.Confidence-intervals.Two-means.Dependent-samples-exercise-solution.xlsx 14.24KB
010 4.7.Test-for-the-mean.Dependent-samples-lesson.xlsx 9.79KB
010 A5 No Multicollinearity_en.vtt 4.10KB
010 A5 No Multicollinearity.mp4 7.36MB
010 Analyzing the Reasons for Absence_en.vtt 5.39KB
010 Analyzing the Reasons for Absence.mp4 27.63MB
010 A Recap of Combinatorics_en.vtt 3.27KB
010 A Recap of Combinatorics.mp4 12.00MB
010 Basic NN Example with TF Exercises.html 1.58KB
010 Binary-predictors.ipynb 2.41KB
010 Binary Predictors in a Logistic Regression_en.vtt 4.98KB
010 Binary Predictors in a Logistic Regression.mp4 18.47MB
010 Business Case Testing the Model_en.vtt 2.36KB
010 Business Case Testing the Model.mp4 4.39MB
010 Common Objective Functions Cross-Entropy Loss_en.vtt 4.89KB
010 Common Objective Functions Cross-Entropy Loss.mp4 9.68MB
010 Confidence intervals. Two means. Dependent samples Exercise.html 81B
010 Continuous Distributions The Standard Normal Distribution_en.vtt 4.81KB
010 Continuous Distributions The Standard Normal Distribution.mp4 20.72MB
010 Cross Tables and Scatter Plots Exercise.html 81B
010 Data Selection in pandas DataFrames_en.vtt 8.81KB
010 Data Selection in pandas DataFrames.mp4 37.28MB
010 Dot Product of Matrices_en.vtt 8.34KB
010 Dot Product of Matrices.mp4 26.42MB
010 Dot-product-Part-2.ipynb 3.60KB
010 Feature Selection (F-regression)_en.vtt 5.89KB
010 Feature Selection (F-regression).mp4 15.68MB
010 Interpreting the Coefficients of the Logistic Regression_en.vtt 6.40KB
010 Interpreting the Coefficients of the Logistic Regression.mp4 15.22MB
010 MNIST Exercises.html 2.16KB
010 MNIST Learning_en.vtt 6.85KB
010 MNIST Learning.mp4 31.03MB
010 Relationship between Clustering and Regression_en.vtt 1.97KB
010 Relationship between Clustering and Regression.mp4 3.39MB
010 Setting an Early Stopping Mechanism - Exercise.html 192B
010 sklearn-Feature-Selection-with-F-regression.ipynb 10.44KB
010 sklearn-Feature-Selection-with-F-regression-with-comments.ipynb 12.99KB
010 TensorFlow-Minimal-Example-All-Exercises.ipynb 13.97KB
010 TensorFlow-Minimal-Example-Exercise-1-Solution.ipynb 23.63KB
010 TensorFlow-Minimal-Example-Exercise-2-1-Solution.ipynb 25.54KB
010 TensorFlow-Minimal-Example-Exercise-2-2-Solution.ipynb 25.51KB
010 TensorFlow-Minimal-Example-Exercise-2-3-Solution.ipynb 49.96KB
010 TensorFlow-Minimal-Example-Exercise-2-4-Solution.ipynb 21.75KB
010 TensorFlow-Minimal-Example-Exercise-3-Solution.ipynb 26.71KB
010 TensorFlow-Minimal-Example-Exercise-4-Solution.ipynb 26.98KB
010 TensorFlow-MNIST-Exercises-All.ipynb 15.47KB
010 TensorFlow-MNIST-Part6-with-comments.ipynb 12.54KB
010 Test for the Mean. Dependent Samples_en.vtt 5.96KB
010 Test for the Mean. Dependent Samples.mp4 32.80MB
010 The Multiplication Law_en.vtt 4.13KB
010 The Multiplication Law.mp4 19.80MB
010 Types of Machine Learning_en.vtt 9.23KB
010 Types of Machine Learning.mp4 61.78MB
010 What is the OLS_en.vtt 3.32KB
010 What is the OLS.mp4 22.44MB
011 0.TensorFlow-MNIST-take-note-of-time-Solution.ipynb 14.00KB
011 1.02.Multiple-linear-regression.csv 1.07KB
011 1.03.Dummies.csv 1.19KB
011 1.TensorFlow-MNIST-Width-Solution.ipynb 14.84KB
011 1.TensorFlow-MNIST-Width-Solution.ipynb 14.01KB
011 2.7.Mean-median-and-mode-lesson.xlsx 10.49KB
011 2.TensorFlow-MNIST-Depth-Solution.ipynb 15.31KB
011 2.TensorFlow-MNIST-Depth-Solution.ipynb 14.87KB
011 3.12.Example.csv 283B
011 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-lesson.xlsx 9.83KB
011 3.TensorFlow-MNIST-Width-and-Depth-Solution.ipynb 15.30KB
011 3.TensorFlow-MNIST-Width-and-Depth-Solution.ipynb 16.81KB
011 4.7.Test-for-the-mean.Dependent-samples-exercise.xlsx 12.80KB
011 4.7.Test-for-the-mean.Dependent-samples-exercise-solution.xlsx 14.40KB
011 4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb 15.11KB
011 4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb 14.35KB
011 5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb 14.74KB
011 5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb 13.93KB
011 6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb 15.12KB
011 6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb 14.26KB
011 7.TensorFlow-MNIST-Batch-size-Part-2-Solution.ipynb 15.18KB
011 7.TensorFlow-MNIST-Batch-size-Part-2-Solution.ipynb 14.16KB
011 8.TensorFlow-MNIST-Learning-rate-Part-1-Solution.ipynb 20.58KB
011 8.TensorFlow-MNIST-Learning-rate-Part-1-Solution.ipynb 14.07KB
011 9.TensorFlow-MNIST-Learning-rate-Part-2-Solution.ipynb 15.80KB
011 9.TensorFlow-MNIST-Learning-rate-Part-2-Solution.ipynb 15.21KB
011 Additional-Exercises-Combinatorics.pdf 106.58KB
011 Additional-Exercises-Combinatorics-Solutions.pdf 245.67KB
011 A Note on Calculation of P-values with sklearn.html 370B
011 A Practical Example of Combinatorics_en.vtt 12.46KB
011 A Practical Example of Combinatorics.mp4 42.24MB
011 Audiobooks-data.csv 710.77KB
011 Backward Elimination or How to Simplify Your Model_en.vtt 4.58KB
011 Backward Elimination or How to Simplify Your Model.mp4 31.96MB
011 Bank-data.csv 19.55KB
011 Bayes' Law_en.vtt 6.66KB
011 Bayes' Law.mp4 20.94MB
011 Binary Predictors in a Logistic Regression - Exercise.html 87B
011 Binary-Predictors-in-a-Logistic-Regression-Exercise.ipynb 2.54KB
011 Binary-Predictors-in-a-Logistic-Regression-Solution.ipynb 4.51KB
011 Business Case A Comment on the Homework_en.vtt 4.64KB
011 Business Case A Comment on the Homework.mp4 19.64MB
011 Business Case Testing the Model_en.vtt 1.91KB
011 Business Case Testing the Model.mp4 8.19MB
011 Confidence intervals. Two means. Independent Samples (Part 1)_en.vtt 5.38KB
011 Confidence intervals. Two means. Independent Samples (Part 1).mp4 12.00MB
011 Continuous Distributions The Students' T Distribution_en.vtt 2.66KB
011 Continuous Distributions The Students' T Distribution.mp4 9.10MB
011 Dealing with Categorical Data - Dummy Variables_en.vtt 7.20KB
011 Dealing with Categorical Data - Dummy Variables.mp4 35.09MB
011 Dummy-Variables.ipynb 4.62KB
011 Dummy-variables-with-comments.ipynb 7.09KB
011 GD-function-example.xlsx 42.33KB
011 Logistic-Regression-prior-to-Backward-Elimination.url 189B
011 Market-segmentation-example.ipynb 3.80KB
011 Market-segmentation-example-with-comments.ipynb 5.90KB
011 Market Segmentation with Cluster Analysis (Part 1)_en.vtt 6.41KB
011 Market Segmentation with Cluster Analysis (Part 1).mp4 21.15MB
011 Mean, median and mode_en.vtt 5.21KB
011 Mean, median and mode.mp4 17.53MB
011 MNIST - Exercises.html 1.98KB
011 MNIST Solutions.html 2.22KB
011 Obtaining Dummies from a Single Feature_en.vtt 9.05KB
011 Obtaining Dummies from a Single Feature.mp4 63.77MB
011 Optimization Algorithm 1-Parameter Gradient Descent_en.vtt 7.70KB
011 Optimization Algorithm 1-Parameter Gradient Descent.mp4 22.70MB
011 pandas DataFrames - Indexing with .iloc[]_en.vtt 7.09KB
011 pandas DataFrames - Indexing with .iloc[].mp4 23.54MB
011 Real Life Examples of Machine Learning (ML)_en.vtt 2.60KB
011 Real Life Examples of Machine Learning (ML).mp4 22.44MB
011 R-Squared_en.vtt 5.93KB
011 R-Squared.mp4 10.79MB
011 sklearn-How-to-properly-include-p-values.ipynb 12.71KB
011 TensorFlow-Audiobooks-Machine-learning-Homework.ipynb 14.40KB
011 TensorFlow-Audiobooks-Machine-Learning-with-comments.ipynb 11.95KB
011 TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb 11.19KB
011 TensorFlow-MNIST-All-Exercises.ipynb 16.65KB
011 TensorFlow-MNIST-around-98-percent-accuracy.ipynb 15.02KB
011 TensorFlow-MNIST-around-98-percent-accuracy.ipynb 17.66KB
011 Test for the Mean. Dependent Samples Exercise.html 81B
011 Why is Linear Algebra Useful_en.vtt 10.91KB
011 Why is Linear Algebra Useful.mp4 86.18MB
012 1.02.Multiple-linear-regression.csv 1.07KB
012 2.7.Mean-median-and-mode-exercise.xlsx 10.87KB
012 2.7.Mean-median-and-mode-exercise-solution.xlsx 11.35KB
012 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-exercise.xlsx 9.83KB
012 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-exercise-solution.xlsx 10.12KB
012 4.8.Test-for-the-mean.Independent-samples-Part-1-lesson.xlsx 9.63KB
012 Accuracy.ipynb 3.63KB
012 Accuracy-with-comments.ipynb 11.67KB
012 A Practical Example of Bayesian Inference_en.vtt 17.39KB
012 A Practical Example of Bayesian Inference.mp4 125.49MB
012 Audiobooks-data.csv 710.77KB
012 Bayesian-Homework.pdf 27.26KB
012 Bayesian-Homework-Solutions.pdf 30.35KB
012 Business Case Final Exercise.html 433B
012 Business Case Final Exercise.html 441B
012 Calculating the Accuracy of the Model_en.vtt 3.86KB
012 Calculating the Accuracy of the Model.mp4 20.28MB
012 CDS-2017-2018-Hamilton.pdf 845.31KB
012 Confidence intervals. Two means. Independent Samples (Part 1). Exercise.html 81B
012 Continuous Distributions The Chi-Squared Distribution_en.vtt 2.56KB
012 Continuous Distributions The Chi-Squared Distribution.mp4 10.95MB
012 Creating a Summary Table with P-values_en.vtt 2.65KB
012 Creating a Summary Table with P-values.mp4 6.45MB
012 Dealing with Categorical Data - Dummy Variables.html 76B
012 EXERCISE - Obtaining Dummies from a Single Feature.html 123B
012 Lending-company.csv 112.43KB
012 Location.csv 13.49KB
012 Market-segmentation-example-Part2.ipynb 4.68KB
012 Market-segmentation-example-Part2-with-comments.ipynb 6.81KB
012 Market Segmentation with Cluster Analysis (Part 2)_en.vtt 8.05KB
012 Market Segmentation with Cluster Analysis (Part 2).mp4 34.08MB
012 Mean, Median and Mode Exercise.html 81B
012 MNIST Testing the Model_en.vtt 5.30KB
012 MNIST Testing the Model.mp4 22.64MB
012 Multiple-Linear-Regression-with-Dummies-Exercise.ipynb 3.01KB
012 Multiple-Linear-Regression-with-Dummies-Exercise-Solution.ipynb 18.00KB
012 Optimization Algorithm n-Parameter Gradient Descent_en.vtt 6.78KB
012 Optimization Algorithm n-Parameter Gradient Descent.mp4 16.35MB
012 pandas DataFrames - Indexing with .loc[]_en.vtt 4.81KB
012 pandas DataFrames - Indexing with .loc[].mp4 20.72MB
012 pandas-Fundamentals-Exercises.ipynb 30.83KB
012 pandas-Fundamentals-Lectures.ipynb 21.31KB
012 pandas-Fundamentals-Solutions.ipynb 118.33KB
012 real-estate-price-size-year-view.csv 3.39KB
012 Region.csv 10.22KB
012 Sales-products.csv 152.28KB
012 sklearn-Multiple-Linear-Regression-Summary-Table.ipynb 13.71KB
012 sklearn-Multiple-Linear-Regression-Summary-Table-with-comments.ipynb 16.63KB
012 TensorFlow-Audiobooks-Machine-learning-Homework.ipynb 14.40KB
012 TensorFlow-Audiobooks-Machine-Learning-with-comments.ipynb 11.95KB
012 TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb 11.19KB
012 TensorFlow-MNIST-complete.ipynb 6.78KB
012 TensorFlow-MNIST-complete-with-comments.ipynb 14.51KB
012 Test for the mean. Independent Samples (Part 1)_en.vtt 4.87KB
012 Test for the mean. Independent Samples (Part 1).mp4 15.43MB
012 Testing the Model We Created_en.vtt 5.72KB
012 Testing the Model We Created.mp4 31.63MB
013 2.8.Skewness-lesson.xlsx 34.63KB
013 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-lesson.xlsx 9.52KB
013 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise.xlsx 10.77KB
013 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise-solution.xlsx 11.25KB
013 Bank-data.csv 19.55KB
013 Calculating the Accuracy of the Model.html 87B
013 Calculating-the-Accuracy-of-the-Model-Exercise.ipynb 5.39KB
013 Calculating-the-Accuracy-of-the-Model-Solution.ipynb 81.21KB
013 Confidence intervals. Two means. Independent Samples (Part 2)_en.vtt 4.23KB
013 Confidence intervals. Two means. Independent Samples (Part 2).mp4 13.05MB
013 Continuous Distributions The Exponential Distribution_en.vtt 3.71KB
013 Continuous Distributions The Exponential Distribution.mp4 15.76MB
013 How is Clustering Useful_en.vtt 5.75KB
013 How is Clustering Useful.mp4 36.49MB
013 Making-predictions.ipynb 5.77KB
013 Making-predictions-with-comments.ipynb 9.41KB
013 Making Predictions with the Linear Regression_en.vtt 3.98KB
013 Making Predictions with the Linear Regression.mp4 16.36MB
013 Multiple Linear Regression - Exercise.html 76B
013 real-estate-price-size-year.csv 2.35KB
013 Saving the Model and Preparing it for Deployment_en.vtt 4.96KB
013 Saving the Model and Preparing it for Deployment.mp4 25.52MB
013 Skewness_en.vtt 3.21KB
013 Skewness.mp4 9.92MB
013 sklearn-Multiple-Linear-Regression-Exercise.ipynb 5.67KB
013 sklearn-Multiple-Linear-Regression-Exercise-Solution.ipynb 15.44KB
013 SOLUTION - Obtaining Dummies from a Single Feature.html 117B
013 Test for the mean. Independent Samples (Part 1). Exercise.html 81B
014 1.02.Multiple-linear-regression.csv 1.07KB
014 2.8.Skewness-exercise.xlsx 9.49KB
014 2.8.Skewness-exercise-solution.xlsx 19.78KB
014 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-exercise.xlsx 9.17KB
014 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-exercise-solution.xlsx 9.79KB
014 4.9.Test-for-the-mean.Independent-samples-Part-2-lesson.xlsx 9.31KB
014 ARTICLE - A Note on 'pickling'.html 2.11KB
014 Confidence intervals. Two means. Independent Samples (Part 2). Exercise.html 81B
014 Continuous Distributions The Logistic Distribution_en.vtt 4.73KB
014 Continuous Distributions The Logistic Distribution.mp4 15.95MB
014 Dropping a Dummy Variable from the Data Set.html 2.31KB
014 EXERCISE Species Segmentation with Cluster Analysis (Part 1).html 87B
014 Feature Scaling (Standardization)_en.vtt 6.85KB
014 Feature Scaling (Standardization).mp4 20.37MB
014 iris-dataset.csv 2.40KB
014 Skewness Exercise.html 81B
014 SKLEAR-1.IPY 12.87KB
014 sklearn-Feature-Selection-through-Feature-Scaling-Standardization-Part-1.ipynb 11.73KB
014 Species-Segmentation-with-Cluster-Analysis-Part-1-Exercise.ipynb 4.46KB
014 Species-Segmentation-with-Cluster-Analysis-Part-1-Solution.ipynb 7.35KB
014 Test for the mean. Independent Samples (Part 2)_en.vtt 4.79KB
014 Test for the mean. Independent Samples (Part 2).mp4 24.47MB
014 Underfitting and Overfitting_en.vtt 4.31KB
014 Underfitting and Overfitting.mp4 7.25MB
015 1.02.Multiple-linear-regression.csv 1.07KB
015 2.03.Test-dataset.csv 322B
015 2.9.Variance-lesson.xlsx 10.08KB
015 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2.xlsx 10.54KB
015 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2-solution.xlsx 11.39KB
015 A Practical Example of Probability Distributions_en.vtt 17.79KB
015 A Practical Example of Probability Distributions.mp4 138.31MB
015 Confidence intervals. Two means. Independent Samples (Part 3)_en.vtt 1.71KB
015 Confidence intervals. Two means. Independent Samples (Part 3).mp4 6.82MB
015 Customers-Membership.xlsx 9.69KB
015 Customers-Membership-post.xlsx 15.62KB
015 Daily-Views.xlsx 9.53KB
015 Daily-Views-post.xlsx 20.21KB
015 EXERCISE - Saving the Model (and Scaler).html 284B
015 EXERCISE Species Segmentation with Cluster Analysis (Part 2).html 87B
015 Feature Selection through Standardization of Weights_en.vtt 6.58KB
015 Feature Selection through Standardization of Weights.mp4 27.16MB
015 FIFA19.csv 8.64MB
015 FIFA19-post.csv 8.64MB
015 iris-dataset.csv 2.40KB
015 iris-with-answers.csv 3.63KB
015 Logistic-Regression.url 159B
015 Logistic-Regression-with-Comments.url 173B
015 More on Dummy Variables A Statistical Perspective_en.vtt 1.53KB
015 More on Dummy Variables A Statistical Perspective.mp4 5.82MB
015 SKLEAR-1.IPY 16.79KB
015 sklearn-Feature-Selection-through-Feature-Scaling-Standardization-Part-2.ipynb 14.89KB
015 Species-Segmentation-with-Cluster-Analysis-Part-2-Exercise.ipynb 10.74KB
015 Species-Segmentation-with-Cluster-Analysis-Part-2-Solution.ipynb 15.30KB
015 Test for the mean. Independent Samples (Part 2). Exercise.html 81B
015 Testing the Model_en.vtt 5.67KB
015 Testing-the-model.ipynb 5.77KB
015 Testing the Model.mp4 21.60MB
015 Testing-the-model-with-comments.ipynb 7.56KB
015 Variance_en.vtt 6.91KB
015 Variance.mp4 20.20MB
016 1.02.Multiple-linear-regression.csv 1.07KB
016 2.9.Variance-exercise.xlsx 10.83KB
016 2.9.Variance-exercise-solution.xlsx 11.05KB
016 Bank-data.csv 19.55KB
016 Bank-data-testing.csv 8.30KB
016 Classifying the Various Reasons for Absence_en.vtt 8.84KB
016 Classifying the Various Reasons for Absence.mp4 51.32MB
016 Predicting with the Standardized Coefficients_en.vtt 5.05KB
016 Predicting with the Standardized Coefficients.mp4 18.34MB
016 Preparing the Deployment of the Model through a Module_en.vtt 4.84KB
016 Preparing the Deployment of the Model through a Module.mp4 28.57MB
016 sklearn-Making-Predictions-with-the-Standardized-Coefficients.ipynb 29.75KB
016 sklearn-Making-Predictions-with-the-Standardized-Coefficients-with-comments.ipynb 22.03KB
016 Testing the Model - Exercise.html 87B
016 Testing-the-Model-Exercise.ipynb 6.79KB
016 Testing-the-Model-Solution.ipynb 111.10KB
016 Variance Exercise.html 522B
017 2.10.Standard-deviation-and-coefficient-of-variation-lesson.xlsx 10.97KB
017 Feature Scaling (Standardization) - Exercise.html 76B
017 real-estate-price-size-year.csv 2.35KB
017 sklearn-Feature-Scaling-Exercise.ipynb 6.07KB
017 sklearn-Feature-Scaling-Exercise-Solution.ipynb 16.28KB
017 Standard Deviation and Coefficient of Variation_en.vtt 5.81KB
017 Standard Deviation and Coefficient of Variation.mp4 20.14MB
017 Using .concat() in Python_en.vtt 4.55KB
017 Using .concat() in Python.mp4 19.77MB
018 2.10.Standard-deviation-and-coefficient-of-variation-exercise.xlsx 11.61KB
018 2.10.Standard-deviation-and-coefficient-of-variation-exercise-solution.xlsx 12.60KB
018 EXERCISE - Using .concat() in Python.html 189B
018 Standard Deviation and Coefficient of Variation Exercise.html 81B
018 Underfitting and Overfitting_en.vtt 3.04KB
018 Underfitting and Overfitting.mp4 5.69MB
019 2.11.Covariance-lesson.xlsx 24.92KB
019 Covariance_en.vtt 4.35KB
019 Covariance.mp4 18.41MB
019 sklearn-Train-Test-Split.ipynb 7.23KB
019 sklearn-Train-Test-Split-with-comments.ipynb 9.05KB
019 SOLUTION - Using .concat() in Python.html 143B
019 Train - Test Split Explained_en.vtt 8.55KB
019 Train - Test Split Explained.mp4 35.57MB
020 2.11.Covariance-exercise.xlsx 20.23KB
020 2.11.Covariance-exercise-solution.xlsx 29.51KB
020 Covariance Exercise.html 81B
020 Reordering Columns in a Pandas DataFrame in Python_en.vtt 1.65KB
020 Reordering Columns in a Pandas DataFrame in Python.mp4 7.18MB
021 Correlation Coefficient_en.vtt 4.18KB
021 Correlation Coefficient.mp4 19.38MB
021 EXERCISE - Reordering Columns in a Pandas DataFrame in Python.html 161B
022 2.12.Correlation-exercise.xlsx 29.30KB
022 2.12.Correlation-exercise-solution.xlsx 29.48KB
022 Correlation Coefficient Exercise.html 81B
022 SOLUTION - Reordering Columns in a Pandas DataFrame in Python.html 478B
023 Absenteeism-Exercise-Preprocessing-df-reason-mod.ipynb 4.82KB
023 Creating Checkpoints while Coding in Jupyter_en.vtt 3.26KB
023 Creating Checkpoints while Coding in Jupyter.mp4 17.34MB
024 EXERCISE - Creating Checkpoints while Coding in Jupyter.html 137B
025 SOLUTION - Creating Checkpoints while Coding in Jupyter.html 118B
026 Analyzing the Dates from the Initial Data Set_en.vtt 7.55KB
026 Analyzing the Dates from the Initial Data Set.mp4 40.13MB
027 Extracting the Month Value from the Date Column_en.vtt 6.93KB
027 Extracting the Month Value from the Date Column.mp4 38.91MB
028 Extracting the Day of the Week from the Date Column_en.vtt 3.87KB
028 Extracting the Day of the Week from the Date Column.mp4 9.12MB
029 Absenteeism-Exercise-Preprocessing-ChP-df-date-reason-mod.ipynb 7.33KB
029 Absenteeism-Exercise-Preprocessing-LECTURES.ipynb 7.60MB
029 Absenteeism-Exercise-Removing-the-Date-Column-SOLUTION.ipynb 8.33KB
029 EXERCISE - Removing the Date Column.html 1.14KB
030 Analyzing Several Straightforward Columns for this Exercise_en.vtt 3.89KB
030 Analyzing Several Straightforward Columns for this Exercise.mp4 12.23MB
031 Working on Education, Children, and Pets_en.vtt 4.98KB
031 Working on Education, Children, and Pets.mp4 19.69MB
032 Absenteeism-Exercise-EXERCISES-and-SOLUTIONS.ipynb 4.13KB
032 Absenteeism-Exercise-Preprocessing-df-preprocessed.ipynb 8.51KB
032 Final Remarks of this Section_en.vtt 2.23KB
032 Final Remarks of this Section.mp4 17.04MB
033 A Note on Exporting Your Data as a .csv File.html 880B
code.zip 57.22MB
external-links.txt 105B
external-links.txt 134B
external-links.txt 790B
Distribution statistics by country
Russia (RU) 2
China (CN) 1
Total 3
IP List List of IP addresses which were distributed this torrent