Torrent Info
Title [OneHack.Us] Coursera - Practical Deep Learning With Python 2025
Category
Size 2.66GB

Files List
Please note that this page does not hosts or makes available any of the listed filenames. You cannot download any of those files from here.
01. Support - Onehack.Us.txt 94B
01-basics_of_lstm.mp4 28.36MB
01-classification_and_object_detection.mp4 29.81MB
01-course_summary_for_practical_deep_learning_with_python.mp4 23.39MB
01-fast_rcnn_limitations.mp4 24.90MB
01-improving_a_model.mp4 32.93MB
01-limitations_of_mlp.mp4 27.91MB
01-limitations_of_single_layered_perceptron.mp4 11.05MB
01-machine_learning_vs_deep_learning.mp4 34.27MB
01-rnn_fundamentals.mp4 20.50MB
01-summary_of_cnn_in_deep_learning.mp4 13.32MB
01-summary_of_deep_learning_components.mp4 36.33MB
01-summary_of_deep_learning_with_rnn_and_lstm_with_model_optimization.mp4 32.88MB
01-welcome_to_practical_deep_learning_with_python_instructions.html 7.21KB
02-advent_of_faster_r_cnn.mp4 25.24MB
02-course_introduction.mp4 27.98MB
02-introduction_to_rcnn.mp4 31.51MB
02-lstm_structure.mp4 24.24MB
02-mlp_limitations_resolving_the_issue_with_cnn.mp4 21.51MB
02-model_optimization.mp4 21.84MB
02-multi_layered_perceptron.mp4 12.04MB
02-practice_project_mnist_fashion_dataset_analysis_instructions.html 64.00KB
02-rnn_architecture.mp4 22.59MB
02-summary_of_faster_rcnn.mp4 22.48MB
02-what_is_deep_learning.mp4 20.31MB
03-environment_configuration.mp4 21.82MB
03-forget_gate_and_input_gate.mp4 20.87MB
03-neural_networks.mp4 42.16MB
03-r_cnn_bounding_box_regression.mp4 12.46MB
03-rnn_architecture_workflow.mp4 28.92MB
03-tensorflow_hub.mp4 20.32MB
03-using_adam_optimizer.mp4 31.96MB
03-visual_cortex_and_cnn.mp4 31.61MB
03-what_is_backpropagation.mp4 10.26MB
04-artificial_neural_network_ann.mp4 24.40MB
04-backpropagation.mp4 17.00MB
04-convolutional_layer.mp4 31.99MB
04-demonstration object detection with faster rcnn pretrained model setup mp4 74.66MB
04-implementing_rnn.mp4 28.87MB
04-model_compilation.mp4 14.37MB
04-output_gate.mp4 14.09MB
04-pre_trained_model.mp4 29.04MB
04-system requirements and pre requisite for studying deep learning instructions html 4.51KB
05-ann_types_and_applications.mp4 17.78MB
05-demonstration_building_a_simple_neural_network.mp4 40.88MB
05-demonstration_object_detection_with_faster_rcnn_building_the_model.mp4 82.91MB
05-demonstration_rnn_dataset_preparation.mp4 62.04MB
05-fast_regional_cnn.mp4 32.10MB
05-importance_of_lstm_architecture.mp4 23.04MB
05-model_compilation_with_popular_frameworks.mp4 27.34MB
05-working_of_convolutional_layer.mp4 31.99MB
06-demonstration_creating_base_variables_and_loading_the_model.mp4 37.00MB
06-demonstration_load_and_preprocess_the_data.mp4 42.04MB
06-demonstration_model_compilation_preparing_the_dataset.mp4 55.53MB
06-demonstration_rnn_building_the_model.mp4 62.38MB
06-demonstration_understanding_how_backpropagation_has_worked.mp4 40.45MB
06-faster_r_cnn_architecture_instructions.html 5.92KB
06-forward_propagation.mp4 20.61MB
06-types_of_lstm.mp4 19.16MB
07-demonstration_building_and_compiling_model.mp4 46.26MB
07-demonstration_designing_the_model.mp4 52.84MB
07-demonstration_handwritten_digits_classification_data_preprocessing.mp4 41.79MB
07-demonstration_next_word_prediction_processing_the_corpus.mp4 50.16MB
07-demonstration_training_the_model_and_visualizing_the_predictions.mp4 53.63MB
07-perceptron.mp4 30.93MB
07-recurrent_neural_networks_rnns_in_deep_learning_instructions.html 19.64KB
08-demonstration_building_the_cnn_model.mp4 37.97MB
08-demonstration_from_rmsprop_to_adam.mp4 45.17MB
08-demonstration_handwritten_digits_classification_designing_the_model.mp4 73.22MB
08-demonstration_next_word_prediction_layers.mp4 58.93MB
08-demonstration_svm_as_a_classifier.mp4 23.40MB
08-learning_rate.mp4 29.25MB
09-demonstration_handwritten_digits_classification_optimizing_the_model.mp4 88.77MB
09-demonstration_model_accuracy.mp4 21.46MB
09-demonstration_next_word_prediction_model_compilation_and_prediction.mp4 96.56MB
09-model_optimizers_beyond_adam_instructions.html 87.35KB
09-svm_classifier_in_object_detection_instructions.html 4.26KB
09-what_is_activation_function.mp4 17.83MB
10-activation_function_and_its_types.mp4 23.41MB
10-attention_based_lstm_long_short_term_memory_instructions.html 7.41KB
10-demonstration_adding_more_layers.mp4 62.39MB
10-hebbian_learning_algorithm_instructions.html 27.28KB
11-capsule_networks_in_deep_learning_instructions.html 4.17KB
11-demonstration_building_basic_cnn_model_with_new_parameters.mp4 78.21MB
11-importance_of_epoch.mp4 24.78MB
12-demonstration_pre_trained_model.mp4 37.38MB
12-single_layer_perceptron_define_sigmoid_function.mp4 44.01MB
13-single_layer_perceptron_decision_boundary.mp4 77.15MB
13-why_convolutions_are_important_instructions.html 2.08KB
14-learning_rate_in_deep_learning_instructions.html 3.86KB
history.p 436B
next_word_model.keras 9.76MB
resources.html 65.68KB
Support - Onehack.Us.txt 94B