Please note that this page does not hosts or makes available any of the listed filenames. You
cannot download any of those files from here.
|
[FreeCoursesOnline.Me].url |
133B |
[FreeTutorials.Us].url |
119B |
[FTU Forum].url |
252B |
001. Welcome.mp4 |
10.21MB |
001. Welcome.srt |
8.83KB |
002. What is a neural network.mp4 |
9.97MB |
002. What is a neural network.srt |
9.86KB |
003. Supervised Learning with Neural Networks.mp4 |
12.90MB |
003. Supervised Learning with Neural Networks.srt |
11.90KB |
004. Why is Deep Learning taking off.mp4 |
18.64MB |
004. Why is Deep Learning taking off.srt |
17.85KB |
005. About this Course.mp4 |
4.66MB |
005. About this Course.srt |
4.35KB |
006. Course Resources.mp4 |
2.50MB |
006. Course Resources.srt |
3.63KB |
007. Geoffrey Hinton interview.mp4 |
191.76MB |
007. Geoffrey Hinton interview.srt |
57.50KB |
008. Binary Classification.mp4 |
15.24MB |
008. Binary Classification.srt |
10.57KB |
009. Logistic Regression.mp4 |
8.48MB |
009. Logistic Regression.srt |
7.56KB |
010. Logistic Regression Cost Function.mp4 |
13.19MB |
010. Logistic Regression Cost Function.srt |
11.00KB |
011. Gradient Descent.mp4 |
17.05MB |
011. Gradient Descent.srt |
15.36KB |
012. Derivatives.mp4 |
13.41MB |
012. Derivatives.srt |
12.01KB |
013. More Derivative Examples.mp4 |
16.76MB |
013. More Derivative Examples.srt |
12.87KB |
014. Computation graph.mp4 |
5.66MB |
014. Computation graph.srt |
4.29KB |
015. Derivatives with a Computation Graph.mp4 |
21.69MB |
015. Derivatives with a Computation Graph.srt |
16.31KB |
016. Logistic Regression Gradient Descent.mp4 |
11.15MB |
016. Logistic Regression Gradient Descent.srt |
8.97KB |
017. Gradient Descent on m Examples.mp4 |
12.17MB |
017. Gradient Descent on m Examples.srt |
12.29KB |
018. Vectorization.mp4 |
12.60MB |
018. Vectorization.srt |
9.62KB |
019. More Vectorization Examples.mp4 |
10.34MB |
019. More Vectorization Examples.srt |
7.39KB |
020. Vectorizing Logistic Regression.mp4 |
11.46MB |
020. Vectorizing Logistic Regression.srt |
9.59KB |
021. Vectorizing Logistic Regression's Gradient Output.mp4 |
15.55MB |
021. Vectorizing Logistic Regression's Gradient Output.srt |
10.74KB |
022. Broadcasting in Python.mp4 |
16.17MB |
022. Broadcasting in Python.srt |
14.00KB |
023. A note on python numpy vectors.mp4 |
12.36MB |
023. A note on python numpy vectors.srt |
9.04KB |
024. Quick tour of Jupyter iPython Notebooks.mp4 |
9.23MB |
024. Quick tour of Jupyter iPython Notebooks.srt |
5.78KB |
025. Explanation of logistic regression cost function (optional).mp4 |
10.47MB |
025. Explanation of logistic regression cost function (optional).srt |
8.50KB |
026. Pieter Abbeel interview.mp4 |
80.04MB |
026. Pieter Abbeel interview.srt |
26.86KB |
027. Neural Networks Overview.mp4 |
7.23MB |
027. Neural Networks Overview.srt |
6.61KB |
028. Neural Network Representation.mp4 |
8.26MB |
028. Neural Network Representation.srt |
8.09KB |
029. Computing a Neural Network's Output.mp4 |
16.32MB |
029. Computing a Neural Network's Output.srt |
16.52KB |
030. Vectorizing across multiple examples.mp4 |
13.86MB |
030. Vectorizing across multiple examples.srt |
10.06KB |
031. Explanation for Vectorized Implementation.mp4 |
11.97MB |
031. Explanation for Vectorized Implementation.srt |
8.67KB |
032. Activation functions.mp4 |
19.93MB |
032. Activation functions.srt |
17.03KB |
033. Why do you need non-linear activation functions.mp4 |
9.29MB |
033. Why do you need non-linear activation functions.srt |
7.74KB |
034. Derivatives of activation functions.mp4 |
11.38MB |
034. Derivatives of activation functions.srt |
11.29KB |
035. Gradient descent for Neural Networks.mp4 |
16.01MB |
035. Gradient descent for Neural Networks.srt |
13.44KB |
036. Backpropagation intuition (optional).mp4 |
26.04MB |
036. Backpropagation intuition (optional).srt |
17.72KB |
037. Random Initialization.mp4 |
11.96MB |
037. Random Initialization.srt |
10.39KB |
038. Ian Goodfellow interview.mp4 |
54.53MB |
038. Ian Goodfellow interview.srt |
23.08KB |
039. Deep L-layer neural network.mp4 |
10.35MB |
039. Deep L-layer neural network.srt |
7.40KB |
040. Forward Propagation in a Deep Network.mp4 |
13.02MB |
040. Forward Propagation in a Deep Network.srt |
9.89KB |
041. Getting your matrix dimensions right.mp4 |
17.35MB |
041. Getting your matrix dimensions right.srt |
11.43KB |
042. Why deep representations.mp4 |
17.59MB |
042. Why deep representations.srt |
14.53KB |
043. Building blocks of deep neural networks.mp4 |
12.81MB |
043. Building blocks of deep neural networks.srt |
10.91KB |
044. Forward and Backward Propagation.mp4 |
19.80MB |
044. Forward and Backward Propagation.srt |
13.43KB |
045. Parameters vs Hyperparameters.mp4 |
10.21MB |
045. Parameters vs Hyperparameters.srt |
13.00KB |
046. What does this have to do with the brain.mp4 |
6.00MB |
046. What does this have to do with the brain.srt |
5.64KB |