Torrent Info
Title [ DevCourseWeb.com ] Udemy - Feature Engineering for Machine Learning by Soledad Galli
Category
Size 3.03GB

Files List
Please note that this page does not hosts or makes available any of the listed filenames. You cannot download any of those files from here.
001 Categorical encoding Introduction_en.srt 8.27KB
001 Categorical encoding Introduction.mp4 34.02MB
001 Course curriculum overview_en.srt 6.95KB
001 Course curriculum overview.mp4 49.62MB
001 Discretisation Introduction_en.srt 3.45KB
001 Discretisation Introduction.mp4 15.45MB
001 Engineering datetime variables_en.srt 5.55KB
001 Engineering datetime variables.mp4 13.42MB
001 Engineering mixed variables_en.srt 4.02KB
001 Engineering mixed variables.mp4 11.72MB
001 Feature scaling Introduction_en.srt 4.71KB
001 Feature scaling Introduction.mp4 9.15MB
001 Introduction to missing data imputation_en.srt 5.21KB
001 Introduction to missing data imputation.mp4 17.87MB
001 Multivariate imputation_en.srt 3.87KB
001 Multivariate imputation.mp4 7.48MB
001 Outlier Engineering Intro_en.srt 8.00KB
001 Outlier Engineering Intro.mp4 32.21MB
001 Putting it all together_en.srt 8.89KB
001 Putting it all together.mp4 32.96MB
001 Survey.html 947B
001 Variable characteristics_en.srt 3.55KB
001 Variable characteristics.mp4 7.21MB
001 Variables Intro_en.srt 3.50KB
001 Variables Intro.mp4 5.38MB
001 Variable Transformation Introduction_en.srt 5.59KB
001 Variable Transformation Introduction.mp4 9.28MB
002 Complete Case Analysis_en.srt 8.63KB
002 Complete Case Analysis.mp4 39.23MB
002 Congratulations.html 593B
002 Course requirements_en.srt 3.45KB
002 Course requirements.mp4 20.53MB
002 Engineering dates Demo_en.srt 9.47KB
002 Engineering dates Demo.mp4 39.65MB
002 Engineering mixed variables Demo_en.srt 7.70KB
002 Engineering mixed variables Demo.mp4 39.48MB
002 Equal-width discretisation_en.srt 4.50KB
002 Equal-width discretisation.mp4 9.05MB
002 Feature Engineering Pipeline_en.srt 10.73KB
002 Feature Engineering Pipeline.mp4 22.04MB
002 KNN imputation_en.srt 4.92KB
002 KNN imputation.mp4 9.55MB
002 Missing data_en.srt 8.98KB
002 Missing data.mp4 21.49MB
002 Numerical variables_en.srt 7.03KB
002 Numerical variables.mp4 14.77MB
002 One hot encoding_en.srt 7.23KB
002 One hot encoding.mp4 13.69MB
002 Outlier trimming_en.srt 8.45KB
002 Outlier trimming.mp4 37.55MB
002 Standardisation_en.srt 6.71KB
002 Standardisation.mp4 11.64MB
002 Variable Transformation with Numpy and SciPy_en.srt 8.72KB
002 Variable Transformation with Numpy and SciPy.mp4 42.45MB
003 Bonus lecture.html 625B
003 Cardinality - categorical variables_en.srt 6.38KB
003 Cardinality - categorical variables.mp4 22.46MB
003 Categorical variables_en.srt 4.59KB
003 Categorical variables.mp4 7.55MB
003 Classification pipeline_en.srt 16.56KB
003 Classification pipeline.mp4 76.61MB
003 Engineering time variables and different timezones_en.srt 5.73KB
003 Engineering time variables and different timezones.mp4 23.89MB
003 How to approach this course.html 1.69KB
003 Important Feature-engine v 1.0.0.html 739B
003 Important Feature-engine version 1.0.0.html 1009B
003 KNN imputation - Demo_en.srt 8.51KB
003 KNN imputation - Demo.mp4 18.96MB
003 Mean or median imputation_en.srt 10.30KB
003 Mean or median imputation.mp4 25.93MB
003 Outlier capping with IQR_en.srt 7.18KB
003 Outlier capping with IQR.mp4 41.03MB
003 Standardisation Demo_en.srt 5.67KB
003 Standardisation Demo.mp4 40.30MB
003 Variable Transformation with Scikit-learn_en.srt 8.01KB
003 Variable Transformation with Scikit-learn.mp4 44.49MB
004 Arbitrary value imputation_en.srt 8.78KB
004 Arbitrary value imputation.mp4 30.66MB
004 Date and time variables_en.srt 2.46KB
004 Date and time variables.mp4 4.16MB
004 Equal-width discretisation Demo_en.srt 12.75KB
004 Equal-width discretisation Demo.mp4 68.19MB
004 Mean normalisation_en.srt 5.04KB
004 Mean normalisation.mp4 8.67MB
004 MICE_en.srt 8.50KB
004 MICE.mp4 15.42MB
004 One-hot-encoding Demo_en.srt 18.05KB
004 One-hot-encoding Demo.mp4 85.90MB
004 Outlier capping with mean and std_en.srt 5.17KB
004 Outlier capping with mean and std.mp4 30.24MB
004 Rare labels - categorical variables_en.srt 6.23KB
004 Rare labels - categorical variables.mp4 14.53MB
004 Regression pipeline_en.srt 17.46KB
004 Regression pipeline.mp4 101.08MB
004 Setting up your computer.html 3.18KB
004 Variable transformation with Feature-engine_en.srt 4.37KB
004 Variable transformation with Feature-engine.mp4 21.61MB
005 Course material_en.srt 2.28KB
005 Course material.mp4 5.81MB
005 End of distribution imputation_en.srt 6.13KB
005 End of distribution imputation.mp4 18.23MB
005 Equal-frequency discretisation_en.srt 4.88KB
005 Equal-frequency discretisation.mp4 9.38MB
005 Feature engineering pipeline with cross-validation_en.srt 8.73KB
005 Feature engineering pipeline with cross-validation.mp4 54.13MB
005 Linear models assumptions_en.srt 10.90KB
005 Linear models assumptions.mp4 41.46MB
005 Mean normalisation Demo_en.srt 6.52KB
005 Mean normalisation Demo.mp4 43.15MB
005 missForest_en.srt 1.26KB
005 missForest.mp4 2.43MB
005 Mixed variables_en.srt 2.83KB
005 Mixed variables.mp4 4.56MB
005 One hot encoding of top categories_en.srt 3.57KB
005 One hot encoding of top categories.mp4 9.10MB
005 Outlier capping with quantiles_en.srt 3.83KB
005 Outlier capping with quantiles.mp4 10.44MB
005 sample-s2.csv 9.94MB
006 Arbitrary capping_en.srt 3.99KB
006 Arbitrary capping.mp4 15.08MB
006 Download Jupyter notebooks.html 1019B
006 Equal-frequency discretisation Demo_en.srt 7.99KB
006 Equal-frequency discretisation Demo.mp4 40.99MB
006 Frequent category imputation_en.srt 8.60KB
006 Frequent category imputation.mp4 38.09MB
006 Linear model assumptions - additional reading resources (optional).html 1.49KB
006 MICE and missForest - Demo_en.srt 5.17KB
006 MICE and missForest - Demo.mp4 27.70MB
006 More examples.html 308B
006 One hot encoding of top categories Demo_en.srt 9.90KB
006 One hot encoding of top categories Demo.mp4 53.90MB
006 Scaling to minimum and maximum values_en.srt 3.85KB
006 Scaling to minimum and maximum values.mp4 7.48MB
007 Additional reading resources (Optional).html 1.15KB
007 Download datasets.html 3.46KB
007 Important Feature-engine v1.0.0.html 262B
007 K-means discretisation_en.srt 4.69KB
007 K-means discretisation.mp4 8.42MB
007 MinMaxScaling Demo_en.srt 3.54KB
007 MinMaxScaling Demo.mp4 24.91MB
007 Missing category imputation_en.srt 5.02KB
007 Missing category imputation.mp4 23.41MB
007 Ordinal encoding Label encoding_en.srt 2.08KB
007 Ordinal encoding Label encoding.mp4 4.87MB
007 Variable distribution_en.srt 6.46KB
007 Variable distribution.mp4 14.93MB
008 Additional reading resources.html 526B
008 Download presentations.html 286B
008 K-means discretisation Demo_en.srt 3.19KB
008 K-means discretisation Demo.mp4 16.24MB
008 Maximum absolute scaling_en.srt 3.36KB
008 Maximum absolute scaling.mp4 6.53MB
008 Ordinal encoding Demo_en.srt 9.89KB
008 Ordinal encoding Demo.mp4 49.50MB
008 Outliers_en.srt 10.67KB
008 Outliers.mp4 18.65MB
008 Random sample imputation_en.srt 18.21KB
008 Random sample imputation.mp4 87.64MB
009 Adding a missing indicator_en.srt 6.92KB
009 Adding a missing indicator.mp4 14.68MB
009 Count or frequency encoding_en.srt 3.85KB
009 Count or frequency encoding.mp4 6.87MB
009 Discretisation plus categorical encoding_en.srt 2.95KB
009 Discretisation plus categorical encoding.mp4 5.91MB
009 MaxAbsScaling Demo_en.srt 4.57KB
009 MaxAbsScaling Demo.mp4 27.14MB
009 Moving forward_en.srt 2.48KB
009 Moving forward.mp4 3.91MB
009 Variable magnitude_en.srt 4.04KB
009 Variable magnitude.mp4 7.41MB
010 Count encoding Demo_en.srt 5.32KB
010 Count encoding Demo.mp4 16.65MB
010 Discretisation plus encoding Demo_en.srt 6.54KB
010 Discretisation plus encoding Demo.mp4 33.97MB
010 FAQ Data science, Python, datasets, presentations and more.html 1.97KB
010 Imputation with Scikit-learn_en.srt 5.12KB
010 Imputation with Scikit-learn.mp4 20.83MB
010 ML-Comparison.pdf 297.57KB
010 Scaling to median and quantiles_en.srt 3.24KB
010 Scaling to median and quantiles.mp4 6.85MB
010 Variable characteristics and machine learning models.html 402B
011 Additional reading resources.html 4.51KB
011 Discretisation with classification trees_en.srt 5.80KB
011 Discretisation with classification trees.mp4 20.37MB
011 Mean or median imputation with Scikit-learn_en.srt 6.52KB
011 Mean or median imputation with Scikit-learn.mp4 37.92MB
011 Robust Scaling Demo_en.srt 2.44KB
011 Robust Scaling Demo.mp4 15.83MB
011 Target guided ordinal encoding_en.srt 3.39KB
011 Target guided ordinal encoding.mp4 7.02MB
012 Arbitrary value imputation with Scikit-learn_en.srt 6.39KB
012 Arbitrary value imputation with Scikit-learn.mp4 36.35MB
012 Discretisation with decision trees using Scikit-learn_en.srt 13.74KB
012 Discretisation with decision trees using Scikit-learn.mp4 75.56MB
012 Scaling to vector unit length_en.srt 6.80KB
012 Scaling to vector unit length.mp4 13.07MB
012 Target guided ordinal encoding Demo_en.srt 9.77KB
012 Target guided ordinal encoding Demo.mp4 65.87MB
013 Discretisation with decision trees using Feature-engine_en.srt 4.38KB
013 Discretisation with decision trees using Feature-engine.mp4 24.84MB
013 Frequent category imputation with Scikit-learn_en.srt 6.73KB
013 Frequent category imputation with Scikit-learn.mp4 35.30MB
013 Mean encoding_en.srt 2.92KB
013 Mean encoding.mp4 5.20MB
013 Scaling to vector unit length Demo_en.srt 6.19KB
013 Scaling to vector unit length Demo.mp4 44.81MB
014 Additional reading resources.html 1.34KB
014 Domain knowledge discretisation_en.srt 4.18KB
014 Domain knowledge discretisation.mp4 18.93MB
014 Mean encoding Demo_en.srt 6.58KB
014 Mean encoding Demo.mp4 36.23MB
014 Missing category imputation with Scikit-learn_en.srt 3.56KB
014 Missing category imputation with Scikit-learn.mp4 19.97MB
015 Adding a missing indicator with Scikit-learn_en.srt 4.64KB
015 Adding a missing indicator with Scikit-learn.mp4 23.27MB
015 Additional reading resources.html 1.41KB
015 Probability ratio encoding_en.srt 7.21KB
015 Probability ratio encoding.mp4 22.57MB
016 Automatic determination of imputation method with Sklearn_en.srt 9.24KB
016 Automatic determination of imputation method with Sklearn.mp4 65.39MB
016 Weight of evidence (WoE)_en.srt 6.43KB
016 Weight of evidence (WoE).mp4 10.04MB
017 Introduction to Feature-engine_en.srt 8.34KB
017 Introduction to Feature-engine.mp4 26.89MB
017 Weight of Evidence Demo_en.srt 16.69KB
017 Weight of Evidence Demo.mp4 98.28MB
018 Comparison of categorical variable encoding_en.srt 13.36KB
018 Comparison of categorical variable encoding.mp4 76.19MB
018 Mean or median imputation with Feature-engine_en.srt 5.49KB
018 Mean or median imputation with Feature-engine.mp4 31.73MB
019 Arbitrary value imputation with Feature-engine_en.srt 3.78KB
019 Arbitrary value imputation with Feature-engine.mp4 25.11MB
019 Rare label encoding_en.srt 5.18KB
019 Rare label encoding.mp4 10.27MB
020 End of distribution imputation with Feature-engine_en.srt 5.81KB
020 End of distribution imputation with Feature-engine.mp4 26.03MB
020 Rare label encoding Demo_en.srt 12.45KB
020 Rare label encoding Demo.mp4 60.59MB
021 Binary encoding and feature hashing_en.srt 7.53KB
021 Binary encoding and feature hashing.mp4 13.80MB
021 Frequent category imputation with Feature-engine_en.srt 1.98KB
021 Frequent category imputation with Feature-engine.mp4 5.25MB
022 Missing category imputation with Feature-engine_en.srt 3.80KB
022 Missing category imputation with Feature-engine.mp4 19.81MB
022 Summary table of encoding techniques.html 312B
023 Additional reading resources.html 2.37KB
023 Random sample imputation with Feature-engine_en.srt 2.86KB
023 Random sample imputation with Feature-engine.mp4 16.88MB
024 Adding a missing indicator with Feature-engine_en.srt 4.88KB
024 Adding a missing indicator with Feature-engine.mp4 28.02MB
025 CCA with Feature-engine_en.srt 8.46KB
025 CCA with Feature-engine.mp4 37.30MB
026 NA-methods-Comparison.pdf 273.81KB
026 Overview of missing value imputation methods.html 339B
027 Conclusion when to use each missing data imputation method.html 2.69KB
Bonus Resources.txt 386B
Get Bonus Downloads Here.url 182B
loan.csv 1.02MB
sample_s2.csv 9.94MB
Distribution statistics by country
United States (US) 1
Ukraine (UA) 1
Russia (RU) 1
Turkey (TR) 1
Total 4
IP List List of IP addresses which were distributed this torrent