Please note that this page does not hosts or makes available any of the listed filenames. You
cannot download any of those files from here.
|
001 Categorical encoding Introduction_en.srt |
8.27KB |
001 Categorical encoding Introduction.mp4 |
34.02MB |
001 Course curriculum overview_en.srt |
6.95KB |
001 Course curriculum overview.mp4 |
49.62MB |
001 Discretisation Introduction_en.srt |
3.45KB |
001 Discretisation Introduction.mp4 |
15.45MB |
001 Engineering datetime variables_en.srt |
5.55KB |
001 Engineering datetime variables.mp4 |
13.42MB |
001 Engineering mixed variables_en.srt |
4.02KB |
001 Engineering mixed variables.mp4 |
11.72MB |
001 Feature scaling Introduction_en.srt |
4.71KB |
001 Feature scaling Introduction.mp4 |
9.15MB |
001 Introduction to missing data imputation_en.srt |
5.21KB |
001 Introduction to missing data imputation.mp4 |
17.87MB |
001 Multivariate imputation_en.srt |
3.87KB |
001 Multivariate imputation.mp4 |
7.48MB |
001 Outlier Engineering Intro_en.srt |
8.00KB |
001 Outlier Engineering Intro.mp4 |
32.21MB |
001 Putting it all together_en.srt |
8.89KB |
001 Putting it all together.mp4 |
32.96MB |
001 Survey.html |
947B |
001 Variable characteristics_en.srt |
3.55KB |
001 Variable characteristics.mp4 |
7.21MB |
001 Variables Intro_en.srt |
3.50KB |
001 Variables Intro.mp4 |
5.38MB |
001 Variable Transformation Introduction_en.srt |
5.59KB |
001 Variable Transformation Introduction.mp4 |
9.28MB |
002 Complete Case Analysis_en.srt |
8.63KB |
002 Complete Case Analysis.mp4 |
39.23MB |
002 Congratulations.html |
593B |
002 Course requirements_en.srt |
3.45KB |
002 Course requirements.mp4 |
20.53MB |
002 Engineering dates Demo_en.srt |
9.47KB |
002 Engineering dates Demo.mp4 |
39.65MB |
002 Engineering mixed variables Demo_en.srt |
7.70KB |
002 Engineering mixed variables Demo.mp4 |
39.48MB |
002 Equal-width discretisation_en.srt |
4.50KB |
002 Equal-width discretisation.mp4 |
9.05MB |
002 Feature Engineering Pipeline_en.srt |
10.73KB |
002 Feature Engineering Pipeline.mp4 |
22.04MB |
002 KNN imputation_en.srt |
4.92KB |
002 KNN imputation.mp4 |
9.55MB |
002 Missing data_en.srt |
8.98KB |
002 Missing data.mp4 |
21.49MB |
002 Numerical variables_en.srt |
7.03KB |
002 Numerical variables.mp4 |
14.77MB |
002 One hot encoding_en.srt |
7.23KB |
002 One hot encoding.mp4 |
13.69MB |
002 Outlier trimming_en.srt |
8.45KB |
002 Outlier trimming.mp4 |
37.55MB |
002 Standardisation_en.srt |
6.71KB |
002 Standardisation.mp4 |
11.64MB |
002 Variable Transformation with Numpy and SciPy_en.srt |
8.72KB |
002 Variable Transformation with Numpy and SciPy.mp4 |
42.45MB |
003 Bonus lecture.html |
625B |
003 Cardinality - categorical variables_en.srt |
6.38KB |
003 Cardinality - categorical variables.mp4 |
22.46MB |
003 Categorical variables_en.srt |
4.59KB |
003 Categorical variables.mp4 |
7.55MB |
003 Classification pipeline_en.srt |
16.56KB |
003 Classification pipeline.mp4 |
76.61MB |
003 Engineering time variables and different timezones_en.srt |
5.73KB |
003 Engineering time variables and different timezones.mp4 |
23.89MB |
003 How to approach this course.html |
1.69KB |
003 Important Feature-engine v 1.0.0.html |
739B |
003 Important Feature-engine version 1.0.0.html |
1009B |
003 KNN imputation - Demo_en.srt |
8.51KB |
003 KNN imputation - Demo.mp4 |
18.96MB |
003 Mean or median imputation_en.srt |
10.30KB |
003 Mean or median imputation.mp4 |
25.93MB |
003 Outlier capping with IQR_en.srt |
7.18KB |
003 Outlier capping with IQR.mp4 |
41.03MB |
003 Standardisation Demo_en.srt |
5.67KB |
003 Standardisation Demo.mp4 |
40.30MB |
003 Variable Transformation with Scikit-learn_en.srt |
8.01KB |
003 Variable Transformation with Scikit-learn.mp4 |
44.49MB |
004 Arbitrary value imputation_en.srt |
8.78KB |
004 Arbitrary value imputation.mp4 |
30.66MB |
004 Date and time variables_en.srt |
2.46KB |
004 Date and time variables.mp4 |
4.16MB |
004 Equal-width discretisation Demo_en.srt |
12.75KB |
004 Equal-width discretisation Demo.mp4 |
68.19MB |
004 Mean normalisation_en.srt |
5.04KB |
004 Mean normalisation.mp4 |
8.67MB |
004 MICE_en.srt |
8.50KB |
004 MICE.mp4 |
15.42MB |
004 One-hot-encoding Demo_en.srt |
18.05KB |
004 One-hot-encoding Demo.mp4 |
85.90MB |
004 Outlier capping with mean and std_en.srt |
5.17KB |
004 Outlier capping with mean and std.mp4 |
30.24MB |
004 Rare labels - categorical variables_en.srt |
6.23KB |
004 Rare labels - categorical variables.mp4 |
14.53MB |
004 Regression pipeline_en.srt |
17.46KB |
004 Regression pipeline.mp4 |
101.08MB |
004 Setting up your computer.html |
3.18KB |
004 Variable transformation with Feature-engine_en.srt |
4.37KB |
004 Variable transformation with Feature-engine.mp4 |
21.61MB |
005 Course material_en.srt |
2.28KB |
005 Course material.mp4 |
5.81MB |
005 End of distribution imputation_en.srt |
6.13KB |
005 End of distribution imputation.mp4 |
18.23MB |
005 Equal-frequency discretisation_en.srt |
4.88KB |
005 Equal-frequency discretisation.mp4 |
9.38MB |
005 Feature engineering pipeline with cross-validation_en.srt |
8.73KB |
005 Feature engineering pipeline with cross-validation.mp4 |
54.13MB |
005 Linear models assumptions_en.srt |
10.90KB |
005 Linear models assumptions.mp4 |
41.46MB |
005 Mean normalisation Demo_en.srt |
6.52KB |
005 Mean normalisation Demo.mp4 |
43.15MB |
005 missForest_en.srt |
1.26KB |
005 missForest.mp4 |
2.43MB |
005 Mixed variables_en.srt |
2.83KB |
005 Mixed variables.mp4 |
4.56MB |
005 One hot encoding of top categories_en.srt |
3.57KB |
005 One hot encoding of top categories.mp4 |
9.10MB |
005 Outlier capping with quantiles_en.srt |
3.83KB |
005 Outlier capping with quantiles.mp4 |
10.44MB |
005 sample-s2.csv |
9.94MB |
006 Arbitrary capping_en.srt |
3.99KB |
006 Arbitrary capping.mp4 |
15.08MB |
006 Download Jupyter notebooks.html |
1019B |
006 Equal-frequency discretisation Demo_en.srt |
7.99KB |
006 Equal-frequency discretisation Demo.mp4 |
40.99MB |
006 Frequent category imputation_en.srt |
8.60KB |
006 Frequent category imputation.mp4 |
38.09MB |
006 Linear model assumptions - additional reading resources (optional).html |
1.49KB |
006 MICE and missForest - Demo_en.srt |
5.17KB |
006 MICE and missForest - Demo.mp4 |
27.70MB |
006 More examples.html |
308B |
006 One hot encoding of top categories Demo_en.srt |
9.90KB |
006 One hot encoding of top categories Demo.mp4 |
53.90MB |
006 Scaling to minimum and maximum values_en.srt |
3.85KB |
006 Scaling to minimum and maximum values.mp4 |
7.48MB |
007 Additional reading resources (Optional).html |
1.15KB |
007 Download datasets.html |
3.46KB |
007 Important Feature-engine v1.0.0.html |
262B |
007 K-means discretisation_en.srt |
4.69KB |
007 K-means discretisation.mp4 |
8.42MB |
007 MinMaxScaling Demo_en.srt |
3.54KB |
007 MinMaxScaling Demo.mp4 |
24.91MB |
007 Missing category imputation_en.srt |
5.02KB |
007 Missing category imputation.mp4 |
23.41MB |
007 Ordinal encoding Label encoding_en.srt |
2.08KB |
007 Ordinal encoding Label encoding.mp4 |
4.87MB |
007 Variable distribution_en.srt |
6.46KB |
007 Variable distribution.mp4 |
14.93MB |
008 Additional reading resources.html |
526B |
008 Download presentations.html |
286B |
008 K-means discretisation Demo_en.srt |
3.19KB |
008 K-means discretisation Demo.mp4 |
16.24MB |
008 Maximum absolute scaling_en.srt |
3.36KB |
008 Maximum absolute scaling.mp4 |
6.53MB |
008 Ordinal encoding Demo_en.srt |
9.89KB |
008 Ordinal encoding Demo.mp4 |
49.50MB |
008 Outliers_en.srt |
10.67KB |
008 Outliers.mp4 |
18.65MB |
008 Random sample imputation_en.srt |
18.21KB |
008 Random sample imputation.mp4 |
87.64MB |
009 Adding a missing indicator_en.srt |
6.92KB |
009 Adding a missing indicator.mp4 |
14.68MB |
009 Count or frequency encoding_en.srt |
3.85KB |
009 Count or frequency encoding.mp4 |
6.87MB |
009 Discretisation plus categorical encoding_en.srt |
2.95KB |
009 Discretisation plus categorical encoding.mp4 |
5.91MB |
009 MaxAbsScaling Demo_en.srt |
4.57KB |
009 MaxAbsScaling Demo.mp4 |
27.14MB |
009 Moving forward_en.srt |
2.48KB |
009 Moving forward.mp4 |
3.91MB |
009 Variable magnitude_en.srt |
4.04KB |
009 Variable magnitude.mp4 |
7.41MB |
010 Count encoding Demo_en.srt |
5.32KB |
010 Count encoding Demo.mp4 |
16.65MB |
010 Discretisation plus encoding Demo_en.srt |
6.54KB |
010 Discretisation plus encoding Demo.mp4 |
33.97MB |
010 FAQ Data science, Python, datasets, presentations and more.html |
1.97KB |
010 Imputation with Scikit-learn_en.srt |
5.12KB |
010 Imputation with Scikit-learn.mp4 |
20.83MB |
010 ML-Comparison.pdf |
297.57KB |
010 Scaling to median and quantiles_en.srt |
3.24KB |
010 Scaling to median and quantiles.mp4 |
6.85MB |
010 Variable characteristics and machine learning models.html |
402B |
011 Additional reading resources.html |
4.51KB |
011 Discretisation with classification trees_en.srt |
5.80KB |
011 Discretisation with classification trees.mp4 |
20.37MB |
011 Mean or median imputation with Scikit-learn_en.srt |
6.52KB |
011 Mean or median imputation with Scikit-learn.mp4 |
37.92MB |
011 Robust Scaling Demo_en.srt |
2.44KB |
011 Robust Scaling Demo.mp4 |
15.83MB |
011 Target guided ordinal encoding_en.srt |
3.39KB |
011 Target guided ordinal encoding.mp4 |
7.02MB |
012 Arbitrary value imputation with Scikit-learn_en.srt |
6.39KB |
012 Arbitrary value imputation with Scikit-learn.mp4 |
36.35MB |
012 Discretisation with decision trees using Scikit-learn_en.srt |
13.74KB |
012 Discretisation with decision trees using Scikit-learn.mp4 |
75.56MB |
012 Scaling to vector unit length_en.srt |
6.80KB |
012 Scaling to vector unit length.mp4 |
13.07MB |
012 Target guided ordinal encoding Demo_en.srt |
9.77KB |
012 Target guided ordinal encoding Demo.mp4 |
65.87MB |
013 Discretisation with decision trees using Feature-engine_en.srt |
4.38KB |
013 Discretisation with decision trees using Feature-engine.mp4 |
24.84MB |
013 Frequent category imputation with Scikit-learn_en.srt |
6.73KB |
013 Frequent category imputation with Scikit-learn.mp4 |
35.30MB |
013 Mean encoding_en.srt |
2.92KB |
013 Mean encoding.mp4 |
5.20MB |
013 Scaling to vector unit length Demo_en.srt |
6.19KB |
013 Scaling to vector unit length Demo.mp4 |
44.81MB |
014 Additional reading resources.html |
1.34KB |
014 Domain knowledge discretisation_en.srt |
4.18KB |
014 Domain knowledge discretisation.mp4 |
18.93MB |
014 Mean encoding Demo_en.srt |
6.58KB |
014 Mean encoding Demo.mp4 |
36.23MB |
014 Missing category imputation with Scikit-learn_en.srt |
3.56KB |
014 Missing category imputation with Scikit-learn.mp4 |
19.97MB |
015 Adding a missing indicator with Scikit-learn_en.srt |
4.64KB |
015 Adding a missing indicator with Scikit-learn.mp4 |
23.27MB |
015 Additional reading resources.html |
1.41KB |
015 Probability ratio encoding_en.srt |
7.21KB |
015 Probability ratio encoding.mp4 |
22.57MB |
016 Automatic determination of imputation method with Sklearn_en.srt |
9.24KB |
016 Automatic determination of imputation method with Sklearn.mp4 |
65.39MB |
016 Weight of evidence (WoE)_en.srt |
6.43KB |
016 Weight of evidence (WoE).mp4 |
10.04MB |
017 Introduction to Feature-engine_en.srt |
8.34KB |
017 Introduction to Feature-engine.mp4 |
26.89MB |
017 Weight of Evidence Demo_en.srt |
16.69KB |
017 Weight of Evidence Demo.mp4 |
98.28MB |
018 Comparison of categorical variable encoding_en.srt |
13.36KB |
018 Comparison of categorical variable encoding.mp4 |
76.19MB |
018 Mean or median imputation with Feature-engine_en.srt |
5.49KB |
018 Mean or median imputation with Feature-engine.mp4 |
31.73MB |
019 Arbitrary value imputation with Feature-engine_en.srt |
3.78KB |
019 Arbitrary value imputation with Feature-engine.mp4 |
25.11MB |
019 Rare label encoding_en.srt |
5.18KB |
019 Rare label encoding.mp4 |
10.27MB |
020 End of distribution imputation with Feature-engine_en.srt |
5.81KB |
020 End of distribution imputation with Feature-engine.mp4 |
26.03MB |
020 Rare label encoding Demo_en.srt |
12.45KB |
020 Rare label encoding Demo.mp4 |
60.59MB |
021 Binary encoding and feature hashing_en.srt |
7.53KB |
021 Binary encoding and feature hashing.mp4 |
13.80MB |
021 Frequent category imputation with Feature-engine_en.srt |
1.98KB |
021 Frequent category imputation with Feature-engine.mp4 |
5.25MB |
022 Missing category imputation with Feature-engine_en.srt |
3.80KB |
022 Missing category imputation with Feature-engine.mp4 |
19.81MB |
022 Summary table of encoding techniques.html |
312B |
023 Additional reading resources.html |
2.37KB |
023 Random sample imputation with Feature-engine_en.srt |
2.86KB |
023 Random sample imputation with Feature-engine.mp4 |
16.88MB |
024 Adding a missing indicator with Feature-engine_en.srt |
4.88KB |
024 Adding a missing indicator with Feature-engine.mp4 |
28.02MB |
025 CCA with Feature-engine_en.srt |
8.46KB |
025 CCA with Feature-engine.mp4 |
37.30MB |
026 NA-methods-Comparison.pdf |
273.81KB |
026 Overview of missing value imputation methods.html |
339B |
027 Conclusion when to use each missing data imputation method.html |
2.69KB |
Bonus Resources.txt |
386B |
Get Bonus Downloads Here.url |
182B |
loan.csv |
1.02MB |
sample_s2.csv |
9.94MB |