Please note that this page does not hosts or makes available any of the listed filenames. You
cannot download any of those files from here.
|
1. Artificial Neural Networks Section Introduction.mp4 |
33.48MB |
1. Artificial Neural Networks Section Introduction.srt |
7.90KB |
1. Custom Loss and Estimating Prediction Uncertainty.mp4 |
43.55MB |
1. Custom Loss and Estimating Prediction Uncertainty.srt |
12.78KB |
1. Deep Reinforcement Learning Section Introduction.mp4 |
40.66MB |
1. Deep Reinforcement Learning Section Introduction.srt |
8.60KB |
1. Embeddings.mp4 |
59.97MB |
1. Embeddings.srt |
16.12KB |
1. Facial Recognition Section Introduction.mp4 |
24.31MB |
1. Facial Recognition Section Introduction.srt |
4.58KB |
1. GAN Theory.mp4 |
92.11MB |
1. GAN Theory.srt |
21.06KB |
1. Gradient Descent.mp4 |
34.91MB |
1. Gradient Descent.srt |
9.77KB |
1. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4 |
150.67MB |
1. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.srt |
14.69KB |
1. Intro to Google Colab, how to use a GPU or TPU for free.mp4 |
60.45MB |
1. Intro to Google Colab, how to use a GPU or TPU for free.srt |
14.34KB |
1. Links To Colab Notebooks.html |
7.24KB |
1. Mean Squared Error.mp4 |
33.79MB |
1. Mean Squared Error.srt |
11.21KB |
1. Recommender Systems with Deep Learning Theory.mp4 |
64.75MB |
1. Recommender Systems with Deep Learning Theory.srt |
13.71KB |
1. Reinforcement Learning Stock Trader Introduction.mp4 |
28.82MB |
1. Reinforcement Learning Stock Trader Introduction.srt |
6.84KB |
1. Sequence Data.mp4 |
114.29MB |
1. Sequence Data.srt |
29.57KB |
1. Transfer Learning Theory.mp4 |
58.19MB |
1. Transfer Learning Theory.srt |
10.70KB |
1. Welcome.mp4 |
35.71MB |
1. Welcome.srt |
5.70KB |
1. What is Convolution (part 1).mp4 |
79.65MB |
1. What is Convolution (part 1).srt |
20.13KB |
1. What is Machine Learning.mp4 |
70.59MB |
1. What is Machine Learning.srt |
18.45KB |
1. What is the Appendix.mp4 |
16.38MB |
1. What is the Appendix.srt |
3.75KB |
10. CNN for CIFAR-10.mp4 |
56.72MB |
10. CNN for CIFAR-10.srt |
9.25KB |
10. Epsilon-Greedy.mp4 |
41.47MB |
10. Epsilon-Greedy.srt |
7.42KB |
10. Facial Recognition Section Summary.mp4 |
18.33MB |
10. Facial Recognition Section Summary.srt |
4.39KB |
10. GRU and LSTM (pt 2).mp4 |
50.56MB |
10. GRU and LSTM (pt 2).srt |
14.97KB |
10. Saving and Loading a Model.mp4 |
28.83MB |
10. Saving and Loading a Model.srt |
6.61KB |
11. A More Challenging Sequence.mp4 |
86.67MB |
11. A More Challenging Sequence.srt |
10.66KB |
11. A Short Neuroscience Primer.mp4 |
44.66MB |
11. A Short Neuroscience Primer.srt |
12.27KB |
11. Data Augmentation.mp4 |
44.52MB |
11. Data Augmentation.srt |
12.52KB |
11. Q-Learning.mp4 |
66.79MB |
11. Q-Learning.srt |
17.91KB |
12. Batch Normalization.mp4 |
23.44MB |
12. Batch Normalization.srt |
6.57KB |
12. Deep Q-Learning DQN (pt 1).mp4 |
60.24MB |
12. Deep Q-Learning DQN (pt 1).srt |
16.43KB |
12. How does a model learn.mp4 |
50.08MB |
12. How does a model learn.srt |
13.76KB |
12. RNN for Image Classification (Theory).mp4 |
32.26MB |
12. RNN for Image Classification (Theory).srt |
5.99KB |
13. Deep Q-Learning DQN (pt 2).mp4 |
52.22MB |
13. Deep Q-Learning DQN (pt 2).srt |
13.21KB |
13. Improving CIFAR-10 Results.mp4 |
77.42MB |
13. Improving CIFAR-10 Results.srt |
12.79KB |
13. Model With Logits.mp4 |
27.31MB |
13. Model With Logits.srt |
5.32KB |
13. RNN for Image Classification (Code).mp4 |
20.53MB |
13. RNN for Image Classification (Code).srt |
3.28KB |
14. How to Learn Reinforcement Learning.mp4 |
40.25MB |
14. How to Learn Reinforcement Learning.srt |
7.62KB |
14. Stock Return Predictions using LSTMs (pt 1).mp4 |
77.82MB |
14. Stock Return Predictions using LSTMs (pt 1).srt |
15.96KB |
14. Train Sets vs. Validation Sets vs. Test Sets.mp4 |
52.14MB |
14. Train Sets vs. Validation Sets vs. Test Sets.srt |
14.26KB |
15. Stock Return Predictions using LSTMs (pt 2).mp4 |
43.22MB |
15. Stock Return Predictions using LSTMs (pt 2).srt |
6.85KB |
16. Stock Return Predictions using LSTMs (pt 3).mp4 |
71.07MB |
16. Stock Return Predictions using LSTMs (pt 3).srt |
14.37KB |
17. Other Ways to Forecast.mp4 |
28.27MB |
17. Other Ways to Forecast.srt |
7.18KB |
2. Binary Cross Entropy.mp4 |
23.68MB |
2. Binary Cross Entropy.srt |
7.26KB |
2. Data and Environment.mp4 |
55.69MB |
2. Data and Environment.srt |
15.69KB |
2. Elements of a Reinforcement Learning Problem.mp4 |
104.93MB |
2. Elements of a Reinforcement Learning Problem.srt |
26.23KB |
2. Estimating Prediction Uncertainty Code.mp4 |
42.75MB |
2. Estimating Prediction Uncertainty Code.srt |
8.82KB |
2. Forecasting.mp4 |
48.70MB |
2. Forecasting.srt |
13.21KB |
2. Forward Propagation.mp4 |
47.10MB |
2. Forward Propagation.srt |
12.20KB |
2. GAN Code Preparation.mp4 |
28.08MB |
2. GAN Code Preparation.srt |
8.51KB |
2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4 |
105.66MB |
2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.srt |
31.63KB |
2. Links to VIP Notebooks.html |
256B |
2. Neural Networks with Embeddings.mp4 |
15.63MB |
2. Neural Networks with Embeddings.srt |
4.51KB |
2. Overview and Outline.mp4 |
79.66MB |
2. Overview and Outline.srt |
17.74KB |
2. Recommender Systems with Deep Learning Code Preparation.mp4 |
40.10MB |
2. Recommender Systems with Deep Learning Code Preparation.srt |
12.67KB |
2. Regression Basics.mp4 |
73.02MB |
2. Regression Basics.srt |
20.08KB |
2. Siamese Networks.mp4 |
50.52MB |
2. Siamese Networks.srt |
12.81KB |
2. Some Pre-trained Models (VGG, ResNet, Inception, MobileNet).mp4 |
21.67MB |
2. Some Pre-trained Models (VGG, ResNet, Inception, MobileNet).srt |
5.16KB |
2. Stochastic Gradient Descent.mp4 |
22.98MB |
2. Stochastic Gradient Descent.srt |
5.40KB |
2. Uploading your own data to Google Colab.mp4 |
90.53MB |
2. Uploading your own data to Google Colab.srt |
14.47KB |
2. What is Convolution (part 2).mp4 |
24.49MB |
2. What is Convolution (part 2).srt |
7.25KB |
2. Windows-Focused Environment Setup 2018.mp4 |
180.67MB |
2. Windows-Focused Environment Setup 2018.srt |
19.96KB |
3. Autoregressive Linear Model for Time Series Prediction.mp4 |
81.19MB |
3. Autoregressive Linear Model for Time Series Prediction.srt |
14.68KB |
3. Categorical Cross Entropy.mp4 |
31.74MB |
3. Categorical Cross Entropy.srt |
9.62KB |
3. Code Outline.mp4 |
23.86MB |
3. Code Outline.srt |
5.82KB |
3. GAN Code.mp4 |
61.37MB |
3. GAN Code.srt |
10.66KB |
3. How to Code Yourself (part 1).mp4 |
71.87MB |
3. Installing NVIDIA GPU-Accelerated Deep Learning Libraries on your Home Computer.mp4 |
167.32MB |
3. Installing NVIDIA GPU-Accelerated Deep Learning Libraries on your Home Computer.srt |
32.01KB |
3. Large Datasets.mp4 |
41.26MB |
3. Large Datasets.srt |
9.09KB |
3. Momentum.mp4 |
34.25MB |
3. Momentum.srt |
7.84KB |
3. Recommender Systems with Deep Learning Code (pt 1).mp4 |
69.58MB |
3. Recommender Systems with Deep Learning Code (pt 1).srt |
10.92KB |
3. Regression Code Preparation.mp4 |
45.53MB |
3. Regression Code Preparation.srt |
16.37KB |
3. Replay Buffer.mp4 |
24.97MB |
3. Replay Buffer.srt |
6.94KB |
3. States, Actions, Rewards, Policies.mp4 |
44.12MB |
3. States, Actions, Rewards, Policies.srt |
11.32KB |
3. Text Preprocessing (pt 1).mp4 |
52.29MB |
3. Text Preprocessing (pt 1).srt |
17.87KB |
3. The Geometrical Picture.mp4 |
56.42MB |
3. The Geometrical Picture.srt |
11.51KB |
3. What is Convolution (part 3).mp4 |
28.70MB |
3. What is Convolution (part 3).srt |
8.01KB |
3. Where can I learn about Numpy, Scipy, Matplotlib, Pandas, and Scikit-Learn.mp4 |
44.39MB |
3. Where can I learn about Numpy, Scipy, Matplotlib, Pandas, and Scikit-Learn.srt |
12.07KB |
3. Where to get the Code.mp4 |
30.17MB |
3. Where to get the Code.srt |
7.60KB |
4. 2 Approaches to Transfer Learning.mp4 |
21.79MB |
4. 2 Approaches to Transfer Learning.srt |
5.96KB |
4. Activation Functions.mp4 |
89.24MB |
4. Activation Functions.srt |
22.64KB |
4. Convolution on Color Images.mp4 |
76.38MB |
4. Convolution on Color Images.srt |
20.84KB |
4. How to Code Yourself (part 2).mp4 |
49.15MB |
4. How to Code Yourself (part 2).srt |
12.98KB |
4. Loading in the data.mp4 |
35.07MB |
4. Loading in the data.srt |
6.89KB |
4. Markov Decision Processes (MDPs).mp4 |
50.51MB |
4. Markov Decision Processes (MDPs).srt |
12.65KB |
4. Program Design and Layout.mp4 |
26.86MB |
4. Program Design and Layout.srt |
8.64KB |
4. Proof that the Linear Model Works.mp4 |
17.91MB |
4. Proof that the Linear Model Works.srt |
4.56KB |
4. Recommender Systems with Deep Learning Code (pt 2).mp4 |
76.87MB |
4. Recommender Systems with Deep Learning Code (pt 2).srt |
17.43KB |
4. Regression Notebook.mp4 |
71.93MB |
4. Regression Notebook.srt |
17.48KB |
4. Text Preprocessing (pt 2).mp4 |
44.42MB |
4. Text Preprocessing (pt 2).srt |
15.31KB |
4. Variable and Adaptive Learning Rates.mp4 |
34.85MB |
4. Variable and Adaptive Learning Rates.srt |
15.15KB |
5. Adam.mp4 |
38.90MB |
5. Adam.srt |
13.53KB |
5. CNN Architecture.mp4 |
89.53MB |
5. CNN Architecture.srt |
27.77KB |
5. Code pt 1.mp4 |
66.34MB |
5. Code pt 1.srt |
12.12KB |
5. Moore's Law.mp4 |
30.63MB |
5. Moore's Law.srt |
9.14KB |
5. Multiclass Classification.mp4 |
48.69MB |
5. Multiclass Classification.srt |
12.20KB |
5. Proof that using Jupyter Notebook is the same as not using it.mp4 |
69.50MB |
5. Proof that using Jupyter Notebook is the same as not using it.srt |
14.22KB |
5. Recurrent Neural Networks.mp4 |
92.61MB |
5. Recurrent Neural Networks.srt |
25.69KB |
5. Splitting the data into train and test.mp4 |
26.30MB |
5. Splitting the data into train and test.srt |
5.09KB |
5. Text Preprocessing (pt 3).mp4 |
47.74MB |
5. Text Preprocessing (pt 3).srt |
9.43KB |
5. The Return.mp4 |
23.42MB |
5. The Return.srt |
6.26KB |
5. Transfer Learning Code (pt 1).mp4 |
77.78MB |
5. Transfer Learning Code (pt 1).srt |
11.61KB |
5. VIP Making Predictions with a Trained Recommender Model.mp4 |
32.74MB |
5. VIP Making Predictions with a Trained Recommender Model.srt |
6.01KB |
6. CNN Code Preparation (part 1).mp4 |
76.74MB |
6. CNN Code Preparation (part 1).srt |
22.83KB |
6. Code pt 2.mp4 |
69.98MB |
6. Code pt 2.srt |
11.75KB |
6. Converting the data into pairs.mp4 |
30.38MB |
6. Converting the data into pairs.srt |
5.79KB |
6. How to Represent Images.mp4 |
75.43MB |
6. How to Represent Images.srt |
15.30KB |
6. How to Succeed in this Course (Long Version).mp4 |
35.25MB |
6. How to Succeed in this Course (Long Version).srt |
14.61KB |
6. Moore's Law Notebook.mp4 |
78.92MB |
6. Moore's Law Notebook.srt |
15.85KB |
6. RNN Code Preparation.mp4 |
55.31MB |
6. RNN Code Preparation.srt |
17.63KB |
6. Text Classification with LSTMs.mp4 |
65.05MB |
6. Text Classification with LSTMs.srt |
10.26KB |
6. Transfer Learning Code (pt 2).mp4 |
56.32MB |
6. Transfer Learning Code (pt 2).srt |
8.76KB |
6. Value Functions and the Bellman Equation.mp4 |
47.72MB |
6. Value Functions and the Bellman Equation.srt |
12.51KB |
7. CNN Code Preparation (part 2).mp4 |
36.72MB |
7. CNN Code Preparation (part 2).srt |
10.43KB |
7. CNNs for Text.mp4 |
58.70MB |
7. CNNs for Text.srt |
14.88KB |
7. Code Preparation (ANN).mp4 |
67.55MB |
7. Code Preparation (ANN).srt |
19.93KB |
7. Code pt 3.mp4 |
58.59MB |
7. Code pt 3.srt |
8.44KB |
7. Generating Generators.mp4 |
32.44MB |
7. Generating Generators.srt |
5.73KB |
7. Linear Classification Basics.mp4 |
67.22MB |
7. Linear Classification Basics.srt |
19.84KB |
7. RNN for Time Series Prediction.mp4 |
71.85MB |
7. RNN for Time Series Prediction.srt |
9.88KB |
7. What does it mean to “learn”.mp4 |
32.51MB |
7. What does it mean to “learn”.srt |
8.92KB |
7. What order should I take your courses in (part 1).mp4 |
79.59MB |
7. What order should I take your courses in (part 1).srt |
16.12KB |
8. ANN for Image Classification.mp4 |
106.33MB |
8. ANN for Image Classification.srt |
22.58KB |
8. Classification Code Preparation.mp4 |
26.54MB |
8. Classification Code Preparation.srt |
9.36KB |
8. CNN Code Preparation (part 3).mp4 |
33.69MB |
8. CNN Code Preparation (part 3).srt |
7.18KB |
8. Code pt 4.mp4 |
52.32MB |
8. Code pt 4.srt |
8.23KB |
8. Creating the model and loss.mp4 |
29.38MB |
8. Creating the model and loss.srt |
5.38KB |
8. Paying Attention to Shapes.mp4 |
56.41MB |
8. Paying Attention to Shapes.srt |
11.00KB |
8. Solving the Bellman Equation with Reinforcement Learning (pt 1).mp4 |
42.62MB |
8. Solving the Bellman Equation with Reinforcement Learning (pt 1).srt |
12.65KB |
8. Text Classification with CNNs.mp4 |
39.33MB |
8. Text Classification with CNNs.srt |
5.63KB |
8. What order should I take your courses in (part 2).mp4 |
108.23MB |
8. What order should I take your courses in (part 2).srt |
23.01KB |
9. Accuracy and imbalanced classes.mp4 |
51.09MB |
9. Accuracy and imbalanced classes.srt |
9.52KB |
9. ANN for Regression.mp4 |
80.18MB |
9. ANN for Regression.srt |
13.01KB |
9. BONUS Where to get discount coupons and FREE deep learning material.mp4 |
37.81MB |
9. BONUS Where to get discount coupons and FREE deep learning material.srt |
7.87KB |
9. Classification Notebook.mp4 |
78.28MB |
9. Classification Notebook.srt |
14.59KB |
9. CNN for Fashion MNIST.mp4 |
74.46MB |
9. CNN for Fashion MNIST.srt |
13.45KB |
9. GRU and LSTM (pt 1).mp4 |
76.07MB |
9. GRU and LSTM (pt 1).srt |
21.11KB |
9. Reinforcement Learning Stock Trader Discussion.mp4 |
17.22MB |
9. Reinforcement Learning Stock Trader Discussion.srt |
4.39KB |
9. Solving the Bellman Equation with Reinforcement Learning (pt 2).mp4 |
57.02MB |
9. Solving the Bellman Equation with Reinforcement Learning (pt 2).srt |
14.88KB |
9. VIP Making Predictions with a Trained NLP Model.mp4 |
48.81MB |
9. VIP Making Predictions with a Trained NLP Model.srt |
9.13KB |
CourseRecap-Click For More Courses!!.url |
50B |
CourseRecap-Click For More Courses!!.url |
50B |
READ_ME.txt |
404B |
READ_ME.txt |
404B |