|
Please note that this page does not hosts or makes available any of the listed filenames. You
cannot download any of those files from here.
|
| [CourseClub.Me].url |
122B |
| [CourseClub.Me].url |
122B |
| [CourseClub.Me].url |
122B |
| [CourseClub.Me].url |
122B |
| [FreeCourseSite.com].url |
127B |
| [FreeCourseSite.com].url |
127B |
| [FreeCourseSite.com].url |
127B |
| [FreeCourseSite.com].url |
127B |
| [GigaCourse.Com].url |
49B |
| [GigaCourse.Com].url |
49B |
| [GigaCourse.Com].url |
49B |
| [GigaCourse.Com].url |
49B |
| 001 1.04.Real-life-example.csv |
219.83KB |
| 001 2.13.Practical-example.Descriptive-statistics-lesson.xlsx |
146.51KB |
| 001 3.17.Practical-example.Confidence-intervals-lesson.xlsx |
1.74MB |
| 001 365-Data-Science-Data-Science-Interview-Questions-Guide.pdf |
15.56MB |
| 001 4.10.Hypothesis-testing-section-practical-example.xlsx |
51.90KB |
| 001 Absenteeism-data.csv |
32.05KB |
| 001 Absenteeism-Exercise-Integration.ipynb |
62.35KB |
| 001 absenteeism-module.py |
6.62KB |
| 001 Absenteeism-new-data.csv |
1.87KB |
| 001 Absenteeism-predictions.csv |
2.10KB |
| 001 Absenteeism-preprocessed.csv |
29.13KB |
| 001 Additional-Python-Tools-Exercises.ipynb |
11.37KB |
| 001 Additional-Python-Tools-Lectures.ipynb |
13.47KB |
| 001 Additional-Python-Tools-Solutions.ipynb |
25.49KB |
| 001 An Introduction to Working with Files in Python_en.srt |
7.12KB |
| 001 An Introduction to Working with Files in Python.mp4 |
12.03MB |
| 001 Applying Traditional Data, Big Data, BI, Traditional Data Science and ML_en.srt |
11.06KB |
| 001 A Practical Example What You Will Learn in This Course_en.srt |
8.17KB |
| 001 A Practical Example What You Will Learn in This Course.mp4 |
43.94MB |
| 001 Are You Sure You're All Set.html |
513B |
| 001 Arithmetic-Operators-Exercise-Py3.ipynb |
2.62KB |
| 001 Arithmetic-Operators-Lecture-Py3.ipynb |
3.53KB |
| 001 Arithmetic-Operators-Solution-Py3.ipynb |
4.24KB |
| 001 Audiobooks-data.csv |
710.77KB |
| 001 Audiobooks-data.csv |
710.77KB |
| 001 Basic NN Example (Part 1)_en.srt |
5.41KB |
| 001 Basic NN Example (Part 1).mp4 |
9.34MB |
| 001 Bonus Lecture Next Steps.html |
3.10KB |
| 001 Business Case Exploring the Dataset and Identifying Predictors_en.srt |
13.33KB |
| 001 Business Case Exploring the Dataset and Identifying Predictors.mp4 |
51.28MB |
| 001 Business Case Getting Acquainted with the Dataset_en.srt |
13.24KB |
| 001 Business Case Getting Acquainted with the Dataset.mp4 |
60.25MB |
| 001 Common-Naming-Conventions.pdf |
643.80KB |
| 001 Comparison Operators_en.srt |
3.10KB |
| 001 Comparison Operators.mp4 |
4.82MB |
| 001 Comparison-Operators-Exercise-Py3.ipynb |
1.61KB |
| 001 Comparison-Operators-Lecture-Py3.ipynb |
2.53KB |
| 001 Comparison-Operators-Solution-Py3.ipynb |
2.41KB |
| 001 Course-Notes-Basic-Probability.pdf |
371.05KB |
| 001 Course-Notes-Bayesian-Inference.pdf |
386.01KB |
| 001 Course-Notes-Cluster-Analysis.pdf |
208.65KB |
| 001 Course-Notes-Combinatorics.pdf |
226.12KB |
| 001 Course-notes-descriptive-statistics.pdf |
482.21KB |
| 001 Course-notes-descriptive-statistics.pdf |
482.21KB |
| 001 Course-notes-hypothesis-testing.pdf |
656.44KB |
| 001 Course-notes-inferential-statistics.pdf |
382.32KB |
| 001 Course-Notes-Logistic-Regression.pdf |
335.17KB |
| 001 Course-Notes-Probability-Distributions.pdf |
463.95KB |
| 001 Course-notes-regression-analysis.pdf |
312.18KB |
| 001 Course-notes-regression-analysis.pdf |
312.18KB |
| 001 Course-Notes-Section-2.pdf |
578.08KB |
| 001 Course-Notes-Section-6.pdf |
936.42KB |
| 001 data-preprocessing-homework.pdf |
134.47KB |
| 001 Data Science and Business Buzzwords Why are there so Many_en.srt |
8.96KB |
| 001 Data Science and Business Buzzwords Why are there so Many.mp4 |
57.35MB |
| 001 Debunking Common Misconceptions_en.srt |
6.56KB |
| 001 Debunking Common Misconceptions.mp4 |
58.81MB |
| 001 Defining a Function in Python_en.srt |
3.15KB |
| 001 Defining a Function in Python.mp4 |
3.23MB |
| 001 Defining-a-Function-in-Python-Lecture-Py3.ipynb |
868B |
| 001 df-preprocessed.csv |
29.11KB |
| 001 EXERCISE - Age vs Probability.html |
367B |
| 001 Exploring the Problem with a Machine Learning Mindset_en.srt |
5.79KB |
| 001 Finding the Job - What to Expect and What to Look for_en.srt |
5.60KB |
| 001 Finding the Job - What to Expect and What to Look for.mp4 |
13.81MB |
| 001 For Loops_en.srt |
8.06KB |
| 001 For Loops.mp4 |
23.60MB |
| 001 For-Loops-Exercise-Py3.ipynb |
1.28KB |
| 001 For-Loops-Lecture-Py3.ipynb |
1.26KB |
| 001 For-Loops-Solution-Py3.ipynb |
1.80KB |
| 001 Fundamentals of Combinatorics_en.srt |
1.74KB |
| 001 Fundamentals of Combinatorics.mp4 |
5.95MB |
| 001 Fundamentals of Probability Distributions_en.srt |
10.10KB |
| 001 Fundamentals of Probability Distributions.mp4 |
19.43MB |
| 001 Game Plan for this Python, SQL, and Tableau Business Exercise_en.srt |
6.62KB |
| 001 Game Plan for this Python, SQL, and Tableau Business Exercise.mp4 |
19.67MB |
| 001 Glossary.xlsx |
19.97KB |
| 001 How to Install TensorFlow 2.0_en.srt |
7.91KB |
| 001 How to Install TensorFlow 2.0.mp4 |
27.32MB |
| 001 Introduction_en.srt |
1.97KB |
| 001 Introduction.mp4 |
3.06MB |
| 001 Introduction to Cluster Analysis_en.srt |
5.92KB |
| 001 Introduction to Cluster Analysis.mp4 |
14.46MB |
| 001 Introduction to Logistic Regression_en.srt |
2.17KB |
| 001 Introduction to Logistic Regression.mp4 |
5.87MB |
| 001 Introduction to Neural Networks_en.srt |
7.48KB |
| 001 Introduction to Neural Networks.mp4 |
10.49MB |
| 001 Introduction to pandas Series_en.srt |
13.06KB |
| 001 Introduction to pandas Series.mp4 |
22.21MB |
| 001 Introduction to Programming_en.srt |
8.71KB |
| 001 Introduction to Programming.mp4 |
14.76MB |
| 001 Introduction-to-Python-Course-Notes.pdf |
2.15MB |
| 001 Introduction-to-Python-Course-Notes.pdf |
2.15MB |
| 001 Introduction to Regression Analysis_en.srt |
2.78KB |
| 001 Introduction to Regression Analysis.mp4 |
3.59MB |
| 001 Introduction-to-the-If-Statement-Exercise-Py3.ipynb |
1.53KB |
| 001 Introduction-to-the-If-Statement-Lecture-Py3.ipynb |
1.14KB |
| 001 Introduction-to-the-If-Statement-Solution-Py3.ipynb |
2.19KB |
| 001 K-Means Clustering_en.srt |
7.92KB |
| 001 K-Means Clustering.mp4 |
10.82MB |
| 001 Lending-company.csv |
112.43KB |
| 001 Lists_en.srt |
12.54KB |
| 001 Lists.mp4 |
23.03MB |
| 001 Lists-Exercise-Py3.ipynb |
2.14KB |
| 001 Lists-Lecture-Py3.ipynb |
2.70KB |
| 001 Lists-Solution-Py3.ipynb |
3.18KB |
| 001 Location.csv |
13.49KB |
| 001 Minimal-example-Part-1.ipynb |
1.19KB |
| 001 MNIST The Dataset_en.srt |
4.36KB |
| 001 MNIST The Dataset.mp4 |
4.53MB |
| 001 MNIST What is the MNIST Dataset_en.srt |
4.30KB |
| 001 MNIST What is the MNIST Dataset.mp4 |
4.80MB |
| 001 model |
1.01KB |
| 001 Multiple Linear Regression_en.srt |
4.13KB |
| 001 Multiple Linear Regression.mp4 |
5.68MB |
| 001 Necessary Programming Languages and Software Used in Data Science_en.srt |
9.65KB |
| 001 Necessary Programming Languages and Software Used in Data Science.encrypted.m4a.part |
0B |
| 001 Necessary Programming Languages and Software Used in Data Science.encrypted.m4a.part.frag.urls |
61.04KB |
| 001 Necessary Programming Languages and Software Used in Data Science.encrypted.mp4.part |
0B |
| 001 Necessary Programming Languages and Software Used in Data Science.encrypted.mp4.part.frag.urls |
61.04KB |
| 001 Null vs Alternative Hypothesis_en.srt |
8.55KB |
| 001 Null vs Alternative Hypothesis.mp4 |
83.58MB |
| 001 Object Oriented Programming_en.srt |
8.39KB |
| 001 Object Oriented Programming.mp4 |
8.65MB |
| 001 pandas-Fundamentals-Exercises.ipynb |
30.96KB |
| 001 pandas-Fundamentals-Lectures.ipynb |
21.31KB |
| 001 pandas-Fundamentals-Solutions.ipynb |
118.35KB |
| 001 Population and Sample_en.srt |
7.01KB |
| 001 Population and Sample.mp4 |
35.10MB |
| 001 Practical Example Descriptive Statistics_en.srt |
25.43KB |
| 001 Practical Example Descriptive Statistics.mp4 |
150.18MB |
| 001 Practical Example Hypothesis Testing_en.srt |
10.38KB |
| 001 Practical Example Hypothesis Testing.mp4 |
45.82MB |
| 001 Practical Example Inferential Statistics_en.srt |
16.76KB |
| 001 Practical Example Inferential Statistics.mp4 |
68.98MB |
| 001 Practical Example Linear Regression (Part 1)_en.srt |
18.00KB |
| 001 Practical Example Linear Regression (Part 1).mp4 |
84.69MB |
| 001 Preprocessing Introduction_en.srt |
4.89KB |
| 001 Preprocessing Introduction.mp4 |
9.23MB |
| 001 Probability in Finance_en.srt |
12.17KB |
| 001 Probability in Finance.mp4 |
40.34MB |
| 001 Probability-in-Finance-Homework.pdf |
110.68KB |
| 001 Probability-in-Finance-Solutions.pdf |
184.46KB |
| 001 READ ME!!!!.html |
564B |
| 001 Region.csv |
10.22KB |
| 001 Sales-products.csv |
152.28KB |
| 001 scaler |
1.86KB |
| 001 Section-Resources-Working-with-Text-Files.url |
97B |
| 001 Sets and Events_en.srt |
6.50KB |
| 001 Sets and Events.mp4 |
17.65MB |
| 001 Shortcuts-for-Jupyter.pdf |
619.17KB |
| 001 Shortcuts-for-Jupyter.pdf |
619.17KB |
| 001 sklearn-Linear-Regression-Practical-Example-Part-1.ipynb |
166.91KB |
| 001 sklearn-Linear-Regression-Practical-Example-Part-1-with-comments.ipynb |
171.38KB |
| 001 Statistics-Glossary.xlsx |
20.26KB |
| 001 Stochastic Gradient Descent_en.srt |
5.79KB |
| 001 Stochastic Gradient Descent.mp4 |
9.67MB |
| 001 Summary on What You've Learned_en.srt |
6.50KB |
| 001 Summary on What You've Learned.mp4 |
9.86MB |
| 001 Techniques for Working with Traditional Data_en.srt |
13.20KB |
| 001 Techniques for Working with Traditional Data.mp4 |
107.39MB |
| 001 The Basic Probability Formula_en.srt |
10.68KB |
| 001 The Basic Probability Formula.mp4 |
29.39MB |
| 001 The IF Statement_en.srt |
4.49KB |
| 001 The IF Statement.mp4 |
6.07MB |
| 001 The Linear Regression Model_en.srt |
10.07KB |
| 001 The Linear Regression Model.mp4 |
13.48MB |
| 001 The Reason Behind These Disciplines_en.srt |
7.77KB |
| 001 The Reason Behind These Disciplines.mp4 |
46.70MB |
| 001 Types of Clustering_en.srt |
6.08KB |
| 001 Types of Clustering.mp4 |
9.01MB |
| 001 Types of Data_en.srt |
6.92KB |
| 001 Types of Data.mp4 |
43.17MB |
| 001 Using Arithmetic Operators in Python_en.srt |
5.24KB |
| 001 Using Arithmetic Operators in Python.mp4 |
8.63MB |
| 001 Using the .format() Method_en.srt |
15.25KB |
| 001 Using the .format() Method.mp4 |
25.69MB |
| 001 Variables_en.srt |
5.78KB |
| 001 Variables.mp4 |
8.95MB |
| 001 Variables-Exercise-Py3.ipynb |
2.23KB |
| 001 Variables-Lecture-Py3.ipynb |
3.61KB |
| 001 Variables-Solution-Py3.ipynb |
3.79KB |
| 001 What are Confidence Intervals_en.srt |
3.84KB |
| 001 What are Confidence Intervals.mp4 |
28.62MB |
| 001 What are Data, Servers, Clients, Requests, and Responses_en.srt |
7.55KB |
| 001 What are Data, Servers, Clients, Requests, and Responses.mp4 |
19.51MB |
| 001 What is a Layer_en.srt |
3.18KB |
| 001 What is a Layer.mp4 |
5.17MB |
| 001 What is a Matrix_en.srt |
5.54KB |
| 001 What is a Matrix.mp4 |
11.94MB |
| 001 What is Initialization_en.srt |
4.47KB |
| 001 What is Initialization.mp4 |
12.85MB |
| 001 What is Overfitting_en.srt |
6.98KB |
| 001 What is Overfitting.mp4 |
10.81MB |
| 001 What is sklearn and How is it Different from Other Packages_en.srt |
4.35KB |
| 001 What is sklearn and How is it Different from Other Packages.encrypted.m4a.part |
0B |
| 001 What is sklearn and How is it Different from Other Packages.encrypted.m4a.part.frag.urls |
24.24KB |
| 001 What is sklearn and How is it Different from Other Packages.encrypted.mp4.part |
0B |
| 001 What is sklearn and How is it Different from Other Packages.encrypted.mp4.part.frag.urls |
24.24KB |
| 001 What to Expect from the Following Sections.html |
2.43KB |
| 001 What to Expect from this Part_en.srt |
5.79KB |
| 001 What to Expect from this Part.mp4 |
11.73MB |
| 001 Working-with-Text-Files-Lectures.ipynb |
27.58KB |
| 002 1.02.Multiple-linear-regression.csv |
1.09KB |
| 002 1.04.Real-life-example.csv |
219.83KB |
| 002 2.01.Admittance.csv |
1.58KB |
| 002 2.13.Practical-example.Descriptive-statistics-exercise.xlsx |
120.27KB |
| 002 2.13.Practical-example.Descriptive-statistics-exercise-solution.xlsx |
146.38KB |
| 002 3.01.Country-clusters.csv |
200B |
| 002 3.17.Practical-example.Confidence-intervals-exercise.xlsx |
1.73MB |
| 002 3.17.Practical-example.Confidence-intervals-exercise-solution.xlsx |
1.82MB |
| 002 3.2.What-is-a-distribution-lesson.xlsx |
19.46KB |
| 002 3.9.Population-variance-known-z-score-lesson.xlsx |
11.21KB |
| 002 3.9.The-z-table.xlsx |
25.58KB |
| 002 4.10.Hypothesis-testing-section-practical-example-exercise.xlsx |
43.69KB |
| 002 4.10.Hypothesis-testing-section-practical-example-exercise-solution.xlsx |
44.27KB |
| 002 Absenteeism-predictions.csv |
2.10KB |
| 002 Add-an-Else-Statement-Exercise-Py3.ipynb |
1.02KB |
| 002 Add-an-Else-Statement-Lecture-Py3.ipynb |
1.76KB |
| 002 Add-an-Else-Statement-Solution-Py3.ipynb |
1.40KB |
| 002 Adjusted R-Squared_en.srt |
9.01KB |
| 002 Adjusted R-Squared.mp4 |
34.19MB |
| 002 Admittance.ipynb |
3.54KB |
| 002 Admittance-with-comments.ipynb |
5.32KB |
| 002 Analyzing Age vs Probability in Tableau_en.srt |
12.29KB |
| 002 Analyzing Age vs Probability in Tableau.mp4 |
38.66MB |
| 002 A Simple Example in Python_en.srt |
7.07KB |
| 002 A Simple Example in Python.mp4 |
21.89MB |
| 002 A Simple Example of Clustering_en.srt |
11.83KB |
| 002 A Simple Example of Clustering.mp4 |
34.21MB |
| 002 Basic NN Example (Part 2)_en.srt |
8.01KB |
| 002 Basic NN Example (Part 2).mp4 |
15.23MB |
| 002 Business Case Outlining the Solution_en.srt |
2.26KB |
| 002 Business Case Outlining the Solution_en.srt |
3.13KB |
| 002 Business Case Outlining the Solution.mp4 |
3.05MB |
| 002 Business Case Outlining the Solution.mp4 |
4.16MB |
| 002 Computing Expected Values_en.srt |
8.33KB |
| 002 Computing Expected Values.mp4 |
45.67MB |
| 002 Confidence Intervals; Population Variance Known; Z-score_en.srt |
11.59KB |
| 002 Confidence Intervals; Population Variance Known; Z-score.mp4 |
52.16MB |
| 002 Correlation vs Regression_en.srt |
2.60KB |
| 002 Correlation vs Regression.mp4 |
3.84MB |
| 002 Country-clusters.ipynb |
3.31KB |
| 002 Country-clusters-with-comments.ipynb |
5.80KB |
| 002 Course-Notes-Cluster-Analysis.pdf |
208.65KB |
| 002 Course-notes-inferential-statistics.pdf |
382.32KB |
| 002 Course-Notes-Logistic-Regression.pdf |
335.17KB |
| 002 Course-Notes-Section-2.pdf |
578.08KB |
| 002 Course-Notes-Section-6.pdf |
936.42KB |
| 002 Creating-a-Function-with-a-Parameter-Exercise-Py3.ipynb |
1.16KB |
| 002 Creating-a-Function-with-a-Parameter-Lecture-Py3.ipynb |
1.59KB |
| 002 Creating-a-Function-with-a-Parameter-Solution-Py3.ipynb |
1.79KB |
| 002 Creating the Targets for the Logistic Regression_en.srt |
10.44KB |
| 002 Dendrogram_en.srt |
9.11KB |
| 002 Dendrogram.mp4 |
18.30MB |
| 002 Deploying the 'absenteeism_module' - Part I_en.srt |
5.95KB |
| 002 Deploying the 'absenteeism_module' - Part I.mp4 |
19.64MB |
| 002 File vs File Object, Reading vs Parsing Data_en.srt |
5.06KB |
| 002 File vs File Object, Reading vs Parsing Data.mp4 |
9.42MB |
| 002 Further Reading on Null and Alternative Hypothesis.html |
2.23KB |
| 002 Help-Yourself-with-Methods-Exercise-Py3.ipynb |
1.91KB |
| 002 Help-Yourself-with-Methods-Lecture-Py3.ipynb |
4.39KB |
| 002 Help-Yourself-with-Methods-Solution-Py3.ipynb |
2.83KB |
| 002 How are we Going to Approach this Section_en.srt |
3.61KB |
| 002 How are we Going to Approach this Section.mp4 |
5.29MB |
| 002 How to Create a Function with a Parameter_en.srt |
5.44KB |
| 002 How to Create a Function with a Parameter.mp4 |
8.33MB |
| 002 How to Install TensorFlow 1_en.srt |
4.06KB |
| 002 How to Install TensorFlow 1.mp4 |
5.00MB |
| 002 Importing the Absenteeism Data in Python_en.srt |
4.84KB |
| 002 Importing the Absenteeism Data in Python.mp4 |
19.53MB |
| 002 Iterating Over Range Objects_en.srt |
7.75KB |
| 002 Iterating Over Range Objects.mp4 |
12.62MB |
| 002 Levels of Measurement_en.srt |
5.77KB |
| 002 Levels of Measurement.mp4 |
32.18MB |
| 002 Logical and Identity Operators_en.srt |
7.22KB |
| 002 Logical and Identity Operators.mp4 |
19.00MB |
| 002 Logical-and-Identity-Operators-Lecture-Py3.ipynb |
5.86KB |
| 002 Logical-and-Identity-Operators-Solution-Py3.ipynb |
3.43KB |
| 002 Minimal-example-Part-2.ipynb |
3.65KB |
| 002 MNIST How to Tackle the MNIST_en.srt |
4.34KB |
| 002 MNIST How to Tackle the MNIST_en.srt |
4.62KB |
| 002 MNIST How to Tackle the MNIST.mp4 |
7.95MB |
| 002 MNIST How to Tackle the MNIST.mp4 |
6.49MB |
| 002 Modules and Packages_en.srt |
1.73KB |
| 002 Modules and Packages.mp4 |
2.08MB |
| 002 Multiple-linear-regression-and-Adjusted-R-squared.ipynb |
2.15KB |
| 002 Multiple-linear-regression-and-Adjusted-R-squared-with-comments.ipynb |
2.80KB |
| 002 Numbers-and-Boolean-Values-Exercise-Py3.ipynb |
2.29KB |
| 002 Numbers and Boolean Values in Python_en.srt |
4.55KB |
| 002 Numbers and Boolean Values in Python.mp4 |
13.70MB |
| 002 Numbers-and-Boolean-Values-Lecture-Py3.ipynb |
3.36KB |
| 002 Permutations and How to Use Them_en.srt |
5.26KB |
| 002 Permutations and How to Use Them.mp4 |
17.52MB |
| 002 Practical Example Descriptive Statistics Exercise.html |
81B |
| 002 Practical Example Hypothesis Testing Exercise.html |
81B |
| 002 Practical Example Inferential Statistics Exercise.html |
81B |
| 002 Practical Example Linear Regression (Part 2)_en.srt |
10.00KB |
| 002 Practical Example Linear Regression (Part 2).mp4 |
31.88MB |
| 002 Probability in Statistics_en.srt |
10.96KB |
| 002 Probability in Statistics.mp4 |
31.60MB |
| 002 Problems with Gradient Descent_en.srt |
3.56KB |
| 002 Problems with Gradient Descent.mp4 |
3.65MB |
| 002 Real Life Examples of Traditional Data_en.srt |
2.79KB |
| 002 Real Life Examples of Traditional Data.mp4 |
18.37MB |
| 002 Scalars and Vectors_en.srt |
4.83KB |
| 002 Scalars and Vectors.mp4 |
8.53MB |
| 002 sklearn-Linear-Regression-Practical-Example-Part-2.ipynb |
328.74KB |
| 002 sklearn-Linear-Regression-Practical-Example-Part-2-with-comments.ipynb |
335.63KB |
| 002 Some Examples of Clusters_en.srt |
7.49KB |
| 002 Some Examples of Clusters.mp4 |
35.87MB |
| 002 TensorFlow Outline and Comparison with Other Libraries_en.srt |
6.56KB |
| 002 TensorFlow Outline and Comparison with Other Libraries.mp4 |
15.28MB |
| 002 The Business Task_en.srt |
4.89KB |
| 002 The Business Task.mp4 |
8.35MB |
| 002 The Double Equality Sign_en.srt |
2.29KB |
| 002 The Double Equality Sign.mp4 |
2.72MB |
| 002 The-Double-Equality-Sign-Exercise-Py3.ipynb |
838B |
| 002 The-Double-Equality-Sign-Lecture-Py3.ipynb |
1.45KB |
| 002 The-Double-Equality-Sign-Solution-Py3.ipynb |
1.14KB |
| 002 The ELSE Statement_en.srt |
3.88KB |
| 002 The ELSE Statement.mp4 |
6.04MB |
| 002 Training the Model_en.srt |
5.71KB |
| 002 Training the Model.mp4 |
7.71MB |
| 002 Types of Basic Preprocessing_en.srt |
2.22KB |
| 002 Types of Basic Preprocessing.mp4 |
3.24MB |
| 002 Types of Probability Distributions_en.srt |
12.57KB |
| 002 Types of Probability Distributions.mp4 |
35.58MB |
| 002 Types of Simple Initializations_en.srt |
4.49KB |
| 002 Types of Simple Initializations.mp4 |
5.73MB |
| 002 Underfitting and Overfitting for Classification_en.srt |
3.40KB |
| 002 Underfitting and Overfitting for Classification.mp4 |
14.00MB |
| 002 Using Methods_en.srt |
10.51KB |
| 002 Using Methods.mp4 |
30.37MB |
| 002 Ways Sets Can Interact_en.srt |
5.48KB |
| 002 Ways Sets Can Interact.mp4 |
19.30MB |
| 002 What's Further out there in terms of Machine Learning_en.srt |
3.19KB |
| 002 What's Further out there in terms of Machine Learning.mp4 |
4.79MB |
| 002 What are Data Connectivity, APIs, and Endpoints_en.srt |
10.98KB |
| 002 What are Data Connectivity, APIs, and Endpoints.mp4 |
60.23MB |
| 002 What Does the Course Cover_en.srt |
6.51KB |
| 002 What Does the Course Cover.mp4 |
51.36MB |
| 002 What is a Deep Net_en.srt |
3.87KB |
| 002 What is a Deep Net.mp4 |
9.12MB |
| 002 What is a Distribution_en.srt |
7.06KB |
| 002 What is a Distribution.mp4 |
17.20MB |
| 002 What is the difference between Analysis and Analytics_en.srt |
6.12KB |
| 002 What is the difference between Analysis and Analytics.mp4 |
11.16MB |
| 002 While Loops and Incrementing_en.srt |
7.28KB |
| 002 While Loops and Incrementing.mp4 |
20.18MB |
| 002 While-Loops-and-Incrementing-Exercise-Py3.ipynb |
1.12KB |
| 002 While-Loops-and-Incrementing-Lecture-Py3.ipynb |
1.08KB |
| 002 While-Loops-and-Incrementing-Solution-Py3.ipynb |
1.75KB |
| 002 Why Python_en.srt |
8.63KB |
| 002 Why Python.mp4 |
12.04MB |
| 002 Working with Methods in Python - Part I_en.srt |
8.64KB |
| 002 Working with Methods in Python - Part I.mp4 |
19.55MB |
| 003 1.01.Simple-linear-regression.csv |
922B |
| 003 12.3.TensorFlow-MNIST-with-comments-Part-1.ipynb |
3.89KB |
| 003 2.3.Categorical-variables.Visualization-techniques-lesson.xlsx |
30.77KB |
| 003 3.9.Population-variance-known-z-score-exercise.xlsx |
10.83KB |
| 003 3.9.Population-variance-known-z-score-exercise-solution.xlsx |
11.16KB |
| 003 3.9.The-z-table.xlsx |
25.58KB |
| 003 365-DataScience-Diagram.pdf |
323.08KB |
| 003 A Note on Installing Packages in Anaconda.html |
2.28KB |
| 003 A Note on Multicollinearity.html |
849B |
| 003 Another-Way-to-Define-a-Function-Exercise-Py3.ipynb |
1.24KB |
| 003 Another-Way-to-Define-a-Function-Lecture-Py3.ipynb |
3.29KB |
| 003 Another-Way-to-Define-a-Function-Solution-Py3.ipynb |
1.98KB |
| 003 A Simple Example of Clustering - Exercise.html |
87B |
| 003 A-Simple-Example-of-Clustering-Exercise.ipynb |
3.62KB |
| 003 A-Simple-Example-of-Clustering-Solution.ipynb |
4.65KB |
| 003 Audiobooks-data.csv |
710.77KB |
| 003 Basic NN Example (Part 3)_en.srt |
5.28KB |
| 003 Basic NN Example (Part 3).mp4 |
15.65MB |
| 003 Business Analytics, Data Analytics, and Data Science An Introduction_en.srt |
13.32KB |
| 003 Business Analytics, Data Analytics, and Data Science An Introduction.mp4 |
52.62MB |
| 003 Business Case Balancing the Dataset_en.srt |
5.15KB |
| 003 Business Case Balancing the Dataset.mp4 |
27.31MB |
| 003 Categorical Variables - Visualization Techniques_en.srt |
8.00KB |
| 003 Categorical Variables - Visualization Techniques.mp4 |
36.64MB |
| 003 Characteristics of Discrete Distributions_en.srt |
3.04KB |
| 003 Characteristics of Discrete Distributions.mp4 |
9.42MB |
| 003 Checking the Content of the Data Set_en.srt |
8.53KB |
| 003 Checking the Content of the Data Set.mp4 |
54.05MB |
| 003 Confidence Intervals; Population Variance Known; Z-score; Exercise.html |
81B |
| 003 Countries-exercise.csv |
8.27KB |
| 003 Country-clusters-standardized.csv |
244B |
| 003 Course-notes-hypothesis-testing.pdf |
656.44KB |
| 003 Create-Lists-with-the-range-Function-Exercise-Py3.ipynb |
1.45KB |
| 003 Create-Lists-with-the-range-Function-Lecture-Py3.ipynb |
1.34KB |
| 003 Create-Lists-with-the-range-Function-Solution-Py3.ipynb |
2.25KB |
| 003 DeepMind and Deep Learning.html |
1.04KB |
| 003 Defining a Function in Python - Part II_en.srt |
3.68KB |
| 003 Defining a Function in Python - Part II.mp4 |
6.45MB |
| 003 Deploying the 'absenteeism_module' - Part II_en.srt |
9.66KB |
| 003 Deploying the 'absenteeism_module' - Part II.mp4 |
45.15MB |
| 003 Difference between Classification and Clustering_en.srt |
4.36KB |
| 003 Difference between Classification and Clustering.mp4 |
9.67MB |
| 003 Digging into a Deep Net_en.srt |
8.26KB |
| 003 Digging into a Deep Net.mp4 |
23.70MB |
| 003 Download-all-resources.url |
97B |
| 003 Download All Resources and Important FAQ.html |
21.26KB |
| 003 Else-If-for-Brief-Elif-Exercise-Py3.ipynb |
1.75KB |
| 003 Else-If-for-Brief-Elif-Lecture-Py3.ipynb |
3.24KB |
| 003 Else-If-for-Brief-Elif-Solution-Py3.ipynb |
2.40KB |
| 003 EXERCISE - Reasons vs Probability.html |
385B |
| 003 FAQ-The-Data-Science-Course.pdf |
306.10KB |
| 003 Frequency_en.srt |
8.34KB |
| 003 Frequency.mp4 |
37.36MB |
| 003 Geometrical Representation of the Linear Regression Model_en.srt |
2.06KB |
| 003 Heatmaps_en.srt |
7.41KB |
| 003 Heatmaps.ipynb |
1.82KB |
| 003 Heatmaps.mp4 |
25.71MB |
| 003 Heatmaps-with-comments.ipynb |
17.66KB |
| 003 How to Reassign Values_en.srt |
1.57KB |
| 003 How to Reassign Values.mp4 |
1.86MB |
| 003 Intersection of Sets_en.srt |
3.06KB |
| 003 Intersection of Sets.mp4 |
11.01MB |
| 003 Introducing the Data Set_en.srt |
5.17KB |
| 003 Introducing the Data Set.mp4 |
24.24MB |
| 003 Introduction to Nested For Loops_en.srt |
10.22KB |
| 003 Introduction to Nested For Loops.mp4 |
12.13MB |
| 003 Linear Algebra and Geometry_en.srt |
4.94KB |
| 003 Linear Algebra and Geometry.mp4 |
13.73MB |
| 003 List Slicing_en.srt |
6.59KB |
| 003 List Slicing.mp4 |
19.18MB |
| 003 List-Slicing-Exercise-Py3.ipynb |
2.79KB |
| 003 List-Slicing-Lecture-Py3.ipynb |
5.02KB |
| 003 List-Slicing-Solution-Py3.ipynb |
4.26KB |
| 003 Lists with the range() Function_en.srt |
10.37KB |
| 003 Lists with the range() Function.mp4 |
11.94MB |
| 003 Logistic vs Logit Function_en.srt |
6.06KB |
| 003 Logistic vs Logit Function.mp4 |
23.76MB |
| 003 Minimal-example-Part-3.ipynb |
6.79KB |
| 003 MNIST Importing the Relevant Packages and Loading the Data_en.srt |
3.63KB |
| 003 MNIST Importing the Relevant Packages and Loading the Data.mp4 |
12.24MB |
| 003 MNIST Relevant Packages_en.srt |
2.60KB |
| 003 MNIST Relevant Packages.mp4 |
11.26MB |
| 003 Momentum_en.srt |
4.28KB |
| 003 Momentum.mp4 |
5.18MB |
| 003 Multiple Linear Regression Exercise.html |
76B |
| 003 Multiple-Linear-Regression-Exercise.ipynb |
2.45KB |
| 003 Multiple-Linear-Regression-Exercise-Solution.ipynb |
13.39KB |
| 003 Probability-Cheat-Sheet.pdf |
320.28KB |
| 003 Probability in Data Science_en.srt |
8.54KB |
| 003 Probability in Data Science.mp4 |
56.89MB |
| 003 Python Strings_en.srt |
9.26KB |
| 003 Python Strings.mp4 |
15.67MB |
| 003 real-estate-price-size-year.csv |
2.35KB |
| 003 Reassign-Values-Exercise-Py3.ipynb |
1.67KB |
| 003 Reassign-Values-Lecture-Py3.ipynb |
3.08KB |
| 003 Reassign-Values-Solution-Py3.ipynb |
2.12KB |
| 003 Rejection Region and Significance Level_en.srt |
10.33KB |
| 003 Rejection Region and Significance Level.mp4 |
38.69MB |
| 003 Selecting the Inputs for the Logistic Regression_en.srt |
4.31KB |
| 003 Simple Linear Regression with sklearn_en.srt |
9.11KB |
| 003 Simple Linear Regression with sklearn.mp4 |
31.62MB |
| 003 Simple Operations with Factorials_en.srt |
4.06KB |
| 003 Simple Operations with Factorials.mp4 |
16.68MB |
| 003 sklearn-Simple-Linear-Regression.ipynb |
4.92KB |
| 003 sklearn-Simple-Linear-Regression-with-comments.ipynb |
6.06KB |
| 003 Standardization_en.srt |
7.41KB |
| 003 Standardization.mp4 |
12.07MB |
| 003 State-of-the-Art Method - (Xavier) Glorot Initialization_en.srt |
4.53KB |
| 003 State-of-the-Art Method - (Xavier) Glorot Initialization.mp4 |
5.46MB |
| 003 Strings-Exercise-Py3.ipynb |
2.61KB |
| 003 Strings-Lecture-Py3.ipynb |
7.56KB |
| 003 Strings-Solution-Py3.ipynb |
5.45KB |
| 003 Structured, Semi-Structured and Unstructured Data_en.srt |
6.03KB |
| 003 Structured, Semi-Structured and Unstructured Data.mp4 |
11.07MB |
| 003 Taking a Closer Look at APIs_en.srt |
13.07KB |
| 003 Taking a Closer Look at APIs.mp4 |
67.06MB |
| 003 Techniques for Working with Big Data_en.srt |
6.98KB |
| 003 Techniques for Working with Big Data.mp4 |
62.11MB |
| 003 TensorFlow 1 vs TensorFlow 2_en.srt |
4.85KB |
| 003 TensorFlow 1 vs TensorFlow 2.mp4 |
15.32MB |
| 003 TensorFlow-MNIST-Part1-with-comments.ipynb |
3.97KB |
| 003 The ELIF Statement_en.srt |
8.22KB |
| 003 The ELIF Statement.mp4 |
14.23MB |
| 003 The Importance of Working with a Balanced Dataset_en.srt |
5.25KB |
| 003 The Importance of Working with a Balanced Dataset.mp4 |
27.25MB |
| 003 The Normal Distribution_en.srt |
6.22KB |
| 003 The Normal Distribution.mp4 |
27.49MB |
| 003 Types of Machine Learning_en.srt |
6.54KB |
| 003 Types of Machine Learning.mp4 |
13.05MB |
| 003 What is the Standard Library_en.srt |
4.63KB |
| 003 What is the Standard Library.mp4 |
5.05MB |
| 003 What is Validation_en.srt |
5.96KB |
| 003 What is Validation.mp4 |
8.38MB |
| 003 Why Jupyter_en.srt |
5.91KB |
| 003 Why Jupyter.mp4 |
8.13MB |
| 003 Working with Methods in Python - Part II_en.srt |
4.73KB |
| 003 Working with Methods in Python - Part II.mp4 |
9.00MB |
| 004 0.6.4-Using-a-Function-in-another-Function-Exercise-Py3.ipynb |
1.04KB |
| 004 0.6.4-Using-a-Function-in-another-Function-Lecture-Py3.ipynb |
1015B |
| 004 0.6.4-Using-a-Function-in-another-Function-Solution-Py3.ipynb |
1.60KB |
| 004 1.01.Simple-linear-regression.csv |
922B |
| 004 12.4.TensorFlow-MNIST-with-comments-Part-2.ipynb |
6.10KB |
| 004 2.3.Categorical-variables.Visualization-techniques-exercise.xlsx |
15.24KB |
| 004 2.3.Categorical-variables.Visualization-techniques-exercise-solution.xlsx |
41.11KB |
| 004 3.4.Standard-normal-distribution-lesson.xlsx |
10.38KB |
| 004 365-DataScience.png |
6.92MB |
| 004 365-DataScience-Diagram.pdf |
323.08KB |
| 004 Absenteeism-Exercise-Deploying-the-absenteeism-module.ipynb |
973B |
| 004 Add Comments_en.srt |
2.34KB |
| 004 Add Comments.mp4 |
2.41MB |
| 004 Add-Comments-Lecture-Py3.ipynb |
1.03KB |
| 004 Admittance-regression.ipynb |
2.09KB |
| 004 Admittance-regression-summary-error.ipynb |
2.48KB |
| 004 Admittance-regression-tables-fixed-error.ipynb |
4.11KB |
| 004 Analyzing Reasons vs Probability in Tableau_en.srt |
11.52KB |
| 004 Analyzing Reasons vs Probability in Tableau.mp4 |
40.24MB |
| 004 A Note on Boolean Values_en.srt |
3.72KB |
| 004 A Note on Boolean Values.mp4 |
4.24MB |
| 004 A-Note-on-Boolean-Values-Lecture-Py3.ipynb |
791B |
| 004 A Note on TensorFlow 2 Syntax_en.srt |
1.68KB |
| 004 A Note on TensorFlow 2 Syntax.mp4 |
4.63MB |
| 004 An overview of CNNs_en.srt |
7.52KB |
| 004 An overview of CNNs.mp4 |
13.38MB |
| 004 Arrays in Python - A Convenient Way To Represent Matrices_en.srt |
7.44KB |
| 004 Arrays in Python - A Convenient Way To Represent Matrices.mp4 |
18.98MB |
| 004 Audiobooks-data.csv |
710.77KB |
| 004 Basic NN Example (Part 4)_en.srt |
13.23KB |
| 004 Basic NN Example (Part 4).mp4 |
39.99MB |
| 004 Building a Logistic Regression_en.srt |
4.21KB |
| 004 Building a Logistic Regression.mp4 |
8.59MB |
| 004 Business Case Preprocessing_en.srt |
16.35KB |
| 004 Business Case Preprocessing.mp4 |
63.70MB |
| 004 Business Case Preprocessing the Data_en.srt |
16.46KB |
| 004 Business Case Preprocessing the Data.mp4 |
73.86MB |
| 004 Categorical-data.ipynb |
3.35KB |
| 004 Categorical-data-with-comments.ipynb |
5.62KB |
| 004 Categorical Variables Exercise.html |
81B |
| 004 Clustering Categorical Data_en.srt |
4.00KB |
| 004 Clustering Categorical Data.mp4 |
10.35MB |
| 004 Communication between Software Products through Text Files_en.srt |
7.02KB |
| 004 Communication between Software Products through Text Files.mp4 |
21.87MB |
| 004 Conditional Statements and Loops_en.srt |
9.59KB |
| 004 Conditional Statements and Loops.mp4 |
21.94MB |
| 004 Confidence Interval Clarifications_en.srt |
6.70KB |
| 004 Confidence Interval Clarifications.mp4 |
18.94MB |
| 004 Continuing with BI, ML, and AI_en.srt |
14.98KB |
| 004 Continuing with BI, ML, and AI.mp4 |
36.95MB |
| 004 Discrete Distributions The Uniform Distribution_en.srt |
3.44KB |
| 004 Discrete Distributions The Uniform Distribution.mp4 |
10.31MB |
| 004 Events and Their Complements_en.srt |
8.52KB |
| 004 Events and Their Complements.mp4 |
25.83MB |
| 004 Exporting the Obtained Data Set as a .csv.html |
964B |
| 004 How to Use a Function within a Function_en.srt |
2.51KB |
| 004 How to Use a Function within a Function.mp4 |
3.23MB |
| 004 Importing Modules in Python_en.srt |
5.87KB |
| 004 Importing Modules in Python.mp4 |
8.55MB |
| 004 Installing Python and Jupyter_en.srt |
11.13KB |
| 004 Installing Python and Jupyter.mp4 |
32.82MB |
| 004 Introduction to Terms with Multiple Meanings_en.srt |
5.14KB |
| 004 Introduction to Terms with Multiple Meanings.mp4 |
18.00MB |
| 004 Learning Rate Schedules, or How to Choose the Optimal Learning Rate_en.srt |
7.59KB |
| 004 Math Prerequisites_en.srt |
5.33KB |
| 004 Math Prerequisites.mp4 |
5.27MB |
| 004 Minimal-example-Part-4-Complete.ipynb |
11.41KB |
| 004 MNIST Model Outline_en.srt |
11.08KB |
| 004 MNIST Model Outline.mp4 |
34.65MB |
| 004 MNIST Preprocess the Data - Create a Validation Set and Scale It_en.srt |
7.78KB |
| 004 MNIST Preprocess the Data - Create a Validation Set and Scale It.mp4 |
22.90MB |
| 004 Non-Linearities and their Purpose_en.srt |
5.18KB |
| 004 Non-Linearities and their Purpose.mp4 |
22.57MB |
| 004 Parameters and Arguments in pandas_en.srt |
6.88KB |
| 004 Parameters and Arguments in pandas.mp4 |
21.14MB |
| 004 Practical Example Linear Regression (Part 3)_en.srt |
5.36KB |
| 004 Practical Example Linear Regression (Part 3).mp4 |
16.65MB |
| 004 Preprocessing Categorical Data_en.srt |
3.39KB |
| 004 Preprocessing Categorical Data.mp4 |
5.44MB |
| 004 Python Packages Installation_en.srt |
6.65KB |
| 004 Python Packages Installation.mp4 |
23.67MB |
| 004 Real Life Examples of Big Data_en.srt |
2.25KB |
| 004 Real Life Examples of Big Data.mp4 |
13.07MB |
| 004 Scalars-Vectors-and-Matrices.ipynb |
4.55KB |
| 004 Simple Linear Regression with sklearn - A StatsModels-like Summary Table_en.srt |
8.15KB |
| 004 Simple Linear Regression with sklearn - A StatsModels-like Summary Table.mp4 |
28.89MB |
| 004 sklearn-Linear-Regression-Practical-Example-Part-3.ipynb |
343.58KB |
| 004 sklearn-Linear-Regression-Practical-Example-Part-3-.url |
97B |
| 004 sklearn-Linear-Regression-Practical-Example-Part-3-with-comments.ipynb |
351.47KB |
| 004 sklearn-Simple-Linear-Regression.ipynb |
26.07KB |
| 004 sklearn-Simple-Linear-Regression-with-comments.ipynb |
28.35KB |
| 004 Solving Variations with Repetition_en.srt |
4.47KB |
| 004 Solving Variations with Repetition.mp4 |
13.95MB |
| 004 Standardizing the Data_en.srt |
5.12KB |
| 004 Standardizing the Data.mp4 |
15.15MB |
| 004 Statistics-PDF-with-Excel-Solutions-that-dont-visualize-properly.pdf |
289.12KB |
| 004 TensorFlow-Audiobooks-Preprocessing.ipynb |
5.58KB |
| 004 TensorFlow-Audiobooks-Preprocessing.ipynb |
5.58KB |
| 004 TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb |
11.19KB |
| 004 TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb |
11.19KB |
| 004 TensorFlow Intro_en.srt |
6.34KB |
| 004 TensorFlow Intro.mp4 |
16.88MB |
| 004 Test for Significance of the Model (F-Test)_en.srt |
2.94KB |
| 004 Test for Significance of the Model (F-Test).mp4 |
7.17MB |
| 004 Text Files and Data Connectivity_en.srt |
5.67KB |
| 004 Text Files and Data Connectivity.mp4 |
10.81MB |
| 004 The Linear Model (Linear Algebraic Version)_en.srt |
4.40KB |
| 004 The Linear Model (Linear Algebraic Version).mp4 |
7.98MB |
| 004 The Standard Normal Distribution_en.srt |
4.84KB |
| 004 The Standard Normal Distribution.mp4 |
8.61MB |
| 004 Training, Validation, and Test Datasets_en.srt |
4.10KB |
| 004 Training, Validation, and Test Datasets.mp4 |
9.40MB |
| 004 Triple Nested For Loops_en.srt |
10.21KB |
| 004 Triple Nested For Loops.mp4 |
33.00MB |
| 004 Tuples_en.srt |
9.02KB |
| 004 Tuples.mp4 |
18.19MB |
| 004 Tuples-Exercise-Py3.ipynb |
2.07KB |
| 004 Tuples-Lecture-Py3.ipynb |
2.91KB |
| 004 Tuples-Solution-Py3.ipynb |
4.61KB |
| 004 Type I Error and Type II Error_en.srt |
6.57KB |
| 004 Type I Error and Type II Error.mp4 |
18.61MB |
| 004 Union of Sets_en.srt |
7.46KB |
| 004 Union of Sets.mp4 |
24.20MB |
| 004 Use-Conditional-Statements-and-Loops-Together-Exercise-Py3.ipynb |
2.10KB |
| 004 Use-Conditional-Statements-and-Loops-Together-Lecture-Py3.ipynb |
1.95KB |
| 004 Use-Conditional-Statements-and-Loops-Together-Solution-Py3.ipynb |
2.96KB |
| 005 1.01.Simple-linear-regression.csv |
922B |
| 005 1.04.Real-life-example.csv |
219.83KB |
| 005 12.5.TensorFlow-MNIST-with-comments-Part-3.ipynb |
7.31KB |
| 005 2.4.Numerical-variables.Frequency-distribution-table-lesson.xlsx |
11.44KB |
| 005 3.4.Standard-normal-distribution-exercise.xlsx |
11.99KB |
| 005 3.4.Standard-normal-distribution-exercise-solution.xlsx |
24.04KB |
| 005 365-DataScience.png |
6.92MB |
| 005 4.4.Test-for-the-mean.Population-variance-known-lesson.xlsx |
10.96KB |
| 005 A Breakdown of our Data Science Infographic_en.srt |
6.07KB |
| 005 A Breakdown of our Data Science Infographic.mp4 |
45.30MB |
| 005 Activation Functions_en.srt |
6.26KB |
| 005 Activation Functions.mp4 |
8.85MB |
| 005 Actual Introduction to TensorFlow_en.srt |
2.78KB |
| 005 Actual Introduction to TensorFlow.mp4 |
9.15MB |
| 005 All-In-Exercise-Py3.ipynb |
1.30KB |
| 005 All-In-Lecture-Py3.ipynb |
1.62KB |
| 005 All-In-Solution-Py3.ipynb |
1.90KB |
| 005 A Note on Normalization.html |
729B |
| 005 An Overview of RNNs_en.srt |
4.72KB |
| 005 An Overview of RNNs.mp4 |
6.97MB |
| 005 Audiobooks-data.csv |
710.77KB |
| 005 Basic NN Example Exercises.html |
1.65KB |
| 005 Binary and One-Hot Encoding_en.srt |
6.48KB |
| 005 Binary and One-Hot Encoding.mp4 |
23.94MB |
| 005 Building a Logistic Regression - Exercise.html |
87B |
| 005 Building-a-Logistic-Regression-Exercise.ipynb |
2.92KB |
| 005 Building-a-Logistic-Regression-Solution.ipynb |
4.44KB |
| 005 Business Case Preprocessing Exercise.html |
379B |
| 005 Business Case Preprocessing the Data - Exercise.html |
370B |
| 005 Business Intelligence (BI) Techniques_en.srt |
10.54KB |
| 005 Business Intelligence (BI) Techniques.mp4 |
52.88MB |
| 005 Categorical.csv |
10.34KB |
| 005 Clustering Categorical Data - Exercise.html |
87B |
| 005 Clustering-Categorical-Data-Exercise.ipynb |
3.78KB |
| 005 Clustering-Categorical-Data-Solution.ipynb |
4.90KB |
| 005 Combining-Conditional-Statements-and-Functions-Exercise-Py3.ipynb |
1.06KB |
| 005 Combining-Conditional-Statements-and-Functions-Lecture-Py3.ipynb |
1.29KB |
| 005 Combining-Conditional-Statements-and-Functions-Solution-Py3.ipynb |
1.65KB |
| 005 Conditional Statements, Functions, and Loops_en.srt |
2.97KB |
| 005 Conditional Statements, Functions, and Loops.mp4 |
4.27MB |
| 005 Conditional Statements and Functions_en.srt |
4.33KB |
| 005 Conditional Statements and Functions.mp4 |
5.98MB |
| 005 Dictionaries_en.srt |
10.72KB |
| 005 Dictionaries.mp4 |
32.44MB |
| 005 Dictionaries-Exercise-Py3.ipynb |
2.92KB |
| 005 Dictionaries-Lecture-Py3.ipynb |
4.35KB |
| 005 Dictionaries-Solution-Py3.ipynb |
6.16KB |
| 005 Discrete Distributions The Bernoulli Distribution_en.srt |
6.49KB |
| 005 Discrete Distributions The Bernoulli Distribution.mp4 |
15.12MB |
| 005 Dummies and Variance Inflation Factor - Exercise.html |
76B |
| 005 Example-bank-data.csv |
6.21KB |
| 005 EXERCISE - Transportation Expense vs Probability.html |
529B |
| 005 First Regression in Python_en.srt |
9.95KB |
| 005 First Regression in Python.mp4 |
29.62MB |
| 005 Importing Data in Python - Principles_en.srt |
9.05KB |
| 005 Importing Data in Python - Principles.mp4 |
16.72MB |
| 005 Learning Rate Schedules Visualized_en.srt |
2.67KB |
| 005 Learning Rate Schedules Visualized.mp4 |
8.00MB |
| 005 Line-Continuation-Exercise-Py3.ipynb |
1.14KB |
| 005 Line-Continuation-Lecture-Py3.ipynb |
779B |
| 005 Line-Continuation-Solution-Py3.ipynb |
1.50KB |
| 005 List Comprehensions_en.srt |
15.44KB |
| 005 List Comprehensions.mp4 |
43.20MB |
| 005 Minimal-example-All-Exercises.ipynb |
12.89KB |
| 005 Minimal-example-Exercise-1-Solution.ipynb |
69.00KB |
| 005 Minimal-example-Exercise-2-Solution.ipynb |
61.41KB |
| 005 Minimal-example-Exercise-3.a.Solution.ipynb |
67.89KB |
| 005 Minimal-example-Exercise-3.b.Solution.ipynb |
67.72KB |
| 005 Minimal-example-Exercise-3.c.Solution.ipynb |
70.13KB |
| 005 Minimal-example-Exercise-3.d.Solution.ipynb |
84.13KB |
| 005 Minimal-example-Exercise-4-Solution.ipynb |
66.52KB |
| 005 Minimal-example-Exercise-5-Solution.ipynb |
68.88KB |
| 005 Minimal-example-Exercise-6.ipynb |
61.76KB |
| 005 Minimal-example-Exercise-6-Solution.ipynb |
61.76KB |
| 005 MNIST Loss and Optimization Algorithm_en.srt |
4.27KB |
| 005 MNIST Loss and Optimization Algorithm.mp4 |
15.77MB |
| 005 MNIST Preprocess the Data - Scale the Test Data - Exercise.html |
79B |
| 005 Mutually Exclusive Sets_en.srt |
3.29KB |
| 005 Mutually Exclusive Sets.mp4 |
10.59MB |
| 005 N-Fold Cross Validation_en.srt |
5.20KB |
| 005 N-Fold Cross Validation.mp4 |
6.24MB |
| 005 Numerical Variables - Frequency Distribution Table_en.srt |
5.30KB |
| 005 Numerical Variables - Frequency Distribution Table.mp4 |
17.69MB |
| 005 OLS Assumptions_en.srt |
3.63KB |
| 005 OLS Assumptions.mp4 |
5.26MB |
| 005 Shortcuts-for-Jupyter.pdf |
619.17KB |
| 005 Simple-linear-regression.ipynb |
3.79KB |
| 005 Simple-linear-regression-with-comments.ipynb |
4.06KB |
| 005 sklearn-Dummies-and-VIF-Exercise.ipynb |
344.62KB |
| 005 sklearn-Dummies-and-VIF-Exercise-Solution.ipynb |
370.22KB |
| 005 Software Integration - Explained_en.srt |
8.32KB |
| 005 Software Integration - Explained.mp4 |
42.94MB |
| 005 Solving Variations without Repetition_en.srt |
5.93KB |
| 005 Solving Variations without Repetition.mp4 |
18.25MB |
| 005 Splitting the Data for Training and Testing_en.srt |
10.31KB |
| 005 Splitting the Data for Training and Testing.mp4 |
41.89MB |
| 005 Student's T Distribution_en.srt |
5.45KB |
| 005 Student's T Distribution.mp4 |
13.68MB |
| 005 TensorFlow-Audiobooks-Preprocessing-Exercise.ipynb |
8.60KB |
| 005 TensorFlow-Audiobooks-Preprocessing-Exercise.ipynb |
8.60KB |
| 005 TensorFlow-Audiobooks-Preprocessing-Exercise-Solution.ipynb |
10.04KB |
| 005 TensorFlow-Audiobooks-Preprocessing-Exercise-Solution.ipynb |
10.03KB |
| 005 TensorFlow-Minimal-example-Part1.ipynb |
1.66KB |
| 005 TensorFlow-MNIST-Part2-with-comments.ipynb |
6.39KB |
| 005 Tensors.ipynb |
2.08KB |
| 005 Test for the Mean. Population Variance Known_en.srt |
9.79KB |
| 005 Test for the Mean. Population Variance Known.mp4 |
36.95MB |
| 005 The Linear Model with Multiple Inputs_en.srt |
3.35KB |
| 005 The Linear Model with Multiple Inputs.mp4 |
7.91MB |
| 005 The Standard Normal Distribution Exercise.html |
81B |
| 005 Types of File Formats Supporting TensorFlow_en.srt |
4.14KB |
| 005 Types of File Formats Supporting TensorFlow.mp4 |
8.86MB |
| 005 Understanding Jupyter's Interface - the Notebook Dashboard_en.srt |
4.44KB |
| 005 Understanding Jupyter's Interface - the Notebook Dashboard.mp4 |
6.07MB |
| 005 Understanding Line Continuation_en.srt |
1.37KB |
| 005 Understanding Line Continuation.mp4 |
1.20MB |
| 005 Using .unique() and .nunique()_en.srt |
7.00KB |
| 005 Using .unique() and .nunique().mp4 |
24.29MB |
| 005 What's Regression Analysis - a Quick Refresher.html |
2.80KB |
| 005 What is a Tensor_en.srt |
4.55KB |
| 005 What is a Tensor.mp4 |
15.53MB |
| 006 1.04.Real-life-example.csv |
219.83KB |
| 006 12.6.TensorFlow-MNIST-with-comments-Part-4.ipynb |
7.90KB |
| 006 2.4.Numerical-variables.Frequency-distribution-table-exercise-solution.xlsx |
13.15KB |
| 006 3.11.Population-variance-unknown-t-score-lesson.xlsx |
10.78KB |
| 006 3.11.The-t-table.xlsx |
15.85KB |
| 006 4.4.Test-for-the-mean.Population-variance-known-exercise.xlsx |
11.03KB |
| 006 4.4.Test-for-the-mean.Population-variance-known-exercise-solution.xlsx |
11.22KB |
| 006 5.3.TensorFlow-Minimal-example-Part-1.ipynb |
3.36KB |
| 006 A1 Linearity_en.srt |
2.98KB |
| 006 A1 Linearity.mp4 |
3.57MB |
| 006 Activation Functions Softmax Activation_en.srt |
5.37KB |
| 006 Activation Functions Softmax Activation.mp4 |
8.74MB |
| 006 Adaptive Learning Rate Schedules (AdaGrad and RMSprop )_en.srt |
6.72KB |
| 006 Adding-and-subtracting-matrices.ipynb |
3.22KB |
| 006 Additional-Python-Tools-Exercises.ipynb |
11.37KB |
| 006 Additional-Python-Tools-Lectures.ipynb |
13.47KB |
| 006 Additional-Python-Tools-Solutions.ipynb |
25.49KB |
| 006 Addition and Subtraction of Matrices_en.srt |
5.13KB |
| 006 Addition and Subtraction of Matrices.mp4 |
22.10MB |
| 006 Analyzing Transportation Expense vs Probability in Tableau_en.srt |
9.23KB |
| 006 Analyzing Transportation Expense vs Probability in Tableau.mp4 |
19.78MB |
| 006 An Invaluable Coding Tip_en.srt |
3.75KB |
| 006 An Invaluable Coding Tip.mp4 |
18.76MB |
| 006 Anonymous (Lambda) Functions_en.srt |
12.60KB |
| 006 Anonymous (Lambda) Functions.mp4 |
30.34MB |
| 006 An Overview of non-NN Approaches_en.srt |
6.88KB |
| 006 An Overview of non-NN Approaches.mp4 |
16.08MB |
| 006 Business Case Load the Preprocessed Data_en.srt |
5.56KB |
| 006 Business Case Load the Preprocessed Data.mp4 |
13.83MB |
| 006 Calculating the Accuracy of the Model_en.srt |
6.34KB |
| 006 Calculating the Accuracy of the Model.mp4 |
24.45MB |
| 006 Central Limit Theorem_en.srt |
6.69KB |
| 006 Central Limit Theorem.mp4 |
23.22MB |
| 006 Combinations-With-Repetition.pdf |
207.41KB |
| 006 Confidence Intervals; Population Variance Unknown; T-score_en.srt |
6.45KB |
| 006 Confidence Intervals; Population Variance Unknown; T-score.mp4 |
13.69MB |
| 006 Creating a Data Provider_en.srt |
9.93KB |
| 006 Creating a Data Provider.mp4 |
56.31MB |
| 006 Creating-Functions-Containing-a-Few-Arguments-Lecture-Py3.ipynb |
1.72KB |
| 006 Dependence and Independence of Sets_en.srt |
4.13KB |
| 006 Dependence and Independence of Sets.mp4 |
14.92MB |
| 006 Discrete Distributions The Binomial Distribution_en.srt |
10.55KB |
| 006 Discrete Distributions The Binomial Distribution.mp4 |
30.61MB |
| 006 Early Stopping or When to Stop Training_en.srt |
8.31KB |
| 006 Early Stopping or When to Stop Training.mp4 |
10.29MB |
| 006 First Regression in Python Exercise.html |
1.31KB |
| 006 Fitting the Model and Assessing its Accuracy_en.srt |
8.76KB |
| 006 Fitting the Model and Assessing its Accuracy.mp4 |
35.29MB |
| 006 Functions Containing a Few Arguments_en.srt |
1.76KB |
| 006 Functions Containing a Few Arguments.mp4 |
2.83MB |
| 006 How to Choose the Number of Clusters_en.srt |
9.08KB |
| 006 How to Choose the Number of Clusters.mp4 |
26.87MB |
| 006 How to Iterate over Dictionaries_en.srt |
9.42KB |
| 006 How to Iterate over Dictionaries.mp4 |
16.44MB |
| 006 Indexing Elements_en.srt |
1.98KB |
| 006 Indexing Elements.mp4 |
2.36MB |
| 006 Indexing-Elements-Exercise-Py3.ipynb |
1.35KB |
| 006 Indexing-Elements-Lecture-Py3.ipynb |
1.32KB |
| 006 Indexing-Elements-Solution-Py3.ipynb |
2.17KB |
| 006 Iterating-over-Dictionaries-Exercise-Py3.ipynb |
2.19KB |
| 006 Iterating-over-Dictionaries-Lecture-Py3.ipynb |
1.08KB |
| 006 Iterating-over-Dictionaries-Solution-Py3.ipynb |
2.87KB |
| 006 MNIST Preprocess the Data - Shuffle and Batch_en.srt |
11.46KB |
| 006 MNIST Preprocess the Data - Shuffle and Batch.mp4 |
32.69MB |
| 006 Numerical Variables Exercise.html |
81B |
| 006 Outlining the Model with TensorFlow 2_en.srt |
10.16KB |
| 006 Outlining the Model with TensorFlow 2.mp4 |
26.94MB |
| 006 Plain Text Files, Flat Files and More_en.srt |
8.25KB |
| 006 Plain Text Files, Flat Files and More.mp4 |
13.16MB |
| 006 Practical Example Linear Regression (Part 4)_en.srt |
14.30KB |
| 006 Practical Example Linear Regression (Part 4).mp4 |
39.40MB |
| 006 Prerequisites for Coding in the Jupyter Notebooks_en.srt |
9.43KB |
| 006 Prerequisites for Coding in the Jupyter Notebooks.mp4 |
18.96MB |
| 006 real-estate-price-size.csv |
1.86KB |
| 006 real-estate-price-size.csv |
1.86KB |
| 006 Real Life Examples of Business Intelligence (BI)_en.srt |
2.68KB |
| 006 Real Life Examples of Business Intelligence (BI).mp4 |
24.68MB |
| 006 Selecting-the-number-of-clusters.ipynb |
4.53KB |
| 006 Selecting-the-number-of-clusters-with-comments.ipynb |
7.48KB |
| 006 Simple-Linear-Regression-Exercise.ipynb |
2.78KB |
| 006 Simple-Linear-Regression-Exercise-Solution.ipynb |
3.57KB |
| 006 Simple Linear Regression with sklearn - Exercise.html |
76B |
| 006 Simple-Linear-Regression-with-sklearn-Exercise.ipynb |
4.08KB |
| 006 Simple-Linear-Regression-with-sklearn-Exercise-Solution.ipynb |
26.61KB |
| 006 sklearn-Linear-Regression-Practical-Example-Part-4.ipynb |
397.23KB |
| 006 sklearn-Linear-Regression-Practical-Example-Part-4-with-comments.ipynb |
407.59KB |
| 006 Solving Combinations_en.srt |
7.23KB |
| 006 Solving Combinations.mp4 |
23.67MB |
| 006 TensorFlow-Minimal-example-Part2.ipynb |
9.06KB |
| 006 Test for the Mean. Population Variance Known Exercise.html |
81B |
| 006 The Linear model with Multiple Inputs and Multiple Outputs_en.srt |
5.78KB |
| 006 The Linear model with Multiple Inputs and Multiple Outputs.mp4 |
16.66MB |
| 006 Types of File Formats, supporting Tensors_en.srt |
4.12KB |
| 006 Types of File Formats, supporting Tensors.mp4 |
8.89MB |
| 006 Using .sort_values()_en.srt |
6.62KB |
| 006 Using .sort_values().mp4 |
21.04MB |
| 006 Using a Statistical Approach towards the Solution to the Exercise_en.srt |
3.59KB |
| 006 Using a Statistical Approach towards the Solution to the Exercise.mp4 |
13.75MB |
| 007 1.02.Multiple-linear-regression.csv |
1.07KB |
| 007 12.7.TensorFlow-MNIST-with-comments-Part-5.ipynb |
8.53KB |
| 007 2.5.The-Histogram-lesson.xlsx |
18.63KB |
| 007 3.11.Population-variance-unknown-t-score-exercise.xlsx |
10.62KB |
| 007 3.11.Population-variance-unknown-t-score-exercise-solution.xlsx |
11.10KB |
| 007 3.11.The-t-table.xlsx |
15.85KB |
| 007 5.4.TensorFlow-Minimal-example-Part-2.ipynb |
6.17KB |
| 007 A2 No Endogeneity_en.srt |
6.75KB |
| 007 A2 No Endogeneity.mp4 |
9.24MB |
| 007 Adam (Adaptive Moment Estimation)_en.srt |
4.12KB |
| 007 Adam (Adaptive Moment Estimation).mp4 |
7.14MB |
| 007 Backpropagation_en.srt |
5.48KB |
| 007 Backpropagation.mp4 |
20.35MB |
| 007 Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases_en.srt |
9.65KB |
| 007 Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.mp4 |
17.70MB |
| 007 Built-in Functions in Python_en.srt |
5.15KB |
| 007 Built-in Functions in Python.mp4 |
10.19MB |
| 007 Business Case Load the Preprocessed Data - Exercise.html |
79B |
| 007 Business Case Model Outline_en.srt |
8.60KB |
| 007 Business Case Model Outline.mp4 |
42.53MB |
| 007 Confidence Intervals; Population Variance Unknown; T-score; Exercise.html |
81B |
| 007 Countries-exercise.csv |
8.27KB |
| 007 Creating a Summary Table with the Coefficients and Intercept_en.srt |
7.53KB |
| 007 Discrete Distributions The Poisson Distribution_en.srt |
8.68KB |
| 007 Discrete Distributions The Poisson Distribution.mp4 |
23.93MB |
| 007 Dropping a Column from a DataFrame in Python_en.srt |
9.97KB |
| 007 Dropping a Column from a DataFrame in Python.mp4 |
41.25MB |
| 007 Dummy Variables - Exercise.html |
705B |
| 007 Errors when Adding Matrices_en.srt |
3.21KB |
| 007 Errors when Adding Matrices.mp4 |
5.78MB |
| 007 Errors-when-adding-scalars-vectors-and-matrices-in-Python.ipynb |
3.17KB |
| 007 Graphical Representation of Simple Neural Networks_en.srt |
3.21KB |
| 007 Graphical Representation of Simple Neural Networks.mp4 |
7.78MB |
| 007 How to Choose the Number of Clusters - Exercise.html |
87B |
| 007 How-to-Choose-the-Number-of-Clusters-Exercise.ipynb |
5.55KB |
| 007 How-to-Choose-the-Number-of-Clusters-Solution.ipynb |
8.49KB |
| 007 Interpreting the Result and Extracting the Weights and Bias_en.srt |
8.17KB |
| 007 Interpreting the Result and Extracting the Weights and Bias.mp4 |
25.96MB |
| 007 Introduction to pandas DataFrames - Part I_en.srt |
8.80KB |
| 007 Introduction to pandas DataFrames - Part I.mp4 |
10.61MB |
| 007 MNIST Batching and Early Stopping_en.srt |
3.38KB |
| 007 MNIST Batching and Early Stopping.mp4 |
9.48MB |
| 007 MNIST Preprocess the Data - Shuffle and Batch - Exercise.html |
79B |
| 007 Multiple Linear Regression with sklearn_en.srt |
5.11KB |
| 007 Multiple Linear Regression with sklearn.mp4 |
11.01MB |
| 007 Notable-Built-In-Functions-in-Python-Exercise-Py3.ipynb |
3.66KB |
| 007 Notable-Built-In-Functions-in-Python-Lecture-Py3.ipynb |
4.51KB |
| 007 Notable-Built-In-Functions-in-Python-Solution-Py3.ipynb |
5.52KB |
| 007 Online-p-value-calculator.pdf |
1.15MB |
| 007 Poisson-Expected-Value-and-Variance.pdf |
145.99KB |
| 007 p-value_en.srt |
6.29KB |
| 007 p-value.mp4 |
33.78MB |
| 007 sklearn-Multiple-Linear-Regression.ipynb |
7.79KB |
| 007 sklearn-Multiple-Linear-Regression-with-comments.ipynb |
8.65KB |
| 007 Standard error_en.srt |
2.49KB |
| 007 Standard error.mp4 |
13.52MB |
| 007 Structure-Your-Code-with-Indentation-Exercise-Py3.ipynb |
956B |
| 007 Structure-Your-Code-with-Indentation-Lecture-Py3.ipynb |
958B |
| 007 Structure-Your-Code-with-Indentation-Solution-Py3.ipynb |
1.50KB |
| 007 Structuring with Indentation_en.srt |
2.75KB |
| 007 Structuring with Indentation.mp4 |
2.79MB |
| 007 Symmetry-Explained.pdf |
85.04KB |
| 007 Symmetry of Combinations_en.srt |
5.38KB |
| 007 Symmetry of Combinations.mp4 |
13.75MB |
| 007 Techniques for Working with Traditional Methods_en.srt |
13.89KB |
| 007 Techniques for Working with Traditional Methods.mp4 |
76.10MB |
| 007 TensorFlow-Audiobooks-Machine-Learning-Part1-with-comments.ipynb |
4.61KB |
| 007 TensorFlow-Audiobooks-Outlining-the-model.ipynb |
9.36KB |
| 007 TensorFlow-Audiobooks-Outlining-the-model-with-comments.ipynb |
10.34KB |
| 007 TensorFlow-Minimal-example-Part3.ipynb |
76.52KB |
| 007 TensorFlow-MNIST-Part3-with-comments.ipynb |
8.61KB |
| 007 Text Files of Fixed Width_en.srt |
2.73KB |
| 007 Text Files of Fixed Width.mp4 |
4.83MB |
| 007 The Conditional Probability Formula_en.srt |
7.15KB |
| 007 The Conditional Probability Formula.mp4 |
16.59MB |
| 007 The Histogram_en.srt |
4.05KB |
| 007 The Histogram.mp4 |
9.57MB |
| 007 Understanding Logistic Regression Tables_en.srt |
6.69KB |
| 007 Understanding Logistic Regression Tables.mp4 |
14.58MB |
| 007 Using Seaborn for Graphs_en.srt |
1.88KB |
| 007 Using Seaborn for Graphs.mp4 |
7.37MB |
| 008 1.02.Multiple-linear-regression.csv |
1.07KB |
| 008 1.04.Real-life-example.csv |
219.83KB |
| 008 12.8.TensorFlow-MNIST-with-comments-Part-6.ipynb |
11.50KB |
| 008 2.5.The-Histogram-exercise.xlsx |
15.50KB |
| 008 2.5.The-Histogram-exercise-solution.xlsx |
17.10KB |
| 008 4.6.Test-for-the-mean.Population-variance-unknown-lesson.xlsx |
14.54KB |
| 008 5.5.TensorFlow-Minimal-example-Part-3.ipynb |
8.65KB |
| 008 A3 Normality and Homoscedasticity_en.srt |
8.53KB |
| 008 A3 Normality and Homoscedasticity.mp4 |
27.38MB |
| 008 Backpropagation Picture_en.srt |
4.54KB |
| 008 Backpropagation Picture.mp4 |
8.06MB |
| 008 Bank-data.csv |
19.55KB |
| 008 Basic NN Example with TF Loss Function and Gradient Descent_en.srt |
5.83KB |
| 008 Basic NN Example with TF Loss Function and Gradient Descent.mp4 |
15.70MB |
| 008 Business Case Learning and Interpreting the Result_en.srt |
7.65KB |
| 008 Business Case Learning and Interpreting the Result.mp4 |
27.77MB |
| 008 Business Case Optimization_en.srt |
8.32KB |
| 008 Business Case Optimization.mp4 |
26.93MB |
| 008 Calculating the Adjusted R-Squared in sklearn_en.srt |
7.96KB |
| 008 Calculating the Adjusted R-Squared in sklearn.mp4 |
21.75MB |
| 008 Characteristics of Continuous Distributions_en.srt |
11.00KB |
| 008 Characteristics of Continuous Distributions.mp4 |
36.13MB |
| 008 Common Naming Conventions_en.srt |
7.05KB |
| 008 Common Naming Conventions.mp4 |
8.21MB |
| 008 Common-Naming-Conventions.pdf |
643.80KB |
| 008 Customizing a TensorFlow 2 Model_en.srt |
5.20KB |
| 008 Customizing a TensorFlow 2 Model.mp4 |
16.71MB |
| 008 Estimators and Estimates_en.srt |
4.79KB |
| 008 Estimators and Estimates.mp4 |
27.70MB |
| 008 EXERCISE - Dropping a Column from a DataFrame in Python.html |
864B |
| 008 Histogram Exercise.html |
81B |
| 008 How to Interpret the Regression Table_en.srt |
7.64KB |
| 008 How to Interpret the Regression Table.mp4 |
28.73MB |
| 008 Interpreting the Coefficients for Our Problem_en.srt |
10.32KB |
| 008 Interpreting the Coefficients for Our Problem.mp4 |
24.77MB |
| 008 Introduction to pandas DataFrames - Part II_en.srt |
9.62KB |
| 008 Introduction to pandas DataFrames - Part II.mp4 |
17.83MB |
| 008 Margin of Error_en.srt |
7.71KB |
| 008 Margin of Error.mp4 |
23.10MB |
| 008 MNIST Learning_en.srt |
12.64KB |
| 008 MNIST Learning.mp4 |
31.83MB |
| 008 MNIST Outline the Model_en.srt |
8.59KB |
| 008 MNIST Outline the Model.mp4 |
22.08MB |
| 008 Practical Example Linear Regression (Part 5)_en.srt |
13.42KB |
| 008 Practical Example Linear Regression (Part 5).mp4 |
50.40MB |
| 008 Pros and Cons of K-Means Clustering_en.srt |
5.49KB |
| 008 Pros and Cons of K-Means Clustering.mp4 |
11.12MB |
| 008 Real Life Examples of Traditional Methods_en.srt |
4.31KB |
| 008 Real Life Examples of Traditional Methods.mp4 |
27.41MB |
| 008 sklearn-Linear-Regression-Practical-Example-Part-5.ipynb |
698.36KB |
| 008 sklearn-Linear-Regression-Practical-Example-Part-5-with-comments.ipynb |
711.05KB |
| 008 sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared.ipynb |
9.11KB |
| 008 sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-with-comments.ipynb |
10.41KB |
| 008 Solving Combinations with Separate Sample Spaces_en.srt |
4.87KB |
| 008 Solving Combinations with Separate Sample Spaces.mp4 |
10.65MB |
| 008 Solving-Integrals.pdf |
343.85KB |
| 008 Statistics-PDF-with-Excel-Solutions-that-dont-visualize-properly.pdf |
289.12KB |
| 008 TensorFlow-Audiobooks-Machine-Learning-Part2-with-comments.ipynb |
19.69KB |
| 008 TensorFlow-Audiobooks-optimizing-the-algorithm.ipynb |
10.64KB |
| 008 TensorFlow-Audiobooks-optimizing-the-algorithm-with-comments.ipynb |
12.73KB |
| 008 TensorFlow-Minimal-example-complete.ipynb |
76.85KB |
| 008 TensorFlow-Minimal-example-complete-with-comments.ipynb |
82.29KB |
| 008 TensorFlow-MNIST-Part4-with-comments.ipynb |
10.49KB |
| 008 Test for the Mean. Population Variance Unknown_en.srt |
7.15KB |
| 008 Test for the Mean. Population Variance Unknown.mp4 |
19.71MB |
| 008 The Law of Total Probability_en.srt |
4.75KB |
| 008 The Law of Total Probability.mp4 |
11.59MB |
| 008 Tranpose-of-a-matrix.ipynb |
2.89KB |
| 008 Transpose of a Matrix_en.srt |
6.68KB |
| 008 Transpose of a Matrix.mp4 |
20.49MB |
| 008 Understanding Logistic Regression Tables - Exercise.html |
87B |
| 008 Understanding-Logistic-Regression-Tables-Exercise.ipynb |
3.16KB |
| 008 Understanding-Logistic-Regression-Tables-Solution.ipynb |
4.79KB |
| 008 What is the Objective Function_en.srt |
2.71KB |
| 008 What is the Objective Function.mp4 |
6.18MB |
| 009 1.02.Multiple-linear-regression.csv |
1.07KB |
| 009 12.9.TensorFlow-MNIST-with-comments.ipynb |
13.03KB |
| 009 2.6.Cross-table-and-scatter-plot.xlsx |
26.12KB |
| 009 3.13.Confidence-intervals.Two-means.Dependent-samples-lesson.xlsx |
10.47KB |
| 009 4.6.Test-for-the-mean.Population-variance-unknown-exercise.xlsx |
11.34KB |
| 009 4.6.Test-for-the-mean.Population-variance-unknown-exercise-solution.xlsx |
12.63KB |
| 009 5.6.TensorFlow-Minimal-example-complete.ipynb |
12.15KB |
| 009 A4 No Autocorrelation_en.srt |
5.98KB |
| 009 A4 No Autocorrelation.mp4 |
7.89MB |
| 009 Backpropagation - A Peek into the Mathematics of Optimization.html |
539B |
| 009 Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf |
182.38KB |
| 009 Basic NN Example with TF Model Output_en.srt |
9.46KB |
| 009 Basic NN Example with TF Model Output.mp4 |
19.14MB |
| 009 Basic NN with TensorFlow Exercises.html |
1.28KB |
| 009 Business Case Interpretation_en.srt |
3.68KB |
| 009 Business Case Interpretation.mp4 |
18.60MB |
| 009 Business Case Setting an Early Stopping Mechanism_en.srt |
9.72KB |
| 009 Business Case Setting an Early Stopping Mechanism.mp4 |
43.75MB |
| 009 Calculating the Adjusted R-Squared in sklearn - Exercise.html |
76B |
| 009 Combinatorics in Real-Life The Lottery_en.srt |
5.05KB |
| 009 Combinatorics in Real-Life The Lottery.mp4 |
16.39MB |
| 009 Common Objective Functions L2-norm Loss_en.srt |
3.51KB |
| 009 Common Objective Functions L2-norm Loss.mp4 |
5.47MB |
| 009 Confidence intervals. Two means. Dependent samples_en.srt |
10.16KB |
| 009 Confidence intervals. Two means. Dependent samples.mp4 |
44.97MB |
| 009 Continuous Distributions The Normal Distribution_en.srt |
6.09KB |
| 009 Continuous Distributions The Normal Distribution.mp4 |
20.01MB |
| 009 Cross Tables and Scatter Plots_en.srt |
8.26KB |
| 009 Cross Tables and Scatter Plots.mp4 |
19.71MB |
| 009 Decomposition of Variability_en.srt |
5.37KB |
| 009 Decomposition of Variability.mp4 |
8.79MB |
| 009 Dot Product_en.srt |
5.21KB |
| 009 Dot-product.ipynb |
2.13KB |
| 009 Dot Product.mp4 |
12.84MB |
| 009 Importing-Text-Files-in-Python-open.ipynb |
2.15KB |
| 009 Importing Text Files - open()_en.srt |
16.28KB |
| 009 Importing Text Files - open().mp4 |
28.19MB |
| 009 Linear Regression - Exercise.html |
497B |
| 009 Logistic-Regression-prior-to-Custom-Scaler.url |
182B |
| 009 Machine Learning (ML) Techniques_en.srt |
11.24KB |
| 009 Machine Learning (ML) Techniques.mp4 |
49.41MB |
| 009 MNIST Results and Testing_en.srt |
9.85KB |
| 009 MNIST Results and Testing.mp4 |
45.47MB |
| 009 MNIST Select the Loss and the Optimizer_en.srt |
3.60KB |
| 009 MNIST Select the Loss and the Optimizer.mp4 |
10.63MB |
| 009 Normal-Distribution-Exp-and-Var.pdf |
144.08KB |
| 009 pandas DataFrames - Common Attributes_en.srt |
7.84KB |
| 009 pandas DataFrames - Common Attributes.mp4 |
29.79MB |
| 009 sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-Exercise.ipynb |
9.83KB |
| 009 sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-Exercise-Solution.ipynb |
10.31KB |
| 009 SOLUTION - Dropping a Column from a DataFrame in Python.html |
114B |
| 009 source.txt |
39B |
| 009 Standardizing only the Numerical Variables (Creating a Custom Scaler)_en.srt |
6.26KB |
| 009 TensorFlow-Audiobooks-Machine-Learning-Part3-with-comments.ipynb |
10.06KB |
| 009 TensorFlow-Audiobooks-optimizing-the-algorithm.ipynb |
10.64KB |
| 009 TensorFlow-Audiobooks-optimizing-the-algorithm-with-comments.ipynb |
12.73KB |
| 009 TensorFlow-Minimal-example-All-exercises.ipynb |
83.62KB |
| 009 TensorFlow-Minimal-example-Exercise-1-Solution.ipynb |
27.96KB |
| 009 TensorFlow-Minimal-Example-Exercise-2-1-Solution.ipynb |
83.68KB |
| 009 TensorFlow-Minimal-Example-Exercise-2-2-Solution.ipynb |
77.52KB |
| 009 TensorFlow-Minimal-Example-Exercise-3-Solution.ipynb |
84.44KB |
| 009 TensorFlow-MNIST-Part5-with-comments.ipynb |
10.99KB |
| 009 Test for the Mean. Population Variance Unknown Exercise.html |
81B |
| 009 The Additive Rule_en.srt |
3.14KB |
| 009 The Additive Rule.mp4 |
11.11MB |
| 009 To Standardize or not to Standardize_en.srt |
7.55KB |
| 009 To Standardize or not to Standardize.mp4 |
10.92MB |
| 009 What do the Odds Actually Mean_en.srt |
5.27KB |
| 009 What do the Odds Actually Mean.mp4 |
11.39MB |
| 010 1.02.Multiple-linear-regression.csv |
1.07KB |
| 010 2.02.Binary-predictors.csv |
2.56KB |
| 010 2.6.Cross-table-and-scatter-plot-exercise.xlsx |
16.28KB |
| 010 2.6.Cross-table-and-scatter-plot-exercise-solution.xlsx |
40.44KB |
| 010 3.13.Confidence-intervals.Two-means.Dependent-samples-exercise.xlsx |
13.74KB |
| 010 3.13.Confidence-intervals.Two-means.Dependent-samples-exercise-solution.xlsx |
14.24KB |
| 010 4.7.Test-for-the-mean.Dependent-samples-lesson.xlsx |
9.79KB |
| 010 A5 No Multicollinearity_en.srt |
5.50KB |
| 010 A5 No Multicollinearity.mp4 |
7.60MB |
| 010 Analyzing the Reasons for Absence_en.srt |
7.20KB |
| 010 Analyzing the Reasons for Absence.mp4 |
27.61MB |
| 010 A Recap of Combinatorics_en.srt |
4.58KB |
| 010 A Recap of Combinatorics.mp4 |
15.02MB |
| 010 Basic NN Example with TF Exercises.html |
1.58KB |
| 010 Binary-predictors.ipynb |
2.41KB |
| 010 Binary Predictors in a Logistic Regression_en.srt |
6.27KB |
| 010 Binary Predictors in a Logistic Regression.mp4 |
24.83MB |
| 010 Business Case Testing the Model_en.srt |
3.22KB |
| 010 Business Case Testing the Model.mp4 |
4.34MB |
| 010 Common Objective Functions Cross-Entropy Loss_en.srt |
6.45KB |
| 010 Common Objective Functions Cross-Entropy Loss.mp4 |
9.84MB |
| 010 Confidence intervals. Two means. Dependent samples Exercise.html |
81B |
| 010 Continuous Distributions The Standard Normal Distribution_en.srt |
6.85KB |
| 010 Continuous Distributions The Standard Normal Distribution.mp4 |
38.36MB |
| 010 Cross Tables and Scatter Plots Exercise.html |
81B |
| 010 Data Selection in pandas DataFrames_en.srt |
12.70KB |
| 010 Data Selection in pandas DataFrames.mp4 |
37.26MB |
| 010 Dot Product of Matrices_en.srt |
10.99KB |
| 010 Dot Product of Matrices.mp4 |
34.32MB |
| 010 Dot-product-Part-2.ipynb |
3.60KB |
| 010 Feature Selection (F-regression)_en.srt |
8.36KB |
| 010 Feature Selection (F-regression).mp4 |
20.47MB |
| 010 Importing-Text-Files-in-Python-with-open.ipynb |
2.47KB |
| 010 Importing Text Files - with open()_en.srt |
8.93KB |
| 010 Importing Text Files - with open().mp4 |
26.26MB |
| 010 Interpreting the Coefficients of the Logistic Regression_en.srt |
8.96KB |
| 010 MNIST Exercises.html |
2.16KB |
| 010 MNIST Learning_en.srt |
9.60KB |
| 010 MNIST Learning.mp4 |
30.99MB |
| 010 Relationship between Clustering and Regression_en.srt |
2.73KB |
| 010 Relationship between Clustering and Regression.mp4 |
3.51MB |
| 010 Setting an Early Stopping Mechanism - Exercise.html |
192B |
| 010 sklearn-Feature-Selection-with-F-regression.ipynb |
10.44KB |
| 010 sklearn-Feature-Selection-with-F-regression-with-comments.ipynb |
12.99KB |
| 010 source.txt |
39B |
| 010 TensorFlow-Minimal-Example-All-Exercises.ipynb |
13.97KB |
| 010 TensorFlow-Minimal-Example-Exercise-1-Solution.ipynb |
23.63KB |
| 010 TensorFlow-Minimal-Example-Exercise-2-1-Solution.ipynb |
25.54KB |
| 010 TensorFlow-Minimal-Example-Exercise-2-2-Solution.ipynb |
25.51KB |
| 010 TensorFlow-Minimal-Example-Exercise-2-3-Solution.ipynb |
49.96KB |
| 010 TensorFlow-Minimal-Example-Exercise-2-4-Solution.ipynb |
21.75KB |
| 010 TensorFlow-Minimal-Example-Exercise-3-Solution.ipynb |
26.71KB |
| 010 TensorFlow-Minimal-Example-Exercise-4-Solution.ipynb |
26.98KB |
| 010 TensorFlow-MNIST-Exercises-All.ipynb |
15.47KB |
| 010 TensorFlow-MNIST-Part6-with-comments.ipynb |
12.54KB |
| 010 Test for the Mean. Dependent Samples_en.srt |
8.14KB |
| 010 Test for the Mean. Dependent Samples.mp4 |
32.79MB |
| 010 The Multiplication Law_en.srt |
5.63KB |
| 010 The Multiplication Law.mp4 |
20.19MB |
| 010 Types of Machine Learning_en.srt |
13.00KB |
| 010 Types of Machine Learning.mp4 |
80.57MB |
| 010 What is the OLS_en.srt |
4.55KB |
| 010 What is the OLS.mp4 |
22.48MB |
| 011 0.TensorFlow-MNIST-take-note-of-time-Solution.ipynb |
14.00KB |
| 011 1.02.Multiple-linear-regression.csv |
1.07KB |
| 011 1.03.Dummies.csv |
1.19KB |
| 011 1.TensorFlow-MNIST-Width-Solution.ipynb |
14.84KB |
| 011 1.TensorFlow-MNIST-Width-Solution.ipynb |
14.01KB |
| 011 2.7.Mean-median-and-mode-lesson.xlsx |
10.49KB |
| 011 2.TensorFlow-MNIST-Depth-Solution.ipynb |
15.31KB |
| 011 2.TensorFlow-MNIST-Depth-Solution.ipynb |
14.87KB |
| 011 3.12.Example.csv |
283B |
| 011 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-lesson.xlsx |
9.83KB |
| 011 3.TensorFlow-MNIST-Width-and-Depth-Solution.ipynb |
15.30KB |
| 011 3.TensorFlow-MNIST-Width-and-Depth-Solution.ipynb |
16.81KB |
| 011 4.7.Test-for-the-mean.Dependent-samples-exercise.xlsx |
12.80KB |
| 011 4.7.Test-for-the-mean.Dependent-samples-exercise-solution.xlsx |
14.40KB |
| 011 4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb |
15.11KB |
| 011 4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb |
14.35KB |
| 011 5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb |
14.74KB |
| 011 5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb |
13.93KB |
| 011 6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb |
15.12KB |
| 011 6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb |
14.26KB |
| 011 7.TensorFlow-MNIST-Batch-size-Part-2-Solution.ipynb |
15.18KB |
| 011 7.TensorFlow-MNIST-Batch-size-Part-2-Solution.ipynb |
14.16KB |
| 011 8.TensorFlow-MNIST-Learning-rate-Part-1-Solution.ipynb |
20.58KB |
| 011 8.TensorFlow-MNIST-Learning-rate-Part-1-Solution.ipynb |
14.07KB |
| 011 9.TensorFlow-MNIST-Learning-rate-Part-2-Solution.ipynb |
15.80KB |
| 011 9.TensorFlow-MNIST-Learning-rate-Part-2-Solution.ipynb |
15.21KB |
| 011 Additional-Exercises-Combinatorics.pdf |
106.58KB |
| 011 Additional-Exercises-Combinatorics-Solutions.pdf |
245.67KB |
| 011 A Note on Calculation of P-values with sklearn.html |
370B |
| 011 A Practical Example of Combinatorics_en.srt |
18.51KB |
| 011 A Practical Example of Combinatorics.mp4 |
42.80MB |
| 011 Audiobooks-data.csv |
710.77KB |
| 011 Backward Elimination or How to Simplify Your Model_en.srt |
6.40KB |
| 011 Bank-data.csv |
19.55KB |
| 011 Bayes' Law_en.srt |
9.21KB |
| 011 Bayes' Law.mp4 |
21.34MB |
| 011 Binary Predictors in a Logistic Regression - Exercise.html |
87B |
| 011 Binary-Predictors-in-a-Logistic-Regression-Exercise.ipynb |
2.54KB |
| 011 Binary-Predictors-in-a-Logistic-Regression-Solution.ipynb |
4.51KB |
| 011 Business Case A Comment on the Homework_en.srt |
6.41KB |
| 011 Business Case A Comment on the Homework.mp4 |
20.58MB |
| 011 Business Case Testing the Model_en.srt |
2.56KB |
| 011 Business Case Testing the Model.mp4 |
8.18MB |
| 011 Confidence intervals. Two means. Independent Samples (Part 1)_en.srt |
7.53KB |
| 011 Confidence intervals. Two means. Independent Samples (Part 1).mp4 |
11.99MB |
| 011 Continuous Distributions The Students' T Distribution_en.srt |
3.83KB |
| 011 Continuous Distributions The Students' T Distribution.mp4 |
9.24MB |
| 011 Dealing with Categorical Data - Dummy Variables_en.srt |
12.03KB |
| 011 Dummy-Variables.ipynb |
4.62KB |
| 011 Dummy-variables-with-comments.ipynb |
7.09KB |
| 011 GD-function-example.xlsx |
42.33KB |
| 011 Importing .csv Files - Part I_en.srt |
10.63KB |
| 011 Importing .csv Files - Part I.mp4 |
49.87MB |
| 011 Importing.csv-Files-with-pandas-Part-I.ipynb |
1.56KB |
| 011 Lending-company.csv |
112.43KB |
| 011 Lending-company-single-column-data.csv |
114.47KB |
| 011 Logistic-Regression-prior-to-Backward-Elimination.url |
189B |
| 011 Market-segmentation-example.ipynb |
3.80KB |
| 011 Market-segmentation-example-with-comments.ipynb |
5.90KB |
| 011 Market Segmentation with Cluster Analysis (Part 1)_en.srt |
9.06KB |
| 011 Market Segmentation with Cluster Analysis (Part 1).mp4 |
28.09MB |
| 011 Mean, median and mode_en.srt |
7.18KB |
| 011 Mean, median and mode.mp4 |
24.49MB |
| 011 MNIST - Exercises.html |
1.98KB |
| 011 MNIST Solutions.html |
2.22KB |
| 011 Obtaining Dummies from a Single Feature_en.srt |
12.67KB |
| 011 Obtaining Dummies from a Single Feature.mp4 |
69.76MB |
| 011 Optimization Algorithm 1-Parameter Gradient Descent_en.srt |
10.58KB |
| 011 Optimization Algorithm 1-Parameter Gradient Descent.mp4 |
23.59MB |
| 011 pandas DataFrames - Indexing with .iloc[]_en.srt |
10.02KB |
| 011 pandas DataFrames - Indexing with .iloc[].mp4 |
32.22MB |
| 011 Real Life Examples of Machine Learning (ML)_en.srt |
3.60KB |
| 011 Real Life Examples of Machine Learning (ML).mp4 |
27.70MB |
| 011 R-Squared_en.srt |
8.12KB |
| 011 R-Squared.mp4 |
11.20MB |
| 011 sklearn-How-to-properly-include-p-values.ipynb |
12.71KB |
| 011 TensorFlow-Audiobooks-Machine-learning-Homework.ipynb |
14.40KB |
| 011 TensorFlow-Audiobooks-Machine-Learning-with-comments.ipynb |
11.95KB |
| 011 TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb |
11.19KB |
| 011 TensorFlow-MNIST-All-Exercises.ipynb |
16.65KB |
| 011 TensorFlow-MNIST-around-98-percent-accuracy.ipynb |
15.02KB |
| 011 TensorFlow-MNIST-around-98-percent-accuracy.ipynb |
17.66KB |
| 011 Test for the Mean. Dependent Samples Exercise.html |
81B |
| 011 Why is Linear Algebra Useful_en.srt |
13.84KB |
| 011 Why is Linear Algebra Useful.mp4 |
88.42MB |
| 012 1.02.Multiple-linear-regression.csv |
1.07KB |
| 012 2.7.Mean-median-and-mode-exercise.xlsx |
10.87KB |
| 012 2.7.Mean-median-and-mode-exercise-solution.xlsx |
11.35KB |
| 012 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-exercise.xlsx |
9.83KB |
| 012 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-exercise-solution.xlsx |
10.12KB |
| 012 4.8.Test-for-the-mean.Independent-samples-Part-1-lesson.xlsx |
9.63KB |
| 012 Accuracy.ipynb |
3.63KB |
| 012 Accuracy-with-comments.ipynb |
11.67KB |
| 012 A Practical Example of Bayesian Inference_en.srt |
24.29KB |
| 012 A Practical Example of Bayesian Inference.mp4 |
139.14MB |
| 012 Audiobooks-data.csv |
710.77KB |
| 012 Bayesian-Homework.pdf |
27.26KB |
| 012 Bayesian-Homework-Solutions.pdf |
30.35KB |
| 012 Business Case Final Exercise.html |
433B |
| 012 Business Case Final Exercise.html |
441B |
| 012 Calculating the Accuracy of the Model_en.srt |
5.12KB |
| 012 Calculating the Accuracy of the Model.mp4 |
20.27MB |
| 012 CDS-2017-2018-Hamilton.pdf |
845.31KB |
| 012 Confidence intervals. Two means. Independent Samples (Part 1). Exercise.html |
81B |
| 012 Continuous Distributions The Chi-Squared Distribution_en.srt |
3.54KB |
| 012 Continuous Distributions The Chi-Squared Distribution.mp4 |
20.97MB |
| 012 Creating a Summary Table with P-values_en.srt |
3.67KB |
| 012 Creating a Summary Table with P-values.mp4 |
6.45MB |
| 012 Dealing with Categorical Data - Dummy Variables.html |
76B |
| 012 EXERCISE - Obtaining Dummies from a Single Feature.html |
123B |
| 012 Importing .csv Files - Part II_en.srt |
4.56KB |
| 012 Importing .csv Files - Part II.mp4 |
10.92MB |
| 012 Lending-company.csv |
112.43KB |
| 012 Location.csv |
13.49KB |
| 012 Market-segmentation-example-Part2.ipynb |
4.68KB |
| 012 Market-segmentation-example-Part2-with-comments.ipynb |
6.81KB |
| 012 Market Segmentation with Cluster Analysis (Part 2)_en.srt |
10.97KB |
| 012 Market Segmentation with Cluster Analysis (Part 2).mp4 |
34.09MB |
| 012 Mean, Median and Mode Exercise.html |
81B |
| 012 MNIST Testing the Model_en.srt |
7.14KB |
| 012 MNIST Testing the Model.mp4 |
22.61MB |
| 012 Multiple-Linear-Regression-with-Dummies-Exercise.ipynb |
3.01KB |
| 012 Multiple-Linear-Regression-with-Dummies-Exercise-Solution.ipynb |
18.00KB |
| 012 Optimization Algorithm n-Parameter Gradient Descent_en.srt |
9.31KB |
| 012 Optimization Algorithm n-Parameter Gradient Descent.mp4 |
16.83MB |
| 012 pandas DataFrames - Indexing with .loc[]_en.srt |
6.68KB |
| 012 pandas DataFrames - Indexing with .loc[].mp4 |
20.69MB |
| 012 pandas-Fundamentals-Exercises.ipynb |
30.96KB |
| 012 pandas-Fundamentals-Lectures.ipynb |
21.31KB |
| 012 pandas-Fundamentals-Solutions.ipynb |
118.35KB |
| 012 real-estate-price-size-year-view.csv |
3.39KB |
| 012 Region.csv |
10.22KB |
| 012 Sales-products.csv |
152.28KB |
| 012 sklearn-Multiple-Linear-Regression-Summary-Table.ipynb |
13.71KB |
| 012 sklearn-Multiple-Linear-Regression-Summary-Table-with-comments.ipynb |
16.63KB |
| 012 TensorFlow-Audiobooks-Machine-learning-Homework.ipynb |
14.40KB |
| 012 TensorFlow-Audiobooks-Machine-Learning-with-comments.ipynb |
11.95KB |
| 012 TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb |
11.19KB |
| 012 TensorFlow-MNIST-complete.ipynb |
6.78KB |
| 012 TensorFlow-MNIST-complete-with-comments.ipynb |
14.51KB |
| 012 Test for the mean. Independent Samples (Part 1)_en.srt |
6.54KB |
| 012 Test for the mean. Independent Samples (Part 1).mp4 |
15.41MB |
| 012 Testing the Model We Created_en.srt |
7.81KB |
| 012 Testing the Model We Created.mp4 |
31.60MB |
| 013 2.8.Skewness-lesson.xlsx |
34.63KB |
| 013 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-lesson.xlsx |
9.52KB |
| 013 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise.xlsx |
10.77KB |
| 013 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise-solution.xlsx |
11.25KB |
| 013 Bank-data.csv |
19.55KB |
| 013 Calculating the Accuracy of the Model.html |
87B |
| 013 Calculating-the-Accuracy-of-the-Model-Exercise.ipynb |
5.39KB |
| 013 Calculating-the-Accuracy-of-the-Model-Solution.ipynb |
81.21KB |
| 013 Confidence intervals. Two means. Independent Samples (Part 2)_en.srt |
5.60KB |
| 013 Confidence intervals. Two means. Independent Samples (Part 2).mp4 |
14.62MB |
| 013 Continuous Distributions The Exponential Distribution_en.srt |
5.35KB |
| 013 Continuous Distributions The Exponential Distribution.mp4 |
16.00MB |
| 013 How is Clustering Useful_en.srt |
8.08KB |
| 013 How is Clustering Useful.mp4 |
37.48MB |
| 013 Importing .csv Files - Part III_en.srt |
11.12KB |
| 013 Importing .csv Files - Part III.mp4 |
75.01MB |
| 013 Making-predictions.ipynb |
5.77KB |
| 013 Making-predictions-with-comments.ipynb |
9.41KB |
| 013 Making Predictions with the Linear Regression_en.srt |
5.32KB |
| 013 Making Predictions with the Linear Regression.encrypted.m4a.part |
0B |
| 013 Making Predictions with the Linear Regression.encrypted.m4a.part.frag.urls |
35.88KB |
| 013 Making Predictions with the Linear Regression.encrypted.mp4.part |
0B |
| 013 Making Predictions with the Linear Regression.encrypted.mp4.part.frag.urls |
35.91KB |
| 013 Multiple Linear Regression - Exercise.html |
76B |
| 013 real-estate-price-size-year.csv |
2.35KB |
| 013 Saving the Model and Preparing it for Deployment_en.srt |
6.89KB |
| 013 Skewness_en.srt |
4.43KB |
| 013 Skewness.mp4 |
13.31MB |
| 013 sklearn-Multiple-Linear-Regression-Exercise.ipynb |
5.67KB |
| 013 sklearn-Multiple-Linear-Regression-Exercise-Solution.ipynb |
15.44KB |
| 013 SOLUTION - Obtaining Dummies from a Single Feature.html |
117B |
| 013 Test for the mean. Independent Samples (Part 1). Exercise.html |
81B |
| 014 1.02.Multiple-linear-regression.csv |
1.07KB |
| 014 2.8.Skewness-exercise.xlsx |
9.49KB |
| 014 2.8.Skewness-exercise-solution.xlsx |
19.78KB |
| 014 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-exercise.xlsx |
9.17KB |
| 014 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-exercise-solution.xlsx |
9.79KB |
| 014 4.9.Test-for-the-mean.Independent-samples-Part-2-lesson.xlsx |
9.31KB |
| 014 ARTICLE - A Note on 'pickling'.html |
2.11KB |
| 014 Confidence intervals. Two means. Independent Samples (Part 2). Exercise.html |
81B |
| 014 Continuous Distributions The Logistic Distribution_en.srt |
6.45KB |
| 014 Continuous Distributions The Logistic Distribution.mp4 |
16.17MB |
| 014 Dropping a Dummy Variable from the Data Set.html |
2.31KB |
| 014 EXERCISE Species Segmentation with Cluster Analysis (Part 1).html |
87B |
| 014 Feature Scaling (Standardization)_en.srt |
11.03KB |
| 014 Feature Scaling (Standardization).mp4 |
20.36MB |
| 014 Importing Data with index_col_en.srt |
4.82KB |
| 014 Importing Data with index_col.mp4 |
11.63MB |
| 014 iris-dataset.csv |
2.40KB |
| 014 Skewness Exercise.html |
81B |
| 014 SKLEAR-1.IPY |
12.87KB |
| 014 sklearn-Feature-Selection-through-Feature-Scaling-Standardization-Part-1.ipynb |
11.73KB |
| 014 Species-Segmentation-with-Cluster-Analysis-Part-1-Exercise.ipynb |
4.46KB |
| 014 Species-Segmentation-with-Cluster-Analysis-Part-1-Solution.ipynb |
7.35KB |
| 014 Test for the mean. Independent Samples (Part 2)_en.srt |
6.46KB |
| 014 Test for the mean. Independent Samples (Part 2).mp4 |
24.45MB |
| 014 Underfitting and Overfitting_en.srt |
6.17KB |
| 014 Underfitting and Overfitting.mp4 |
7.49MB |
| 015 1.02.Multiple-linear-regression.csv |
1.07KB |
| 015 2.03.Test-dataset.csv |
322B |
| 015 2.9.Variance-lesson.xlsx |
10.08KB |
| 015 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2.xlsx |
10.54KB |
| 015 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2-solution.xlsx |
11.39KB |
| 015 A Practical Example of Probability Distributions_en.srt |
25.51KB |
| 015 A Practical Example of Probability Distributions.mp4 |
138.12MB |
| 015 Confidence intervals. Two means. Independent Samples (Part 3)_en.srt |
2.42KB |
| 015 Confidence intervals. Two means. Independent Samples (Part 3).mp4 |
6.89MB |
| 015 Customers-Membership.xlsx |
9.69KB |
| 015 Customers-Membership-post.xlsx |
15.62KB |
| 015 Daily-Views.xlsx |
9.53KB |
| 015 Daily-Views-post.xlsx |
20.21KB |
| 015 EXERCISE - Saving the Model (and Scaler).html |
284B |
| 015 EXERCISE Species Segmentation with Cluster Analysis (Part 2).html |
87B |
| 015 Feature Selection through Standardization of Weights_en.srt |
9.25KB |
| 015 Feature Selection through Standardization of Weights.mp4 |
24.46MB |
| 015 FIFA19.csv |
8.64MB |
| 015 FIFA19-post.csv |
8.64MB |
| 015 Importing Data with .loadtxt() and .genfromtxt()_en.srt |
17.76KB |
| 015 Importing Data with .loadtxt() and .genfromtxt().mp4 |
56.33MB |
| 015 Importing-Text-Data-with-NumPy-Complete.ipynb |
11.57KB |
| 015 Importing-Text-Data-with-NumPy-Template.ipynb |
2.27KB |
| 015 iris-dataset.csv |
2.40KB |
| 015 iris-with-answers.csv |
3.63KB |
| 015 Lending-Company-Numeric-Data.csv |
29.54KB |
| 015 Lending-Company-Numeric-Data-NAN.csv |
28.64KB |
| 015 Logistic-Regression.url |
159B |
| 015 Logistic-Regression-with-Comments.url |
173B |
| 015 More on Dummy Variables A Statistical Perspective_en.srt |
2.02KB |
| 015 More on Dummy Variables A Statistical Perspective.mp4 |
5.82MB |
| 015 SKLEAR-1.IPY |
16.79KB |
| 015 sklearn-Feature-Selection-through-Feature-Scaling-Standardization-Part-2.ipynb |
14.89KB |
| 015 Species-Segmentation-with-Cluster-Analysis-Part-2-Exercise.ipynb |
10.74KB |
| 015 Species-Segmentation-with-Cluster-Analysis-Part-2-Solution.ipynb |
15.30KB |
| 015 Test for the mean. Independent Samples (Part 2). Exercise.html |
81B |
| 015 Testing the Model_en.srt |
7.84KB |
| 015 Testing-the-model.ipynb |
5.77KB |
| 015 Testing the Model.mp4 |
21.59MB |
| 015 Testing-the-model-with-comments.ipynb |
7.56KB |
| 015 Variance_en.srt |
9.86KB |
| 015 Variance.mp4 |
23.54MB |
| 016 1.02.Multiple-linear-regression.csv |
1.07KB |
| 016 2.9.Variance-exercise.xlsx |
10.83KB |
| 016 2.9.Variance-exercise-solution.xlsx |
11.05KB |
| 016 Bank-data.csv |
19.55KB |
| 016 Bank-data-testing.csv |
8.30KB |
| 016 Classifying the Various Reasons for Absence_en.srt |
12.70KB |
| 016 Classifying the Various Reasons for Absence.mp4 |
59.20MB |
| 016 Importing Data - Partial Cleaning While Importing Data_en.srt |
11.69KB |
| 016 Importing Data - Partial Cleaning While Importing Data.mp4 |
43.91MB |
| 016 Predicting with the Standardized Coefficients_en.srt |
6.64KB |
| 016 Predicting with the Standardized Coefficients.mp4 |
20.42MB |
| 016 Preparing the Deployment of the Model through a Module_en.srt |
7.12KB |
| 016 sklearn-Making-Predictions-with-the-Standardized-Coefficients.ipynb |
29.75KB |
| 016 sklearn-Making-Predictions-with-the-Standardized-Coefficients-with-comments.ipynb |
22.03KB |
| 016 Testing the Model - Exercise.html |
87B |
| 016 Testing-the-Model-Exercise.ipynb |
6.79KB |
| 016 Testing-the-Model-Solution.ipynb |
111.10KB |
| 016 Variance Exercise.html |
522B |
| 017 2.10.Standard-deviation-and-coefficient-of-variation-lesson.xlsx |
10.97KB |
| 017 Feature Scaling (Standardization) - Exercise.html |
76B |
| 017 Importing Data with NumPy - Exercise.html |
308B |
| 017 Importing-Text-Data-DSc-Exercise.ipynb |
4.18KB |
| 017 Importing-Text-Data-DSc-Solution.ipynb |
24.39KB |
| 017 real-estate-price-size-year.csv |
2.35KB |
| 017 sklearn-Feature-Scaling-Exercise.ipynb |
6.07KB |
| 017 sklearn-Feature-Scaling-Exercise-Solution.ipynb |
16.28KB |
| 017 Standard Deviation and Coefficient of Variation_en.srt |
7.59KB |
| 017 Standard Deviation and Coefficient of Variation.mp4 |
20.14MB |
| 017 Using .concat() in Python_en.srt |
6.19KB |
| 017 Using .concat() in Python.mp4 |
27.33MB |
| 018 2.10.Standard-deviation-and-coefficient-of-variation-exercise.xlsx |
11.61KB |
| 018 2.10.Standard-deviation-and-coefficient-of-variation-exercise-solution.xlsx |
12.60KB |
| 018 EXERCISE - Using .concat() in Python.html |
189B |
| 018 Importing Data from .json Files_en.srt |
9.08KB |
| 018 Importing Data from .json Files.mp4 |
81.95MB |
| 018 Lending-company.json |
213.54KB |
| 018 Standard Deviation and Coefficient of Variation Exercise.html |
81B |
| 018 Underfitting and Overfitting_en.srt |
4.51KB |
| 018 Underfitting and Overfitting.mp4 |
5.83MB |
| 019 2.11.Covariance-lesson.xlsx |
24.92KB |
| 019 An Introduction to Working with Excel Files in Python_en.srt |
6.64KB |
| 019 An Introduction to Working with Excel Files in Python.mp4 |
42.98MB |
| 019 Covariance_en.srt |
6.14KB |
| 019 Covariance.mp4 |
18.38MB |
| 019 sklearn-Train-Test-Split.ipynb |
7.23KB |
| 019 sklearn-Train-Test-Split-with-comments.ipynb |
9.05KB |
| 019 SOLUTION - Using .concat() in Python.html |
143B |
| 019 Train - Test Split Explained_en.srt |
11.71KB |
| 019 Train - Test Split Explained.mp4 |
35.57MB |
| 020 2.11.Covariance-exercise.xlsx |
20.23KB |
| 020 2.11.Covariance-exercise-solution.xlsx |
29.51KB |
| 020 Covariance Exercise.html |
81B |
| 020 Lending-company.xlsx |
93.06KB |
| 020 Reordering Columns in a Pandas DataFrame in Python_en.srt |
2.22KB |
| 020 Reordering Columns in a Pandas DataFrame in Python.mp4 |
9.99MB |
| 020 Working with Excel (.xlsx) Data_en.srt |
3.35KB |
| 020 Working with Excel (.xlsx) Data.mp4 |
14.41MB |
| 021 Correlation Coefficient_en.srt |
5.94KB |
| 021 Correlation Coefficient.mp4 |
19.34MB |
| 021 EXERCISE - Reordering Columns in a Pandas DataFrame in Python.html |
161B |
| 021 Importing Data in Python - an Important Exercise_en.srt |
10.00KB |
| 021 Importing Data in Python - an Important Exercise.mp4 |
43.01MB |
| 022 2.12.Correlation-exercise.xlsx |
29.30KB |
| 022 2.12.Correlation-exercise-solution.xlsx |
29.48KB |
| 022 Correlation Coefficient Exercise.html |
81B |
| 022 Customer-Gender.csv |
7.45KB |
| 022 Importing Data with the .squeeze() Method_en.srt |
5.50KB |
| 022 Importing Data with the .squeeze() Method.mp4 |
22.42MB |
| 022 Importing-Data-with-the-pandas-Squeeze-Method.ipynb |
20.15KB |
| 022 SOLUTION - Reordering Columns in a Pandas DataFrame in Python.html |
478B |
| 023 Absenteeism-Exercise-Preprocessing-df-reason-mod.ipynb |
4.82KB |
| 023 Creating Checkpoints while Coding in Jupyter_en.srt |
4.32KB |
| 023 Creating Checkpoints while Coding in Jupyter.mp4 |
17.33MB |
| 023 Importing Files in Jupyter_en.srt |
5.79KB |
| 023 Importing Files in Jupyter.mp4 |
19.57MB |
| 024 EXERCISE - Creating Checkpoints while Coding in Jupyter.html |
137B |
| 024 Saving Your Data with pandas_en.srt |
5.77KB |
| 024 Saving Your Data with pandas.mp4 |
21.06MB |
| 025 Lending-Company-Saving.csv |
58.40KB |
| 025 Saving-Data-NP-Complete.ipynb |
9.83KB |
| 025 Saving-Data-NP-Template.ipynb |
3.17KB |
| 025 Saving Your Data with NumPy - Part I - .npy_en.srt |
9.10KB |
| 025 Saving Your Data with NumPy - Part I - .npy.mp4 |
18.91MB |
| 025 SOLUTION - Creating Checkpoints while Coding in Jupyter.html |
118B |
| 026 Analyzing the Dates from the Initial Data Set_en.srt |
10.63KB |
| 026 Analyzing the Dates from the Initial Data Set.mp4 |
40.13MB |
| 026 Saving Your Data with NumPy - Part II - .npz_en.srt |
7.99KB |
| 026 Saving Your Data with NumPy - Part II - .npz.mp4 |
23.26MB |
| 027 Extracting the Month Value from the Date Column_en.srt |
9.61KB |
| 027 Extracting the Month Value from the Date Column.mp4 |
33.93MB |
| 027 Saving Your Data with NumPy - Part III - .csv_en.srt |
6.46KB |
| 027 Saving Your Data with NumPy - Part III - .csv.mp4 |
20.83MB |
| 028 Extracting the Day of the Week from the Date Column_en.srt |
5.78KB |
| 028 Extracting the Day of the Week from the Date Column.mp4 |
19.11MB |
| 028 Saving-Data-NP-Exercise.ipynb |
6.00KB |
| 028 Saving-Data-NP-Solution.ipynb |
13.42KB |
| 028 Saving Data with Numpy - Exercise.html |
260B |
| 029 Absenteeism-Exercise-Preprocessing-ChP-df-date-reason-mod.ipynb |
7.33KB |
| 029 Absenteeism-Exercise-Preprocessing-LECTURES.ipynb |
7.60MB |
| 029 Absenteeism-Exercise-Removing-the-Date-Column-SOLUTION.ipynb |
8.33KB |
| 029 EXERCISE - Removing the Date Column.html |
1.14KB |
| 029 Working with Text Files in Python - Conclusion_en.srt |
1.34KB |
| 029 Working with Text Files in Python - Conclusion.mp4 |
2.11MB |
| 029 Working-with-Text-Files-Lectures.ipynb |
27.58KB |
| 030 Analyzing Several Straightforward Columns for this Exercise_en.srt |
5.49KB |
| 030 Analyzing Several Straightforward Columns for this Exercise.mp4 |
20.09MB |
| 031 Working on Education, Children, and Pets_en.srt |
7.19KB |
| 031 Working on Education, Children, and Pets.mp4 |
16.92MB |
| 032 Absenteeism-Exercise-EXERCISES-and-SOLUTIONS.ipynb |
4.13KB |
| 032 Absenteeism-Exercise-Preprocessing-df-preprocessed.ipynb |
8.51KB |
| 032 Final Remarks of this Section_en.srt |
3.20KB |
| 032 Final Remarks of this Section.mp4 |
19.74MB |
| 033 A Note on Exporting Your Data as a .csv File.html |
880B |
| external-links.txt |
105B |
| external-links.txt |
134B |
| external-links.txt |
790B |
| external-links.txt |
124B |
| index_13040208.mpd |
41.14KB |
| index_13060526.mpd |
54.68KB |
| index_13060600.mpd |
58.89KB |
| index_13061100.mpd |
39.25KB |
| index_13061110.mpd |
35.94KB |
| index_13061118_1024x576.m3u8 |
9.13KB |
| index_13061118_1280x720.m3u8 |
9.13KB |
| index_13061118_1920x1080.m3u8 |
9.14KB |
| index_13061118_640x360.m3u8 |
9.10KB |
| index_13061118_768x432.m3u8 |
9.11KB |
| index_13061118.m3u8 |
2.64KB |
| index_13908866.mpd |
59.30KB |
| index_15185936.mpd |
63.27KB |
| index_15251152.mpd |
63.79KB |
| index_15251154.mpd |
38.07KB |
| index_15251158.mpd |
56.43KB |
| index_15251164.mpd |
54.67KB |
| index_15251168.mpd |
39.25KB |
| index_15251170.mpd |
65.29KB |
| index_15256016.mpd |
59.29KB |
| index_15293084.mpd |
56.77KB |
| index_17572166.mpd |
37.75KB |
| index_17596538.mpd |
31.23KB |