Torrent Info
Title [FreeCourseSite.com] Udemy - 2021 Python for Machine Learning & Data Science Masterclass
Category
Size 6.41GB

Files List
Please note that this page does not hosts or makes available any of the listed filenames. You cannot download any of those files from here.
[FreeCourseSite.com].url 127B
1. Capstone Project Overview.mp4 93.20MB
1. Capstone Project Overview.srt 20.60KB
1. EARLY BIRD INFO.html 550B
1. Introduction to Linear Regression Section.mp4 8.87MB
1. Introduction to Linear Regression Section.srt 2.68KB
1. Introduction to Machine Learning Overview Section.mp4 29.73MB
1. Introduction to Machine Learning Overview Section.srt 8.58KB
1. Introduction to Matplotlib.mp4 21.57MB
1. Introduction to Matplotlib.srt 6.72KB
1. Introduction to NumPy.mp4 11.28MB
1. Introduction to NumPy.srt 3.01KB
1. Introduction to Pandas.mp4 21.01MB
1. Introduction to Pandas.srt 7.24KB
1. Introduction to Seaborn.mp4 20.01MB
1. Introduction to Seaborn.srt 6.51KB
1. Machine Learning Pathway.mp4 40.55MB
1. Machine Learning Pathway.srt 15.79KB
1. OPTIONAL Python Crash Course.html 472B
10. Linear Regression - Residual Plots.mp4 59.52MB
10. Linear Regression - Residual Plots.srt 20.22KB
10. Matplotlib Exercise Questions Overview.mp4 50.77MB
10. Matplotlib Exercise Questions Overview.srt 9.33KB
10. Pandas - Useful Methods - Apply on Multiple Columns.mp4 98.55MB
10. Pandas - Useful Methods - Apply on Multiple Columns.srt 25.93KB
10. Seaborn - Comparison Plots - Coding with Seaborn.mp4 70.16MB
10. Seaborn - Comparison Plots - Coding with Seaborn.srt 15.70KB
11. Linear Regression - Model Deployment and Coefficient Interpretation.mp4 88.19MB
11. Linear Regression - Model Deployment and Coefficient Interpretation.srt 25.62KB
11. Matplotlib Exercise Questions - Solutions.mp4 123.11MB
11. Matplotlib Exercise Questions - Solutions.srt 24.53KB
11. Pandas - Useful Methods - Statistical Information and Sorting.mp4 85.65MB
11. Pandas - Useful Methods - Statistical Information and Sorting.srt 23.40KB
11. Seaborn Grid Plots.mp4 91.62MB
11. Seaborn Grid Plots.srt 20.50KB
12. Missing Data - Overview.mp4 53.18MB
12. Missing Data - Overview.srt 18.36KB
12. Polynomial Regression - Theory and Motivation.mp4 44.47MB
12. Polynomial Regression - Theory and Motivation.srt 11.20KB
12. Seaborn - Matrix Plots.mp4 71.25MB
12. Seaborn - Matrix Plots.srt 21.09KB
13. Missing Data - Pandas Operations.mp4 97.86MB
13. Missing Data - Pandas Operations.srt 27.41KB
13. Polynomial Regression - Creating Polynomial Features.mp4 52.62MB
13. Polynomial Regression - Creating Polynomial Features.srt 16.39KB
13. Seaborn Plot Exercises Overview.mp4 49.91MB
13. Seaborn Plot Exercises Overview.srt 11.26KB
14. GroupBy Operations - Part One.mp4 93.11MB
14. GroupBy Operations - Part One.srt 21.41KB
14. Polynomial Regression - Training and Evaluation.mp4 48.86MB
14. Polynomial Regression - Training and Evaluation.srt 14.17KB
14. Seaborn Plot Exercises Solutions.mp4 110.60MB
14. Seaborn Plot Exercises Solutions.srt 22.40KB
15. Bias Variance Trade-Off.mp4 43.04MB
15. Bias Variance Trade-Off.srt 15.94KB
15. GroupBy Operations - Part Two - MultiIndex.mp4 105.86MB
15. GroupBy Operations - Part Two - MultiIndex.srt 20.86KB
16. Combining DataFrames - Concatenation.mp4 50.51MB
16. Combining DataFrames - Concatenation.srt 15.02KB
16. Polynomial Regression - Choosing Degree of Polynomial.mp4 72.93MB
16. Polynomial Regression - Choosing Degree of Polynomial.srt 19.88KB
17. Combining DataFrames - Inner Merge.mp4 53.61MB
17. Combining DataFrames - Inner Merge.srt 18.52KB
17. Polynomial Regression - Model Deployment.mp4 28.94MB
17. Polynomial Regression - Model Deployment.srt 8.38KB
18. Combining DataFrames - Left and Right Merge.mp4 27.90MB
18. Combining DataFrames - Left and Right Merge.srt 9.10KB
18. Regularization Overview.mp4 33.34MB
18. Regularization Overview.srt 10.33KB
19. Combining DataFrames - Outer Merge.mp4 39.89MB
19. Combining DataFrames - Outer Merge.srt 14.57KB
19. Feature Scaling.mp4 53.97MB
19. Feature Scaling.srt 14.83KB
2.1 UNZIP_ME_FOR_NOTEBOOKS.zip 27.09MB
2. Capstone Project Solutions - Part One.mp4 116.95MB
2. Capstone Project Solutions - Part One.srt 26.84KB
2. COURSE OVERVIEW LECTURE - PLEASE DO NOT SKIP!.mp4 24.55MB
2. COURSE OVERVIEW LECTURE - PLEASE DO NOT SKIP!.srt 7.17KB
2. Linear Regression - Algorithm History.mp4 54.71MB
2. Linear Regression - Algorithm History.srt 13.09KB
2. Matplotlib Basics.mp4 53.61MB
2. Matplotlib Basics.srt 19.64KB
2. NumPy Arrays.mp4 109.63MB
2. NumPy Arrays.srt 31.91KB
2. Python Crash Course - Part One.mp4 29.52MB
2. Python Crash Course - Part One.srt 24.63KB
2. Scatterplots with Seaborn.mp4 128.61MB
2. Scatterplots with Seaborn.srt 29.72KB
2. Series - Part One.mp4 38.48MB
2. Series - Part One.srt 13.39KB
2. Why Machine Learning.mp4 44.77MB
2. Why Machine Learning.srt 14.66KB
20. Introduction to Cross Validation.mp4 62.59MB
20. Introduction to Cross Validation.srt 19.81KB
20. Pandas - Text Methods for String Data.mp4 75.69MB
20. Pandas - Text Methods for String Data.srt 23.95KB
21. Pandas - Time Methods for Date and Time Data.mp4 101.92MB
21. Pandas - Time Methods for Date and Time Data.srt 31.72KB
21. Regularization Data Setup.mp4 34.45MB
21. Regularization Data Setup.srt 12.42KB
22. L2 Regularization - Ridge Regression Theory.mp4 61.09MB
22. L2 Regularization - Ridge Regression Theory.srt 20.72KB
22. Pandas Input and Output - CSV Files.mp4 49.87MB
22. Pandas Input and Output - CSV Files.srt 16.59KB
23. L2 Regularization - Ridge Regression - Python Implementation.mp4 96.42MB
23. L2 Regularization - Ridge Regression - Python Implementation.srt 26.45KB
23. Pandas Input and Output - HTML Tables.mp4 106.65MB
23. Pandas Input and Output - HTML Tables.srt 22.36KB
24. L1 Regularization - Lasso Regression - Background and Implementation.mp4 100.00MB
24. L1 Regularization - Lasso Regression - Background and Implementation.srt 22.44KB
24. Pandas Input and Output - Excel Files.mp4 34.58MB
24. Pandas Input and Output - Excel Files.srt 10.88KB
25. L1 and L2 Regularization - Elastic Net.mp4 93.41MB
25. L1 and L2 Regularization - Elastic Net.srt 25.72KB
25. Pandas Input and Output - SQL Databases.mp4 103.19MB
25. Pandas Input and Output - SQL Databases.srt 29.43KB
26. Linear Regression Project - Data Overview.mp4 39.07MB
26. Linear Regression Project - Data Overview.srt 7.67KB
26. Pandas Pivot Tables.mp4 128.74MB
26. Pandas Pivot Tables.srt 32.18KB
27. Pandas Project Exercise Overview.mp4 41.07MB
27. Pandas Project Exercise Overview.srt 9.59KB
28. Pandas Project Exercise Solutions.mp4 181.59MB
28. Pandas Project Exercise Solutions.srt 38.76KB
3.1 UNZIP_ME_FOR_NOTEBOOKS.zip 27.09MB
3. Anaconda Python and Jupyter Install and Setup.mp4 98.75MB
3. Anaconda Python and Jupyter Install and Setup.srt 21.55KB
3. Capstone Project Solutions - Part Two.mp4 111.05MB
3. Capstone Project Solutions - Part Two.srt 23.48KB
3. Coding Exercise Check-in Creating NumPy Arrays.html 163B
3. Distribution Plots - Part One - Understanding Plot Types.mp4 32.05MB
3. Distribution Plots - Part One - Understanding Plot Types.srt 15.00KB
3. Linear Regression - Understanding Ordinary Least Squares.mp4 86.26MB
3. Linear Regression - Understanding Ordinary Least Squares.srt 22.52KB
3. Matplotlib - Understanding the Figure Object.mp4 25.81MB
3. Matplotlib - Understanding the Figure Object.srt 11.55KB
3. Python Crash Course - Part Two.mp4 22.25MB
3. Python Crash Course - Part Two.srt 18.03KB
3. Series - Part Two.mp4 45.30MB
3. Series - Part Two.srt 15.37KB
3. Types of Machine Learning Algorithms.mp4 38.68MB
3. Types of Machine Learning Algorithms.srt 11.63KB
4.1 Backup Google Link for requirements.txt file.html 143B
4.2 requirements.txt 221B
4. Capstone Project Solutions - Part Three.mp4 143.96MB
4. Capstone Project Solutions - Part Three.srt 30.88KB
4. DataFrames - Part One - Creating a DataFrame.mp4 114.08MB
4. DataFrames - Part One - Creating a DataFrame.srt 29.00KB
4. Distribution Plots - Part Two - Coding with Seaborn.mp4 77.74MB
4. Distribution Plots - Part Two - Coding with Seaborn.srt 24.79KB
4. Environment Setup.mp4 49.32MB
4. Environment Setup.srt 14.49KB
4. Linear Regression - Cost Functions.mp4 36.02MB
4. Linear Regression - Cost Functions.srt 11.46KB
4. Matplotlib - Implementing Figures and Axes.mp4 59.09MB
4. Matplotlib - Implementing Figures and Axes.srt 20.97KB
4. NumPy Indexing and Selection.mp4 46.35MB
4. NumPy Indexing and Selection.srt 16.22KB
4. Python Crash Course - Part Three.mp4 23.17MB
4. Python Crash Course - Part Three.srt 16.57KB
4. Supervised Machine Learning Process.mp4 71.41MB
4. Supervised Machine Learning Process.srt 19.76KB
5. Categorical Plots - Statistics within Categories - Understanding Plot Types.mp4 21.86MB
5. Categorical Plots - Statistics within Categories - Understanding Plot Types.srt 8.80KB
5. Companion Book - Introduction to Statistical Learning.mp4 19.29MB
5. Companion Book - Introduction to Statistical Learning.srt 4.66KB
5. DataFrames - Part Two - Basic Properties.mp4 53.91MB
5. DataFrames - Part Two - Basic Properties.srt 13.28KB
5. Linear Regression - Gradient Descent.mp4 65.04MB
5. Linear Regression - Gradient Descent.srt 16.73KB
5. Matplotlib - Figure Parameters.mp4 23.75MB
5. Matplotlib - Figure Parameters.srt 7.65KB
5. NumPy Operations.mp4 48.59MB
5. NumPy Operations.srt 12.05KB
5. Python Crash Course - Exercise Questions.mp4 5.00MB
5. Python Crash Course - Exercise Questions.srt 2.53KB
6. Categorical Plots - Statistics within Categories - Coding with Seaborn.mp4 55.00MB
6. Categorical Plots - Statistics within Categories - Coding with Seaborn.srt 14.61KB
6. DataFrames - Part Three - Working with Columns.mp4 89.30MB
6. DataFrames - Part Three - Working with Columns.srt 20.61KB
6. Matplotlib - Subplots Functionality.mp4 96.18MB
6. Matplotlib - Subplots Functionality.srt 28.63KB
6. NumPy Exercises.mp4 11.52MB
6. NumPy Exercises.srt 2.07KB
6. Python coding Simple Linear Regression.mp4 91.92MB
6. Python coding Simple Linear Regression.srt 28.14KB
6. Python Crash Course - Exercise Solutions.mp4 25.10MB
6. Python Crash Course - Exercise Solutions.srt 13.43KB
7. Categorical Plots - Distributions within Categories - Understanding Plot Types.mp4 61.09MB
7. Categorical Plots - Distributions within Categories - Understanding Plot Types.srt 20.10KB
7. DataFrames - Part Four - Working with Rows.mp4 96.71MB
7. DataFrames - Part Four - Working with Rows.srt 21.08KB
7. Matplotlib Styling - Legends.mp4 34.09MB
7. Matplotlib Styling - Legends.srt 10.35KB
7. Numpy Exercises - Solutions.mp4 48.56MB
7. Numpy Exercises - Solutions.srt 10.87KB
7. Overview of Scikit-Learn and Python.mp4 45.61MB
7. Overview of Scikit-Learn and Python.srt 12.34KB
8. Categorical Plots - Distributions within Categories - Coding with Seaborn.mp4 111.24MB
8. Categorical Plots - Distributions within Categories - Coding with Seaborn.srt 28.26KB
8. Linear Regression - Scikit-Learn Train Test Split.mp4 82.93MB
8. Linear Regression - Scikit-Learn Train Test Split.srt 23.78KB
8. Matplotlib Styling - Colors and Styles.mp4 81.19MB
8. Matplotlib Styling - Colors and Styles.srt 21.04KB
8. Pandas - Conditional Filtering.mp4 90.04MB
8. Pandas - Conditional Filtering.srt 27.14KB
9. Advanced Matplotlib Commands (Optional).mp4 40.44MB
9. Advanced Matplotlib Commands (Optional).srt 6.49KB
9. Linear Regression - Scikit-Learn Performance Evaluation - Regression.mp4 73.64MB
9. Linear Regression - Scikit-Learn Performance Evaluation - Regression.srt 22.83KB
9. Pandas - Useful Methods - Apply on Single Column.mp4 73.05MB
9. Pandas - Useful Methods - Apply on Single Column.srt 20.23KB
9. Seaborn - Comparison Plots - Understanding the Plot Types.mp4 23.35MB
9. Seaborn - Comparison Plots - Understanding the Plot Types.srt 8.73KB
Distribution statistics by country
Total 0
IP List List of IP addresses which were distributed this torrent