Torrent Info
Title Complete Data Science & Machine Learning A-Z with Python
Category
Size 10.80GB

Files List
Please note that this page does not hosts or makes available any of the listed filenames. You cannot download any of those files from here.
[TGx]Downloaded from torrentgalaxy.to .txt 585B
0 267.00KB
1 1.83MB
1. Accessing and Making Files Available.mp4 34.61MB
1. Adding Columns to Pandas Data Frames.mp4 33.58MB
1. Classification vs Regression in Machine Learning.mp4 19.89MB
1. Competitions on Kaggle Lesson 1.mp4 188.17MB
1. Complete Data Science & Machine Learning A-Z with Python.html 266B
1. Concatenating Pandas Dataframes Concat Function.mp4 63.84MB
1. Courses in Kaggle.mp4 52.14MB
1. Creating a Pandas Series with a List.mp4 39.19MB
1. Creating NumPy Array with The Array() Function.mp4 29.50MB
1. Creating Pandas DataFrame with List.mp4 22.57MB
1. Datasets on Kaggle.mp4 133.23MB
1. Data Types in Python.mp4 47.07MB
1. Data Visualisation - Matplotlib Files.html 170B
1. Decision Tree Algorithm Theory.mp4 35.75MB
1. Dropping Columns with Low Correlation.mp4 26.83MB
1. Element Selection Operations in Pandas DataFrames Lesson 1.mp4 29.90MB
1. Examining Missing Values.mp4 45.79MB
1. Examining the Code Section in Kaggle Lesson 1.mp4 79.53MB
1. Examining the Data Set 3.mp4 39.11MB
1. First Step to the Hearth Attack Prediction Project.mp4 117.14MB
1. Hierarchical Clustering Algorithm Theory.mp4 28.55MB
1. Hyperparameter Optimization Theory.mp4 33.14MB
1. Indexing Numpy Arrays,.mp4 26.56MB
1. Installing Anaconda Distribution for Windows.mp4 118.32MB
1. Introduction to Data Visualization with Python.mp4 12.85MB
1. Introduction to NumPy Library.mp4 45.27MB
1. Introduction to Pandas Library.mp4 33.93MB
1. K-Fold Cross-Validation Theory.mp4 17.45MB
1. K Means Clustering Algorithm Theory.mp4 17.13MB
1. K Nearest Neighbors Algorithm Theory.mp4 28.66MB
1. Linear Regression Algorithm Theory in Machine Learning A-Z.mp4 34.06MB
1. Loading a Dataset from the Seaborn Library.mp4 37.72MB
1. Logic of Object Oriented Programming.mp4 17.38MB
1. Logistic Regression.mp4 29.34MB
1. Multi-Index and Index Hierarchy in Pandas DataFrames.mp4 42.66MB
1. Numeric Variables (Analysis with Distplot) Lesson 1.mp4 80.35MB
1. Numeric Variables – Target Variable (Analysis with FacetGrid) Lesson 1.mp4 49.37MB
1. Operations with Comparison Operators.mp4 21.14MB
1. Principal Component Analysis (PCA) Theory.mp4 37.96MB
1. Project Conclusion and Sharing.mp4 28.66MB
1. Random Forest Algorithm Theory.mp4 22.89MB
1. Required Python Libraries.mp4 63.55MB
1. Reshaping a NumPy Array Reshape() Function.mp4 26.16MB
1. Support Vector Machine Algorithm Theory.mp4 21.84MB
1. Unsupervised Learning Overview.mp4 16.91MB
1. User Page Review on Kaggle.mp4 81.50MB
1. What is Bias Variance Trade-Off.mp4 55.03MB
1. What is Discussion on Kaggle.mp4 40.63MB
1. What is Geoplotlib.mp4 34.18MB
1. What is Kaggle.mp4 129.67MB
1. What is Logistic Regression Algorithm in Machine Learning.mp4 27.84MB
1. What is Machine Learning.mp4 27.58MB
1. What is Matplotlib.mp4 19.06MB
1. What is Seaborn.mp4 13.59MB
1. What is Supervised Learning in Machine Learning.mp4 31.69MB
1. What is the Recommender System Part 1.mp4 23.04MB
10 848.25KB
10. Exercise - Solution in Python.mp4 51.89MB
10. Feature Scaling with the Robust Scaler Method for Machine Learning Algorithms.mp4 11.45MB
10. Numerical - Categorical Variables (Analysis with Swarm Plot) Lesson 2.mp4 68.08MB
10. Quiz.html 205B
10. Quiz.html 205B
10. Quiz.html 205B
100 1.15MB
101 1.32MB
102 1.37MB
103 309.59KB
104 669.79KB
105 831.77KB
106 912.72KB
107 1.15MB
108 1.28MB
109 1.39MB
11 986.47KB
11. Numerical - Categorical Variables (Analysis with Box Plot) Lesson 1.mp4 38.07MB
11. Quiz.html 205B
11. Separating Data into Test and Training Set.mp4 29.75MB
110 1.64MB
111 1.71MB
112 1.80MB
113 1.93MB
114 41.38KB
115 284.32KB
116 455.71KB
117 768.65KB
118 1.64MB
119 1.76MB
12 1.06MB
12. Numerical - Categorical Variables (Analysis with Box Plot) Lesson 2.mp4 35.47MB
12. Quiz.html 205B
120 1.94MB
121 164.19KB
122 252.49KB
123 276.16KB
124 293.71KB
125 311.69KB
126 373.42KB
127 423.68KB
128 494.34KB
129 546.29KB
13 191.13KB
13. Relationships between variables (Analysis with Heatmap) Lesson 1.mp4 36.36MB
130 619.41KB
131 820.34KB
132 989.96KB
133 1.11MB
134 1.23MB
135 1.33MB
136 1.39MB
137 1.42MB
138 1.46MB
139 1.73MB
14 1.07MB
14. Relationships between variables (Analysis with Heatmap) Lesson 2.mp4 90.67MB
140 1.82MB
141 1.94MB
142 69.17KB
143 426.89KB
144 880.54KB
145 1.33MB
146 1.98MB
147 165.72KB
148 322.09KB
149 482.45KB
15 1.74MB
15. Quiz.html 205B
150 602.33KB
151 618.01KB
152 764.37KB
153 1.45MB
154 1.79MB
155 45.58KB
156 104.83KB
157 114.93KB
158 225.64KB
159 252.55KB
16 1.16MB
160 365.79KB
161 512.72KB
162 676.39KB
163 800.91KB
164 990.45KB
165 1.07MB
166 1.11MB
167 1.34MB
168 1.34MB
169 1.45MB
17 1.76MB
170 1.63MB
171 1.69MB
172 1.78MB
173 166.37KB
174 251.17KB
175 430.23KB
176 638.92KB
177 1.17MB
178 1.44MB
179 1.84MB
18 641.91KB
180 1.98MB
181 57.82KB
182 304.77KB
183 847.48KB
184 924.31KB
185 1.42MB
186 1.48MB
187 1.55MB
188 1.80MB
189 1.85MB
19 1.31MB
190 1.91MB
191 1.94MB
192 1.99MB
193 56.19KB
194 114.99KB
195 984.28KB
196 1.11MB
197 1.43MB
198 1.73MB
199 1.89MB
2 110.81KB
2. Arithmetic Operations in Numpy.mp4 71.82MB
2. Competitions on Kaggle Lesson 2.mp4 191.68MB
2. Constructor in Object Oriented Programming (OOP).mp4 35.84MB
2. Controlling Figure Aesthetics in Seaborn.mp4 41.82MB
2. Creating a Pandas Series with a Dictionary.mp4 18.29MB
2. Creating NumPy Array with Zeros() Function.mp4 24.06MB
2. Creating Pandas DataFrame with NumPy Array.mp4 12.10MB
2. Cross Validation.mp4 30.21MB
2. Data Entry with Csv and Txt Files.mp4 64.34MB
2. Data Visualisation - Seaborn Files.html 170B
2. Decision Tree Algorithm with Python Part 1.mp4 31.53MB
2. Element Selection in Multi-Indexed DataFrames.mp4 24.58MB
2. Element Selection Operations in Pandas DataFrames Lesson 2.mp4 31.84MB
2. Examining the Code Section in Kaggle Lesson 2.mp4 105.81MB
2. Examining the Data Set 1.mp4 42.90MB
2. Examining Unique Values.mp4 44.54MB
2. Example - 1.mp4 38.85MB
2. FAQ about Kaggle.html 10.94KB
2. FAQ about Machine Learning, Data Science.html 15.29KB
2. FAQ regarding Data Visualization, Python.html 8.59KB
2. Hierarchical Clustering Algorithm with Python Part 2.mp4 35.52MB
2. Hyperparameter Optimization with Python.mp4 47.47MB
2. Identifying the Largest Element of a Numpy Array.mp4 15.12MB
2. K-Fold Cross-Validation with Python.mp4 34.67MB
2. K Means Clustering Algorithm with Python Part 1.mp4 29.96MB
2. K Nearest Neighbors Algorithm with Python Part 1.mp4 35.03MB
2. Linear Regression Algorithm With Python Part 1.mp4 76.17MB
2. Loading the Statistics Dataset in Data Science.mp4 10.00MB
2. Logistic Regression Algorithm with Python Part 1.mp4 72.22MB
2. Machine Learning Model Performance Evaluation Classification Error Metrics.mp4 100.26MB
2. Machine Learning Terminology.mp4 14.03MB
2. Merge Pandas Dataframes Merge() Function Lesson 1.mp4 57.29MB
2. Notebook Project Files Link regarding NumPy Python Programming Language Library.html 155B
2. Numeric Variables (Analysis with Distplot) Lesson 2.mp4 19.75MB
2. Numeric Variables – Target Variable (Analysis with FacetGrid) Lesson 2.mp4 35.64MB
2. Operators in Python.mp4 35.71MB
2. Pandas Project Files Link.html 180B
2. Pivot Tables in Pandas Library.mp4 54.23MB
2. Principal Component Analysis (PCA) with Python Part 1.mp4 26.02MB
2. Quiz.html 205B
2. Quiz.html 205B
2. Quiz.html 205B
2. Quiz.html 205B
2. Quiz.html 205B
2. Random Forest Algorithm with Pyhon Part 1.mp4 38.61MB
2. Ranking Among Users on Kaggle.mp4 107.04MB
2. Removing Rows and Columns from Pandas Data frames.mp4 15.56MB
2. Slicing One-Dimensional Numpy Arrays.mp4 22.27MB
2. Support Vector Machine Algorithm with Python Part 1.mp4 35.59MB
2. The Power of NumPy.mp4 59.87MB
2. Treasure in The Kaggle.mp4 74.64MB
2. Using Pyplot.mp4 28.22MB
2. Visualizing Outliers.mp4 34.89MB
2. What is the Recommender System Part 2.mp4 17.96MB
20 1.33MB
200 23.90KB
201 161.56KB
202 164.19KB
203 875.85KB
204 1.10MB
205 1.51MB
206 109.79KB
207 261.07KB
208 267.33KB
209 434.91KB
21 5.05KB
210 960.57KB
211 1.06MB
212 1.71MB
213 1.80MB
214 40.42KB
215 565.19KB
216 630.45KB
217 891.30KB
218 1000.74KB
219 1.09MB
22 1.88MB
220 1.54MB
221 122.86KB
222 161.05KB
223 198.82KB
224 454.09KB
225 905.46KB
226 1.28MB
227 1.97MB
228 416.65KB
229 1.15MB
23 1.94MB
230 1.35MB
231 1.45MB
232 1.90MB
233 1.90MB
234 30.80KB
235 566.28KB
236 837.92KB
237 1.83MB
238 2.04KB
239 1.54MB
24 508.79KB
240 1.58MB
25 555.72KB
26 882.98KB
27 1.65MB
28 480.94KB
29 1.49MB
3 790.26KB
3. Aggregation Functions in Pandas DataFrames.mp4 90.69MB
3. Blog and Documentation Sections.mp4 40.85MB
3. Categoric Variables (Analysis with Pie Chart) Lesson 1.mp4 74.74MB
3. Categoric Variables – Target Variable (Analysis with Count Plot) Lesson 1.mp4 24.15MB
3. Conditionals in Python.mp4 41.23MB
3. Creating NumPy Array with Ones() Function.mp4 15.88MB
3. Creating Pandas DataFrame with Dictionary.mp4 15.84MB
3. Creating Pandas Series with NumPy Array.mp4 11.97MB
3. Data Entry with Excel Files.mp4 21.84MB
3. Data Visualisation - Geoplotlib.html 168B
3. Dealing with Outliers – Trtbps Variable Lesson 1.mp4 42.82MB
3. Decision Tree Algorithm with Python Part 2.mp4 48.92MB
3. Detecting Least Element of Numpy Array Min(), Ar.mp4 10.17MB
3. Evaluating Performance Regression Error Metrics in Python.mp4 45.70MB
3. Examining the Code Section in Kaggle Lesson 3.mp4 159.89MB
3. Example - 2.mp4 81.14MB
3. Example in Seaborn.mp4 54.90MB
3. Hierarchical Clustering Algorithm with Python Part 2.mp4 28.89MB
3. Initial analysis on the dataset.mp4 63.96MB
3. Installing Anaconda Distribution for MacOs.mp4 46.31MB
3. K Means Clustering Algorithm with Python Part 2.mp4 29.64MB
3. K Nearest Neighbors Algorithm with Python Part 2.mp4 59.37MB
3. Linear Regression Algorithm With Python Part 2.mp4 106.94MB
3. Logistic Regression Algorithm with Python Part 2.mp4 81.46MB
3. Machine Learning Project Files.html 254B
3. Merge Pandas Dataframes Merge() Function Lesson 2.mp4 30.55MB
3. Methods in Object Oriented Programming (OOP).mp4 25.10MB
3. Notebook Design to be Used in the Project.mp4 104.93MB
3. Null Values in Pandas Dataframes.mp4 66.96MB
3. Principal Component Analysis (PCA) with Python Part 2.mp4 8.42MB
3. Publishing Notebooks on Kaggle.mp4 38.20MB
3. Pyplot – Pylab - Matplotlib.mp4 28.37MB
3. Quiz.html 205B
3. Quiz.html 205B
3. Quiz.html 205B
3. Random Forest Algorithm with Pyhon Part 2.mp4 38.72MB
3. Registering on Kaggle and Member Login Procedures.mp4 43.48MB
3. Roc Curve and Area Under Curve (AUC).mp4 41.71MB
3. Selecting Elements Using the xs() Function in Multi-Indexed DataFrames.mp4 31.25MB
3. Separating variables (Numeric or Categorical).mp4 15.81MB
3. Slicing Two-Dimensional Numpy Arrays.mp4 34.27MB
3. Statistical Operations in Numpy.mp4 32.02MB
3. Support Vector Machine Algorithm with Python Part 2.mp4 41.72MB
3. Top Level Element Selection in Pandas DataFramesLesson 1.mp4 38.29MB
30 1.83MB
31 686.80KB
32 1.26MB
33 1.36MB
34 1.78MB
35 185.58KB
36 1.72MB
37 117.35KB
38 1.92MB
39 1.04MB
4 341.19KB
4. 6 Article Advice And Links about Numpy, Numpy Pyhon.html 4.19KB
4. Assigning Value to One-Dimensional Arrays.mp4 18.20MB
4. Categoric Variables (Analysis with Pie Chart) Lesson 2.mp4 84.06MB
4. Categoric Variables – Target Variable (Analysis with Count Plot) Lesson 2.mp4 56.27MB
4. Color Palettes in Seaborn.mp4 48.32MB
4. Concatenating Numpy Arrays Concatenate() Functio.mp4 38.36MB
4. Creating NumPy Array with Full() Function.mp4 11.18MB
4. Dealing with Outliers – Trtbps Variable Lesson 2.mp4 43.91MB
4. Decision Tree Algorithm with Python Part 3.mp4 14.72MB
4. Dropping Null Values Dropna() Function.mp4 34.54MB
4. Examining Statistics of Variables.mp4 91.37MB
4. Examining the Data Set 2.mp4 46.58MB
4. Examining the Properties of Pandas DataFrames.mp4 25.94MB
4. Example - 3.mp4 51.28MB
4. FAQ regarding Python.html 6.23KB
4. Figure, Subplot and Axex.mp4 69.89MB
4. Hyperparameter Optimization (with GridSearchCV).mp4 58.77MB
4. Inheritance in Object Oriented Programming (OOP).mp4 34.58MB
4. K Means Clustering Algorithm with Python Part 3.mp4 27.75MB
4. K Nearest Neighbors Algorithm with Python Part 3.mp4 31.40MB
4. Linear Regression Algorithm With Python Part 3.mp4 70.28MB
4. Logistic Regression Algorithm with Python Part 3.mp4 47.35MB
4. Loops in Python.mp4 58.81MB
4. Machine Learning With Python.mp4 92.24MB
4. Merge Pandas Dataframes Merge() Function Lesson 3.mp4 60.17MB
4. Object Types in Series.mp4 19.58MB
4. Outputting as an CSV Extension.mp4 35.70MB
4. Principal Component Analysis (PCA) with Python Part 3.mp4 37.25MB
4. Project Link File - Hearth Attack Prediction Project, Machine Learning.html 108B
4. Project Link File - Hearth Attack Prediction Project, Machine Learning.html 97B
4. Quiz.html 205B
4. Quiz.html 205B
4. Quiz.html 205B
4. Quiz.html 205B
4. Solving Second-Degree Equations with NumPy.mp4 24.20MB
4. Support Vector Machine Algorithm with Python Part 3.mp4 34.77MB
4. Top Level Element Selection in Pandas DataFramesLesson 2.mp4 31.41MB
4. What Should Be Done to Achieve Success in Kaggle.mp4 58.48MB
40 1.66MB
41 44.45KB
42 164.06KB
43 455.96KB
44 724.81KB
45 1.30MB
46 1.83MB
47 1.90MB
48 137.74KB
49 642.38KB
5 1.13MB
5. Assigning Value to Two-Dimensional Array.mp4 35.40MB
5. Basic Plots in Seaborn.mp4 98.84MB
5. Coordinated Use of Grouping and Aggregation Functions in Pandas Dataframes.mp4 88.12MB
5. Creating NumPy Array with Arange() Function.mp4 12.10MB
5. Dealing with Outliers – Thalach Variable.mp4 36.24MB
5. Decision Tree Algorithm.mp4 25.70MB
5. Decision Tree Algorithm with Python Part 4.mp4 42.49MB
5. Examining Numeric Variables Among Themselves (Analysis with Pair Plot) Lesson 1.mp4 28.31MB
5. Examining the Missing Data According to the Analysis Result.mp4 53.78MB
5. Examining the Primary Features of the Pandas Seri.mp4 18.94MB
5. Examining the Project Topic.mp4 76.51MB
5. FAQ regarding Machine Learning.html 6.59KB
5. Figure Customization.mp4 63.29MB
5. Filling Null Values Fillna() Function.mp4 51.62MB
5. Getting to Know the Kaggle Homepage.mp4 122.93MB
5. Installing Anaconda Distribution for Linux.mp4 114.75MB
5. K Means Clustering Algorithm with Python Part 4.mp4 29.03MB
5. Linear Regression Algorithm With Python Part 4.mp4 90.00MB
5. Lists, Tuples, Dictionaries and Sets in pyhton.mp4 75.33MB
5. Logistic Regression Algorithm with Python Part 4.mp4 47.17MB
5. Merge Pandas Dataframes Merge() Function Lesson 4.mp4 40.68MB
5. Outputting as an Excel File.mp4 19.74MB
5. Overriding and Overloading in Object Oriented Programming (OOP).mp4 62.70MB
5. Quiz.html 205B
5. Quiz.html 205B
5. Quiz.html 205B
5. Quiz.html 205B
5. Quiz.html 205B
5. Quiz.html 205B
5. Splitting One-Dimensional Numpy Arrays The Split.mp4 20.90MB
5. Support Vector Machine Algorithm with Python Part 4.mp4 37.55MB
5. Top Level Element Selection in Pandas DataFramesLesson 3.mp4 22.11MB
50 1.19MB
51 1.23MB
52 1.52MB
53 723.58KB
54 1.73MB
55 1.95MB
56 991.04KB
57 1.10MB
58 1.18MB
59 1.77MB
6 1.07MB
6. Advanced Aggregation Functions Aggregate() Function.mp4 29.22MB
6. Creating NumPy Array with Eye() Function.mp4 12.55MB
6. Data Type Operators and Methods in Python.mp4 43.86MB
6. Dealing with Outliers – Oldpeak Variable.mp4 36.06MB
6. Decision Tree Algorithm with Python Part 5.mp4 32.67MB
6. Element Selection with Conditional Operations in.mp4 46.37MB
6. Examining Numeric Variables Among Themselves (Analysis with Pair Plot) Lesson 2.mp4 47.14MB
6. Fancy Indexing of One-Dimensional Arrrays.mp4 20.49MB
6. Joining Pandas Dataframes Join() Function.mp4 56.05MB
6. Logistic Regression Algorithm with Python Part 5.mp4 39.35MB
6. Most Applied Methods on Pandas Series.mp4 48.21MB
6. Multi-Plots in Seaborn.mp4 42.98MB
6. Plot Customization.mp4 27.38MB
6. quiz.html 205B
6. Quiz.html 205B
6. Quiz.html 205B
6. Quiz.html 205B
6. Quiz.html 205B
6. Quiz.html 205B
6. Quiz.html 205B
6. Recognizing Variables In Dataset.mp4 126.87MB
6. Setting Index in Pandas DataFrames.mp4 39.70MB
6. Splitting Two-Dimensional Numpy Arrays Split(),.mp4 35.73MB
6. Support Vector Machine Algorithm.mp4 24.52MB
60 229.28KB
61 1.11MB
62 1.35MB
63 1.86MB
64 117.15KB
65 385.56KB
66 739.66KB
67 649.26KB
68 1.08MB
69 1.68MB
7 1.68MB
7. Advanced Aggregation Functions Filter() Function.mp4 24.45MB
7. Creating NumPy Array with Linspace() Function.mp4 7.34MB
7. Determining Distributions of Numeric Variables.mp4 25.17MB
7. Fancy Indexing of Two-Dimensional Arrrays.mp4 45.75MB
7. Feature Scaling with the Robust Scaler Method.mp4 35.20MB
7. Grid, Spines, Ticks.mp4 23.89MB
7. Indexing and Slicing Pandas Series.mp4 29.89MB
7. Modules in Python.mp4 23.95MB
7. Quiz.html 205B
7. Quiz.html 205B
7. Quiz.html 205B
7. Quiz.html 205B
7. Quiz.html 205B
7. Quiz.html 205B
7. Random Forest Algorithm.mp4 29.78MB
7. Regression Plots and Squarify in Seaborn.mp4 60.10MB
7. Sorting Numpy Arrays Sort() Function.mp4 17.02MB
70 1.79MB
71 545.10KB
72 666.54KB
73 853.54KB
74 878.24KB
75 932.77KB
76 957.13KB
77 1.42MB
78 1.63MB
79 1.69MB
8 884.22KB
8. Advanced Aggregation Functions Transform() Function.mp4 47.09MB
8. Basic Plots in Matplotlib I.mp4 111.17MB
8. Combining Fancy Index with Normal Indexing.mp4 12.65MB
8. Creating a New DataFrame with the Melt() Function.mp4 52.89MB
8. Creating NumPy Array with Random() Function.mp4 43.30MB
8. Functions in Python.mp4 28.93MB
8. Hyperparameter Optimization (with GridSearchCV).mp4 52.65MB
8. Quiz.html 205B
8. Quiz.html 205B
8. Quiz.html 205B
8. Transformation Operations on Unsymmetrical Data.mp4 24.01MB
80 216.61KB
81 259.36KB
82 305.68KB
83 750.92KB
84 1.46MB
85 89.20KB
86 143.50KB
87 527.40KB
88 719.29KB
89 1.02MB
9 1.25MB
9. Advanced Aggregation Functions Apply() Function.mp4 41.42MB
9. Applying One Hot Encoding Method to Categorical Variables.mp4 24.09MB
9. Basic Plots in Matplotlib II.mp4 54.82MB
9. Combining Fancy Index with Normal Slicing.mp4 16.46MB
9. Exercise - Analyse in Python.mp4 8.46MB
9. Numerical - Categorical Variables (Analysis with Swarm Plot) Lesson 1.mp4 41.72MB
9. Properties of NumPy Array.mp4 21.98MB
9. Quiz.html 205B
90 1.10MB
91 1.18MB
92 1.34MB
93 1.51MB
94 187.42KB
95 285.38KB
96 291.36KB
97 292.83KB
98 592.01KB
99 784.06KB
TutsNode.net.txt 63B