Please note that this page does not hosts or makes available any of the listed filenames. You
cannot download any of those files from here.
|
[TGx]Downloaded from torrentgalaxy.to .txt |
585B |
0 |
267.00KB |
1 |
1.83MB |
1. Accessing and Making Files Available.mp4 |
34.61MB |
1. Adding Columns to Pandas Data Frames.mp4 |
33.58MB |
1. Classification vs Regression in Machine Learning.mp4 |
19.89MB |
1. Competitions on Kaggle Lesson 1.mp4 |
188.17MB |
1. Complete Data Science & Machine Learning A-Z with Python.html |
266B |
1. Concatenating Pandas Dataframes Concat Function.mp4 |
63.84MB |
1. Courses in Kaggle.mp4 |
52.14MB |
1. Creating a Pandas Series with a List.mp4 |
39.19MB |
1. Creating NumPy Array with The Array() Function.mp4 |
29.50MB |
1. Creating Pandas DataFrame with List.mp4 |
22.57MB |
1. Datasets on Kaggle.mp4 |
133.23MB |
1. Data Types in Python.mp4 |
47.07MB |
1. Data Visualisation - Matplotlib Files.html |
170B |
1. Decision Tree Algorithm Theory.mp4 |
35.75MB |
1. Dropping Columns with Low Correlation.mp4 |
26.83MB |
1. Element Selection Operations in Pandas DataFrames Lesson 1.mp4 |
29.90MB |
1. Examining Missing Values.mp4 |
45.79MB |
1. Examining the Code Section in Kaggle Lesson 1.mp4 |
79.53MB |
1. Examining the Data Set 3.mp4 |
39.11MB |
1. First Step to the Hearth Attack Prediction Project.mp4 |
117.14MB |
1. Hierarchical Clustering Algorithm Theory.mp4 |
28.55MB |
1. Hyperparameter Optimization Theory.mp4 |
33.14MB |
1. Indexing Numpy Arrays,.mp4 |
26.56MB |
1. Installing Anaconda Distribution for Windows.mp4 |
118.32MB |
1. Introduction to Data Visualization with Python.mp4 |
12.85MB |
1. Introduction to NumPy Library.mp4 |
45.27MB |
1. Introduction to Pandas Library.mp4 |
33.93MB |
1. K-Fold Cross-Validation Theory.mp4 |
17.45MB |
1. K Means Clustering Algorithm Theory.mp4 |
17.13MB |
1. K Nearest Neighbors Algorithm Theory.mp4 |
28.66MB |
1. Linear Regression Algorithm Theory in Machine Learning A-Z.mp4 |
34.06MB |
1. Loading a Dataset from the Seaborn Library.mp4 |
37.72MB |
1. Logic of Object Oriented Programming.mp4 |
17.38MB |
1. Logistic Regression.mp4 |
29.34MB |
1. Multi-Index and Index Hierarchy in Pandas DataFrames.mp4 |
42.66MB |
1. Numeric Variables (Analysis with Distplot) Lesson 1.mp4 |
80.35MB |
1. Numeric Variables – Target Variable (Analysis with FacetGrid) Lesson 1.mp4 |
49.37MB |
1. Operations with Comparison Operators.mp4 |
21.14MB |
1. Principal Component Analysis (PCA) Theory.mp4 |
37.96MB |
1. Project Conclusion and Sharing.mp4 |
28.66MB |
1. Random Forest Algorithm Theory.mp4 |
22.89MB |
1. Required Python Libraries.mp4 |
63.55MB |
1. Reshaping a NumPy Array Reshape() Function.mp4 |
26.16MB |
1. Support Vector Machine Algorithm Theory.mp4 |
21.84MB |
1. Unsupervised Learning Overview.mp4 |
16.91MB |
1. User Page Review on Kaggle.mp4 |
81.50MB |
1. What is Bias Variance Trade-Off.mp4 |
55.03MB |
1. What is Discussion on Kaggle.mp4 |
40.63MB |
1. What is Geoplotlib.mp4 |
34.18MB |
1. What is Kaggle.mp4 |
129.67MB |
1. What is Logistic Regression Algorithm in Machine Learning.mp4 |
27.84MB |
1. What is Machine Learning.mp4 |
27.58MB |
1. What is Matplotlib.mp4 |
19.06MB |
1. What is Seaborn.mp4 |
13.59MB |
1. What is Supervised Learning in Machine Learning.mp4 |
31.69MB |
1. What is the Recommender System Part 1.mp4 |
23.04MB |
10 |
848.25KB |
10. Exercise - Solution in Python.mp4 |
51.89MB |
10. Feature Scaling with the Robust Scaler Method for Machine Learning Algorithms.mp4 |
11.45MB |
10. Numerical - Categorical Variables (Analysis with Swarm Plot) Lesson 2.mp4 |
68.08MB |
10. Quiz.html |
205B |
10. Quiz.html |
205B |
10. Quiz.html |
205B |
100 |
1.15MB |
101 |
1.32MB |
102 |
1.37MB |
103 |
309.59KB |
104 |
669.79KB |
105 |
831.77KB |
106 |
912.72KB |
107 |
1.15MB |
108 |
1.28MB |
109 |
1.39MB |
11 |
986.47KB |
11. Numerical - Categorical Variables (Analysis with Box Plot) Lesson 1.mp4 |
38.07MB |
11. Quiz.html |
205B |
11. Separating Data into Test and Training Set.mp4 |
29.75MB |
110 |
1.64MB |
111 |
1.71MB |
112 |
1.80MB |
113 |
1.93MB |
114 |
41.38KB |
115 |
284.32KB |
116 |
455.71KB |
117 |
768.65KB |
118 |
1.64MB |
119 |
1.76MB |
12 |
1.06MB |
12. Numerical - Categorical Variables (Analysis with Box Plot) Lesson 2.mp4 |
35.47MB |
12. Quiz.html |
205B |
120 |
1.94MB |
121 |
164.19KB |
122 |
252.49KB |
123 |
276.16KB |
124 |
293.71KB |
125 |
311.69KB |
126 |
373.42KB |
127 |
423.68KB |
128 |
494.34KB |
129 |
546.29KB |
13 |
191.13KB |
13. Relationships between variables (Analysis with Heatmap) Lesson 1.mp4 |
36.36MB |
130 |
619.41KB |
131 |
820.34KB |
132 |
989.96KB |
133 |
1.11MB |
134 |
1.23MB |
135 |
1.33MB |
136 |
1.39MB |
137 |
1.42MB |
138 |
1.46MB |
139 |
1.73MB |
14 |
1.07MB |
14. Relationships between variables (Analysis with Heatmap) Lesson 2.mp4 |
90.67MB |
140 |
1.82MB |
141 |
1.94MB |
142 |
69.17KB |
143 |
426.89KB |
144 |
880.54KB |
145 |
1.33MB |
146 |
1.98MB |
147 |
165.72KB |
148 |
322.09KB |
149 |
482.45KB |
15 |
1.74MB |
15. Quiz.html |
205B |
150 |
602.33KB |
151 |
618.01KB |
152 |
764.37KB |
153 |
1.45MB |
154 |
1.79MB |
155 |
45.58KB |
156 |
104.83KB |
157 |
114.93KB |
158 |
225.64KB |
159 |
252.55KB |
16 |
1.16MB |
160 |
365.79KB |
161 |
512.72KB |
162 |
676.39KB |
163 |
800.91KB |
164 |
990.45KB |
165 |
1.07MB |
166 |
1.11MB |
167 |
1.34MB |
168 |
1.34MB |
169 |
1.45MB |
17 |
1.76MB |
170 |
1.63MB |
171 |
1.69MB |
172 |
1.78MB |
173 |
166.37KB |
174 |
251.17KB |
175 |
430.23KB |
176 |
638.92KB |
177 |
1.17MB |
178 |
1.44MB |
179 |
1.84MB |
18 |
641.91KB |
180 |
1.98MB |
181 |
57.82KB |
182 |
304.77KB |
183 |
847.48KB |
184 |
924.31KB |
185 |
1.42MB |
186 |
1.48MB |
187 |
1.55MB |
188 |
1.80MB |
189 |
1.85MB |
19 |
1.31MB |
190 |
1.91MB |
191 |
1.94MB |
192 |
1.99MB |
193 |
56.19KB |
194 |
114.99KB |
195 |
984.28KB |
196 |
1.11MB |
197 |
1.43MB |
198 |
1.73MB |
199 |
1.89MB |
2 |
110.81KB |
2. Arithmetic Operations in Numpy.mp4 |
71.82MB |
2. Competitions on Kaggle Lesson 2.mp4 |
191.68MB |
2. Constructor in Object Oriented Programming (OOP).mp4 |
35.84MB |
2. Controlling Figure Aesthetics in Seaborn.mp4 |
41.82MB |
2. Creating a Pandas Series with a Dictionary.mp4 |
18.29MB |
2. Creating NumPy Array with Zeros() Function.mp4 |
24.06MB |
2. Creating Pandas DataFrame with NumPy Array.mp4 |
12.10MB |
2. Cross Validation.mp4 |
30.21MB |
2. Data Entry with Csv and Txt Files.mp4 |
64.34MB |
2. Data Visualisation - Seaborn Files.html |
170B |
2. Decision Tree Algorithm with Python Part 1.mp4 |
31.53MB |
2. Element Selection in Multi-Indexed DataFrames.mp4 |
24.58MB |
2. Element Selection Operations in Pandas DataFrames Lesson 2.mp4 |
31.84MB |
2. Examining the Code Section in Kaggle Lesson 2.mp4 |
105.81MB |
2. Examining the Data Set 1.mp4 |
42.90MB |
2. Examining Unique Values.mp4 |
44.54MB |
2. Example - 1.mp4 |
38.85MB |
2. FAQ about Kaggle.html |
10.94KB |
2. FAQ about Machine Learning, Data Science.html |
15.29KB |
2. FAQ regarding Data Visualization, Python.html |
8.59KB |
2. Hierarchical Clustering Algorithm with Python Part 2.mp4 |
35.52MB |
2. Hyperparameter Optimization with Python.mp4 |
47.47MB |
2. Identifying the Largest Element of a Numpy Array.mp4 |
15.12MB |
2. K-Fold Cross-Validation with Python.mp4 |
34.67MB |
2. K Means Clustering Algorithm with Python Part 1.mp4 |
29.96MB |
2. K Nearest Neighbors Algorithm with Python Part 1.mp4 |
35.03MB |
2. Linear Regression Algorithm With Python Part 1.mp4 |
76.17MB |
2. Loading the Statistics Dataset in Data Science.mp4 |
10.00MB |
2. Logistic Regression Algorithm with Python Part 1.mp4 |
72.22MB |
2. Machine Learning Model Performance Evaluation Classification Error Metrics.mp4 |
100.26MB |
2. Machine Learning Terminology.mp4 |
14.03MB |
2. Merge Pandas Dataframes Merge() Function Lesson 1.mp4 |
57.29MB |
2. Notebook Project Files Link regarding NumPy Python Programming Language Library.html |
155B |
2. Numeric Variables (Analysis with Distplot) Lesson 2.mp4 |
19.75MB |
2. Numeric Variables – Target Variable (Analysis with FacetGrid) Lesson 2.mp4 |
35.64MB |
2. Operators in Python.mp4 |
35.71MB |
2. Pandas Project Files Link.html |
180B |
2. Pivot Tables in Pandas Library.mp4 |
54.23MB |
2. Principal Component Analysis (PCA) with Python Part 1.mp4 |
26.02MB |
2. Quiz.html |
205B |
2. Quiz.html |
205B |
2. Quiz.html |
205B |
2. Quiz.html |
205B |
2. Quiz.html |
205B |
2. Random Forest Algorithm with Pyhon Part 1.mp4 |
38.61MB |
2. Ranking Among Users on Kaggle.mp4 |
107.04MB |
2. Removing Rows and Columns from Pandas Data frames.mp4 |
15.56MB |
2. Slicing One-Dimensional Numpy Arrays.mp4 |
22.27MB |
2. Support Vector Machine Algorithm with Python Part 1.mp4 |
35.59MB |
2. The Power of NumPy.mp4 |
59.87MB |
2. Treasure in The Kaggle.mp4 |
74.64MB |
2. Using Pyplot.mp4 |
28.22MB |
2. Visualizing Outliers.mp4 |
34.89MB |
2. What is the Recommender System Part 2.mp4 |
17.96MB |
20 |
1.33MB |
200 |
23.90KB |
201 |
161.56KB |
202 |
164.19KB |
203 |
875.85KB |
204 |
1.10MB |
205 |
1.51MB |
206 |
109.79KB |
207 |
261.07KB |
208 |
267.33KB |
209 |
434.91KB |
21 |
5.05KB |
210 |
960.57KB |
211 |
1.06MB |
212 |
1.71MB |
213 |
1.80MB |
214 |
40.42KB |
215 |
565.19KB |
216 |
630.45KB |
217 |
891.30KB |
218 |
1000.74KB |
219 |
1.09MB |
22 |
1.88MB |
220 |
1.54MB |
221 |
122.86KB |
222 |
161.05KB |
223 |
198.82KB |
224 |
454.09KB |
225 |
905.46KB |
226 |
1.28MB |
227 |
1.97MB |
228 |
416.65KB |
229 |
1.15MB |
23 |
1.94MB |
230 |
1.35MB |
231 |
1.45MB |
232 |
1.90MB |
233 |
1.90MB |
234 |
30.80KB |
235 |
566.28KB |
236 |
837.92KB |
237 |
1.83MB |
238 |
2.04KB |
239 |
1.54MB |
24 |
508.79KB |
240 |
1.58MB |
25 |
555.72KB |
26 |
882.98KB |
27 |
1.65MB |
28 |
480.94KB |
29 |
1.49MB |
3 |
790.26KB |
3. Aggregation Functions in Pandas DataFrames.mp4 |
90.69MB |
3. Blog and Documentation Sections.mp4 |
40.85MB |
3. Categoric Variables (Analysis with Pie Chart) Lesson 1.mp4 |
74.74MB |
3. Categoric Variables – Target Variable (Analysis with Count Plot) Lesson 1.mp4 |
24.15MB |
3. Conditionals in Python.mp4 |
41.23MB |
3. Creating NumPy Array with Ones() Function.mp4 |
15.88MB |
3. Creating Pandas DataFrame with Dictionary.mp4 |
15.84MB |
3. Creating Pandas Series with NumPy Array.mp4 |
11.97MB |
3. Data Entry with Excel Files.mp4 |
21.84MB |
3. Data Visualisation - Geoplotlib.html |
168B |
3. Dealing with Outliers – Trtbps Variable Lesson 1.mp4 |
42.82MB |
3. Decision Tree Algorithm with Python Part 2.mp4 |
48.92MB |
3. Detecting Least Element of Numpy Array Min(), Ar.mp4 |
10.17MB |
3. Evaluating Performance Regression Error Metrics in Python.mp4 |
45.70MB |
3. Examining the Code Section in Kaggle Lesson 3.mp4 |
159.89MB |
3. Example - 2.mp4 |
81.14MB |
3. Example in Seaborn.mp4 |
54.90MB |
3. Hierarchical Clustering Algorithm with Python Part 2.mp4 |
28.89MB |
3. Initial analysis on the dataset.mp4 |
63.96MB |
3. Installing Anaconda Distribution for MacOs.mp4 |
46.31MB |
3. K Means Clustering Algorithm with Python Part 2.mp4 |
29.64MB |
3. K Nearest Neighbors Algorithm with Python Part 2.mp4 |
59.37MB |
3. Linear Regression Algorithm With Python Part 2.mp4 |
106.94MB |
3. Logistic Regression Algorithm with Python Part 2.mp4 |
81.46MB |
3. Machine Learning Project Files.html |
254B |
3. Merge Pandas Dataframes Merge() Function Lesson 2.mp4 |
30.55MB |
3. Methods in Object Oriented Programming (OOP).mp4 |
25.10MB |
3. Notebook Design to be Used in the Project.mp4 |
104.93MB |
3. Null Values in Pandas Dataframes.mp4 |
66.96MB |
3. Principal Component Analysis (PCA) with Python Part 2.mp4 |
8.42MB |
3. Publishing Notebooks on Kaggle.mp4 |
38.20MB |
3. Pyplot – Pylab - Matplotlib.mp4 |
28.37MB |
3. Quiz.html |
205B |
3. Quiz.html |
205B |
3. Quiz.html |
205B |
3. Random Forest Algorithm with Pyhon Part 2.mp4 |
38.72MB |
3. Registering on Kaggle and Member Login Procedures.mp4 |
43.48MB |
3. Roc Curve and Area Under Curve (AUC).mp4 |
41.71MB |
3. Selecting Elements Using the xs() Function in Multi-Indexed DataFrames.mp4 |
31.25MB |
3. Separating variables (Numeric or Categorical).mp4 |
15.81MB |
3. Slicing Two-Dimensional Numpy Arrays.mp4 |
34.27MB |
3. Statistical Operations in Numpy.mp4 |
32.02MB |
3. Support Vector Machine Algorithm with Python Part 2.mp4 |
41.72MB |
3. Top Level Element Selection in Pandas DataFramesLesson 1.mp4 |
38.29MB |
30 |
1.83MB |
31 |
686.80KB |
32 |
1.26MB |
33 |
1.36MB |
34 |
1.78MB |
35 |
185.58KB |
36 |
1.72MB |
37 |
117.35KB |
38 |
1.92MB |
39 |
1.04MB |
4 |
341.19KB |
4. 6 Article Advice And Links about Numpy, Numpy Pyhon.html |
4.19KB |
4. Assigning Value to One-Dimensional Arrays.mp4 |
18.20MB |
4. Categoric Variables (Analysis with Pie Chart) Lesson 2.mp4 |
84.06MB |
4. Categoric Variables – Target Variable (Analysis with Count Plot) Lesson 2.mp4 |
56.27MB |
4. Color Palettes in Seaborn.mp4 |
48.32MB |
4. Concatenating Numpy Arrays Concatenate() Functio.mp4 |
38.36MB |
4. Creating NumPy Array with Full() Function.mp4 |
11.18MB |
4. Dealing with Outliers – Trtbps Variable Lesson 2.mp4 |
43.91MB |
4. Decision Tree Algorithm with Python Part 3.mp4 |
14.72MB |
4. Dropping Null Values Dropna() Function.mp4 |
34.54MB |
4. Examining Statistics of Variables.mp4 |
91.37MB |
4. Examining the Data Set 2.mp4 |
46.58MB |
4. Examining the Properties of Pandas DataFrames.mp4 |
25.94MB |
4. Example - 3.mp4 |
51.28MB |
4. FAQ regarding Python.html |
6.23KB |
4. Figure, Subplot and Axex.mp4 |
69.89MB |
4. Hyperparameter Optimization (with GridSearchCV).mp4 |
58.77MB |
4. Inheritance in Object Oriented Programming (OOP).mp4 |
34.58MB |
4. K Means Clustering Algorithm with Python Part 3.mp4 |
27.75MB |
4. K Nearest Neighbors Algorithm with Python Part 3.mp4 |
31.40MB |
4. Linear Regression Algorithm With Python Part 3.mp4 |
70.28MB |
4. Logistic Regression Algorithm with Python Part 3.mp4 |
47.35MB |
4. Loops in Python.mp4 |
58.81MB |
4. Machine Learning With Python.mp4 |
92.24MB |
4. Merge Pandas Dataframes Merge() Function Lesson 3.mp4 |
60.17MB |
4. Object Types in Series.mp4 |
19.58MB |
4. Outputting as an CSV Extension.mp4 |
35.70MB |
4. Principal Component Analysis (PCA) with Python Part 3.mp4 |
37.25MB |
4. Project Link File - Hearth Attack Prediction Project, Machine Learning.html |
108B |
4. Project Link File - Hearth Attack Prediction Project, Machine Learning.html |
97B |
4. Quiz.html |
205B |
4. Quiz.html |
205B |
4. Quiz.html |
205B |
4. Quiz.html |
205B |
4. Solving Second-Degree Equations with NumPy.mp4 |
24.20MB |
4. Support Vector Machine Algorithm with Python Part 3.mp4 |
34.77MB |
4. Top Level Element Selection in Pandas DataFramesLesson 2.mp4 |
31.41MB |
4. What Should Be Done to Achieve Success in Kaggle.mp4 |
58.48MB |
40 |
1.66MB |
41 |
44.45KB |
42 |
164.06KB |
43 |
455.96KB |
44 |
724.81KB |
45 |
1.30MB |
46 |
1.83MB |
47 |
1.90MB |
48 |
137.74KB |
49 |
642.38KB |
5 |
1.13MB |
5. Assigning Value to Two-Dimensional Array.mp4 |
35.40MB |
5. Basic Plots in Seaborn.mp4 |
98.84MB |
5. Coordinated Use of Grouping and Aggregation Functions in Pandas Dataframes.mp4 |
88.12MB |
5. Creating NumPy Array with Arange() Function.mp4 |
12.10MB |
5. Dealing with Outliers – Thalach Variable.mp4 |
36.24MB |
5. Decision Tree Algorithm.mp4 |
25.70MB |
5. Decision Tree Algorithm with Python Part 4.mp4 |
42.49MB |
5. Examining Numeric Variables Among Themselves (Analysis with Pair Plot) Lesson 1.mp4 |
28.31MB |
5. Examining the Missing Data According to the Analysis Result.mp4 |
53.78MB |
5. Examining the Primary Features of the Pandas Seri.mp4 |
18.94MB |
5. Examining the Project Topic.mp4 |
76.51MB |
5. FAQ regarding Machine Learning.html |
6.59KB |
5. Figure Customization.mp4 |
63.29MB |
5. Filling Null Values Fillna() Function.mp4 |
51.62MB |
5. Getting to Know the Kaggle Homepage.mp4 |
122.93MB |
5. Installing Anaconda Distribution for Linux.mp4 |
114.75MB |
5. K Means Clustering Algorithm with Python Part 4.mp4 |
29.03MB |
5. Linear Regression Algorithm With Python Part 4.mp4 |
90.00MB |
5. Lists, Tuples, Dictionaries and Sets in pyhton.mp4 |
75.33MB |
5. Logistic Regression Algorithm with Python Part 4.mp4 |
47.17MB |
5. Merge Pandas Dataframes Merge() Function Lesson 4.mp4 |
40.68MB |
5. Outputting as an Excel File.mp4 |
19.74MB |
5. Overriding and Overloading in Object Oriented Programming (OOP).mp4 |
62.70MB |
5. Quiz.html |
205B |
5. Quiz.html |
205B |
5. Quiz.html |
205B |
5. Quiz.html |
205B |
5. Quiz.html |
205B |
5. Quiz.html |
205B |
5. Splitting One-Dimensional Numpy Arrays The Split.mp4 |
20.90MB |
5. Support Vector Machine Algorithm with Python Part 4.mp4 |
37.55MB |
5. Top Level Element Selection in Pandas DataFramesLesson 3.mp4 |
22.11MB |
50 |
1.19MB |
51 |
1.23MB |
52 |
1.52MB |
53 |
723.58KB |
54 |
1.73MB |
55 |
1.95MB |
56 |
991.04KB |
57 |
1.10MB |
58 |
1.18MB |
59 |
1.77MB |
6 |
1.07MB |
6. Advanced Aggregation Functions Aggregate() Function.mp4 |
29.22MB |
6. Creating NumPy Array with Eye() Function.mp4 |
12.55MB |
6. Data Type Operators and Methods in Python.mp4 |
43.86MB |
6. Dealing with Outliers – Oldpeak Variable.mp4 |
36.06MB |
6. Decision Tree Algorithm with Python Part 5.mp4 |
32.67MB |
6. Element Selection with Conditional Operations in.mp4 |
46.37MB |
6. Examining Numeric Variables Among Themselves (Analysis with Pair Plot) Lesson 2.mp4 |
47.14MB |
6. Fancy Indexing of One-Dimensional Arrrays.mp4 |
20.49MB |
6. Joining Pandas Dataframes Join() Function.mp4 |
56.05MB |
6. Logistic Regression Algorithm with Python Part 5.mp4 |
39.35MB |
6. Most Applied Methods on Pandas Series.mp4 |
48.21MB |
6. Multi-Plots in Seaborn.mp4 |
42.98MB |
6. Plot Customization.mp4 |
27.38MB |
6. quiz.html |
205B |
6. Quiz.html |
205B |
6. Quiz.html |
205B |
6. Quiz.html |
205B |
6. Quiz.html |
205B |
6. Quiz.html |
205B |
6. Quiz.html |
205B |
6. Recognizing Variables In Dataset.mp4 |
126.87MB |
6. Setting Index in Pandas DataFrames.mp4 |
39.70MB |
6. Splitting Two-Dimensional Numpy Arrays Split(),.mp4 |
35.73MB |
6. Support Vector Machine Algorithm.mp4 |
24.52MB |
60 |
229.28KB |
61 |
1.11MB |
62 |
1.35MB |
63 |
1.86MB |
64 |
117.15KB |
65 |
385.56KB |
66 |
739.66KB |
67 |
649.26KB |
68 |
1.08MB |
69 |
1.68MB |
7 |
1.68MB |
7. Advanced Aggregation Functions Filter() Function.mp4 |
24.45MB |
7. Creating NumPy Array with Linspace() Function.mp4 |
7.34MB |
7. Determining Distributions of Numeric Variables.mp4 |
25.17MB |
7. Fancy Indexing of Two-Dimensional Arrrays.mp4 |
45.75MB |
7. Feature Scaling with the Robust Scaler Method.mp4 |
35.20MB |
7. Grid, Spines, Ticks.mp4 |
23.89MB |
7. Indexing and Slicing Pandas Series.mp4 |
29.89MB |
7. Modules in Python.mp4 |
23.95MB |
7. Quiz.html |
205B |
7. Quiz.html |
205B |
7. Quiz.html |
205B |
7. Quiz.html |
205B |
7. Quiz.html |
205B |
7. Quiz.html |
205B |
7. Random Forest Algorithm.mp4 |
29.78MB |
7. Regression Plots and Squarify in Seaborn.mp4 |
60.10MB |
7. Sorting Numpy Arrays Sort() Function.mp4 |
17.02MB |
70 |
1.79MB |
71 |
545.10KB |
72 |
666.54KB |
73 |
853.54KB |
74 |
878.24KB |
75 |
932.77KB |
76 |
957.13KB |
77 |
1.42MB |
78 |
1.63MB |
79 |
1.69MB |
8 |
884.22KB |
8. Advanced Aggregation Functions Transform() Function.mp4 |
47.09MB |
8. Basic Plots in Matplotlib I.mp4 |
111.17MB |
8. Combining Fancy Index with Normal Indexing.mp4 |
12.65MB |
8. Creating a New DataFrame with the Melt() Function.mp4 |
52.89MB |
8. Creating NumPy Array with Random() Function.mp4 |
43.30MB |
8. Functions in Python.mp4 |
28.93MB |
8. Hyperparameter Optimization (with GridSearchCV).mp4 |
52.65MB |
8. Quiz.html |
205B |
8. Quiz.html |
205B |
8. Quiz.html |
205B |
8. Transformation Operations on Unsymmetrical Data.mp4 |
24.01MB |
80 |
216.61KB |
81 |
259.36KB |
82 |
305.68KB |
83 |
750.92KB |
84 |
1.46MB |
85 |
89.20KB |
86 |
143.50KB |
87 |
527.40KB |
88 |
719.29KB |
89 |
1.02MB |
9 |
1.25MB |
9. Advanced Aggregation Functions Apply() Function.mp4 |
41.42MB |
9. Applying One Hot Encoding Method to Categorical Variables.mp4 |
24.09MB |
9. Basic Plots in Matplotlib II.mp4 |
54.82MB |
9. Combining Fancy Index with Normal Slicing.mp4 |
16.46MB |
9. Exercise - Analyse in Python.mp4 |
8.46MB |
9. Numerical - Categorical Variables (Analysis with Swarm Plot) Lesson 1.mp4 |
41.72MB |
9. Properties of NumPy Array.mp4 |
21.98MB |
9. Quiz.html |
205B |
90 |
1.10MB |
91 |
1.18MB |
92 |
1.34MB |
93 |
1.51MB |
94 |
187.42KB |
95 |
285.38KB |
96 |
291.36KB |
97 |
292.83KB |
98 |
592.01KB |
99 |
784.06KB |
TutsNode.net.txt |
63B |