Please note that this page does not hosts or makes available any of the listed filenames. You
cannot download any of those files from here.
|
1. Activity Linear Regression.mp4 |
92.96MB |
1. Activity Linear Regression.vtt |
19.51KB |
1. Activity The OpenAI Chat Completions API.mp4 |
65.41MB |
1. Activity The OpenAI Chat Completions API.vtt |
20.58KB |
1. BiasVariance Tradeoff.mp4 |
23.63MB |
1. BiasVariance Tradeoff.vtt |
10.67KB |
1. Chat-Completions.py |
1.15KB |
1. Deep Learning Pre-Requisites.mp4 |
70.40MB |
1. Deep Learning Pre-Requisites.vtt |
21.72KB |
1. Deploying Models to Real-Time Systems.mp4 |
17.22MB |
1. Deploying Models to Real-Time Systems.vtt |
15.70KB |
1. Introduction.mp4 |
18.75MB |
1. Introduction.vtt |
5.13KB |
1. K-Nearest-Neighbors Concepts.mp4 |
14.04MB |
1. K-Nearest-Neighbors Concepts.vtt |
6.57KB |
1. More to Explore.mp4 |
33.99MB |
1. More to Explore.vtt |
5.71KB |
1. Retrieval Augmented Generation (RAG) How it works, with some examples.mp4 |
92.89MB |
1. Retrieval Augmented Generation (RAG) How it works, with some examples.vtt |
30.89KB |
1. Supervised vs. Unsupervised Learning, and TrainTest.mp4 |
56.68MB |
1. Supervised vs. Unsupervised Learning, and TrainTest.vtt |
16.13KB |
1. The Transformer Architecture (encoders, decoders, and self-attention.).mp4 |
19.78MB |
1. The Transformer Architecture (encoders, decoders, and self-attention.).vtt |
18.56KB |
1. Types of Data (Numerical, Categorical, Ordinal).mp4 |
73.10MB |
1. Types of Data (Numerical, Categorical, Ordinal).vtt |
12.01KB |
1. User-Based Collaborative Filtering.mp4 |
81.69MB |
1. User-Based Collaborative Filtering.vtt |
14.44KB |
1. Variational Auto-Encoders (VAE's) - how they work.mp4 |
42.88MB |
1. Variational Auto-Encoders (VAE's) - how they work.vtt |
18.05KB |
1. Warning about Java 21+ and Spark 3!.html |
1.03KB |
1. Your final project assignment Mammogram Classification.mp4 |
51.60MB |
1. Your final project assignment Mammogram Classification.vtt |
11.97KB |
10. Activity Building a Cdr. Data chatbot with LLM Agents, web search & math tools.mp4 |
263.83MB |
10. Activity Building a Cdr. Data chatbot with LLM Agents, web search & math tools.vtt |
28.28KB |
10. Activity Covariance and Correlation.mp4 |
69.48MB |
10. Activity Covariance and Correlation.vtt |
19.67KB |
10. Activity LINUX Installing Graphviz.mp4 |
2.48MB |
10. Activity LINUX Installing Graphviz.vtt |
1.15KB |
10. Activity Python Basics, Part 3 Optional.mp4 |
2.44MB |
10. Activity Python Basics, Part 3 Optional.vtt |
4.39KB |
10. Activity Searching Wikipedia with Spark.mp4 |
84.01MB |
10. Activity Searching Wikipedia with Spark.vtt |
12.89KB |
10. Activity Using small and large GPT models within Google CoLab and HuggingFace.mp4 |
69.01MB |
10. Activity Using small and large GPT models within Google CoLab and HuggingFace.vtt |
8.96KB |
10. Binning, Transforming, Encoding, Scaling, and Shuffling.mp4 |
42.72MB |
10. Binning, Transforming, Encoding, Scaling, and Shuffling.vtt |
14.10KB |
10. Convolutional Neural Networks (CNN's).mp4 |
58.73MB |
10. Convolutional Neural Networks (CNN's).vtt |
20.75KB |
10. Data_Agent.ipynb |
83.34KB |
11. Activity Fine Tuning GPT with the IMDb dataset.mp4 |
85.20MB |
11. Activity Fine Tuning GPT with the IMDb dataset.vtt |
11.14KB |
11. Activity Python Basics, Part 4 Optional.mp4 |
5.72MB |
11. Activity Python Basics, Part 4 Optional.vtt |
5.96KB |
11. Activity Using CNN's for handwriting recognition.mp4 |
52.82MB |
11. Activity Using CNN's for handwriting recognition.vtt |
13.96KB |
11. Activity Using the Spark DataFrame API for MLLib.mp4 |
65.11MB |
11. Activity Using the Spark DataFrame API for MLLib.vtt |
12.85KB |
11. Decision Trees Concepts.mp4 |
81.50MB |
11. Decision Trees Concepts.vtt |
15.49KB |
11. Exercise Conditional Probability.mp4 |
93.95MB |
11. Exercise Conditional Probability.vtt |
28.22KB |
12. Activity Decision Trees Predicting Hiring Decisions.mp4 |
57.79MB |
12. Activity Decision Trees Predicting Hiring Decisions.vtt |
16.66KB |
12. Exercise Solution Conditional Probability of Purchase by Age.mp4 |
15.01MB |
12. Exercise Solution Conditional Probability of Purchase by Age.vtt |
4.01KB |
12. From GPT to ChatGPT Deep Reinforcement Learning, Proximal Policy Gradients.mp4 |
51.12MB |
12. From GPT to ChatGPT Deep Reinforcement Learning, Proximal Policy Gradients.vtt |
13.26KB |
12. Introducing the Pandas Library Optional.mp4 |
44.15MB |
12. Introducing the Pandas Library Optional.vtt |
18.15KB |
12. Recurrent Neural Networks (RNN's).mp4 |
32.81MB |
12. Recurrent Neural Networks (RNN's).vtt |
19.16KB |
13. Activity Using a RNN for sentiment analysis.mp4 |
73.55MB |
13. Activity Using a RNN for sentiment analysis.vtt |
17.11KB |
13. Bayes' Theorem.mp4 |
56.12MB |
13. Bayes' Theorem.vtt |
8.68KB |
13. Ensemble Learning.mp4 |
36.96MB |
13. Ensemble Learning.vtt |
10.62KB |
13. From GPT to ChatGPT Reinforcement Learning from Human Feedback and Moderation.mp4 |
28.47MB |
13. From GPT to ChatGPT Reinforcement Learning from Human Feedback and Moderation.vtt |
10.67KB |
14. Activity Transfer Learning.mp4 |
111.05MB |
14. Activity Transfer Learning.vtt |
20.89KB |
14. Activity XGBoost.mp4 |
79.28MB |
14. Activity XGBoost.vtt |
28.04KB |
15. Support Vector Machines (SVM) Overview.mp4 |
16.35MB |
15. Support Vector Machines (SVM) Overview.vtt |
7.89KB |
15. Tuning Neural Networks Learning Rate and Batch Size Hyperparameters.mp4 |
8.50MB |
15. Tuning Neural Networks Learning Rate and Batch Size Hyperparameters.vtt |
8.58KB |
16. Activity Using SVM to cluster people using scikit-learn.mp4 |
38.49MB |
16. Activity Using SVM to cluster people using scikit-learn.vtt |
16.65KB |
16. Deep Learning Regularization with Dropout and Early Stopping.mp4 |
19.84MB |
16. Deep Learning Regularization with Dropout and Early Stopping.vtt |
11.61KB |
17. The Ethics of Deep Learning.mp4 |
120.50MB |
17. The Ethics of Deep Learning.vtt |
20.58KB |
2. AB Testing Concepts.mp4 |
32.02MB |
2. AB Testing Concepts.vtt |
15.50KB |
2. Activity K-Fold Cross-Validation to avoid overfitting.mp4 |
56.90MB |
2. Activity K-Fold Cross-Validation to avoid overfitting.vtt |
17.20KB |
2. Activity Polynomial Regression.mp4 |
60.55MB |
2. Activity Polynomial Regression.vtt |
13.14KB |
2. Activity Using KNN to predict a rating for a movie.mp4 |
85.54MB |
2. Activity Using KNN to predict a rating for a movie.vtt |
20.04KB |
2. Activity Using Tools and Functions in the OpenAI Chat Completion API.mp4 |
81.12MB |
2. Activity Using Tools and Functions in the OpenAI Chat Completion API.vtt |
17.82KB |
2. Activity Using TrainTest to Prevent Overfitting a Polynomial Regression.mp4 |
21.62MB |
2. Activity Using TrainTest to Prevent Overfitting a Polynomial Regression.vtt |
9.93KB |
2. Data_RAG.ipynb |
100.43KB |
2. Demo Using Retrieval Augmented Generation (RAG) to simulate Data from Star Trek.mp4 |
72.49MB |
2. Demo Using Retrieval Augmented Generation (RAG) to simulate Data from Star Trek.vtt |
33.52KB |
2. Don't Forget to Leave a Rating!.html |
564B |
2. Final project review.mp4 |
64.49MB |
2. Final project review.vtt |
18.45KB |
2. Functions.py |
3.45KB |
2. Item-Based Collaborative Filtering.mp4 |
23.20MB |
2. Item-Based Collaborative Filtering.vtt |
14.83KB |
2. Mean, Median, Mode.mp4 |
15.96MB |
2. Mean, Median, Mode.vtt |
9.66KB |
2. Self-Attention, Masked Self-Attention, and Multi-Headed Self Attention in depth.mp4 |
41.50MB |
2. Self-Attention, Masked Self-Attention, and Multi-Headed Self Attention in depth.vtt |
17.93KB |
2. Spark installation notes for MacOS and Linux users.html |
3.15KB |
2. The History of Artificial Neural Networks.mp4 |
68.87MB |
2. The History of Artificial Neural Networks.vtt |
20.07KB |
2. Udemy 101 Getting the Most From This Course.mp4 |
17.40MB |
2. Udemy 101 Getting the Most From This Course.vtt |
4.14KB |
2. VariationalAutoEncoders.ipynb |
1.33MB |
2. Variational Auto-Encoders (VAE) - Hands-on with Fashion MNIST.mp4 |
148.84MB |
2. Variational Auto-Encoders (VAE) - Hands-on with Fashion MNIST.vtt |
45.35KB |
3. 2019-04-08_17-55-57-bcf2d7bf9cef514f135511b184f77e48.png |
132.45KB |
3. 2019-04-08_18-01-48-cf6d9b7536a1e4a75438299681428036.png |
121.76KB |
3. 2019-04-08_18-03-42-4930e7b3a27d368a568d97fd8c959359.png |
121.43KB |
3. 2019-04-08_18-04-33-85f2594b9a584964a59514617b27f95b.png |
111.60KB |
3. 2019-04-08_18-15-28-b861b8ffb2406e3f70aad5871e4e91ff.png |
132.58KB |
3. 2019-04-08_18-17-01-1a5b2a5d579cfb42118eaf525e7a7b83.png |
127.64KB |
3. 2019-04-08_18-17-59-492c9dc76de5ed12f532ead3e609f148.png |
126.71KB |
3. 2019-04-08_18-19-48-5bc03a831100a771082c4245e271a4b0.png |
114.68KB |
3. 2019-04-08_18-20-39-de5ee610f1e6e8e483229fd1c9d7e998.png |
92.84KB |
3. 2019-04-08_18-21-33-2ee7f2d5dff7cccfd9f4103899aa6cc0.png |
59.56KB |
3. 2019-04-08_19-24-33-63d41c7c27f7ed6e9ca0e1072e6c2751.jpg |
45.50KB |
3. 2019-05-14_17-14-40-e1d4913408ac3d0f1eaad1a80705cf5b.png |
102.23KB |
3. 2019-10-23_18-48-57-9fb797c585d7195417eca364a27b07c9.jpg |
23.69KB |
3. 2021-10-16_12-16-09-e3dd0e05ba917baf745a42fc35a0cbb2.jpg |
70.62KB |
3. 2022-04-18_13-12-40-afb201ce74196d83694608d7fc39a43e.png |
60.08KB |
3. 2022-07-23_11-27-36-c40b770315b5187e58bca3c2542ee3b4.png |
83.49KB |
3. 2024-07-26_12-45-38-32f4df5ac9105153f0fd5c7fdab93d89.png |
92.38KB |
3. 2024-08-06_13-32-36-7f6c6c13c6b331d2282e71ed3e362b48.jpg |
31.79KB |
3. 2024-08-19_12-50-25-5160f601d41d2a72d06a9c0d700cad51.png |
83.13KB |
3. Activity Deep Learning in the Tensorflow Playground.mp4 |
55.69MB |
3. Activity Deep Learning in the Tensorflow Playground.vtt |
19.86KB |
3. Activity Finding Movie Similarities using Cosine Similarity.mp4 |
82.67MB |
3. Activity Finding Movie Similarities using Cosine Similarity.vtt |
14.90KB |
3. Activity Installing Spark.mp4 |
141.36MB |
3. Activity Installing Spark.vtt |
17.61KB |
3. Activity Multiple Regression, and Predicting Car Prices.mp4 |
94.14MB |
3. Activity Multiple Regression, and Predicting Car Prices.vtt |
28.47KB |
3. Activity The Images (DALL-E) API in OpenAI.mp4 |
25.79MB |
3. Activity The Images (DALL-E) API in OpenAI.vtt |
7.30KB |
3. Activity Using mean, median, and mode in Python.mp4 |
44.50MB |
3. Activity Using mean, median, and mode in Python.vtt |
15.74KB |
3. Applications of Transformers (GPT).mp4 |
9.58MB |
3. Applications of Transformers (GPT).vtt |
8.45KB |
3. Bayesian Methods Concepts.mp4 |
9.83MB |
3. Bayesian Methods Concepts.vtt |
6.79KB |
3. Bonus Lecture.html |
11.02KB |
3. Data Cleaning and Normalization.mp4 |
73.09MB |
3. Data Cleaning and Normalization.vtt |
13.41KB |
3. Dimensionality Reduction Principal Component Analysis (PCA).mp4 |
38.13MB |
3. Dimensionality Reduction Principal Component Analysis (PCA).vtt |
9.70KB |
3. Generative Adversarial Networks (GAN's) - How they work.mp4 |
15.24MB |
3. Generative Adversarial Networks (GAN's) - How they work.vtt |
13.28KB |
3. Image.py |
664B |
3. Important note.html |
575B |
3. RAG Metrics The RAG Triad, relevancy, recall, precision, accuracy, and more.mp4 |
25.05MB |
3. RAG Metrics The RAG Triad, relevancy, recall, precision, accuracy, and more.vtt |
19.64KB |
3. T-Tests and P-Values.mp4 |
14.08MB |
3. T-Tests and P-Values.vtt |
10.24KB |
4. Activity Cleaning web log data.mp4 |
31.01MB |
4. Activity Cleaning web log data.vtt |
18.05KB |
4. Activity Evaluating our RAG-based Cdr. Data using RAGAS and langchain.mp4 |
270.77MB |
4. Activity Evaluating our RAG-based Cdr. Data using RAGAS and langchain.vtt |
31.37KB |
4. Activity Hands-on With T-Tests.mp4 |
47.77MB |
4. Activity Hands-on With T-Tests.vtt |
10.31KB |
4. Activity Implementing a Spam Classifier with Naive Bayes.mp4 |
81.39MB |
4. Activity Implementing a Spam Classifier with Naive Bayes.vtt |
13.71KB |
4. Activity Improving the Results of Movie Similarities.mp4 |
56.06MB |
4. Activity Improving the Results of Movie Similarities.vtt |
13.42KB |
4. Activity PCA Example with the Iris data set.mp4 |
65.77MB |
4. Activity PCA Example with the Iris data set.vtt |
14.93KB |
4. Activity The Embeddings API in OpenAI Finding similarities between words.mp4 |
28.96MB |
4. Activity The Embeddings API in OpenAI Finding similarities between words.vtt |
11.10KB |
4. Activity Variation and Standard Deviation.mp4 |
103.39MB |
4. Activity Variation and Standard Deviation.vtt |
19.08KB |
4. Data_RAG_Metrics.ipynb |
71.97KB |
4. Deep Learning Details.mp4 |
30.90MB |
4. Deep Learning Details.vtt |
17.46KB |
4. Embedding.py |
964B |
4. Generative Adversarial Networks (GAN's) - Playing with some demos.mp4 |
88.60MB |
4. Generative Adversarial Networks (GAN's) - Playing with some demos.vtt |
18.08KB |
4. How GPT Works, Part 1 The GPT Transformer Architecture.mp4 |
30.27MB |
4. How GPT Works, Part 1 The GPT Transformer Architecture.vtt |
13.29KB |
4. Installation Getting Started.html |
1.21KB |
4. Multi-Level Models.mp4 |
27.22MB |
4. Multi-Level Models.vtt |
8.21KB |
4. Spark Introduction.mp4 |
24.96MB |
4. Spark Introduction.vtt |
15.94KB |
5. Activity Making Movie Recommendations with Item-Based Collaborative Filtering.mp4 |
124.11MB |
5. Activity Making Movie Recommendations with Item-Based Collaborative Filtering.vtt |
16.90KB |
5. Activity WINDOWS Installing and Using Anaconda & Course Materials.mp4 |
101.97MB |
5. Activity WINDOWS Installing and Using Anaconda & Course Materials.vtt |
17.15KB |
5. Advanced RAG Pre-Retrieval chunking semantic chunking data extraction.mp4 |
29.46MB |
5. Advanced RAG Pre-Retrieval chunking semantic chunking data extraction.vtt |
14.42KB |
5. Data Warehousing Overview ETL and ELT.mp4 |
58.71MB |
5. Data Warehousing Overview ETL and ELT.vtt |
14.97KB |
5. Determining How Long to Run an Experiment.mp4 |
9.75MB |
5. Determining How Long to Run an Experiment.vtt |
6.45KB |
5. GAN_on_Fashion_MNIST.ipynb |
3.75MB |
5. Generative Adversarial Networks (GAN's) - Hands-on with Fashion MNIST.mp4 |
126.11MB |
5. Generative Adversarial Networks (GAN's) - Hands-on with Fashion MNIST.vtt |
26.81KB |
5. How GPT Works, Part 2 Tokenization, Positional Encoding, Embedding.mp4 |
14.76MB |
5. How GPT Works, Part 2 Tokenization, Positional Encoding, Embedding.vtt |
8.94KB |
5. Introducing Tensorflow.mp4 |
46.63MB |
5. Introducing Tensorflow.vtt |
21.67KB |
5. K-Means Clustering.mp4 |
26.02MB |
5. K-Means Clustering.vtt |
12.99KB |
5. Normalizing numerical data.mp4 |
10.32MB |
5. Normalizing numerical data.vtt |
6.06KB |
5. Probability Density Function Probability Mass Function.mp4 |
6.92MB |
5. Probability Density Function Probability Mass Function.vtt |
5.96KB |
5. Spark and the Resilient Distributed Dataset (RDD).mp4 |
22.30MB |
5. Spark and the Resilient Distributed Dataset (RDD).vtt |
20.00KB |
5. The Legacy Fine-Tuning API for GPT Models in OpenAI.mp4 |
11.68MB |
5. The Legacy Fine-Tuning API for GPT Models in OpenAI.vtt |
9.58KB |
6. AB Test Gotchas.mp4 |
91.73MB |
6. AB Test Gotchas.vtt |
17.25KB |
6. Activity Clustering people based on income and age.mp4 |
21.99MB |
6. Activity Clustering people based on income and age.vtt |
9.20KB |
6. Activity Detecting outliers.mp4 |
27.15MB |
6. Activity Detecting outliers.vtt |
11.14KB |
6. Activity MAC Installing and Using Anaconda & Course Materials.mp4 |
95.78MB |
6. Activity MAC Installing and Using Anaconda & Course Materials.vtt |
13.97KB |
6. Activity Using Tensorflow, Part 1.mp4 |
107.70MB |
6. Activity Using Tensorflow, Part 1.vtt |
22.93KB |
6. Advanced RAG Query Rewriting.mp4 |
8.07MB |
6. Advanced RAG Query Rewriting.vtt |
7.15KB |
6. Common Data Distributions (Normal, Binomial, Poisson, etc).mp4 |
28.25MB |
6. Common Data Distributions (Normal, Binomial, Poisson, etc).vtt |
12.06KB |
6. Demo Fine-Tuning OpenAI's Davinci Model to simulate Data from Star Trek.mp4 |
166.50MB |
6. Demo Fine-Tuning OpenAI's Davinci Model to simulate Data from Star Trek.vtt |
29.36KB |
6. Exercise Improve the recommender's results.mp4 |
28.00MB |
6. Exercise Improve the recommender's results.vtt |
10.13KB |
6. extract-script.py |
1.88KB |
6. Fine Tuning Transfer Learning with Transformers.mp4 |
5.05MB |
6. Fine Tuning Transfer Learning with Transformers.vtt |
4.61KB |
6. Introducing MLLib.mp4 |
14.65MB |
6. Introducing MLLib.vtt |
8.74KB |
6. Learning More about Deep Learning.mp4 |
20.21MB |
6. Learning More about Deep Learning.vtt |
3.18KB |
6. Reinforcement Learning.mp4 |
125.18MB |
6. Reinforcement Learning.vtt |
20.99KB |
7. Activity LINUX Installing and Using Anaconda & Course Materials.mp4 |
60.14MB |
7. Activity LINUX Installing and Using Anaconda & Course Materials.vtt |
14.83KB |
7. Activity Percentiles and Moments.mp4 |
42.56MB |
7. Activity Percentiles and Moments.vtt |
22.01KB |
7. Activity Reinforcement Learning & Q-Learning with Gym.mp4 |
62.79MB |
7. Activity Reinforcement Learning & Q-Learning with Gym.vtt |
22.01KB |
7. Activity Tokenization with Google CoLab and HuggingFace.mp4 |
67.74MB |
7. Activity Tokenization with Google CoLab and HuggingFace.vtt |
15.45KB |
7. Activity Using Tensorflow, Part 2.mp4 |
95.13MB |
7. Activity Using Tensorflow, Part 2.vtt |
20.65KB |
7. Advanced RAG Prompt Compression, and More Tuning Opportunities.mp4 |
21.48MB |
7. Advanced RAG Prompt Compression, and More Tuning Opportunities.vtt |
10.54KB |
7. Feature Engineering and the Curse of Dimensionality.mp4 |
14.56MB |
7. Feature Engineering and the Curse of Dimensionality.vtt |
11.64KB |
7. Introduction to Decision Trees in Spark.mp4 |
133.95MB |
7. Introduction to Decision Trees in Spark.vtt |
27.55KB |
7. MakingData.ipynb |
13.57KB |
7. Measuring Entropy.mp4 |
12.14MB |
7. Measuring Entropy.vtt |
5.38KB |
7. The New OpenAI Fine-Tuning API Fine-Tuning GPT-3.5 to simulate Commander Data!.mp4 |
318.98MB |
7. The New OpenAI Fine-Tuning API Fine-Tuning GPT-3.5 to simulate Commander Data!.vtt |
37.92KB |
7. Transformers_MLCourse.ipynb |
6.69MB |
8. Activity A Crash Course in matplotlib.mp4 |
88.69MB |
8. Activity A Crash Course in matplotlib.vtt |
18.87KB |
8. Activity Introducing Keras.mp4 |
72.03MB |
8. Activity Introducing Keras.vtt |
23.73KB |
8. Activity K-Means Clustering in Spark.mp4 |
116.14MB |
8. Activity K-Means Clustering in Spark.vtt |
17.59KB |
8. Activity Positional Encoding.mp4 |
6.46MB |
8. Activity Positional Encoding.vtt |
3.63KB |
8. Activity Simulating Cdr. Data with Advanced RAG and langchain.mp4 |
264.42MB |
8. Activity Simulating Cdr. Data with Advanced RAG and langchain.vtt |
27.62KB |
8. Activity The OpenAI Moderation API.mp4 |
16.21MB |
8. Activity The OpenAI Moderation API.vtt |
5.06KB |
8. Activity WINDOWS Installing Graphviz.mp4 |
949.33KB |
8. Activity WINDOWS Installing Graphviz.vtt |
745B |
8. Data_Advanced_RAG.ipynb |
763.57KB |
8. Imputation Techniques for Missing Data.mp4 |
18.20MB |
8. Imputation Techniques for Missing Data.vtt |
14.37KB |
8. Moderation.py |
166B |
8. Python Basics, Part 1 Optional.mp4 |
26.90MB |
8. Python Basics, Part 1 Optional.vtt |
7.95KB |
8. Understanding a Confusion Matrix.mp4 |
7.38MB |
8. Understanding a Confusion Matrix.vtt |
9.71KB |
9. Activity Advanced Visualization with Seaborn.mp4 |
96.14MB |
9. Activity Advanced Visualization with Seaborn.vtt |
29.58KB |
9. Activity MAC Installing Graphviz.mp4 |
9.07MB |
9. Activity MAC Installing Graphviz.vtt |
1.47KB |
9. Activity Masked, Multi-Headed Self Attention with BERT, BERTViz, and exBERT.mp4 |
30.38MB |
9. Activity Masked, Multi-Headed Self Attention with BERT, BERTViz, and exBERT.vtt |
10.57KB |
9. Activity Python Basics, Part 2 Optional.mp4 |
20.62MB |
9. Activity Python Basics, Part 2 Optional.vtt |
7.79KB |
9. Activity The OpenAI Audio API (speech to text).mp4 |
12.98MB |
9. Activity The OpenAI Audio API (speech to text).vtt |
6.79KB |
9. Activity Using Keras to Predict Political Affiliations.mp4 |
66.82MB |
9. Activity Using Keras to Predict Political Affiliations.vtt |
21.03KB |
9. Audio.py |
445B |
9. Handling Unbalanced Data Oversampling, Undersampling, and SMOTE.mp4 |
17.43MB |
9. Handling Unbalanced Data Oversampling, Undersampling, and SMOTE.vtt |
9.91KB |
9. LLM Agents and Swarms of Agents.mp4 |
24.66MB |
9. LLM Agents and Swarms of Agents.vtt |
9.74KB |
9. Measuring Classifiers (Precision, Recall, F1, ROC, AUC).mp4 |
11.67MB |
9. Measuring Classifiers (Precision, Recall, F1, ROC, AUC).vtt |
10.63KB |
9. TF IDF.mp4 |
65.66MB |
9. TF IDF.vtt |
11.04KB |