Please note that this page does not hosts or makes available any of the listed filenames. You
cannot download any of those files from here.
|
1. Introduction.mp4 |
10.38MB |
1. Introduction.mp4 |
5.24MB |
1. Introduction.mp4 |
9.72MB |
1. Introduction.mp4 |
21.45MB |
1. Introduction.mp4 |
12.41MB |
1. Introduction.mp4 |
7.37MB |
1. Introduction.mp4 |
8.99MB |
1. Introduction.mp4 |
8.93MB |
1. READ ME.html |
1.01KB |
10. How to fix the stochastic initialization problem.mp4 |
40.34MB |
10. Live Trading strategy based on ANN.mp4 |
25.56MB |
10. Matplotlib Toolbox.mp4 |
17.58MB |
10. Python structures FOR.mp4 |
29.93MB |
11. Bagging method using the different ANNs.mp4 |
57.47MB |
11. Live Trading strategy based on RNN.mp4 |
26.27MB |
11. Python structures WHILE.mp4 |
14.34MB |
12. Functions Basics of function.mp4 |
32.71MB |
13. Functions Local variable.mp4 |
14.27MB |
14. Functions Global variable.mp4 |
12.75MB |
15. Functions Lambda function.mp4 |
13.17MB |
2. Get stock prices.mp4 |
16.65MB |
2. Import & manage data from Metatrader 5.mp4 |
104.44MB |
2. Install a library on Jupyter.mp4 |
2.78MB |
2. Install the environments.html |
1.13KB |
2. Numpy Array.mp4 |
60.10MB |
2. Quick recap of the DNN theory.mp4 |
85.79MB |
2. Sortino ratio computation.mp4 |
57.53MB |
2. Theory behind RNNs.mp4 |
34.06MB |
2. Type of object Number.mp4 |
23.97MB |
3. Beta ratio computation (CAPM metric).mp4 |
72.70MB |
3. Create a simple moving average (SMA).mp4 |
42.95MB |
3. Data import & Features engineering.mp4 |
30.81MB |
3. Import & manage data from Yahoo Finance.mp4 |
43.91MB |
3. Initialize the platform.mp4 |
14.71MB |
3. Numpy Random.mp4 |
54.14MB |
3. Recap from the DNN chapter.mp4 |
51.63MB |
3. Type of object String.mp4 |
83.58MB |
4. Alpha ratio computation (CAPM metric).mp4 |
23.59MB |
4. Create a moving standard deviation (MSD).mp4 |
20.64MB |
4. Get data broker.mp4 |
23.10MB |
4. How to transform 2-dimensional data into 3-dimensional data.mp4 |
41.19MB |
4. Numpy Indexing Slicing transformation.mp4 |
85.41MB |
4. Train Test set split (to fit the DNN model).mp4 |
42.45MB |
4. Type of object Logical operations Boolean.mp4 |
25.68MB |
5. Drawdown function creation.mp4 |
28.69MB |
5. How to create a RNN using TensorFlow 2.0.mp4 |
67.14MB |
5. Pandas Serie and DataFrame.mp4 |
31.24MB |
5. Send orders on the market using Python.mp4 |
44.48MB |
5. Type of object Variable assignment.mp4 |
37.02MB |
5. Use the Technical analysis library to compute the RSI indicator.mp4 |
29.98MB |
5. Why and how to standardize the features.mp4 |
34.59MB |
6.1 assets.csv |
3.09MB |
6. Automatization of the features engineering process.mp4 |
19.19MB |
6. Create a DNN using Tensorflow 2.0.mp4 |
68.73MB |
6. Drawdown application.mp4 |
27.41MB |
6. Dropout Layer.mp4 |
16.65MB |
6. Get current positions.mp4 |
44.48MB |
6. Pandas Cleaning and selection data.mp4 |
81.57MB |
6. Type of object Tuple and list.mp4 |
49.84MB |
7. Backtesting function (1).mp4 |
21.28MB |
7. Pandas Conditional selection.mp4 |
25.97MB |
7. RNN prediction to create a trading strategy.mp4 |
60.68MB |
7. Run structure creation.mp4 |
32.71MB |
7. Type of object Dictionary.mp4 |
46.75MB |
7. Use the DNN predictions to create a trading strategy.mp4 |
59.36MB |
8. Automate the process.mp4 |
35.24MB |
8. Automate the process.mp4 |
17.25MB |
8. Backtesting function (2).mp4 |
24.22MB |
8. Close all positions.mp4 |
10.85MB |
8. Matplotlib Graph.mp4 |
19.72MB |
8. Type of object Set.mp4 |
28.72MB |
9. Backtest a trading strategy based on DNN.mp4 |
15.83MB |
9. Find the best models throughout all the stochastic initialization.mp4 |
35.58MB |
9. Live Trading application random signals.mp4 |
32.80MB |
9. Matplotlib Scatter.mp4 |
14.35MB |
9. Python structures IF ELIF ELSE.mp4 |
40.93MB |
9. The stochastic initialization problem.mp4 |
24.97MB |
Bonus Resources.txt |
386B |
Get Bonus Crypto Downloads Here.url |
185B |