Общая информация
Название [FCO] M.L.Engineer.Nano v2.0.0
Тип Приложение для PC
Размер 3.59Гб
Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
01. 01 Boas-vindas ao programa IntroduçãoMLND V3-A8AnsR6e75I.en.vtt 4.44Кб
01. 01 Boas-vindas ao programa IntroduçãoMLND V3-A8AnsR6e75I.mp4 27.02Мб
01. 01 Boas-vindas ao programa IntroduçãoMLND V3-A8AnsR6e75I.pt-BR.vtt 4.73Кб
01. 01 Boas-vindas ao programa IntroduçãoMLND V3-A8AnsR6e75I.zh-CN.vtt 3.92Кб
01. 01 Intro-4C4PuJANIdE.en.vtt 994б
01. 01 Intro-4C4PuJANIdE.mp4 4.66Мб
01. 01 Intro-4C4PuJANIdE.pt-BR.vtt 945б
01. 01 Intro-4C4PuJANIdE.zh-CN.vtt 922б
01. 04 L Types Of Errors-Twf1qnPZeSY.en-US.vtt 6.89Кб
01. 04 L Types Of Errors-Twf1qnPZeSY.mp4 6.55Мб
01. 04 L Types Of Errors-Twf1qnPZeSY.pt-BR.vtt 6.23Кб
01. 04 L Types Of Errors-Twf1qnPZeSY.zh-CN.vtt 6.02Кб
01. Access the Career Portal.html 7.69Кб
01. Actor-Critic Methods.html 6.17Кб
01. Announcement.html 8.33Кб
01. Apresentando Alexis-38ExGpdyvJI.en.vtt 694б
01. Apresentando Alexis-38ExGpdyvJI.mp4 2.05Мб
01. Apresentando Alexis-38ExGpdyvJI.pt-BR.vtt 599б
01. Apresentando Alexis-38ExGpdyvJI.zh-CN.vtt 615б
01. Assessment.html 8.07Кб
01. Assessment.html 9.65Кб
01. Assessment.html 10.60Кб
01. Assessment.html 8.98Кб
01. Chris's T-Shirt Size (Intuition).html 8.57Кб
01. Chris's T-Shirt Size (Intuition)-l6YXxmCNtHk.ar.vtt 512б
01. Chris's T-Shirt Size (Intuition)-l6YXxmCNtHk.en.vtt 419б
01. Chris's T-Shirt Size (Intuition)-l6YXxmCNtHk.mp4 1.19Мб
01. Chris's T-Shirt Size (Intuition)-l6YXxmCNtHk.pt-BR.vtt 421б
01. Chris's T-Shirt Size (Intuition)-l6YXxmCNtHk.zh-CN.vtt 335б
01. Chris's T-Shirt Size (Intuition)-oaqjLyiKOIA.ar.vtt 3.03Кб
01. Chris's T-Shirt Size (Intuition)-oaqjLyiKOIA.en.vtt 2.28Кб
01. Chris's T-Shirt Size (Intuition)-oaqjLyiKOIA.mp4 6.64Мб
01. Chris's T-Shirt Size (Intuition)-oaqjLyiKOIA.pt-BR.vtt 2.41Кб
01. Chris's T-Shirt Size (Intuition)-oaqjLyiKOIA.zh-CN.vtt 1.94Кб
01. Confusion Matrix.html 9.12Кб
01. Confusion Matrix-Question 1-9GLNjmMUB_4.en.vtt 5.71Кб
01. Confusion Matrix-Question 1-9GLNjmMUB_4.en-US.vtt 5.52Кб
01. Confusion Matrix-Question 1-9GLNjmMUB_4.mp4 5.04Мб
01. Confusion Matrix-Question 1-9GLNjmMUB_4.pt-BR.vtt 4.76Кб
01. Confusion Matrix-Question 1-9GLNjmMUB_4.zh-CN.vtt 4.96Кб
01. Congratulations!.html 6.20Кб
01. Data Dimensionality.html 10.47Кб
01. Data Dimensionality-bAZJT4xHiXM.ar.vtt 357б
01. Data Dimensionality-bAZJT4xHiXM.en.vtt 273б
01. Data Dimensionality-bAZJT4xHiXM.mp4 556.61Кб
01. Data Dimensionality-bAZJT4xHiXM.pt-BR.vtt 302б
01. Data Dimensionality-bAZJT4xHiXM.zh-CN.vtt 232б
01. Data Dimensionality-gg7SAMMl4kM.ar.vtt 1.57Кб
01. Data Dimensionality-gg7SAMMl4kM.en.vtt 1.20Кб
01. Data Dimensionality-gg7SAMMl4kM.mp4 5.75Мб
01. Data Dimensionality-gg7SAMMl4kM.pt-BR.vtt 1.27Кб
01. Data Dimensionality-gg7SAMMl4kM.zh-CN.vtt 1.05Кб
01. Deep Learning.html 6.25Кб
01. Deep Reinforcement Learning.html 7.22Кб
01. Deep Reinforcement Learning-GPjK124RU5g.en.vtt 6.45Кб
01. Deep Reinforcement Learning-GPjK124RU5g.mp4 33.20Мб
01. Deep Reinforcement Learning-GPjK124RU5g.pt-BR.vtt 7.33Кб
01. Deep Reinforcement Learning-GPjK124RU5g.zh-CN.vtt 5.62Кб
01. Dog Breed Recognition Project.html 5.74Кб
01. FAQ.html 6.18Кб
01. Get Opportunities with LinkedIn.html 11.05Кб
01. Intro.html 6.22Кб
01. Intro.html 7.57Кб
01. Intro.html 6.27Кб
01. Intro.html 7.34Кб
01. Intro.html 6.85Кб
01. Intro.html 7.04Кб
01. Intro.html 6.19Кб
01. Intro.html 6.51Кб
01. Intro.html 8.14Кб
01. Intro.html 8.46Кб
01. Introducing Alexis.html 8.51Кб
01. Introducing Luis.html 7.09Кб
01. Introducing Luis-nto-stLuN6M.en-US.vtt 608б
01. Introducing Luis-nto-stLuN6M.mp4 3.63Мб
01. Introducing Luis-nto-stLuN6M.pt-BR.vtt 592б
01. Introducing Luis-nto-stLuN6M.zh-CN.vtt 535б
01. Introduction.html 8.14Кб
01. Introduction.html 6.14Кб
01. Introduction.html 7.48Кб
01. Introduction.html 6.49Кб
01. Introduction.html 8.69Кб
01. Introduction.html 7.93Кб
01. Introduction.html 7.16Кб
01. Introduction.html 8.77Кб
01. Introduction-6jSFl5kxIBs.en.vtt 2.41Кб
01. Introduction-6jSFl5kxIBs.mp4 5.15Мб
01. Introduction-6jSFl5kxIBs.pt-BR.vtt 2.43Кб
01. Introduction-6jSFl5kxIBs.zh-CN.vtt 2.11Кб
01. Introduction-bYeteZQrUcE.en.vtt 2.36Кб
01. Introduction-bYeteZQrUcE.mp4 16.00Мб
01. Introduction-bYeteZQrUcE.pt-BR.vtt 2.48Кб
01. Introduction-bYeteZQrUcE.zh-CN.vtt 2.01Кб
01. Introduction-ek2PD9RDrWw.en.vtt 1.04Кб
01. Introduction-ek2PD9RDrWw.mp4 6.18Мб
01. Introduction-ek2PD9RDrWw.pt-BR.vtt 1.09Кб
01. Introduction-ek2PD9RDrWw.zh-CN.vtt 883б
01. Introduction-W2EP3riQSus.en.vtt 937б
01. Introduction-W2EP3riQSus.mp4 4.93Мб
01. Introduction-W2EP3riQSus.pt-BR.vtt 1.02Кб
01. Introduction-W2EP3riQSus.zh-CN.vtt 822б
01. Introduction-X_9l_ZqXXBA.en.vtt 830б
01. Introduction-X_9l_ZqXXBA.mp4 2.90Мб
01. Introduction-X_9l_ZqXXBA.pt-BR.vtt 866б
01. Introduction-X_9l_ZqXXBA.zh-CN.vtt 718б
01. Introduction-yXErXQulI_o.en.vtt 2.91Кб
01. Introduction-yXErXQulI_o.mp4 20.67Мб
01. Introduction-yXErXQulI_o.zh-CN.vtt 2.48Кб
01. Introduction-ZCpXvVdIdnY.en.vtt 874б
01. Introduction-ZCpXvVdIdnY.mp4 1.55Мб
01. Introduction-ZCpXvVdIdnY.pt-BR.vtt 857б
01. Introduction-ZCpXvVdIdnY.zh-CN.vtt 822б
01. Intro To CNNs.html 9.29Кб
01. Intro to CNNs-B61jxZ4rkMs.en.vtt 303б
01. Intro to CNNs-B61jxZ4rkMs.en-US.vtt 309б
01. Intro to CNNs-B61jxZ4rkMs.ja-JP.vtt 386б
01. Intro to CNNs-B61jxZ4rkMs.mp4 1.82Мб
01. Intro to CNNs-B61jxZ4rkMs.pt-BR.vtt 324б
01. Intro to CNNs-B61jxZ4rkMs.zh-CN.vtt 301б
01. Intro to Deep Neural Networks.html 6.56Кб
01. Intro to Deep Q-Learning.html 6.70Кб
01. Intro to Deep Q-Learning-o3cmuUDhP3I.en.vtt 1.44Кб
01. Intro to Deep Q-Learning-o3cmuUDhP3I.mp4 9.08Мб
01. Intro to Deep Q-Learning-o3cmuUDhP3I.pt-BR.vtt 1.67Кб
01. Intro to Deep Q-Learning-o3cmuUDhP3I.zh-CN.vtt 1.27Кб
01. K-means considerations.html 7.32Кб
01. L6 1 Random Projection MAIN V1 V1 V1-Iat1a8mzI-Y.en.vtt 8.97Кб
01. L6 1 Random Projection MAIN V1 V1 V1-Iat1a8mzI-Y.mp4 9.20Мб
01. L6 1 Random Projection MAIN V1 V1 V1-Iat1a8mzI-Y.pt-BR.vtt 9.28Кб
01. M0 L3 C01 Intro- V3 No Slack-OH-5IlSH-eoPAU.mp4 6.09Мб
01. M2L3 01 V1-YOSREyp04HA.en.vtt 856б
01. M2L3 01 V1-YOSREyp04HA.mp4 4.98Мб
01. M2L3 01 V1-YOSREyp04HA.zh-CN.vtt 787б
01. Mat HS-9P7UPWFu8w8.en-US.vtt 1.55Кб
01. Mat HS-9P7UPWFu8w8.mp4 8.48Мб
01. Mat HS-9P7UPWFu8w8.zh-CN.vtt 1.40Кб
01. ML Charity Project-aVodYHcOB8U.en.vtt 1.32Кб
01. ML Charity Project-aVodYHcOB8U.mp4 3.99Мб
01. ML Charity Project-aVodYHcOB8U.pt-BR.vtt 1.37Кб
01. MLND SL DT 00 Intro V2-l34ijtQhVNk.en.vtt 4.37Кб
01. MLND SL DT 00 Intro V2-l34ijtQhVNk.mp4 21.68Мб
01. MLND SL DT 00 Intro V2-l34ijtQhVNk.pt-BR.vtt 4.25Кб
01. MLND SL DT 00 Intro V2-l34ijtQhVNk.zh-CN.vtt 4.26Кб
01. MLND SL EM 01 Intro V1 MAIN V2-5v9KqIo6CFE.en.vtt 3.86Кб
01. MLND SL EM 01 Intro V1 MAIN V2-5v9KqIo6CFE.mp4 3.38Мб
01. MLND SL EM 01 Intro V1 MAIN V2-5v9KqIo6CFE.pt-BR.vtt 3.89Кб
01. MLND - Unsupervised Learning - L2 01 V2-NHb8w_M8nDY.en.vtt 5.01Кб
01. MLND - Unsupervised Learning - L2 01 V2-NHb8w_M8nDY.mp4 15.47Мб
01. MLND - Unsupervised Learning - L2 01 V2-NHb8w_M8nDY.pt-BR.vtt 4.56Кб
01. MLND - Unsupervised Learning - L2 01 V2-NHb8w_M8nDY.zh-CN.vtt 4.69Кб
01. MLND - Unsupervised Learning - L3 01 Gaussian Mixture Model MAINv1 V3-SLdZrt0CvOk.en.vtt 2.28Кб
01. MLND - Unsupervised Learning - L3 01 Gaussian Mixture Model MAINv1 V3-SLdZrt0CvOk.mp4 8.39Мб
01. MLND - Unsupervised Learning - L3 01 Gaussian Mixture Model MAINv1 V3-SLdZrt0CvOk.pt-BR.vtt 2.41Кб
01. MLND - Unsupervised Learning - L3 01 Gaussian Mixture Model MAINv1 V3-SLdZrt0CvOk.zh-CN.vtt 2.02Кб
01. Model Evaluation and Validation assessment.html 9.25Кб
01. Naive Bayes Intro V2-vNOiQXghgRY.en.vtt 716б
01. Naive Bayes Intro V2-vNOiQXghgRY.mp4 3.22Мб
01. Naive Bayes Intro V2-vNOiQXghgRY.pt-BR.vtt 690б
01. Naive Bayes Intro V2-vNOiQXghgRY.zh-CN.vtt 631б
01. Non-linear Data.html 8.36Кб
01. Non-Linear Data-F7ZiE8PQiSc.en.vtt 633б
01. Non-Linear Data-F7ZiE8PQiSc.ja-JP.vtt 712б
01. Non-Linear Data-F7ZiE8PQiSc.mp4 2.14Мб
01. Non-Linear Data-F7ZiE8PQiSc.pt-BR.vtt 600б
01. Non-Linear Data-F7ZiE8PQiSc.zh-CN.vtt 624б
01. Overview.html 6.40Кб
01. Overview.html 6.96Кб
01. Overview.html 7.60Кб
01. Overview.html 7.88Кб
01. Overview.html 7.73Кб
01. Overview.html 7.46Кб
01. PCA Mini-Project.html 5.67Кб
01. Perception Algorithm V2-ebIlG6Pqwas.en.vtt 1.01Кб
01. Perception Algorithm V2-ebIlG6Pqwas.mp4 5.37Мб
01. Perception Algorithm V2-ebIlG6Pqwas.pt-BR.vtt 928б
01. Perception Algorithm V2-ebIlG6Pqwas.zh-CN.vtt 916б
01. Policy-Based Methods.html 6.01Кб
01. Project Intro.html 10.44Кб
01. Project Overview.html 6.92Кб
01. Prove Your Skills With GitHub.html 10.98Кб
01. Random Projection.html 7.56Кб
01. RL M2L4 01 Actor Critic Methods RENDER V1 V1-FXhyxJzgt8U.en.vtt 1.54Кб
01. RL M2L4 01 Actor Critic Methods RENDER V1 V1-FXhyxJzgt8U.mp4 10.38Мб
01. RL M2L4 01 Actor Critic Methods RENDER V1 V1-FXhyxJzgt8U.pt-BR.vtt 1.78Кб
01. RL M2L4 01 Actor Critic Methods RENDER V1 V1-FXhyxJzgt8U.zh-CN.vtt 1.36Кб
01. Supervised Learning Assessment.html 9.52Кб
01. Support Vector Machine V2-LBmM6pZCrI0.en.vtt 514б
01. Support Vector Machine V2-LBmM6pZCrI0.mp4 2.42Мб
01. Support Vector Machine V2-LBmM6pZCrI0.pt-BR.vtt 543б
01. Support Vector Machine V2-LBmM6pZCrI0.zh-CN.vtt 432б
01. TensorFlow.html 6.61Кб
01. Types of Errors.html 6.70Кб
01. Welcome to Advanced Machine Learning.html 7.09Кб
01. Welcome To Linear Regression-zxZkTkM34BY.en.vtt 1.15Кб
01. Welcome To Linear Regression-zxZkTkM34BY.mp4 3.90Мб
01. Welcome To Linear Regression-zxZkTkM34BY.pt-BR.vtt 1.21Кб
01. Welcome to the Machine Learning Engineer Nanodegree Program.html 6.68Кб
01. What is Deep Learning .html 8.32Кб
01. What Is Deep Learning-INt1nULYPak.en.vtt 1.58Кб
01. What Is Deep Learning-INt1nULYPak.ja-JP.vtt 1.87Кб
01. What Is Deep Learning-INt1nULYPak.mp4 5.78Мб
01. What Is Deep Learning-INt1nULYPak.pt-BR.vtt 1.36Кб
01. What Is Deep Learning-INt1nULYPak.zh-CN.vtt 1.42Кб
01. What Is Machine Learning.html 7.65Кб
01. Why Network-exjEm9Paszk.ar.vtt 5.14Кб
01. Why Network-exjEm9Paszk.en.vtt 3.40Кб
01. Why Network-exjEm9Paszk.es-MX.vtt 3.20Кб
01. Why Network-exjEm9Paszk.ja-JP.vtt 4.33Кб
01. Why Network-exjEm9Paszk.mp4 17.37Мб
01. Why Network-exjEm9Paszk.pt-BR.vtt 3.20Кб
01. Why Network-exjEm9Paszk.zh-CN.vtt 3.29Кб
02. 02 Intro SC V1-mIgABrjJVBY.en.vtt 1.45Кб
02. 02 Intro SC V1-mIgABrjJVBY.mp4 4.12Мб
02. 02 Intro SC V1-mIgABrjJVBY.pt-BR.vtt 1.40Кб
02. 02 Skin Cancer V4-70jGZeiTNgk.en.vtt 1.86Кб
02. 02 Skin Cancer V4-70jGZeiTNgk.mp4 4.73Мб
02. 02 Skin Cancer V4-70jGZeiTNgk.pt-BR.vtt 1.74Кб
02. 02 Skin Cancer V4-70jGZeiTNgk.zh-CN.vtt 1.68Кб
02. A Better Score Function.html 6.15Кб
02. A Metric for Chris.html 8.04Кб
02. A Metric for Chris-O0bvLU4l0is.ar.vtt 976б
02. A Metric for Chris-O0bvLU4l0is.en.vtt 820б
02. A Metric for Chris-O0bvLU4l0is.mp4 3.98Мб
02. A Metric for Chris-O0bvLU4l0is.pt-BR.vtt 893б
02. A Metric for Chris-O0bvLU4l0is.zh-CN.vtt 733б
02. A Metric for Chris-Thj7e55iSlA.ar.vtt 226б
02. A Metric for Chris-Thj7e55iSlA.en.vtt 140б
02. A Metric for Chris-Thj7e55iSlA.mp4 853.58Кб
02. A Metric for Chris-Thj7e55iSlA.pt-BR.vtt 143б
02. Aplicações de CNNs-HrYNL_1SV2Y.en.vtt 5.37Кб
02. Aplicações de CNNs-HrYNL_1SV2Y.mp4 17.70Мб
02. Aplicações de CNNs-HrYNL_1SV2Y.pt-BR.vtt 5.66Кб
02. Aplicações de CNNs-HrYNL_1SV2Y.zh-CN.vtt 4.70Кб
02. Applications.html 7.85Кб
02. Applications-CV6B84mKRNM.en.vtt 3.22Кб
02. Applications-CV6B84mKRNM.mp4 8.46Мб
02. Applications-CV6B84mKRNM.pt-BR.vtt 3.42Кб
02. Applications-CV6B84mKRNM.zh-CN.vtt 2.91Кб
02. Applications of CNNs.html 13.73Кб
02. Bagging.html 6.20Кб
02. Classification Problems 1.html 7.64Кб
02. Color.html 9.85Кб
02. Color-Question-BdQccpMwk80.en.vtt 739б
02. Color-Question-BdQccpMwk80.ja-JP.vtt 883б
02. Color-Question-BdQccpMwk80.mp4 819.84Кб
02. Color-Question-BdQccpMwk80.pt-BR.vtt 683б
02. Color-Question-BdQccpMwk80.zh-CN.vtt 612б
02. Confusion Matrix 2.html 6.66Кб
02. Confusion-Matrix-Solution-ywwSzyU9rYs.en.vtt 1.05Кб
02. Confusion-Matrix-Solution-ywwSzyU9rYs.en-US.vtt 1.10Кб
02. Confusion-Matrix-Solution-ywwSzyU9rYs.mp4 1.10Мб
02. Confusion-Matrix-Solution-ywwSzyU9rYs.pt-BR.vtt 889б
02. Confusion-Matrix-Solution-ywwSzyU9rYs.zh-CN.vtt 956б
02. Continuous Perceptrons.html 8.41Кб
02. Continuous Perceptrons-07-JJ-aGEfM.en.vtt 1.33Кб
02. Continuous Perceptrons-07-JJ-aGEfM.ja-JP.vtt 1.33Кб
02. Continuous Perceptrons-07-JJ-aGEfM.mp4 1.13Мб
02. Continuous Perceptrons-07-JJ-aGEfM.pt-BR.vtt 1.31Кб
02. Continuous Perceptrons-07-JJ-aGEfM.zh-CN.vtt 1.15Кб
02. Create an AWS Account.html 6.60Кб
02. Decision Trees.html 7.68Кб
02. Decision Trees Question-1RonLycEJ34.en.vtt 1.15Кб
02. Decision Trees Question-1RonLycEJ34.mp4 4.82Мб
02. Decision Trees Question-1RonLycEJ34.pt-BR.vtt 1.10Кб
02. Decision Trees Question-1RonLycEJ34.zh-CN.vtt 1.05Кб
02. Description.html 7.36Кб
02. Description.html 8.52Кб
02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.en.vtt 1.36Кб
02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.ja-JP.vtt 1.51Кб
02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.mp4 1.48Мб
02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.pt-BR.vtt 1.46Кб
02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.zh-CN.vtt 1.26Кб
02. Dog Breed Workspace.html 6.07Кб
02. Exemplo de classificação-Dh625piH7Z0.en.vtt 2.70Кб
02. Exemplo de classificação-Dh625piH7Z0.ja-JP.vtt 2.78Кб
02. Exemplo de classificação-Dh625piH7Z0.mp4 2.07Мб
02. Exemplo de classificação-Dh625piH7Z0.pt-BR.vtt 2.51Кб
02. Exemplo de classificação-Dh625piH7Z0.zh-CN.vtt 2.36Кб
02. Gaussian Mixture Model (GMM) Clustering.html 8.30Кб
02. Guess the Person.html 6.93Кб
02. Instructions.html 11.76Кб
02. Introduction.html 8.21Кб
02. Introduction.html 8.14Кб
02. Introduction-tn-CrUTkCUc.en.vtt 3.28Кб
02. Introduction-tn-CrUTkCUc.mp4 7.54Мб
02. Introduction-tn-CrUTkCUc.pt-BR.vtt 3.09Кб
02. Introduction-tn-CrUTkCUc.zh-CN.vtt 2.84Кб
02. Introduction-Vnj2VNQROtI.ar.vtt 2.28Кб
02. Introduction-Vnj2VNQROtI.en.vtt 1.58Кб
02. Introduction-Vnj2VNQROtI.ja-JP.vtt 1.97Кб
02. Introduction-Vnj2VNQROtI.mp4 9.59Мб
02. Introduction-Vnj2VNQROtI.pt-BR.vtt 1.79Кб
02. Introduction-Vnj2VNQROtI.zh-CN.vtt 1.62Кб
02. K-means clustering of movie ratings.html 6.03Кб
02. Logistic Regression - Question-kSs6O3R7JUI.en-US.vtt 2.29Кб
02. Logistic Regression - Question-kSs6O3R7JUI.ja-JP.vtt 2.35Кб
02. Logistic Regression - Question-kSs6O3R7JUI.mp4 3.45Мб
02. Logistic Regression - Question-kSs6O3R7JUI.pt-BR.vtt 2.01Кб
02. Logistic Regression - Question-kSs6O3R7JUI.zh-CN.vtt 1.82Кб
02. Logistic Regression Quiz.html 8.25Кб
02. M2L3 02 V2-ToS8vXGdODE.en.vtt 9.07Кб
02. M2L3 02 V2-ToS8vXGdODE.mp4 32.51Мб
02. M2L3 02 V2-ToS8vXGdODE.zh-CN.vtt 8.11Кб
02. Meet Chris-0ccflD9x5WU.ar.vtt 6.32Кб
02. Meet Chris-0ccflD9x5WU.en.vtt 4.89Кб
02. Meet Chris-0ccflD9x5WU.es-MX.vtt 4.52Кб
02. Meet Chris-0ccflD9x5WU.ja-JP.vtt 5.61Кб
02. Meet Chris-0ccflD9x5WU.mp4 32.54Мб
02. Meet Chris-0ccflD9x5WU.pt-BR.vtt 4.47Кб
02. Meet Chris-0ccflD9x5WU.zh-CN.vtt 4.41Кб
02. MLND SL DT 01 Recommending Apps 1 MAIN V3-uI_yNrqqKVg.en.vtt 1.66Кб
02. MLND SL DT 01 Recommending Apps 1 MAIN V3-uI_yNrqqKVg.mp4 4.80Мб
02. MLND SL DT 01 Recommending Apps 1 MAIN V3-uI_yNrqqKVg.pt-BR.vtt 1.68Кб
02. MLND SL DT 01 Recommending Apps 1 MAIN V3-uI_yNrqqKVg.zh-CN.vtt 1.53Кб
02. MLND SL EM 02 Bagging V1 MAIN V1-9L_B0Jcio3c.en.vtt 3.19Кб
02. MLND SL EM 02 Bagging V1 MAIN V1-9L_B0Jcio3c.mp4 2.34Мб
02. MLND SL EM 02 Bagging V1 MAIN V1-9L_B0Jcio3c.pt-BR.vtt 3.10Кб
02. MLND - Unsupervised Learning - L2 02 V1-Ed6RKuBzKWA.en.vtt 1.17Кб
02. MLND - Unsupervised Learning - L2 02 V1-Ed6RKuBzKWA.mp4 3.07Мб
02. MLND - Unsupervised Learning - L2 02 V1-Ed6RKuBzKWA.pt-BR.vtt 1.18Кб
02. MLND - Unsupervised Learning - L2 02 V1-Ed6RKuBzKWA.zh-CN.vtt 1005б
02. MLND - Unsupervised Learning - L3 2 Gaussian Mixture Model Clustering MAIN V1 V2-Y_methsXoFA.en.vtt 1.20Кб
02. MLND - Unsupervised Learning - L3 2 Gaussian Mixture Model Clustering MAIN V1 V2-Y_methsXoFA.mp4 4.34Мб
02. MLND - Unsupervised Learning - L3 2 Gaussian Mixture Model Clustering MAIN V1 V2-Y_methsXoFA.pt-BR.vtt 1.27Кб
02. MLND - Unsupervised Learning - L3 2 Gaussian Mixture Model Clustering MAIN V1 V2-Y_methsXoFA.zh-CN.vtt 1008б
02. Model Complexity Graph.html 7.85Кб
02. Model Complexity Graph-Question-YS5OQCA5cLY.en-US.vtt 3.32Кб
02. Model Complexity Graph-Question-YS5OQCA5cLY.mp4 5.41Мб
02. Model Complexity Graph-Question-YS5OQCA5cLY.pt-BR.vtt 3.12Кб
02. Model Complexity Graph-Question-YS5OQCA5cLY.zh-CN.vtt 3.03Кб
02. Neural Nets as Value Functions.html 6.73Кб
02. Neural Nets as Value Functions-cBi7vLrk8QQ.en.vtt 3.73Кб
02. Neural Nets as Value Functions-cBi7vLrk8QQ.mp4 12.65Мб
02. Neural Nets as Value Functions-cBi7vLrk8QQ.pt-BR.vtt 3.93Кб
02. Neural Nets as Value Functions-cBi7vLrk8QQ.zh-CN.vtt 3.22Кб
02. OpenAI Gym BlackjackEnv.html 10.06Кб
02. OpenAI Gym CliffWalkingEnv.html 9.00Кб
02. OpenAI Gym FrozenLakeEnv.html 11.13Кб
02. Outline.html 6.14Кб
02. Overview of other clustering methods.html 7.36Кб
02. Policies.html 6.53Кб
02. Policies-hc3LrvaC13U.en.vtt 4.79Кб
02. Policies-hc3LrvaC13U.mp4 20.24Мб
02. Policies-hc3LrvaC13U.pt-BR.vtt 5.44Кб
02. Policies-hc3LrvaC13U.zh-CN.vtt 4.03Кб
02. Prepare for the Udacity Talent Program.html 7.86Кб
02. Program Structure.html 7.44Кб
02. Projects You Will Build.html 7.33Кб
02. Quadcopter workspace.html 6.76Кб
02. Quiz Housing Prices.html 9.03Кб
02. Random Projection.html 7.85Кб
02. Recommending Apps 1.html 10.59Кб
02. Resources.html 8.94Кб
02. RL M2L4 02 A Better Score Function V2-_HBJ3l10-OE.en.vtt 2.64Кб
02. RL M2L4 02 A Better Score Function V2-_HBJ3l10-OE.mp4 8.68Мб
02. RL M2L4 02 A Better Score Function V2-_HBJ3l10-OE.pt-BR.vtt 3.09Кб
02. RL M2L4 02 A Better Score Function V2-_HBJ3l10-OE.zh-CN.vtt 2.34Кб
02. Skin Cancer.html 10.56Кб
02. SL NB 01 Guess The Person V1 V1-tAOAjI-7ins.en.vtt 3.40Кб
02. SL NB 01 Guess The Person V1 V1-tAOAjI-7ins.mp4 8.49Мб
02. SL NB 01 Guess The Person V1 V1-tAOAjI-7ins.pt-BR.vtt 3.25Кб
02. SL NB 01 Guess The Person V1 V1-tAOAjI-7ins.zh-CN.vtt 3.00Кб
02. Software Requirements.html 6.91Кб
02. Software Requirements.html 7.62Кб
02. Software Requirements.html 7.55Кб
02. Solving Problems - Big and Small .html 8.41Кб
02. Solving Problems - Big And Small-WHcRQMGSbqg.en.vtt 2.47Кб
02. Solving Problems - Big And Small-WHcRQMGSbqg.ja-JP.vtt 2.98Кб
02. Solving Problems - Big And Small-WHcRQMGSbqg.mp4 9.17Мб
02. Solving Problems - Big And Small-WHcRQMGSbqg.pt-BR.vtt 2.37Кб
02. Solving Problems - Big And Small-WHcRQMGSbqg.zh-CN.vtt 2.23Кб
02. Starting the project.html 7.25Кб
02. Support.html 5.79Кб
02. SVM 01 Which Line Is Better V1-NCml_NCvd1I.en.vtt 701б
02. SVM 01 Which Line Is Better V1-NCml_NCvd1I.mp4 1.55Мб
02. SVM 01 Which Line Is Better V1-NCml_NCvd1I.pt-BR.vtt 638б
02. SVM 01 Which Line Is Better V1-NCml_NCvd1I.zh-CN.vtt 588б
02. The Setting, Revisited.html 7.31Кб
02. The Setting, Revisited-V6Q1uF8a6kA.en.vtt 5.60Кб
02. The Setting, Revisited-V6Q1uF8a6kA.mp4 7.36Мб
02. The Setting, Revisited-V6Q1uF8a6kA.pt-BR.vtt 5.78Кб
02. The Setting, Revisited-V6Q1uF8a6kA.zh-CN.vtt 4.79Кб
02. Trickier Data Dimensionality.html 10.59Кб
02. Trickier Data Dimensionality--dcNhrSPmoY.ar.vtt 168б
02. Trickier Data Dimensionality--dcNhrSPmoY.en.vtt 138б
02. Trickier Data Dimensionality--dcNhrSPmoY.mp4 473.01Кб
02. Trickier Data Dimensionality--dcNhrSPmoY.pt-BR.vtt 171б
02. Trickier Data Dimensionality--dcNhrSPmoY.zh-CN.vtt 125б
02. Trickier Data Dimensionality-s24-ikl3ZAs.ar.vtt 505б
02. Trickier Data Dimensionality-s24-ikl3ZAs.en.vtt 395б
02. Trickier Data Dimensionality-s24-ikl3ZAs.mp4 1.31Мб
02. Trickier Data Dimensionality-s24-ikl3ZAs.pt-BR.vtt 410б
02. Trickier Data Dimensionality-s24-ikl3ZAs.zh-CN.vtt 361б
02. Two-Layer Neural Network.html 7.14Кб
02. Unsupervised Learning.html 7.27Кб
02. Unsupervised Learning-Mx9f99bRB3Q.ar.vtt 4.39Кб
02. Unsupervised Learning-Mx9f99bRB3Q.en.vtt 3.21Кб
02. Unsupervised Learning-Mx9f99bRB3Q.mp4 12.68Мб
02. Unsupervised Learning-Mx9f99bRB3Q.pt-BR.vtt 3.15Кб
02. Unsupervised Learning-Mx9f99bRB3Q.zh-CN.vtt 2.67Кб
02. Use Your Story to Stand Out.html 8.75Кб
02. What You'll Watch and Learn.html 5.90Кб
02. Which line is better.html 8.11Кб
02. Why Policy-Based Methods.html 6.03Кб
02-guide-how-transfer-learning-v3-01.png 251.26Кб
02-guide-how-transfer-learning-v3-02.png 219.27Кб
02-guide-how-transfer-learning-v3-03.png 228.93Кб
02-guide-how-transfer-learning-v3-04.png 255.16Кб
02-guide-how-transfer-learning-v3-05.png 232.52Кб
02-guide-how-transfer-learning-v3-06.png 259.12Кб
02-guide-how-transfer-learning-v3-07.png 233.30Кб
02-guide-how-transfer-learning-v3-08.png 241.57Кб
02-guide-how-transfer-learning-v3-09.png 228.05Кб
02-guide-how-transfer-learning-v3-10.png 241.76Кб
03. Accuracy.html 7.58Кб
03. Accuracy-s6SfhPTNOHA.en.vtt 1.72Кб
03. Accuracy-s6SfhPTNOHA.en-US.vtt 2.08Кб
03. Accuracy-s6SfhPTNOHA.mp4 2.34Мб
03. Accuracy-s6SfhPTNOHA.pt-BR.vtt 1.87Кб
03. Accuracy-s6SfhPTNOHA.zh-CN.vtt 1.63Кб
03. AdaBoost.html 6.22Кб
03. Apply Credits.html 7.38Кб
03. Bugcrowd.html 6.48Кб
03. Classification Problems 1.html 9.62Кб
03. Classification Problems 2.html 6.40Кб
03. Clustering Movies.html 7.23Кб
03. Clustering Movies-g8PKffm8IRY.ar.vtt 3.96Кб
03. Clustering Movies-g8PKffm8IRY.en.vtt 2.79Кб
03. Clustering Movies-g8PKffm8IRY.mp4 7.31Мб
03. Clustering Movies-g8PKffm8IRY.pt-BR.vtt 2.82Кб
03. Clustering Movies-g8PKffm8IRY.zh-CN.vtt 2.53Кб
03. Cross Validation.html 6.77Кб
03. Decision Trees Quiz.html 8.12Кб
03. Deep Learning What You'll Do.html 6.23Кб
03. Discrete vs. Continuous Spaces.html 6.85Кб
03. Discrete vs. Continuous Spaces-uHstLeRzaE8.en.vtt 6.54Кб
03. Discrete vs. Continuous Spaces-uHstLeRzaE8.mp4 21.37Мб
03. Discrete vs. Continuous Spaces-uHstLeRzaE8.pt-BR.vtt 7.57Кб
03. Discrete vs. Continuous Spaces-uHstLeRzaE8.zh-CN.vtt 5.73Кб
03. Elevator Pitch-S-nAHPrkQrQ.ar.vtt 5.13Кб
03. Elevator Pitch-S-nAHPrkQrQ.en.vtt 3.53Кб
03. Elevator Pitch-S-nAHPrkQrQ.es-MX.vtt 3.56Кб
03. Elevator Pitch-S-nAHPrkQrQ.ja-JP.vtt 4.35Кб
03. Elevator Pitch-S-nAHPrkQrQ.mp4 20.63Мб
03. Elevator Pitch-S-nAHPrkQrQ.pt-BR.vtt 3.47Кб
03. Elevator Pitch-S-nAHPrkQrQ.zh-CN.vtt 3.40Кб
03. Episodic vs. Continuing Tasks.html 7.36Кб
03. Episodic vs. Continuing Tasks-E1I-BPanSM8.en.vtt 2.82Кб
03. Episodic vs. Continuing Tasks-E1I-BPanSM8.mp4 10.07Мб
03. Episodic vs. Continuing Tasks-E1I-BPanSM8.pt-BR.vtt 3.04Кб
03. Episodic vs. Continuing Tasks-E1I-BPanSM8.zh-CN.vtt 2.46Кб
03. Exemplo de classificação-Dh625piH7Z0.en.vtt 2.70Кб
03. Exemplo de classificação-Dh625piH7Z0.ja-JP.vtt 2.78Кб
03. Exemplo de classificação-Dh625piH7Z0.mp4 2.07Мб
03. Exemplo de classificação-Dh625piH7Z0.pt-BR.vtt 2.51Кб
03. Exemplo de classificação-Dh625piH7Z0.zh-CN.vtt 2.36Кб
03. Gaussian Distribution in One Dimension.html 8.25Кб
03. GitHub profile important items.html 8.18Кб
03. GitHub profile important items-prvPVTjVkwQ.ar.vtt 3.93Кб
03. GitHub profile important items-prvPVTjVkwQ.en.vtt 2.93Кб
03. GitHub profile important items-prvPVTjVkwQ.ja-JP.vtt 3.28Кб
03. GitHub profile important items-prvPVTjVkwQ.mp4 3.36Мб
03. GitHub profile important items-prvPVTjVkwQ.pt-BR.vtt 3.14Кб
03. GitHub profile important items-prvPVTjVkwQ.zh-CN.vtt 2.65Кб
03. Height + Weight for Cameron.html 8.15Кб
03. Height + Weight for Cameron--dT9dztM-Lc.ar.vtt 171б
03. Height + Weight for Cameron--dT9dztM-Lc.en.vtt 141б
03. Height + Weight for Cameron--dT9dztM-Lc.mp4 1.04Мб
03. Height + Weight for Cameron--dT9dztM-Lc.pt-BR.vtt 164б
03. Height + Weight for Cameron-MetxO9LDp-I.ar.vtt 282б
03. Height + Weight for Cameron-MetxO9LDp-I.en.vtt 214б
03. Height + Weight for Cameron-MetxO9LDp-I.mp4 483.93Кб
03. Height + Weight for Cameron-MetxO9LDp-I.pt-BR.vtt 230б
03. Height + Weight for Cameron-MetxO9LDp-I.zh-CN.vtt 222б
03. Hierarchical clustering single-link.html 7.35Кб
03. How Computers Interpret Images.html 9.76Кб
03. How Computers Interpret Images-V4f6p6uRhu8.en.vtt 5.52Кб
03. How Computers Interpret Images-V4f6p6uRhu8.mp4 6.18Мб
03. How Computers Interpret Images-V4f6p6uRhu8.pt-BR.vtt 5.95Кб
03. How Computers Interpret Images-V4f6p6uRhu8.zh-CN.vtt 4.91Кб
03. Known and Inferred.html 6.95Кб
03. L6 2 Random Projection Impl MAINv1 V1 V1-5DhvurLgRII.en.vtt 1.20Кб
03. L6 2 Random Projection Impl MAINv1 V1 V1-5DhvurLgRII.mp4 1.14Мб
03. L6 2 Random Projection Impl MAINv1 V1 V1-5DhvurLgRII.pt-BR.vtt 1.30Кб
03. Let's Get Started .html 8.31Кб
03. Let'S Get Started-ySIDqaXLhHw.en.vtt 1.26Кб
03. Let'S Get Started-ySIDqaXLhHw.ja-JP.vtt 1.59Кб
03. Let'S Get Started-ySIDqaXLhHw.mp4 1.45Мб
03. Let'S Get Started-ySIDqaXLhHw.pt-BR.vtt 1.36Кб
03. Let'S Get Started-ySIDqaXLhHw.zh-CN.vtt 1.20Кб
03. Logistic Regression Answer.html 7.32Кб
03. Logistic Regression - Solution-1iNylA3fJDs.en-US.vtt 5.97Кб
03. Logistic Regression - Solution-1iNylA3fJDs.ja-JP.vtt 6.27Кб
03. Logistic Regression - Solution-1iNylA3fJDs.mp4 7.36Мб
03. Logistic Regression - Solution-1iNylA3fJDs.pt-BR.vtt 5.99Кб
03. Logistic Regression - Solution-1iNylA3fJDs.zh-CN.vtt 5.20Кб
03. M2L3 03 V2-TePX-0Bs23E.en.vtt 5.99Кб
03. M2L3 03 V2-TePX-0Bs23E.mp4 18.85Мб
03. M2L3 03 V2-TePX-0Bs23E.zh-CN.vtt 5.24Кб
03. MC Prediction State Values.html 7.79Кб
03. MC Prediction State Values-0q2wSWyuBj8.en.vtt 8.51Кб
03. MC Prediction State Values-0q2wSWyuBj8.mp4 33.39Мб
03. MC Prediction State Values-0q2wSWyuBj8.pt-BR.vtt 9.06Кб
03. MC Prediction State Values-0q2wSWyuBj8.zh-CN.vtt 7.20Кб
03. Minimizing Distances.html 7.11Кб
03. Mini Project.html 5.98Кб
03. MLND SL DT 02 Recommending Apps 2 MAIN V3-KSrIYqKZwCA.en.vtt 1.56Кб
03. MLND SL DT 02 Recommending Apps 2 MAIN V3-KSrIYqKZwCA.mp4 4.19Мб
03. MLND SL DT 02 Recommending Apps 2 MAIN V3-KSrIYqKZwCA.pt-BR.vtt 1.46Кб
03. MLND SL DT 02 Recommending Apps 2 MAIN V3-KSrIYqKZwCA.zh-CN.vtt 1.41Кб
03. MLND SL EM 03 AdaBoost V1 MAIN V1-HD6SRBWKGUE.en.vtt 2.98Кб
03. MLND SL EM 03 AdaBoost V1 MAIN V1-HD6SRBWKGUE.mp4 2.17Мб
03. MLND SL EM 03 AdaBoost V1 MAIN V1-HD6SRBWKGUE.pt-BR.vtt 2.96Кб
03. MLND - Unsupervised Learning - L2 03 V2-pd9Ix3WMP_Q.en.vtt 6.11Кб
03. MLND - Unsupervised Learning - L2 03 V2-pd9Ix3WMP_Q.mp4 18.13Мб
03. MLND - Unsupervised Learning - L2 03 V2-pd9Ix3WMP_Q.pt-BR.vtt 5.49Кб
03. MLND - Unsupervised Learning - L2 03 V2-pd9Ix3WMP_Q.zh-CN.vtt 5.35Кб
03. MLND - Unsupervised Learning - L3 3 Gaussian Distribution In 1D MAINv1 V1-uDPFrZwsKKQ.en.vtt 2.48Кб
03. MLND - Unsupervised Learning - L3 3 Gaussian Distribution In 1D MAINv1 V1-uDPFrZwsKKQ.mp4 8.39Мб
03. MLND - Unsupervised Learning - L3 3 Gaussian Distribution In 1D MAINv1 V1-uDPFrZwsKKQ.pt-BR.vtt 2.32Кб
03. MLND - Unsupervised Learning - L3 3 Gaussian Distribution In 1D MAINv1 V1-uDPFrZwsKKQ.zh-CN.vtt 2.09Кб
03. Model-Complexity-Graph Solution 2-5pWHGkNyRhA.en-US.vtt 6.11Кб
03. Model-Complexity-Graph Solution 2-5pWHGkNyRhA.mp4 9.23Мб
03. Model-Complexity-Graph Solution 2-5pWHGkNyRhA.pt-BR.vtt 5.74Кб
03. Model-Complexity-Graph Solution 2-5pWHGkNyRhA.zh-CN.vtt 5.23Кб
03. Monte Carlo Learning.html 6.92Кб
03. Monte Carlo Learning-qOviWYwcvsg.en.vtt 2.84Кб
03. Monte Carlo Learning-qOviWYwcvsg.mp4 10.41Мб
03. Monte Carlo Learning-qOviWYwcvsg.pt-BR.vtt 3.13Кб
03. Monte Carlo Learning-qOviWYwcvsg.zh-CN.vtt 2.50Кб
03. Non-Linear Models.html 8.38Кб
03. Non-Linear Models-HWuBKCZsCo8.en.vtt 1.30Кб
03. Non-Linear Models-HWuBKCZsCo8.ja-JP.vtt 1.41Кб
03. Non-Linear Models-HWuBKCZsCo8.mp4 1.13Мб
03. Non-Linear Models-HWuBKCZsCo8.pt-BR.vtt 1.39Кб
03. Non-Linear Models-HWuBKCZsCo8.zh-CN.vtt 1.12Кб
03. One-Dimensional, or Two.html 10.53Кб
03. One-Dimensional, or Two-QsncWsyboFk.ar.vtt 360б
03. One-Dimensional, or Two-QsncWsyboFk.en.vtt 292б
03. One-Dimensional, or Two-QsncWsyboFk.mp4 1.05Мб
03. One-Dimensional, or Two-QsncWsyboFk.pt-BR.vtt 292б
03. One-Dimensional, or Two-QsncWsyboFk.zh-CN.vtt 277б
03. One-Dimensional, or Two-yhzQ_HJcwn8.ar.vtt 1.25Кб
03. One-Dimensional, or Two-yhzQ_HJcwn8.en.vtt 879б
03. One-Dimensional, or Two-yhzQ_HJcwn8.mp4 4.18Мб
03. One-Dimensional, or Two-yhzQ_HJcwn8.pt-BR.vtt 928б
03. One-Dimensional, or Two-yhzQ_HJcwn8.zh-CN.vtt 810б
03. Policy Function Approximation.html 6.04Кб
03. Program Structure.html 8.50Кб
03. Project files.html 6.95Кб
03. Projects You Will Build.html 7.65Кб
03. Quiz Interpret the Policy.html 13.01Кб
03. Quiz TensorFlow ReLUs.html 10.14Кб
03. Random Projection in sklearn.html 6.40Кб
03. Recommending Apps 2.html 8.61Кб
03. Replay Buffer.html 7.23Кб
03. RL M2L4 03 Two Function Approximators V1-37KQEgLaLfw.en.vtt 1.68Кб
03. RL M2L4 03 Two Function Approximators V1-37KQEgLaLfw.mp4 6.13Мб
03. RL M2L4 03 Two Function Approximators V1-37KQEgLaLfw.pt-BR.vtt 1.93Кб
03. RL M2L4 03 Two Function Approximators V1-37KQEgLaLfw.zh-CN.vtt 1.45Кб
03. SL NB 02 Known And Inferred V1 V2-DrYfZXiDLQI.en.vtt 1.23Кб
03. SL NB 02 Known And Inferred V1 V2-DrYfZXiDLQI.mp4 2.62Мб
03. SL NB 02 Known And Inferred V1 V2-DrYfZXiDLQI.pt-BR.vtt 1.21Кб
03. SL NB 02 Known And Inferred V1 V2-DrYfZXiDLQI.zh-CN.vtt 1.12Кб
03. Software and Data Requirements.html 8.19Кб
03. Software and Data Requirements.html 8.40Кб
03. Solution.html 5.84Кб
03. Solution Housing Prices.html 7.75Кб
03. Solution Housing Prices-uhdTulw9-Nc.en.vtt 939б
03. Solution Housing Prices-uhdTulw9-Nc.ja-JP.vtt 1.03Кб
03. Solution Housing Prices-uhdTulw9-Nc.mp4 1001.40Кб
03. Solution Housing Prices-uhdTulw9-Nc.pt-BR.vtt 1.00Кб
03. Starting the project.html 7.34Кб
03. Starting the project.html 7.31Кб
03. Statistical Invariance.html 9.27Кб
03. Statistical Invariance-0Hr5YwUUhr0.en.vtt 2.41Кб
03. Statistical Invariance-0Hr5YwUUhr0.ja-JP.vtt 2.71Кб
03. Statistical Invariance-0Hr5YwUUhr0.mp4 2.22Мб
03. Statistical Invariance-0Hr5YwUUhr0.pt-BR.vtt 2.24Кб
03. Statistical Invariance-0Hr5YwUUhr0.zh-CN.vtt 2.12Кб
03. Stats Refresher.html 6.39Кб
03. Submitting the project.html 7.42Кб
03. Survival Probability of Skin Cancer.html 8.56Кб
03. Survival Rate-QPlp3NeGuSk.en.vtt 1.19Кб
03. Survival Rate-QPlp3NeGuSk.mp4 1.52Мб
03. Survival Rate-QPlp3NeGuSk.pt-BR.vtt 1.08Кб
03. Survival Rate-QPlp3NeGuSk.zh-CN.vtt 996б
03. SVM 02 Minimizing Distances V1-mNKk2dBsNGA.en.vtt 1.40Кб
03. SVM 02 Minimizing Distances V1-mNKk2dBsNGA.mp4 2.91Мб
03. SVM 02 Minimizing Distances V1-mNKk2dBsNGA.pt-BR.vtt 1.09Кб
03. SVM 02 Minimizing Distances V1-mNKk2dBsNGA.zh-CN.vtt 1.15Кб
03. TD Prediction TD(0).html 6.95Кб
03. TD Prediction TD(0)-CsD6b0csU7o.en.vtt 8.83Кб
03. TD Prediction TD(0)-CsD6b0csU7o.mp4 30.11Мб
03. TD Prediction TD(0)-CsD6b0csU7o.zh-CN.vtt 7.32Кб
03. The Setting.html 5.75Кб
03. The Setting-nh8Gwdu19nc.en.vtt 7.06Кб
03. The Setting-nh8Gwdu19nc.mp4 7.75Мб
03. The Setting-nh8Gwdu19nc.pt-BR.vtt 7.31Кб
03. The Setting-nh8Gwdu19nc.zh-CN.vtt 6.05Кб
03. Two Function Approximators.html 6.17Кб
03. Why Use an Elevator Pitch.html 7.37Кб
03. Your Workspace.html 10.64Кб
03. 分类问题 2 -46PywnGa_cQ.en.vtt 1.76Кб
03. 分类问题 2 -46PywnGa_cQ.ja-JP.vtt 1.79Кб
03. 分类问题 2 -46PywnGa_cQ.mp4 1.62Мб
03. 分类问题 2 -46PywnGa_cQ.pt-BR.vtt 1.60Кб
03. 分类问题 2 -46PywnGa_cQ.zh-CN.vtt 1.65Кб
04. 29 Neural Network Architecture 2-FWN3Sw5fFoM.en.vtt 3.02Кб
04. 29 Neural Network Architecture 2-FWN3Sw5fFoM.ja-JP.vtt 3.38Кб
04. 29 Neural Network Architecture 2-FWN3Sw5fFoM.mp4 2.83Мб
04. 29 Neural Network Architecture 2-FWN3Sw5fFoM.pt-BR.vtt 3.34Кб
04. 29 Neural Network Architecture 2-FWN3Sw5fFoM.zh-CN.vtt 2.76Кб
04. Accuracy 2.html 6.68Кб
04. Accuracy 2-ueYCLfd_aNQ.en.vtt 688б
04. Accuracy 2-ueYCLfd_aNQ.en-US.vtt 720б
04. Accuracy 2-ueYCLfd_aNQ.mp4 573.82Кб
04. Accuracy 2-ueYCLfd_aNQ.pt.vtt 656б
04. Accuracy 2-ueYCLfd_aNQ.pt-BR.vtt 618б
04. Accuracy 2-ueYCLfd_aNQ.zh-CN.vtt 528б
04. Another Gridworld Example.html 8.64Кб
04. Another Gridworld Example-n9SbomnLb-U.en.vtt 2.04Кб
04. Another Gridworld Example-n9SbomnLb-U.mp4 4.69Мб
04. Another Gridworld Example-n9SbomnLb-U.pt-BR.vtt 2.16Кб
04. Another Gridworld Example-n9SbomnLb-U.zh-CN.vtt 1.65Кб
04. Classification Problems 2.html 8.38Кб
04. Combinando modelos-Boy3zHVrWB4.en.vtt 5.29Кб
04. Combinando modelos-Boy3zHVrWB4.ja-JP.vtt 5.81Кб
04. Combinando modelos-Boy3zHVrWB4.mp4 4.73Мб
04. Combinando modelos-Boy3zHVrWB4.pt-BR.vtt 5.29Кб
04. Combinando modelos-Boy3zHVrWB4.zh-CN.vtt 4.64Кб
04. Convolutional Networks.html 9.26Кб
04. Convolutional Networks-ISHGyvsT0QY.en.vtt 4.38Кб
04. Convolutional Networks-ISHGyvsT0QY.ja-JP.vtt 4.96Кб
04. Convolutional Networks-ISHGyvsT0QY.mp4 8.42Мб
04. Convolutional Networks-ISHGyvsT0QY.pt-BR.vtt 4.45Кб
04. Convolutional Networks-ISHGyvsT0QY.zh-CN.vtt 3.82Кб
04. Create Your Elevator Pitch.html 8.51Кб
04. DDPG Actor.html 10.47Кб
04. Decision Trees Answer.html 7.68Кб
04. Decision Trees Answer-h8zH47iFhCo.en.vtt 2.65Кб
04. Decision Trees Answer-h8zH47iFhCo.mp4 12.69Мб
04. Decision Trees Answer-h8zH47iFhCo.pt-BR.vtt 2.66Кб
04. Decision Trees Answer-h8zH47iFhCo.zh-CN.vtt 2.50Кб
04. Deep Neural Network in TensorFlow.html 12.32Кб
04. Elevator Pitch-0QtgTG49E9I.ar.vtt 2.28Кб
04. Elevator Pitch-0QtgTG49E9I.en.vtt 2.06Кб
04. Elevator Pitch-0QtgTG49E9I.es-MX.vtt 1.99Кб
04. Elevator Pitch-0QtgTG49E9I.ja-JP.vtt 2.45Кб
04. Elevator Pitch-0QtgTG49E9I.mp4 9.98Мб
04. Elevator Pitch-0QtgTG49E9I.pt-BR.vtt 1.94Кб
04. Elevator Pitch-0QtgTG49E9I.zh-CN.vtt 1.99Кб
04. Error Function Intuition.html 7.09Кб
04. Examining single-link clustering.html 7.54Кб
04. Fitting A Line-gkdoknEEcaI.en.vtt 1.41Кб
04. Fitting A Line-gkdoknEEcaI.mp4 1.12Мб
04. Fitting A Line-gkdoknEEcaI.pt-BR.vtt 1.42Кб
04. Fitting a Line Through Data.html 7.58Кб
04. Get Access to GPU Instances.html 9.30Кб
04. GMM Clustering in One Dimension.html 8.20Кб
04. Good GitHub repository.html 7.87Кб
04. Good GitHub repository-qBi8Q1EJdfQ.ar.vtt 2.56Кб
04. Good GitHub repository-qBi8Q1EJdfQ.en.vtt 1.92Кб
04. Good GitHub repository-qBi8Q1EJdfQ.ja-JP.vtt 2.21Кб
04. Good GitHub repository-qBi8Q1EJdfQ.mp4 3.72Мб
04. Good GitHub repository-qBi8Q1EJdfQ.pt-BR.vtt 2.07Кб
04. Good GitHub repository-qBi8Q1EJdfQ.zh-CN.vtt 1.92Кб
04. Gridworld Example.html 6.59Кб
04. Gridworld Example-XeHBmPFqTsE.en.vtt 2.56Кб
04. Gridworld Example-XeHBmPFqTsE.mp4 2.38Мб
04. Gridworld Example-XeHBmPFqTsE.pt-BR.vtt 2.82Кб
04. Gridworld Example-XeHBmPFqTsE.zh-CN.vtt 2.06Кб
04. Guess the Person Now.html 7.37Кб
04. How Many Clusters.html 8.49Кб
04. How Many Clusters-8Ygq5dRV0Kk.ar.vtt 521б
04. How Many Clusters-8Ygq5dRV0Kk.en.vtt 458б
04. How Many Clusters-8Ygq5dRV0Kk.mp4 1.58Мб
04. How Many Clusters-8Ygq5dRV0Kk.pt-BR.vtt 439б
04. How Many Clusters-8Ygq5dRV0Kk.zh-CN.vtt 385б
04. How Many Clusters-R6oIvdBtsZw.ar.vtt 999б
04. How Many Clusters-R6oIvdBtsZw.en.vtt 768б
04. How Many Clusters-R6oIvdBtsZw.mp4 2.79Мб
04. How Many Clusters-R6oIvdBtsZw.pt-BR.vtt 773б
04. How Many Clusters-R6oIvdBtsZw.zh-CN.vtt 744б
04. Implementation.html 10.18Кб
04. Implementation.html 8.80Кб
04. Independent Component Analysis (ICA).html 7.06Кб
04. Installing TensorFlow.html 10.61Кб
04. K-Fold Cross Validation.html 6.61Кб
04. KFold Cross Validation V3 V1-9W6o6eWGi-0.en.vtt 1.96Кб
04. KFold Cross Validation V3 V1-9W6o6eWGi-0.mp4 1.75Мб
04. KFold Cross Validation V3 V1-9W6o6eWGi-0.pt-BR.vtt 2.07Кб
04. L6 3 ICA V1 V1-ae94x-1JDzg.en.vtt 3.93Кб
04. L6 3 ICA V1 V1-ae94x-1JDzg.mp4 6.02Мб
04. L6 3 ICA V1 V1-ae94x-1JDzg.pt-BR.vtt 3.78Кб
04. Layers-pg99FkXYK0M.en.vtt 3.40Кб
04. Layers-pg99FkXYK0M.ja-JP.vtt 3.70Кб
04. Layers-pg99FkXYK0M.mp4 3.11Мб
04. Layers-pg99FkXYK0M.pt-BR.vtt 3.29Кб
04. Layers-pg99FkXYK0M.zh-CN.vtt 3.04Кб
04. Linear Boundaries.html 7.13Кб
04. Linear Boundaries-X-uMlsBi07k.en.vtt 3.85Кб
04. Linear Boundaries-X-uMlsBi07k.ja-JP.vtt 3.80Кб
04. Linear Boundaries-X-uMlsBi07k.mp4 3.85Мб
04. Linear Boundaries-X-uMlsBi07k.pt-BR.vtt 3.67Кб
04. Linear Boundaries-X-uMlsBi07k.zh-CN.vtt 3.37Кб
04. Loading data into Pandas.html 10.38Кб
04. M2L3 04 V1-QicxmyE5vTo.en.vtt 5.35Кб
04. M2L3 04 V1-QicxmyE5vTo.mp4 21.03Мб
04. M2L3 04 V1-QicxmyE5vTo.zh-CN.vtt 4.62Кб
04. Medical Classification.html 8.56Кб
04. Medical Classification-RCOSP60dV7U.en.vtt 1.37Кб
04. Medical Classification-RCOSP60dV7U.mp4 2.20Мб
04. Medical Classification-RCOSP60dV7U.pt-BR.vtt 1.18Кб
04. Medical Classification-RCOSP60dV7U.zh-CN.vtt 1.17Кб
04. MLND SL EM 04 Weighting The Data MAIN V1 V2-O-hh_x0iYW8.en.vtt 2.73Кб
04. MLND SL EM 04 Weighting The Data MAIN V1 V2-O-hh_x0iYW8.mp4 2.49Мб
04. MLND SL EM 04 Weighting The Data MAIN V1 V2-O-hh_x0iYW8.pt-BR.vtt 2.97Кб
04. MLND - Unsupervised Learning - L2 04 Examining SingleLink Clustering MAIN V1 V2-foLcmCOLDos.en.vtt 6.14Кб
04. MLND - Unsupervised Learning - L2 04 Examining SingleLink Clustering MAIN V1 V2-foLcmCOLDos.mp4 23.41Мб
04. MLND - Unsupervised Learning - L2 04 Examining SingleLink Clustering MAIN V1 V2-foLcmCOLDos.pt-BR.vtt 5.42Кб
04. MLND - Unsupervised Learning - L2 04 Examining SingleLink Clustering MAIN V1 V2-foLcmCOLDos.zh-CN.vtt 5.68Кб
04. MLND - Unsupervised Learning - L3 04 GMM Clustering In 1D MAIN V1 V1-JkRQIGqkqA4.en.vtt 3.07Кб
04. MLND - Unsupervised Learning - L3 04 GMM Clustering In 1D MAIN V1 V1-JkRQIGqkqA4.mp4 10.26Мб
04. MLND - Unsupervised Learning - L3 04 GMM Clustering In 1D MAIN V1 V1-JkRQIGqkqA4.pt-BR.vtt 3.35Кб
04. MLND - Unsupervised Learning - L3 04 GMM Clustering In 1D MAIN V1 V1-JkRQIGqkqA4.zh-CN.vtt 2.80Кб
04. MLPs for Image Classification.html 9.02Кб
04. MLPs For Image Classification-TIFStebu530.en.vtt 3.82Кб
04. MLPs For Image Classification-TIFStebu530.mp4 4.40Мб
04. MLPs For Image Classification-TIFStebu530.pt-BR.vtt 4.06Кб
04. MLPs For Image Classification-TIFStebu530.zh-CN.vtt 3.42Кб
04. Multiclass Classification-uNTtvxwfox0.en.vtt 2.08Кб
04. Multiclass Classification-uNTtvxwfox0.ja-JP.vtt 2.29Кб
04. Multiclass Classification-uNTtvxwfox0.mp4 1.88Мб
04. Multiclass Classification-uNTtvxwfox0.pt-BR.vtt 2.12Кб
04. Multiclass Classification-uNTtvxwfox0.zh-CN.vtt 1.82Кб
04. Neural Network Architecture.html 13.42Кб
04. Neural Networks.html 7.18Кб
04. Neural Networks-Mqogpnp1lrU.en.vtt 10.19Кб
04. Neural Networks-Mqogpnp1lrU.ja-JP.vtt 11.44Кб
04. Neural Networks-Mqogpnp1lrU.mp4 14.92Мб
04. Neural Networks-Mqogpnp1lrU.pt-BR.vtt 9.75Кб
04. Neural Networks-Mqogpnp1lrU.zh-CN.vtt 9.06Кб
04. OpenAI Gym.html 7.68Кб
04. OpenAI Gym-MktEOWp3QLg.en.vtt 2.21Кб
04. OpenAI Gym-MktEOWp3QLg.mp4 9.47Мб
04. OpenAI Gym-MktEOWp3QLg.pt-BR.vtt 2.48Кб
04. OpenAI Gym-MktEOWp3QLg.zh-CN.vtt 2.01Кб
04. Pitching to a Recruiter-LxAdWaA-qTQ.ar.vtt 2.19Кб
04. Pitching to a Recruiter-LxAdWaA-qTQ.en.vtt 1.94Кб
04. Pitching to a Recruiter-LxAdWaA-qTQ.es-MX.vtt 1.43Кб
04. Pitching to a Recruiter-LxAdWaA-qTQ.ja-JP.vtt 2.36Кб
04. Pitching to a Recruiter-LxAdWaA-qTQ.mp4 8.93Мб
04. Pitching to a Recruiter-LxAdWaA-qTQ.pt-BR.vtt 1.40Кб
04. Pitching to a Recruiter-LxAdWaA-qTQ.zh-CN.vtt 1.74Кб
04. Proposal Guidelines.html 7.33Кб
04. Quiz Space Representations.html 8.01Кб
04. Quiz Test Your Intuition.html 13.37Кб
04. Recommending Apps 3.html 7.36Кб
04. Recommending Apps-nEvW8B1HNq4.en.vtt 2.78Кб
04. Recommending Apps-nEvW8B1HNq4.mp4 6.32Мб
04. Recommending Apps-nEvW8B1HNq4.pt-BR.vtt 2.51Кб
04. Recommending Apps-nEvW8B1HNq4.zh-CN.vtt 2.57Кб
04. Report Guidelines.html 7.42Кб
04. RL M2L4 04 The Actor And The Critic V1-bvbE9F7urd4.en.vtt 2.72Кб
04. RL M2L4 04 The Actor And The Critic V1-bvbE9F7urd4.mp4 10.01Мб
04. RL M2L4 04 The Actor And The Critic V1-bvbE9F7urd4.pt-BR.vtt 3.03Кб
04. RL M2L4 04 The Actor And The Critic V1-bvbE9F7urd4.zh-CN.vtt 2.41Кб
04. Sarah's Height + Weight.html 8.29Кб
04. Sarah's Height + Weight-OdsfV143AMc.ar.vtt 204б
04. Sarah's Height + Weight-OdsfV143AMc.en.vtt 164б
04. Sarah's Height + Weight-OdsfV143AMc.mp4 282.39Кб
04. Sarah's Height + Weight-OdsfV143AMc.pt-BR.vtt 180б
04. Sarah's Height + Weight-OdsfV143AMc.zh-CN.vtt 166б
04. Sarah's Height + Weight-p5p3OLARpmA.ar.vtt 118б
04. Sarah's Height + Weight-p5p3OLARpmA.en.vtt 104б
04. Sarah's Height + Weight-p5p3OLARpmA.mp4 422.60Кб
04. Sarah's Height + Weight-p5p3OLARpmA.pt-BR.vtt 105б
04. Sarah's Height + Weight-p5p3OLARpmA.zh-CN.vtt 107б
04. Slightly Less Perfect Data.html 10.57Кб
04. Slightly Less Perfect Data-9O7cJSP4C8w.ar.vtt 1016б
04. Slightly Less Perfect Data-9O7cJSP4C8w.en.vtt 747б
04. Slightly Less Perfect Data-9O7cJSP4C8w.mp4 3.85Мб
04. Slightly Less Perfect Data-9O7cJSP4C8w.pt-BR.vtt 737б
04. Slightly Less Perfect Data-9O7cJSP4C8w.zh-CN.vtt 677б
04. Slightly Less Perfect Data-g5yfjKWIKN4.ar.vtt 425б
04. Slightly Less Perfect Data-g5yfjKWIKN4.en.vtt 325б
04. Slightly Less Perfect Data-g5yfjKWIKN4.mp4 1.37Мб
04. Slightly Less Perfect Data-g5yfjKWIKN4.pt-BR.vtt 331б
04. Slightly Less Perfect Data-g5yfjKWIKN4.zh-CN.vtt 316б
04. SL NB 03 Guess The Person Now V1 V2-pQgO1KF90yU.en.vtt 7.22Кб
04. SL NB 03 Guess The Person Now V1 V2-pQgO1KF90yU.mp4 21.06Мб
04. SL NB 03 Guess The Person Now V1 V2-pQgO1KF90yU.pt-BR.vtt 7.27Кб
04. SL NB 03 Guess The Person Now V1 V2-pQgO1KF90yU.zh-CN.vtt 6.05Кб
04. Stochastic Policy Search.html 6.02Кб
04. Submitting the project.html 7.45Кб
04. Submitting the project.html 7.43Кб
04. SVM 03 Error Function V1-l-ahImxoi-U.en.vtt 2.71Кб
04. SVM 03 Error Function V1-l-ahImxoi-U.mp4 5.88Мб
04. SVM 03 Error Function V1-l-ahImxoi-U.pt-BR.vtt 2.37Кб
04. SVM 03 Error Function V1-l-ahImxoi-U.zh-CN.vtt 2.34Кб
04. Temporal Difference Learning.html 6.71Кб
04. Temporal Difference Learning-lpmDi0QeUm8.en.vtt 4.12Кб
04. Temporal Difference Learning-lpmDi0QeUm8.mp4 16.98Мб
04. Temporal Difference Learning-lpmDi0QeUm8.pt-BR.vtt 4.47Кб
04. Temporal Difference Learning-lpmDi0QeUm8.zh-CN.vtt 3.60Кб
04. The Actor and The Critic.html 6.15Кб
04. Titanic Survival Exploration.html 6.01Кб
04. Udacity Support.html 10.08Кб
04. Udacity Support.html 10.03Кб
04. Uploading to Workspace.html 7.18Кб
04. Weighting the Data.html 6.29Кб
04. 分类问题 2 -46PywnGa_cQ.en.vtt 1.76Кб
04. 分类问题 2 -46PywnGa_cQ.ja-JP.vtt 1.79Кб
04. 分类问题 2 -46PywnGa_cQ.mp4 1.62Мб
04. 分类问题 2 -46PywnGa_cQ.pt-BR.vtt 1.60Кб
04. 分类问题 2 -46PywnGa_cQ.zh-CN.vtt 1.65Кб
05. 09 Higher Dimensions-eBHunImDmWw.en.vtt 2.95Кб
05. 09 Higher Dimensions-eBHunImDmWw.ja-JP.vtt 3.01Кб
05. 09 Higher Dimensions-eBHunImDmWw.mp4 2.59Мб
05. 09 Higher Dimensions-eBHunImDmWw.pt-BR.vtt 2.66Кб
05. 09 Higher Dimensions-eBHunImDmWw.zh-CN.vtt 2.37Кб
05. Advantage Function.html 6.16Кб
05. An Iterative Method, Part 1.html 8.13Кб
05. An Iterative Method-AX-hG3KvwzY.en.vtt 7.50Кб
05. An Iterative Method-AX-hG3KvwzY.mp4 27.57Мб
05. An Iterative Method-AX-hG3KvwzY.pt-BR.vtt 8.24Кб
05. An Iterative Method-AX-hG3KvwzY.zh-CN.vtt 6.27Кб
05. Bayes Theorem.html 6.91Кб
05. Categorical Cross-Entropy.html 9.83Кб
05. Categorical Cross-Entropy-3sDYifgjFck.en.vtt 4.82Кб
05. Categorical Cross-Entropy-3sDYifgjFck.mp4 5.42Мб
05. Categorical Cross-Entropy-3sDYifgjFck.pt-BR.vtt 5.13Кб
05. Categorical Cross-Entropy-3sDYifgjFck.zh-CN.vtt 4.24Кб
05. Chris's Shirt Size by Our Metric.html 8.59Кб
05. Chris's Shirt Size by Our Metric-e83ZS4VqGZ0.ar.vtt 561б
05. Chris's Shirt Size by Our Metric-e83ZS4VqGZ0.en.vtt 399б
05. Chris's Shirt Size by Our Metric-e83ZS4VqGZ0.mp4 1.28Мб
05. Chris's Shirt Size by Our Metric-e83ZS4VqGZ0.pt-BR.vtt 426б
05. Chris's Shirt Size by Our Metric-e83ZS4VqGZ0.zh-CN.vtt 369б
05. Chris's Shirt Size by Our Metric-oWyt6md7P44.ar.vtt 697б
05. Chris's Shirt Size by Our Metric-oWyt6md7P44.en.vtt 483б
05. Chris's Shirt Size by Our Metric-oWyt6md7P44.mp4 1.46Мб
05. Chris's Shirt Size by Our Metric-oWyt6md7P44.pt-BR.vtt 518б
05. Chris's Shirt Size by Our Metric-oWyt6md7P44.zh-CN.vtt 425б
05. Community Guidelines.html 8.29Кб
05. Complete-link, average-link, Ward.html 7.54Кб
05. DDPG Critic.html 9.85Кб
05. Deadline Policy.html 11.21Кб
05. Discretization.html 6.73Кб
05. Discretization-j2eZyUpy--E.en.vtt 4.58Кб
05. Discretization-j2eZyUpy--E.mp4 12.55Мб
05. Discretization-j2eZyUpy--E.pt-BR.vtt 5.13Кб
05. Discretization-j2eZyUpy--E.zh-CN.vtt 4.06Кб
05. DL 41 Feedforward FIX V2-hVCuvMGOfyY.en.vtt 6.17Кб
05. DL 41 Feedforward FIX V2-hVCuvMGOfyY.ja-JP.vtt 7.05Кб
05. DL 41 Feedforward FIX V2-hVCuvMGOfyY.mp4 5.33Мб
05. DL 41 Feedforward FIX V2-hVCuvMGOfyY.pt-BR.vtt 6.76Кб
05. DL 41 Feedforward FIX V2-hVCuvMGOfyY.zh-CN.vtt 5.36Кб
05. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.en.vtt 1.97Кб
05. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.ja-JP.vtt 2.31Кб
05. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.mp4 1.72Мб
05. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.pt-BR.vtt 2.12Кб
05. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.zh-CN.vtt 1.69Кб
05. Example Reports.html 8.33Кб
05. FastICA Algorithm.html 6.55Кб
05. Feedforward.html 9.80Кб
05. Gaussian Distribution in 2D.html 8.21Кб
05. Hello, Tensor World!.html 10.74Кб
05. Higher Dimensions.html 7.60Кб
05. Interview with Art - Part 1.html 7.93Кб
05. Interview with Art - Part 1-ClLYamtaO-Q.ar.vtt 4.59Кб
05. Interview with Art - Part 1-ClLYamtaO-Q.en.vtt 3.82Кб
05. Interview with Art - Part 1-ClLYamtaO-Q.ja-JP.vtt 4.29Кб
05. Interview with Art - Part 1-ClLYamtaO-Q.mp4 21.79Мб
05. Interview with Art - Part 1-ClLYamtaO-Q.pt-BR.vtt 4.00Кб
05. Interview with Art - Part 1-ClLYamtaO-Q.zh-CN.vtt 3.40Кб
05. Intuition.html 14.54Кб
05. L6 4 ICA Algorithm V2 V1-xlhd5UWk_-E.en.vtt 6.94Кб
05. L6 4 ICA Algorithm V2 V1-xlhd5UWk_-E.mp4 7.96Мб
05. L6 4 ICA Algorithm V2 V1-xlhd5UWk_-E.pt-BR.vtt 7.10Кб
05. Launch an Instance.html 13.31Кб
05. Learning Curves.html 6.99Кб
05. Learning Curves SC V1-ZNhnNVKl8NM.en.vtt 7.98Кб
05. Learning Curves SC V1-ZNhnNVKl8NM.mp4 6.01Мб
05. Learning Curves SC V1-ZNhnNVKl8NM.pt-BR.vtt 8.10Кб
05. Linear Boundaries.html 9.11Кб
05. Linear Boundaries-X-uMlsBi07k.en.vtt 3.85Кб
05. Linear Boundaries-X-uMlsBi07k.ja-JP.vtt 3.80Кб
05. Linear Boundaries-X-uMlsBi07k.mp4 3.85Мб
05. Linear Boundaries-X-uMlsBi07k.pt-BR.vtt 3.67Кб
05. Linear Boundaries-X-uMlsBi07k.zh-CN.vtt 3.37Кб
05. M2L3 05 V1-eZxxNNIZuwA.en.vtt 7.33Кб
05. M2L3 05 V1-eZxxNNIZuwA.mp4 16.64Мб
05. M2L3 05 V1-eZxxNNIZuwA.zh-CN.vtt 6.27Кб
05. Match Points with Clusters.html 10.35Кб
05. Match Points with Clusters-lS5DfbsWH34.ar.vtt 1.05Кб
05. Match Points with Clusters-lS5DfbsWH34.en.vtt 772б
05. Match Points with Clusters-lS5DfbsWH34.mp4 1.61Мб
05. Match Points with Clusters-lS5DfbsWH34.pt-BR.vtt 781б
05. Match Points with Clusters-lS5DfbsWH34.zh-CN.vtt 680б
05. Match Points with Clusters-wJV1cRjmIYY.ar.vtt 682б
05. Match Points with Clusters-wJV1cRjmIYY.en.vtt 613б
05. Match Points with Clusters-wJV1cRjmIYY.mp4 2.75Мб
05. Match Points with Clusters-wJV1cRjmIYY.pt-BR.vtt 671б
05. Match Points with Clusters-wJV1cRjmIYY.zh-CN.vtt 589б
05. Mini Project MC (Parts 0 and 1).html 8.17Кб
05. Mini Project TD (Parts 0 and 1).html 7.51Кб
05. MLND SL DT 04 Q Student Admissions V3 MAIN V1-MOa335cQGI4.en.vtt 1.80Кб
05. MLND SL DT 04 Q Student Admissions V3 MAIN V1-MOa335cQGI4.mp4 4.16Мб
05. MLND SL DT 04 Q Student Admissions V3 MAIN V1-MOa335cQGI4.pt-BR.vtt 1.59Кб
05. MLND SL DT 04 Q Student Admissions V3 MAIN V1-MOa335cQGI4.zh-CN.vtt 1.65Кб
05. MLND SL EM 05 Weighting The Models MAIN V1-wn6K536dPLc.en.vtt 1.26Кб
05. MLND SL EM 05 Weighting The Models MAIN V1-wn6K536dPLc.mp4 1.04Мб
05. MLND SL EM 05 Weighting The Models MAIN V1-wn6K536dPLc.pt-BR.vtt 1.16Кб
05. MLND - Unsupervised Learning - L2 05 CompleteLink AverageLink Ward MAIN V1 V2-dWGQVcZ95d0.en.vtt 7.92Кб
05. MLND - Unsupervised Learning - L2 05 CompleteLink AverageLink Ward MAIN V1 V2-dWGQVcZ95d0.mp4 22.51Мб
05. MLND - Unsupervised Learning - L2 05 CompleteLink AverageLink Ward MAIN V1 V2-dWGQVcZ95d0.pt-BR.vtt 7.64Кб
05. MLND - Unsupervised Learning - L2 05 CompleteLink AverageLink Ward MAIN V1 V2-dWGQVcZ95d0.zh-CN.vtt 7.17Кб
05. MLND - Unsupervised Learning - L3 05 Gaussian Distribution In 2D MAIN V1 V2-Ne-qRjO38qQ.en.vtt 1.92Кб
05. MLND - Unsupervised Learning - L3 05 Gaussian Distribution In 2D MAIN V1 V2-Ne-qRjO38qQ.mp4 6.99Мб
05. MLND - Unsupervised Learning - L3 05 Gaussian Distribution In 2D MAIN V1 V2-Ne-qRjO38qQ.pt-BR.vtt 2.03Кб
05. MLND - Unsupervised Learning - L3 05 Gaussian Distribution In 2D MAIN V1 V2-Ne-qRjO38qQ.zh-CN.vtt 1.66Кб
05. Moving a Line.html 7.53Кб
05. Moving A Line-8EIHFyL2Log.en.vtt 1.16Кб
05. Moving A Line-8EIHFyL2Log.mp4 981.31Кб
05. Moving A Line-8EIHFyL2Log.pt-BR.vtt 1.05Кб
05. Naive Bayes.html 7.63Кб
05. Naive Bayes Quiz-jsLkVYXmr3E.en.vtt 1.78Кб
05. Naive Bayes Quiz-jsLkVYXmr3E.mp4 10.13Мб
05. Naive Bayes Quiz-jsLkVYXmr3E.pt-BR.vtt 1.74Кб
05. Naive Bayes Quiz-jsLkVYXmr3E.zh-CN.vtt 1.66Кб
05. NumPy Arrays.html 11.48Кб
05. Perceptron.html 22.39Кб
05. Perceptron Algorithm.html 7.63Кб
05. Policy Gradients.html 6.00Кб
05. Project Workspace.html 6.41Кб
05. Q-Learning.html 6.86Кб
05. Q-Learning-AI5gLgYMSq8.en.vtt 5.27Кб
05. Q-Learning-AI5gLgYMSq8.mp4 17.31Мб
05. Q-Learning-AI5gLgYMSq8.pt-BR.vtt 5.81Кб
05. Q-Learning-AI5gLgYMSq8.zh-CN.vtt 4.65Кб
05. Quiz Episodic or Continuing.html 9.78Кб
05. Quiz Student Admissions.html 8.76Кб
05. Resources-_YPqfAnCqtk.en.vtt 2.07Кб
05. Resources-_YPqfAnCqtk.mp4 6.97Мб
05. Resources-_YPqfAnCqtk.pt-BR.vtt 2.39Кб
05. Resources-_YPqfAnCqtk.zh-CN.vtt 1.83Кб
05. Resources.html 6.54Кб
05. RL M2L4 05 Advantage Function RENDER V1 V2-vpLmzKqcgfc.en.vtt 3.90Кб
05. RL M2L4 05 Advantage Function RENDER V1 V2-vpLmzKqcgfc.mp4 10.72Мб
05. RL M2L4 05 Advantage Function RENDER V1 V2-vpLmzKqcgfc.pt-BR.vtt 4.27Кб
05. RL M2L4 05 Advantage Function RENDER V1 V2-vpLmzKqcgfc.zh-CN.vtt 3.30Кб
05. SL NB 04 Bayes Theorem V1 V2-nVbPJmf53AI.en.vtt 2.66Кб
05. SL NB 04 Bayes Theorem V1 V2-nVbPJmf53AI.mp4 7.25Мб
05. SL NB 04 Bayes Theorem V1 V2-nVbPJmf53AI.pt-BR.vtt 2.77Кб
05. SL NB 04 Bayes Theorem V1 V2-nVbPJmf53AI.zh-CN.vtt 2.24Кб
05. State-Value Functions.html 7.90Кб
05. State-Value Functions-llakAjwox_8.en.vtt 4.67Кб
05. State-Value Functions-llakAjwox_8.mp4 5.28Мб
05. State-Value Functions-llakAjwox_8.pt-BR.vtt 5.25Кб
05. State-Value Functions-llakAjwox_8.zh-CN.vtt 3.86Кб
05. Submitting the Project.html 6.95Кб
05. SVM 04 Perceptron Algorithm V1-IIlQHBOrD6Q.en.vtt 4.64Кб
05. SVM 04 Perceptron Algorithm V1-IIlQHBOrD6Q.mp4 12.93Мб
05. SVM 04 Perceptron Algorithm V1-IIlQHBOrD6Q.pt-BR.vtt 3.99Кб
05. SVM 04 Perceptron Algorithm V1-IIlQHBOrD6Q.zh-CN.vtt 3.78Кб
05. The data.html 8.46Кб
05. The Data-2RLbbV7MQNA.en.vtt 1.97Кб
05. The Data-2RLbbV7MQNA.mp4 2.85Мб
05. The Data-2RLbbV7MQNA.pt-BR.vtt 1.71Кб
05. The Data-2RLbbV7MQNA.zh-CN.vtt 1.64Кб
05. Training a Deep Learning Network.html 6.94Кб
05. Training a Deep Learning Network-CsB7yUtMJyk.en.vtt 2.07Кб
05. Training a Deep Learning Network-CsB7yUtMJyk.ja-JP.vtt 2.43Кб
05. Training a Deep Learning Network-CsB7yUtMJyk.mp4 2.56Мб
05. Training a Deep Learning Network-CsB7yUtMJyk.pt-BR.vtt 2.05Кб
05. Training a Deep Learning Network-CsB7yUtMJyk.zh-CN.vtt 1.90Кб
05. Trickiest Data Dimensionality.html 10.61Кб
05. Trickiest Data Dimensionality-mTcuS5jUeUE.ar.vtt 1.75Кб
05. Trickiest Data Dimensionality-mTcuS5jUeUE.en.vtt 1.43Кб
05. Trickiest Data Dimensionality-mTcuS5jUeUE.mp4 7.02Мб
05. Trickiest Data Dimensionality-mTcuS5jUeUE.pt-BR.vtt 1.48Кб
05. Trickiest Data Dimensionality-mTcuS5jUeUE.zh-CN.vtt 1.21Кб
05. Trickiest Data Dimensionality-vIxDt0bNV9g.ar.vtt 425б
05. Trickiest Data Dimensionality-vIxDt0bNV9g.en.vtt 325б
05. Trickiest Data Dimensionality-vIxDt0bNV9g.mp4 1.39Мб
05. Trickiest Data Dimensionality-vIxDt0bNV9g.pt-BR.vtt 362б
05. Trickiest Data Dimensionality-vIxDt0bNV9g.zh-CN.vtt 305б
05. Uploading to Workspace.html 7.25Кб
05. Uploading to Workspace.html 7.22Кб
05. Use Your Elevator Pitch on LinkedIn.html 9.76Кб
05. Weighting the Models 1.html 7.71Кб
05. When accuracy won't work.html 6.44Кб
05. When Accuracy Wont Work-r0-O-gIDXZ0.en.vtt 2.81Кб
05. When Accuracy Wont Work-r0-O-gIDXZ0.mp4 2.15Мб
05. When Accuracy Wont Work-r0-O-gIDXZ0.pt-BR.vtt 2.79Кб
06. 04 Quiz False Negatives And Positives SC V1-_ytP9zIkziw.en.vtt 2.88Кб
06. 04 Quiz False Negatives And Positives SC V1-_ytP9zIkziw.mp4 2.22Мб
06. 04 Quiz False Negatives And Positives SC V1-_ytP9zIkziw.pt-BR.vtt 2.67Кб
06. 06 Image Challenge V3-Efnoj1KNPHw.en.vtt 1.07Кб
06. 06 Image Challenge V3-Efnoj1KNPHw.mp4 1.46Мб
06. 06 Image Challenge V3-Efnoj1KNPHw.pt-BR.vtt 937б
06. 06 Image Challenge V3-Efnoj1KNPHw.zh-CN.vtt 920б
06. 09 Higher Dimensions-eBHunImDmWw.en.vtt 2.95Кб
06. 09 Higher Dimensions-eBHunImDmWw.ja-JP.vtt 3.01Кб
06. 09 Higher Dimensions-eBHunImDmWw.mp4 2.59Мб
06. 09 Higher Dimensions-eBHunImDmWw.pt-BR.vtt 2.66Кб
06. 09 Higher Dimensions-eBHunImDmWw.zh-CN.vtt 2.37Кб
06. Absolute Trick.html 7.54Кб
06. Absolute Trick-DJWjBAqSkZw.en.vtt 6.58Кб
06. Absolute Trick-DJWjBAqSkZw.mp4 5.17Мб
06. Absolute Trick-DJWjBAqSkZw.pt-BR.vtt 6.41Кб
06. Actor-Critic with Advantage.html 6.21Кб
06. AND Perceptron Quiz.html 10.93Кб
06. An Iterative Method, Part 2.html 14.05Кб
06. Backpropagation.html 12.87Кб
06. Backpropagation V2-1SmY3TZTyUk.en.vtt 7.21Кб
06. Backpropagation V2-1SmY3TZTyUk.ja-JP.vtt 7.49Кб
06. Backpropagation V2-1SmY3TZTyUk.mp4 6.52Мб
06. Backpropagation V2-1SmY3TZTyUk.pt-BR.vtt 7.17Кб
06. Backpropagation V2-1SmY3TZTyUk.zh-CN.vtt 6.39Кб
06. Bellman Equations.html 11.21Кб
06. Bellman Equations-UgIaDMvSdUo.en.vtt 3.78Кб
06. Bellman Equations-UgIaDMvSdUo.mp4 4.14Мб
06. Bellman Equations-UgIaDMvSdUo.pt-BR.vtt 3.86Кб
06. Bellman Equations-UgIaDMvSdUo.zh-CN.vtt 2.99Кб
06. Calculating The Gradient 1 -tVuZDbUrzzI.en.vtt 3.41Кб
06. Calculating The Gradient 1 -tVuZDbUrzzI.ja-JP.vtt 3.52Кб
06. Calculating The Gradient 1 -tVuZDbUrzzI.mp4 3.31Мб
06. Calculating The Gradient 1 -tVuZDbUrzzI.pt-BR.vtt 3.44Кб
06. Calculating The Gradient 1 -tVuZDbUrzzI.zh-CN.vtt 2.91Кб
06. Chain Rule-YAhIBOnbt54.en.vtt 1.65Кб
06. Chain Rule-YAhIBOnbt54.ja-JP.vtt 1.64Кб
06. Chain Rule-YAhIBOnbt54.mp4 1.46Мб
06. Chain Rule-YAhIBOnbt54.pt-BR.vtt 1.73Кб
06. Chain Rule-YAhIBOnbt54.zh-CN.vtt 1.42Кб
06. Classification Error.html 7.10Кб
06. Community Guidelines.html 8.16Кб
06. Comparing Features with Different Scales.html 7.10Кб
06. Comparing Features with Different Scales-PRL8trOU7Rs.ar.vtt 4.36Кб
06. Comparing Features with Different Scales-PRL8trOU7Rs.en.vtt 3.04Кб
06. Comparing Features with Different Scales-PRL8trOU7Rs.mp4 11.52Мб
06. Comparing Features with Different Scales-PRL8trOU7Rs.pt-BR.vtt 3.12Кб
06. Comparing Features with Different Scales-PRL8trOU7Rs.zh-CN.vtt 2.55Кб
06. Create Your Profile With SEO In Mind.html 9.44Кб
06. DDPG Agent.html 11.26Кб
06. Deep Q Network.html 6.92Кб
06. Deep Q Network-GgtR_d1OB-M.en.vtt 5.85Кб
06. Deep Q Network-GgtR_d1OB-M.mp4 25.67Мб
06. Deep Q Network-GgtR_d1OB-M.pt-BR.vtt 6.34Кб
06. Deep Q Network-GgtR_d1OB-M.zh-CN.vtt 5.25Кб
06. Detecting Overfitting and Underfitting with Learning Curves.html 19.05Кб
06. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.en.vtt 5.89Кб
06. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.ja-JP.vtt 6.00Кб
06. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.mp4 5.13Мб
06. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.pt-BR.vtt 5.61Кб
06. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.zh-CN.vtt 5.00Кб
06. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.en.vtt 6.16Кб
06. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.ja-JP.vtt 6.18Кб
06. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.mp4 5.69Мб
06. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.pt-BR.vtt 6.50Кб
06. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.zh-CN.vtt 5.05Кб
06. Exercise Discretization.html 7.03Кб
06. False Negatives and Positives.html 8.79Кб
06. Filters.html 15.20Кб
06. GMM in 2D.html 8.10Кб
06. Hierarchical clustering implementation.html 7.59Кб
06. Higher Dimensions.html 9.57Кб
06. ICA.html 7.72Кб
06. Identify fixes for example “bad” profile.html 10.97Кб
06. Identify fixes for example “bad” profile-AF07y1oAim0.ar.vtt 490б
06. Identify fixes for example “bad” profile-AF07y1oAim0.en.vtt 371б
06. Identify fixes for example “bad” profile-AF07y1oAim0.ja-JP.vtt 473б
06. Identify fixes for example “bad” profile-AF07y1oAim0.mp4 569.35Кб
06. Identify fixes for example “bad” profile-AF07y1oAim0.pt-BR.vtt 457б
06. Identify fixes for example “bad” profile-AF07y1oAim0.zh-CN.vtt 357б
06. Identify fixes for example “bad” profile-ncFtwW5urHk.ar.vtt 1.94Кб
06. Identify fixes for example “bad” profile-ncFtwW5urHk.en.vtt 1.39Кб
06. Identify fixes for example “bad” profile-ncFtwW5urHk.ja-JP.vtt 1.61Кб
06. Identify fixes for example “bad” profile-ncFtwW5urHk.mp4 1.59Мб
06. Identify fixes for example “bad” profile-ncFtwW5urHk.pt-BR.vtt 1.48Кб
06. Identify fixes for example “bad” profile-ncFtwW5urHk.zh-CN.vtt 1.31Кб
06. Image Challenges.html 9.06Кб
06. Login to the Instance.html 10.26Кб
06. M2L3 06 V1-RMjdQkl6CqE.en.vtt 910б
06. M2L3 06 V1-RMjdQkl6CqE.mp4 3.01Мб
06. M2L3 06 V1-RMjdQkl6CqE.zh-CN.vtt 804б
06. MC Prediction Action Values.html 7.79Кб
06. MC Prediction Action Values-08tLtbh0xLs.en.vtt 6.07Кб
06. MC Prediction Action Values-08tLtbh0xLs.mp4 22.01Мб
06. MC Prediction Action Values-08tLtbh0xLs.pt-BR.vtt 7.03Кб
06. MC Prediction Action Values-08tLtbh0xLs.zh-CN.vtt 5.17Кб
06. MLND SL EM 06 Weighting The Models MAIN V2-unCJ_ifVquU.en.vtt 3.72Кб
06. MLND SL EM 06 Weighting The Models MAIN V2-unCJ_ifVquU.mp4 3.56Мб
06. MLND SL EM 06 Weighting The Models MAIN V2-unCJ_ifVquU.pt-BR.vtt 4.03Кб
06. MLND - Unsupervised Learning - L2 06 Hierarchical Clustering Implementation MAIN V1 V1-tRqKsk5M9Mc.en.vtt 1.76Кб
06. MLND - Unsupervised Learning - L2 06 Hierarchical Clustering Implementation MAIN V1 V1-tRqKsk5M9Mc.mp4 7.48Мб
06. MLND - Unsupervised Learning - L2 06 Hierarchical Clustering Implementation MAIN V1 V1-tRqKsk5M9Mc.pt-BR.vtt 1.61Кб
06. MLND - Unsupervised Learning - L2 06 Hierarchical Clustering Implementation MAIN V1 V1-tRqKsk5M9Mc.zh-CN.vtt 1.64Кб
06. MLND - Unsupervised Learning - L3 06 GMM In 2D MAIN Sfx V1 V1-GsNWVHmRRG4.en.vtt 1.42Кб
06. MLND - Unsupervised Learning - L3 06 GMM In 2D MAIN Sfx V1 V1-GsNWVHmRRG4.mp4 6.00Мб
06. MLND - Unsupervised Learning - L3 06 GMM In 2D MAIN Sfx V1 V1-GsNWVHmRRG4.pt-BR.vtt 1.59Кб
06. MLND - Unsupervised Learning - L3 06 GMM In 2D MAIN Sfx V1 V1-GsNWVHmRRG4.zh-CN.vtt 1.21Кб
06. Model Validation in Keras.html 9.02Кб
06. Model Validation in Keras-002jNXSM6CU.en.vtt 5.51Кб
06. Model Validation in Keras-002jNXSM6CU.mp4 5.20Мб
06. Model Validation in Keras-002jNXSM6CU.pt-BR.vtt 6.07Кб
06. Model Validation in Keras-002jNXSM6CU.zh-CN.vtt 4.74Кб
06. Monte Carlo Policy Gradients.html 6.04Кб
06. Naive Bayes Quiz.html 8.25Кб
06. Optimizing Centers (Rubber Bands).html 9.09Кб
06. Optimizing Centers (Rubber Bands)-nNR4hjhhGBc.ar.vtt 2.11Кб
06. Optimizing Centers (Rubber Bands)-nNR4hjhhGBc.en.vtt 1.63Кб
06. Optimizing Centers (Rubber Bands)-nNR4hjhhGBc.mp4 4.59Мб
06. Optimizing Centers (Rubber Bands)-nNR4hjhhGBc.pt-BR.vtt 1.56Кб
06. Optimizing Centers (Rubber Bands)-nNR4hjhhGBc.zh-CN.vtt 1.43Кб
06. Optimizing Centers (Rubber Bands)-TN1rQMrx65c.ar.vtt 836б
06. Optimizing Centers (Rubber Bands)-TN1rQMrx65c.en.vtt 595б
06. Optimizing Centers (Rubber Bands)-TN1rQMrx65c.mp4 1.80Мб
06. Optimizing Centers (Rubber Bands)-TN1rQMrx65c.pt-BR.vtt 606б
06. Optimizing Centers (Rubber Bands)-TN1rQMrx65c.zh-CN.vtt 488б
06. PCA for Data Transformation.html 9.12Кб
06. PCA for Data Transformation-nDuo5ECT1G4.ar.vtt 2.14Кб
06. PCA for Data Transformation-nDuo5ECT1G4.en.vtt 1.55Кб
06. PCA for Data Transformation-nDuo5ECT1G4.mp4 7.86Мб
06. PCA for Data Transformation-nDuo5ECT1G4.pt-BR.vtt 1.54Кб
06. PCA for Data Transformation-nDuo5ECT1G4.zh-CN.vtt 1.28Кб
06. Perceptrons.html 7.62Кб
06. Program Readiness.html 6.70Кб
06. Project Workspace.html 6.48Кб
06. Quiz False Positives.html 8.14Кб
06. Reference Guide.html 6.09Кб
06. RL M2L4 06 Actor Critic With Advantage RENDER V1 V1-Bwd2OF7hJXQ.en.vtt 1.00Кб
06. RL M2L4 06 Actor Critic With Advantage RENDER V1 V1-Bwd2OF7hJXQ.mp4 3.09Мб
06. RL M2L4 06 Actor Critic With Advantage RENDER V1 V1-Bwd2OF7hJXQ.pt-BR.vtt 1.18Кб
06. RL M2L4 06 Actor Critic With Advantage RENDER V1 V1-Bwd2OF7hJXQ.zh-CN.vtt 891б
06. Save and Restore TensorFlow Models.html 15.39Кб
06. SL NB 05 Q False Positives V1 V2-ngA6v09eP08.en.vtt 1.93Кб
06. SL NB 05 Q False Positives V1 V2-ngA6v09eP08.mp4 5.41Мб
06. SL NB 05 Q False Positives V1 V2-ngA6v09eP08.pt-BR.vtt 1.94Кб
06. SL NB 05 Q False Positives V1 V2-ngA6v09eP08.zh-CN.vtt 1.67Кб
06. Solution Student Admissions.html 7.60Кб
06. Student Admissions-TdgBi6LtOB8.en.vtt 2.50Кб
06. Student Admissions-TdgBi6LtOB8.mp4 5.41Мб
06. Student Admissions-TdgBi6LtOB8.pt-BR.vtt 2.31Кб
06. Student Admissions-TdgBi6LtOB8.zh-CN.vtt 2.34Кб
06. Submitting the Project.html 7.91Кб
06. SVM 05 Classification Error V1-nWGVAGXwvGE.en.vtt 3.59Кб
06. SVM 05 Classification Error V1-nWGVAGXwvGE.mp4 12.57Мб
06. SVM 05 Classification Error V1-nWGVAGXwvGE.pt-BR.vtt 3.03Кб
06. SVM 05 Classification Error V1-nWGVAGXwvGE.zh-CN.vtt 2.91Кб
06. TD Prediction Action Values.html 7.33Кб
06. TD Prediction Action Values-1c029-7_9GA.en.vtt 2.68Кб
06. TD Prediction Action Values-1c029-7_9GA.mp4 9.73Мб
06. TD Prediction Action Values-1c029-7_9GA.zh-CN.vtt 2.22Кб
06. The Reward Hypothesis.html 7.30Кб
06. The Reward Hypothesis-uAqNwgZ49JE.en.vtt 3.45Кб
06. The Reward Hypothesis-uAqNwgZ49JE.mp4 4.38Мб
06. The Reward Hypothesis-uAqNwgZ49JE.pt-BR.vtt 3.68Кб
06. The Reward Hypothesis-uAqNwgZ49JE.zh-CN.vtt 3.01Кб
06. Training models in sklearn.html 16.27Кб
06. Transition to Classification.html 9.42Кб
06. Weighting the Models 2.html 9.36Кб
06. Workspace.html 6.44Кб
06-l-supervised-classification-391-1.jpg 27.68Кб
07. [Lab] Hierarchical clustering .html 7.64Кб
07. 07 Quiz Data Challenges V1-F8yc7BlV93c.en.vtt 526б
07. 07 Quiz Data Challenges V1-F8yc7BlV93c.mp4 862.50Кб
07. 07 Quiz Data Challenges V1-F8yc7BlV93c.pt-BR.vtt 482б
07. 07 Quiz Data Challenges V1-F8yc7BlV93c.zh-CN.vtt 468б
07. Answer False Negatives And Positives-KOytJL1lvgg.en.vtt 2.82Кб
07. Answer False Negatives And Positives-KOytJL1lvgg.mp4 2.23Мб
07. Answer False Negatives And Positives-KOytJL1lvgg.pt-BR.vtt 2.84Кб
07. Center of a New Coordinate System.html 10.75Кб
07. Center of a New Coordinate System-1ask5zHGQKM.ar.vtt 393б
07. Center of a New Coordinate System-1ask5zHGQKM.en.vtt 298б
07. Center of a New Coordinate System-1ask5zHGQKM.mp4 1.81Мб
07. Center of a New Coordinate System-1ask5zHGQKM.pt-BR.vtt 271б
07. Center of a New Coordinate System-1ask5zHGQKM.zh-CN.vtt 245б
07. Center of a New Coordinate System-Kst3mlrqJnQ.ar.vtt 1.32Кб
07. Center of a New Coordinate System-Kst3mlrqJnQ.en.vtt 943б
07. Center of a New Coordinate System-Kst3mlrqJnQ.mp4 4.68Мб
07. Center of a New Coordinate System-Kst3mlrqJnQ.pt-BR.vtt 954б
07. Center of a New Coordinate System-Kst3mlrqJnQ.zh-CN.vtt 806б
07. Constrained Policy Gradients.html 6.02Кб
07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.en.vtt 5.89Кб
07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.ja-JP.vtt 6.00Кб
07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.mp4 5.13Мб
07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.pt-BR.vtt 5.61Кб
07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.zh-CN.vtt 5.00Кб
07. DL 08 AND And OR Perceptrons-Y-ImuxNpS40.en.vtt 3.33Кб
07. DL 08 AND And OR Perceptrons-Y-ImuxNpS40.mp4 2.73Мб
07. DL 08 AND And OR Perceptrons-Y-ImuxNpS40.zh-CN.vtt 2.48Кб
07. DL 09 XOR Perceptron--z9K49fdE3g.mp4 511.79Кб
07. Entropy.html 7.27Кб
07. Entropy-piLpj1V1HEk.en.vtt 4.78Кб
07. Entropy-piLpj1V1HEk.mp4 12.59Мб
07. Entropy-piLpj1V1HEk.pt-BR.vtt 4.19Кб
07. Entropy-piLpj1V1HEk.zh-CN.vtt 4.32Кб
07. Experience Replay.html 6.95Кб
07. Experience Replay-wX_-SZG-YMQ.en.vtt 9.51Кб
07. Experience Replay-wX_-SZG-YMQ.mp4 48.38Мб
07. Experience Replay-wX_-SZG-YMQ.pt-BR.vtt 11.32Кб
07. Experience Replay-wX_-SZG-YMQ.zh-CN.vtt 8.25Кб
07. Feature Map Sizes.html 11.95Кб
07. Feature-Map-Sizes-Question-lp1NrLZnCUM.en.vtt 594б
07. Feature-Map-Sizes-Question-lp1NrLZnCUM.ja-JP.vtt 664б
07. Feature-Map-Sizes-Question-lp1NrLZnCUM.mp4 708.93Кб
07. Feature-Map-Sizes-Question-lp1NrLZnCUM.pt-BR.vtt 663б
07. Feature-Map-Sizes-Question-lp1NrLZnCUM.zh-CN.vtt 555б
07. Feature-Map-Sizes-Solution-W4xtf8LTz1c.en.vtt 1.05Кб
07. Feature-Map-Sizes-Solution-W4xtf8LTz1c.ja-JP.vtt 1.14Кб
07. Feature-Map-Sizes-Solution-W4xtf8LTz1c.mp4 1.15Мб
07. Feature-Map-Sizes-Solution-W4xtf8LTz1c.pt-BR.vtt 1.06Кб
07. Feature-Map-Sizes-Solution-W4xtf8LTz1c.zh-CN.vtt 966б
07. Feature Scaling Formula Quiz 1.html 8.35Кб
07. Feature Scaling Formula Quiz 1-jOxS1eJRsOk.ar.vtt 1.63Кб
07. Feature Scaling Formula Quiz 1-jOxS1eJRsOk.en.vtt 1.18Кб
07. Feature Scaling Formula Quiz 1-jOxS1eJRsOk.mp4 3.37Мб
07. Feature Scaling Formula Quiz 1-jOxS1eJRsOk.pt-BR.vtt 1.20Кб
07. Feature Scaling Formula Quiz 1-jOxS1eJRsOk.zh-CN.vtt 1.04Кб
07. Feature Scaling Formula Quiz 1-sPqs7DoBkXQ.ar.vtt 284б
07. Feature Scaling Formula Quiz 1-sPqs7DoBkXQ.en.vtt 208б
07. Feature Scaling Formula Quiz 1-sPqs7DoBkXQ.mp4 546.12Кб
07. Feature Scaling Formula Quiz 1-sPqs7DoBkXQ.pt-BR.vtt 186б
07. Feature Scaling Formula Quiz 1-sPqs7DoBkXQ.zh-CN.vtt 166б
07. Finetuning.html 10.78Кб
07. Goals and Rewards, Part 1.html 7.33Кб
07. Goals and Rewards, Part 1-XPnj3Ya3EuM.en.vtt 3.25Кб
07. Goals and Rewards, Part 1-XPnj3Ya3EuM.mp4 6.84Мб
07. Goals and Rewards, Part 1-XPnj3Ya3EuM.pt-BR.vtt 3.61Кб
07. Goals and Rewards, Part 1-XPnj3Ya3EuM.zh-CN.vtt 2.82Кб
07. ICA in sklearn.html 6.31Кб
07. Implementation.html 9.48Кб
07. Keras.html 18.43Кб
07. L6 5 ICA Implementation V1 V1-fZGxYfJmKaE.en.vtt 938б
07. L6 5 ICA Implementation V1 V1-fZGxYfJmKaE.mp4 1.04Мб
07. L6 5 ICA Implementation V1 V1-fZGxYfJmKaE.pt-BR.vtt 955б
07. M2L3 07 V2-ZBLLGIN1EfU.en.vtt 9.11Кб
07. M2L3 07 V2-ZBLLGIN1EfU.mp4 43.55Мб
07. M2L3 07 V2-ZBLLGIN1EfU.zh-CN.vtt 7.88Кб
07. Margin Error.html 7.06Кб
07. MLND SL EM 07 Weighting The Models 3 V1 MAIN V1-fecp5nmetws.en.vtt 3.40Кб
07. MLND SL EM 07 Weighting The Models 3 V1 MAIN V1-fecp5nmetws.mp4 2.85Мб
07. MLND SL EM 07 Weighting The Models 3 V1 MAIN V1-fecp5nmetws.pt-BR.vtt 3.47Кб
07. More Resources.html 7.48Кб
07. Moving Centers 2.html 9.07Кб
07. Moving Centers 2-FY0DXe0lfrI.ar.vtt 479б
07. Moving Centers 2-FY0DXe0lfrI.en.vtt 368б
07. Moving Centers 2-FY0DXe0lfrI.mp4 1.34Мб
07. Moving Centers 2-FY0DXe0lfrI.pt-BR.vtt 370б
07. Moving Centers 2-FY0DXe0lfrI.zh-CN.vtt 361б
07. Moving Centers 2-uC1Xwc7warg.ar.vtt 444б
07. Moving Centers 2-uC1Xwc7warg.en.vtt 312б
07. Moving Centers 2-uC1Xwc7warg.mp4 803.69Кб
07. Moving Centers 2-uC1Xwc7warg.pt-BR.vtt 326б
07. Moving Centers 2-uC1Xwc7warg.zh-CN.vtt 332б
07. Naive Bayes Answer.html 7.66Кб
07. Naive Bayes Answer-YKN-fjuZ1VU.en.vtt 1.69Кб
07. Naive Bayes Answer-YKN-fjuZ1VU.mp4 2.28Мб
07. Naive Bayes Answer-YKN-fjuZ1VU.pt-BR.vtt 1.66Кб
07. Naive Bayes Answer-YKN-fjuZ1VU.zh-CN.vtt 1.55Кб
07. OR NOT Perceptron Quiz.html 11.54Кб
07. Ornstein–Uhlenbeck Noise.html 8.01Кб
07. Perceptrons.html 9.59Кб
07. Perceptrons as Logical Operators.html 17.59Кб
07. Precision and Recall.html 6.84Кб
07. Profile Essentials.html 11.24Кб
07. Quick Fixes #1.html 7.76Кб
07. Quick Fixes-Lb9e2KemR6I.ar.vtt 2.61Кб
07. Quick Fixes-Lb9e2KemR6I.en.vtt 1.89Кб
07. Quick Fixes-Lb9e2KemR6I.ja-JP.vtt 2.18Кб
07. Quick Fixes-Lb9e2KemR6I.mp4 3.99Мб
07. Quick Fixes-Lb9e2KemR6I.pt-BR.vtt 2.06Кб
07. Quick Fixes-Lb9e2KemR6I.zh-CN.vtt 1.87Кб
07. Quiz An Iterative Method.html 12.29Кб
07. Quiz Data Challenges.html 9.77Кб
07. Quiz Gaussian Mixtures.html 11.12Кб
07. Quiz State-Value Functions.html 13.34Кб
07. SL NB 06 S False Positives V1 V3-Bg6_Tvcv81A.en.vtt 6.46Кб
07. SL NB 06 S False Positives V1 V3-Bg6_Tvcv81A.mp4 14.35Мб
07. SL NB 06 S False Positives V1 V3-Bg6_Tvcv81A.pt-BR.vtt 6.53Кб
07. SL NB 06 S False Positives V1 V3-Bg6_Tvcv81A.zh-CN.vtt 5.41Кб
07. Solution Detecting Overfitting and Underfitting.html 9.59Кб
07. Solution False Positives.html 6.97Кб
07. Square Trick.html 7.53Кб
07. Square Trick-AGZEq-yQgRM.en.vtt 3.91Кб
07. Square Trick-AGZEq-yQgRM.mp4 3.28Мб
07. Square Trick-AGZEq-yQgRM.pt-BR.vtt 3.78Кб
07. Summary.html 5.83Кб
07. Summary-hvYQ_3LgCYs.en.vtt 2.34Кб
07. Summary-hvYQ_3LgCYs.mp4 16.90Мб
07. Summary-hvYQ_3LgCYs.pt-BR.vtt 2.79Кб
07. Summary-hvYQ_3LgCYs.zh-CN.vtt 2.09Кб
07. Supervised Classification.html 8.36Кб
07. Supervised Classification-XTGsutypAPE.en.vtt 1.11Кб
07. Supervised Classification-XTGsutypAPE.ja-JP.vtt 1.27Кб
07. Supervised Classification-XTGsutypAPE.mp4 1.32Мб
07. Supervised Classification-XTGsutypAPE.pt-BR.vtt 1.14Кб
07. Supervised Classification-XTGsutypAPE.zh-CN.vtt 1.00Кб
07. SVM 06 Margin Error V2-dSac8Gfgbok.en.vtt 6.55Кб
07. SVM 06 Margin Error V2-dSac8Gfgbok.mp4 18.79Мб
07. SVM 06 Margin Error V2-dSac8Gfgbok.pt-BR.vtt 5.61Кб
07. SVM 06 Margin Error V2-dSac8Gfgbok.zh-CN.vtt 5.71Кб
07. TD Control Sarsa(0).html 6.95Кб
07. TD Control Sarsa(0)-LkFkjfsRpXc.en.vtt 2.21Кб
07. TD Control Sarsa(0)-LkFkjfsRpXc.mp4 7.63Мб
07. TD Control Sarsa(0)-LkFkjfsRpXc.zh-CN.vtt 1.88Кб
07. Tile Coding.html 6.70Кб
07. Tile Coding-BRs7AnTZ_8k.en.vtt 3.76Кб
07. Tile Coding-BRs7AnTZ_8k.mp4 11.03Мб
07. Tile Coding-BRs7AnTZ_8k.pt-BR.vtt 4.20Кб
07. Tile Coding-BRs7AnTZ_8k.zh-CN.vtt 3.34Кб
07. Tuning Parameters Manually.html 12.59Кб
07. Weighting the Models 3.html 6.31Кб
07. When do MLPs (not) work well .html 8.68Кб
07. When do MLPs (not) work well-deMeuLdZN3Q.en.vtt 3.61Кб
07. When do MLPs (not) work well-deMeuLdZN3Q.mp4 5.54Мб
07. When do MLPs (not) work well-deMeuLdZN3Q.pt-BR.vtt 3.84Кб
07. When do MLPs (not) work well-deMeuLdZN3Q.zh-CN.vtt 3.11Кб
08. (Optional) Margin Error Calculation.html 11.98Кб
08. [Lab] Independent Component Analysis.html 6.86Кб
08. [Lab Solution] Hierarchical Clustering.html 7.65Кб
08. 06 Precision SC V1-q2wVorBfefU.en.vtt 2.69Кб
08. 06 Precision SC V1-q2wVorBfefU.mp4 2.24Мб
08. 06 Precision SC V1-q2wVorBfefU.pt-BR.vtt 2.64Кб
08. 07 Perceptron Algorithm Trick-lif_qPmXvWA.en.vtt 4.11Кб
08. 07 Perceptron Algorithm Trick-lif_qPmXvWA.ja-JP.vtt 4.20Кб
08. 07 Perceptron Algorithm Trick-lif_qPmXvWA.mp4 3.66Мб
08. 07 Perceptron Algorithm Trick-lif_qPmXvWA.pt-BR.vtt 4.17Кб
08. 07 Perceptron Algorithm Trick-lif_qPmXvWA.zh-CN.vtt 3.53Кб
08. Bayesian Learning 1.html 10.18Кб
08. Combining the Models.html 6.30Кб
08. Convolutions Cont.-utOv-BKI_vo.en.vtt 1.03Кб
08. Convolutions Cont.-utOv-BKI_vo.ja-JP.vtt 1.13Кб
08. Convolutions Cont.-utOv-BKI_vo.mp4 1.60Мб
08. Convolutions Cont.-utOv-BKI_vo.pt-BR.vtt 965б
08. Convolutions Cont.-utOv-BKI_vo.zh-CN.vtt 944б
08. Convolutions continued.html 9.57Кб
08. DL 08 AND And OR Perceptrons-Y-ImuxNpS40.en.vtt 3.33Кб
08. DL 08 AND And OR Perceptrons-Y-ImuxNpS40.mp4 2.73Мб
08. DL 08 AND And OR Perceptrons-Y-ImuxNpS40.zh-CN.vtt 2.48Кб
08. DL 09 XOR Perceptron--z9K49fdE3g.mp4 511.79Кб
08. DL 10 S Perceptron Algorithm-fATmrG2hQzI.en.vtt 420б
08. DL 10 S Perceptron Algorithm-fATmrG2hQzI.ja-JP.vtt 477б
08. DL 10 S Perceptron Algorithm-fATmrG2hQzI.mp4 260.01Кб
08. DL 10 S Perceptron Algorithm-fATmrG2hQzI.pt-BR.vtt 364б
08. DL 10 S Perceptron Algorithm-fATmrG2hQzI.zh-CN.vtt 390б
08. Entropy Formula 1.html 9.11Кб
08. Entropy Formula-iZiSYrOKvpo.en.vtt 1.80Кб
08. Entropy Formula-iZiSYrOKvpo.mp4 4.30Мб
08. Entropy Formula-iZiSYrOKvpo.pt-BR.vtt 1.69Кб
08. Entropy Formula-iZiSYrOKvpo.zh-CN.vtt 1.77Кб
08. Exercise Tile Coding.html 7.02Кб
08. Feature Scaling Formula Quiz 2.html 8.35Кб
08. Feature Scaling Formula Quiz 2-J6RyUyWxrM4.ar.vtt 306б
08. Feature Scaling Formula Quiz 2-J6RyUyWxrM4.en.vtt 229б
08. Feature Scaling Formula Quiz 2-J6RyUyWxrM4.mp4 188.86Кб
08. Feature Scaling Formula Quiz 2-J6RyUyWxrM4.pt-BR.vtt 233б
08. Feature Scaling Formula Quiz 2-J6RyUyWxrM4.zh-CN.vtt 165б
08. Feature Scaling Formula Quiz 2-vmIK4jpUtNo.ar.vtt 140б
08. Feature Scaling Formula Quiz 2-vmIK4jpUtNo.en.vtt 108б
08. Feature Scaling Formula Quiz 2-vmIK4jpUtNo.mp4 189.32Кб
08. Feature Scaling Formula Quiz 2-vmIK4jpUtNo.pt-BR.vtt 124б
08. Feature Scaling Formula Quiz 2-vmIK4jpUtNo.zh-CN.vtt 125б
08. Fixed Q Targets.html 6.86Кб
08. Fixed Q Targets-SWpyiEezfp4.en.vtt 5.42Кб
08. Fixed Q Targets-SWpyiEezfp4.mp4 20.97Мб
08. Fixed Q Targets-SWpyiEezfp4.pt-BR.vtt 5.93Кб
08. Fixed Q Targets-SWpyiEezfp4.zh-CN.vtt 4.77Кб
08. Goals and Rewards, Part 2.html 7.91Кб
08. Goals and Rewards, Part 2-pVIFc72VYH8.en.vtt 5.72Кб
08. Goals and Rewards, Part 2-pVIFc72VYH8.mp4 8.05Мб
08. Goals and Rewards, Part 2-pVIFc72VYH8.pt-BR.vtt 6.32Кб
08. Goals and Rewards, Part 2-pVIFc72VYH8.zh-CN.vtt 4.99Кб
08. Gradient Descent.html 7.65Кб
08. Gradient Descent.html 7.56Кб
08. Gradient Descent-4s4x9h6AN5Y.en.vtt 5.61Кб
08. Gradient Descent-4s4x9h6AN5Y.mp4 4.25Мб
08. Gradient Descent-4s4x9h6AN5Y.pt-BR.vtt 5.23Кб
08. Gradient Descent-BEC0uH1fuGU.en.vtt 1.60Кб
08. Gradient Descent-BEC0uH1fuGU.mp4 2.45Мб
08. Gradient Descent-BEC0uH1fuGU.pt-BR.vtt 1.52Кб
08. Gradient Descent-BEC0uH1fuGU.zh-CN.vtt 1.41Кб
08. Grid Search.html 6.94Кб
08. Grid Search SC V1-zDw-ZGiHW5I.en.vtt 4.05Кб
08. Grid Search SC V1-zDw-ZGiHW5I.mp4 3.44Мб
08. Grid Search SC V1-zDw-ZGiHW5I.pt-BR.vtt 4.15Кб
08. Implementation.html 9.33Кб
08. Iterative Policy Evaluation.html 7.77Кб
08. M1 L1 C05 V3 No Slack-OH-fVUpoyZDyGE.mp4 7.47Мб
08. M2L3 08 V1-og3W6CXn1F0.en.vtt 1.36Кб
08. M2L3 08 V1-og3W6CXn1F0.mp4 7.63Мб
08. M2L3 08 V1-og3W6CXn1F0.zh-CN.vtt 1.24Кб
08. Match Points (again).html 10.25Кб
08. Match Points (again)-5j6VZr8sHo8.ar.vtt 1.59Кб
08. Match Points (again)-5j6VZr8sHo8.en.vtt 1.22Кб
08. Match Points (again)-5j6VZr8sHo8.mp4 5.13Мб
08. Match Points (again)-5j6VZr8sHo8.pt-BR.vtt 1.28Кб
08. Match Points (again)-5j6VZr8sHo8.zh-CN.vtt 1.01Кб
08. Match Points (again)-9J3IwQFXveI.ar.vtt 510б
08. Match Points (again)-9J3IwQFXveI.en.vtt 355б
08. Match Points (again)-9J3IwQFXveI.mp4 1.06Мб
08. Match Points (again)-9J3IwQFXveI.pt-BR.vtt 369б
08. Match Points (again)-9J3IwQFXveI.zh-CN.vtt 355б
08. Mini Project MC (Part 2).html 8.15Кб
08. Mini project Training an MLP on MNIST.html 11.74Кб
08. MLND SL EM 08 Combining The Models V1 MAIN V1-1GxscvKU2Ic.en.vtt 2.50Кб
08. MLND SL EM 08 Combining The Models V1 MAIN V1-1GxscvKU2Ic.mp4 2.65Мб
08. MLND SL EM 08 Combining The Models V1 MAIN V1-1GxscvKU2Ic.pt-BR.vtt 2.43Кб
08. MLND Turning Paramaters-eSv2lPcnRM0.en.vtt 857б
08. MLND Turning Paramaters-eSv2lPcnRM0.mp4 3.65Мб
08. MLND Turning Paramaters-eSv2lPcnRM0.pt-BR.vtt 727б
08. MLND Turning Paramaters-eSv2lPcnRM0.zh-CN.vtt 756б
08. MLND - Unsupervised Learning - L3 08 Overview Of The Expectation Maximization Algorithm MAIN V1 V1-XdQfFnnj5Xo.en.vtt 1.76Кб
08. MLND - Unsupervised Learning - L3 08 Overview Of The Expectation Maximization Algorithm MAIN V1 V1-XdQfFnnj5Xo.mp4 6.42Мб
08. MLND - Unsupervised Learning - L3 08 Overview Of The Expectation Maximization Algorithm MAIN V1 V1-XdQfFnnj5Xo.pt-BR.vtt 1.98Кб
08. MLND - Unsupervised Learning - L3 08 Overview Of The Expectation Maximization Algorithm MAIN V1 V1-XdQfFnnj5Xo.zh-CN.vtt 1.43Кб
08. Optimality.html 6.54Кб
08. Optimality-j231aRV74QM.en.vtt 4.60Кб
08. Optimality-j231aRV74QM.mp4 5.99Мб
08. Optimality-j231aRV74QM.pt-BR.vtt 5.06Кб
08. Optimality-j231aRV74QM.zh-CN.vtt 3.85Кб
08. Overview of The Expectation Maximization (EM) Algorithm.html 8.42Кб
08. Perceptron Algorithm--zhTROHtscQ.en.vtt 2.64Кб
08. Perceptron Algorithm--zhTROHtscQ.ja-JP.vtt 2.89Кб
08. Perceptron Algorithm--zhTROHtscQ.mp4 1.92Мб
08. Perceptron Algorithm--zhTROHtscQ.pt-BR.vtt 2.41Кб
08. Perceptron Algorithm--zhTROHtscQ.zh-CN.vtt 2.35Кб
08. Perceptrons as Logical Operators.html 19.57Кб
08. Perceptron Trick.html 10.49Кб
08. Precision.html 8.02Кб
08. Pre-Lab Student Admissions in Keras.html 14.42Кб
08. Principal Axis of New Coordinate System.html 10.58Кб
08. Principal Axis of New Coordinate System-i6zv8vyZBk0.ar.vtt 1016б
08. Principal Axis of New Coordinate System-i6zv8vyZBk0.en.vtt 775б
08. Principal Axis of New Coordinate System-i6zv8vyZBk0.mp4 3.15Мб
08. Principal Axis of New Coordinate System-i6zv8vyZBk0.pt-BR.vtt 736б
08. Principal Axis of New Coordinate System-i6zv8vyZBk0.zh-CN.vtt 662б
08. Principal Axis of New Coordinate System-qPr3Uj55eog.ar.vtt 301б
08. Principal Axis of New Coordinate System-qPr3Uj55eog.en.vtt 205б
08. Principal Axis of New Coordinate System-qPr3Uj55eog.mp4 702.49Кб
08. Principal Axis of New Coordinate System-qPr3Uj55eog.pt-BR.vtt 226б
08. Principal Axis of New Coordinate System-qPr3Uj55eog.zh-CN.vtt 167б
08. Quick Fixes #2.html 8.71Кб
08. Quick Fixes #2-It6AEuSDQw0.ar.vtt 608б
08. Quick Fixes #2-It6AEuSDQw0.en.vtt 435б
08. Quick Fixes #2-It6AEuSDQw0.ja-JP.vtt 484б
08. Quick Fixes #2-It6AEuSDQw0.mp4 2.25Мб
08. Quick Fixes #2-It6AEuSDQw0.pt-BR.vtt 453б
08. Quick Fixes #2-It6AEuSDQw0.zh-CN.vtt 410б
08. Recap.html 5.85Кб
08. Regularization Intro.html 6.94Кб
08. Regularization Intro-pECnr-5F3_Q.en.vtt 1.44Кб
08. Regularization Intro-pECnr-5F3_Q.en-US.vtt 1.45Кб
08. Regularization Intro-pECnr-5F3_Q.ja-JP.vtt 1.80Кб
08. Regularization Intro-pECnr-5F3_Q.mp4 8.33Мб
08. Regularization Intro-pECnr-5F3_Q.pt-BR.vtt 1.30Кб
08. Regularization Intro-pECnr-5F3_Q.zh-CN.vtt 1.32Кб
08. SL NB 07 Q Bayesian Learning 1 V1 V4-J4BmsKXPnkA.en.vtt 2.38Кб
08. SL NB 07 Q Bayesian Learning 1 V1 V4-J4BmsKXPnkA.mp4 6.09Мб
08. SL NB 07 Q Bayesian Learning 1 V1 V4-J4BmsKXPnkA.pt-BR.vtt 2.22Кб
08. SL NB 07 Q Bayesian Learning 1 V1 V4-J4BmsKXPnkA.zh-CN.vtt 2.21Кб
08. Solution Data Challenges.html 8.59Кб
08. Solution Data Challenges-1z3o4niQuNg.en.vtt 867б
08. Solution Data Challenges-1z3o4niQuNg.mp4 1.49Мб
08. Solution Data Challenges-1z3o4niQuNg.pt-BR.vtt 730б
08. Solution Data Challenges-1z3o4niQuNg.zh-CN.vtt 810б
08. Training Your Logistic Classifier .html 8.43Кб
08. Training Your Logistic Classifier-WQsdr1EJgz8.en.vtt 2.45Кб
08. Training Your Logistic Classifier-WQsdr1EJgz8.ja-JP.vtt 2.62Кб
08. Training Your Logistic Classifier-WQsdr1EJgz8.mp4 2.72Мб
08. Training Your Logistic Classifier-WQsdr1EJgz8.pt-BR.vtt 2.41Кб
08. Training Your Logistic Classifier-WQsdr1EJgz8.zh-CN.vtt 2.12Кб
08. Troubleshooting.html 9.37Кб
08. Tuning Parameters Automatically.html 6.38Кб
08. Work Experiences Accomplishments.html 9.69Кб
08. XOR Perceptron Quiz.html 11.49Кб
09. [Solution] Independent Component Analysis.html 6.85Кб
09. 07 Recall SC V1-0n5wUZiefkQ.en.vtt 3.05Кб
09. 07 Recall SC V1-0n5wUZiefkQ.mp4 2.15Мб
09. 07 Recall SC V1-0n5wUZiefkQ.pt-BR.vtt 2.79Кб
09. Action-Value Functions.html 7.44Кб
09. Action-Value Functions-KJLaRfOOPGA.en.vtt 4.65Кб
09. Action-Value Functions-KJLaRfOOPGA.mp4 6.60Мб
09. Action-Value Functions-KJLaRfOOPGA.pt-BR.vtt 5.32Кб
09. Action-Value Functions-KJLaRfOOPGA.zh-CN.vtt 3.94Кб
09. AdaBoost in sklearn.html 7.54Кб
09. Bayesian Learning 2.html 6.97Кб
09. Build and Strengthen Your Network.html 10.64Кб
09. Coarse Coding.html 6.72Кб
09. Coarse Coding-Uu1J5KLAfTU.en.vtt 3.07Кб
09. Coarse Coding-Uu1J5KLAfTU.mp4 10.30Мб
09. Coarse Coding-Uu1J5KLAfTU.pt-BR.vtt 3.41Кб
09. Coarse Coding-Uu1J5KLAfTU.zh-CN.vtt 2.74Кб
09. Deep Q-Learning Algorithm.html 7.22Кб
09. Deep Q-Learning Algorithm-MqTXoCxQ_eY.en.vtt 4.48Кб
09. Deep Q-Learning Algorithm-MqTXoCxQ_eY.mp4 17.45Мб
09. Deep Q-Learning Algorithm-MqTXoCxQ_eY.pt-BR.vtt 5.35Кб
09. Deep Q-Learning Algorithm-MqTXoCxQ_eY.zh-CN.vtt 3.84Кб
09. Entropy Formula 2.html 8.65Кб
09. Error Function.html 7.06Кб
09. Expectation Maximization Part 1.html 8.26Кб
09. Feature Scaling Formula Quiz 3.html 8.58Кб
09. Feature Scaling Formula Quiz 3-bY2fuRkH3iw.ar.vtt 1.92Кб
09. Feature Scaling Formula Quiz 3-bY2fuRkH3iw.en.vtt 1.42Кб
09. Feature Scaling Formula Quiz 3-bY2fuRkH3iw.mp4 3.28Мб
09. Feature Scaling Formula Quiz 3-bY2fuRkH3iw.pt-BR.vtt 1.47Кб
09. Feature Scaling Formula Quiz 3-bY2fuRkH3iw.zh-CN.vtt 1.14Кб
09. Feature Scaling Formula Quiz 3-iY_sO4d23gY.ar.vtt 842б
09. Feature Scaling Formula Quiz 3-iY_sO4d23gY.en.vtt 600б
09. Feature Scaling Formula Quiz 3-iY_sO4d23gY.mp4 2.46Мб
09. Feature Scaling Formula Quiz 3-iY_sO4d23gY.pt-BR.vtt 683б
09. Feature Scaling Formula Quiz 3-iY_sO4d23gY.zh-CN.vtt 507б
09. Generalized Policy Iteration.html 7.81Кб
09. Generalized Policy Iteration-XRmz4nolEsw.en.vtt 2.29Кб
09. Generalized Policy Iteration-XRmz4nolEsw.mp4 6.92Мб
09. Generalized Policy Iteration-XRmz4nolEsw.pt-BR.vtt 2.57Кб
09. Generalized Policy Iteration-XRmz4nolEsw.zh-CN.vtt 1.84Кб
09. Grid Search in sklearn.html 8.24Кб
09. Handoff to Katie.html 7.24Кб
09. Handoff to Katie-knrPsGtpyQY.ar.vtt 258б
09. Handoff to Katie-knrPsGtpyQY.en.vtt 207б
09. Handoff to Katie-knrPsGtpyQY.mp4 782.02Кб
09. Handoff to Katie-knrPsGtpyQY.pt-BR.vtt 204б
09. Handoff to Katie-knrPsGtpyQY.zh-CN.vtt 206б
09. HC examples and applications.html 8.03Кб
09. Implementation.html 13.48Кб
09. Lab Student Admissions in Keras.html 8.70Кб
09. Linear Regression Question-sf51L0RN6zc.en.vtt 1.50Кб
09. Linear Regression Question-sf51L0RN6zc.mp4 1.76Мб
09. Linear Regression Question-sf51L0RN6zc.pt-BR.vtt 1.49Кб
09. Linear Regression Question-sf51L0RN6zc.zh-CN.vtt 1.48Кб
09. Linear Regression Quiz.html 8.56Кб
09. Local Connectivity.html 8.32Кб
09. Local Connectivity-z9wiDg0w-Dc.en.vtt 8.95Кб
09. Local Connectivity-z9wiDg0w-Dc.mp4 12.02Мб
09. Local Connectivity-z9wiDg0w-Dc.pt-BR.vtt 9.29Кб
09. Local Connectivity-z9wiDg0w-Dc.zh-CN.vtt 7.62Кб
09. Mean Absolute Error.html 7.58Кб
09. Mean Absolute Error-vLKiY0Ehors.en.vtt 3.52Кб
09. Mean Absolute Error-vLKiY0Ehors.mp4 2.57Мб
09. Mean Absolute Error-vLKiY0Ehors.pt-BR.vtt 3.30Кб
09. Mini Project TD (Part 2).html 7.48Кб
09. MLND SL DT 08 Entropy Formula 2 MAIN V2-6GHg70hrSJw.en.vtt 4.88Кб
09. MLND SL DT 08 Entropy Formula 2 MAIN V2-6GHg70hrSJw.mp4 12.34Мб
09. MLND SL DT 08 Entropy Formula 2 MAIN V2-6GHg70hrSJw.pt-BR.vtt 3.90Кб
09. MLND SL DT 08 Entropy Formula 2 MAIN V2-6GHg70hrSJw.zh-CN.vtt 4.42Кб
09. MLND - Unsupervised Learning - L2 07 HC Examples Applications MAIN V1 V2-HTahFoQwk2g.en.vtt 1.98Кб
09. MLND - Unsupervised Learning - L2 07 HC Examples Applications MAIN V1 V2-HTahFoQwk2g.mp4 9.16Мб
09. MLND - Unsupervised Learning - L2 07 HC Examples Applications MAIN V1 V2-HTahFoQwk2g.pt-BR.vtt 1.99Кб
09. MLND - Unsupervised Learning - L2 07 HC Examples Applications MAIN V1 V2-HTahFoQwk2g.zh-CN.vtt 1.63Кб
09. MLND - Unsupervised Learning - L3 09 Expectation Maximization Pt 1 V1 MAIN 1 V2-cf-RLKn5ubA.en.vtt 7.81Кб
09. MLND - Unsupervised Learning - L3 09 Expectation Maximization Pt 1 V1 MAIN 1 V2-cf-RLKn5ubA.mp4 32.58Мб
09. MLND - Unsupervised Learning - L3 09 Expectation Maximization Pt 1 V1 MAIN 1 V2-cf-RLKn5ubA.pt-BR.vtt 7.90Кб
09. MLND - Unsupervised Learning - L3 09 Expectation Maximization Pt 1 V1 MAIN 1 V2-cf-RLKn5ubA.zh-CN.vtt 6.74Кб
09. Parameters.html 14.55Кб
09. Perceptron Algorithm.html 14.20Кб
09. Perceptron Algorithm Pseudocode-p8Q3yu9YqYk.en.vtt 3.45Кб
09. Perceptron Algorithm Pseudocode-p8Q3yu9YqYk.ja-JP.vtt 3.87Кб
09. Perceptron Algorithm Pseudocode-p8Q3yu9YqYk.mp4 2.87Мб
09. Perceptron Algorithm Pseudocode-p8Q3yu9YqYk.pt-BR.vtt 3.27Кб
09. Quiz Goals and Rewards.html 13.71Кб
09. Quiz TensorFlow Linear Function.html 23.69Кб
09. Recall.html 8.17Кб
09. Regularization.html 6.77Кб
09. Regularization-QcJBhbuCl5g.en.vtt 1.47Кб
09. Regularization-QcJBhbuCl5g.ja-JP.vtt 1.85Кб
09. Regularization-QcJBhbuCl5g.mp4 1.56Мб
09. Regularization-QcJBhbuCl5g.pt-BR.vtt 1.50Кб
09. Regularization-QcJBhbuCl5g.zh-CN.vtt 1.27Кб
09. Second Principal Component of New System.html 11.09Кб
09. Second Principal Component Of New System-cTjBlM2ATLQ.ar.vtt 711б
09. Second Principal Component Of New System-cTjBlM2ATLQ.en.vtt 489б
09. Second Principal Component Of New System-cTjBlM2ATLQ.mp4 1.26Мб
09. Second Principal Component Of New System-cTjBlM2ATLQ.pt-BR.vtt 507б
09. Second Principal Component Of New System-cTjBlM2ATLQ.zh-CN.vtt 440б
09. Second Principal Component Of New System-PqtW_Ux2_nY.ar.vtt 1.70Кб
09. Second Principal Component Of New System-PqtW_Ux2_nY.en.vtt 1.24Кб
09. Second Principal Component Of New System-PqtW_Ux2_nY.mp4 3.95Мб
09. Second Principal Component Of New System-PqtW_Ux2_nY.pt-BR.vtt 1.25Кб
09. Second Principal Component Of New System-PqtW_Ux2_nY.zh-CN.vtt 1.08Кб
09. SL NB 08 S Bayesian Learning 2 V1 V6-3rIYZgCXVXY.en.vtt 1.58Кб
09. SL NB 08 S Bayesian Learning 2 V1 V6-3rIYZgCXVXY.mp4 1.80Мб
09. SL NB 08 S Bayesian Learning 2 V1 V6-3rIYZgCXVXY.pt-BR.vtt 1.59Кб
09. SL NB 08 S Bayesian Learning 2 V1 V6-3rIYZgCXVXY.zh-CN.vtt 1.35Кб
09. SVM 07 Error Function V1-A1wbrcSYc1c.en.vtt 517б
09. SVM 07 Error Function V1-A1wbrcSYc1c.mp4 1.72Мб
09. SVM 07 Error Function V1-A1wbrcSYc1c.pt-BR.vtt 465б
09. SVM 07 Error Function V1-A1wbrcSYc1c.zh-CN.vtt 467б
09. Testing-gmxGRJSKEb0.en-US.vtt 7.63Кб
09. Testing-gmxGRJSKEb0.mp4 14.31Мб
09. Testing-gmxGRJSKEb0.pt-BR.vtt 7.34Кб
09. Testing-gmxGRJSKEb0.zh-CN.vtt 6.75Кб
09. Testing your models.html 11.28Кб
09. The Simplest Neural Network.html 14.15Кб
09. Training the Neural Network.html 8.63Кб
09. Training The Neural Network-HwiI-UXUx-M.en.vtt 1.11Кб
09. Training The Neural Network-HwiI-UXUx-M.mp4 1.24Мб
09. Training The Neural Network-HwiI-UXUx-M.pt-BR.vtt 977б
09. Training The Neural Network-HwiI-UXUx-M.zh-CN.vtt 995б
09. Why Neural Networks.html 8.42Кб
09. Writing READMEs with Walter.html 8.16Кб
09. Writing READMEs with Walter-DQEfT2Zq5_o.ar.vtt 1.50Кб
09. Writing READMEs with Walter-DQEfT2Zq5_o.en.vtt 1.34Кб
09. Writing READMEs with Walter-DQEfT2Zq5_o.ja-JP.vtt 1.48Кб
09. Writing READMEs with Walter-DQEfT2Zq5_o.mp4 6.92Мб
09. Writing READMEs with Walter-DQEfT2Zq5_o.pt-BR.vtt 1.22Кб
09. Writing READMEs with Walter-DQEfT2Zq5_o.zh-CN.vtt 1.18Кб
09. 为何是神经网络-zAkzOZntK6Y.en.vtt 1.38Кб
09. 为何是神经网络-zAkzOZntK6Y.ja-JP.vtt 1.63Кб
09. 为何是神经网络-zAkzOZntK6Y.mp4 982.27Кб
09. 为何是神经网络-zAkzOZntK6Y.pt-BR.vtt 1.27Кб
09. 为何是神经网络-zAkzOZntK6Y.zh-CN.vtt 1.19Кб
1. (FreeTutorials.Us) Download Udemy Paid Courses For Free.url 328б
10. [Quiz] Hierarchical clustering.html 8.90Кб
10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.en.vtt 4.11Кб
10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.ja-JP.vtt 4.20Кб
10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.mp4 3.66Мб
10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.pt-BR.vtt 4.17Кб
10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.zh-CN.vtt 3.53Кб
10. 08 F1 Score SC V1-TRzBeL07fSg.en.vtt 7.93Кб
10. 08 F1 Score SC V1-TRzBeL07fSg.mp4 6.05Мб
10. 08 F1 Score SC V1-TRzBeL07fSg.pt-BR.vtt 7.39Кб
10. 10 Quiz Random Vs Preinitiliazed Weights V3-DRC1e4XGl2M.en.vtt 853б
10. 10 Quiz Random Vs Preinitiliazed Weights V3-DRC1e4XGl2M.mp4 1.58Мб
10. 10 Quiz Random Vs Preinitiliazed Weights V3-DRC1e4XGl2M.pt-BR.vtt 754б
10. 10 Quiz Random Vs Preinitiliazed Weights V3-DRC1e4XGl2M.zh-CN.vtt 734б
10. Bayesian Learning 3.html 7.26Кб
10. Convolutional Layers (Part 1).html 8.36Кб
10. Convolutional Layers-h5R_JvdUrUI.en.vtt 7.22Кб
10. Convolutional Layers-h5R_JvdUrUI.mp4 8.04Мб
10. Convolutional Layers-h5R_JvdUrUI.pt-BR.vtt 7.57Кб
10. Convolutional Layers-h5R_JvdUrUI.zh-CN.vtt 6.10Кб
10. Cumulative Reward.html 7.26Кб
10. Cumulative Reward-ysriH65lV9o.en.vtt 5.36Кб
10. Cumulative Reward-ysriH65lV9o.mp4 9.96Мб
10. Cumulative Reward-ysriH65lV9o.pt-BR.vtt 6.00Кб
10. Cumulative Reward-ysriH65lV9o.zh-CN.vtt 4.40Кб
10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.en.vtt 420б
10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.ja-JP.vtt 477б
10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.mp4 260.01Кб
10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.pt-BR.vtt 364б
10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.zh-CN.vtt 390б
10. DQN Improvements.html 7.56Кб
10. DQN Improvements-Zfdbp93A2GU.en.vtt 12.13Кб
10. DQN Improvements-Zfdbp93A2GU.mp4 39.40Мб
10. DQN Improvements-Zfdbp93A2GU.pt-BR.vtt 14.18Кб
10. DQN Improvements-Zfdbp93A2GU.zh-CN.vtt 10.72Кб
10. Entropy Formula 3.html 7.80Кб
10. Entropy Formula-w73JTBVeyjE.en.vtt 2.93Кб
10. Entropy Formula-w73JTBVeyjE.mp4 8.00Мб
10. Entropy Formula-w73JTBVeyjE.pt-BR.vtt 2.61Кб
10. Entropy Formula-w73JTBVeyjE.zh-CN.vtt 2.54Кб
10. Expectation Maximization Part 2.html 8.25Кб
10. F1 Score.html 7.43Кб
10. Function Approximation.html 8.07Кб
10. Function Approximation-UTGWVY6jEdg.en.vtt 4.11Кб
10. Function Approximation-UTGWVY6jEdg.mp4 20.08Мб
10. Function Approximation-UTGWVY6jEdg.pt-BR.vtt 4.59Кб
10. Function Approximation-UTGWVY6jEdg.zh-CN.vtt 3.65Кб
10. Gradient Descent.html 14.31Кб
10. Gradient Descent-29PmNG7fuuM.en.vtt 1.60Кб
10. Gradient Descent-29PmNG7fuuM.ja-JP.vtt 1.64Кб
10. Gradient Descent-29PmNG7fuuM.mp4 2.46Мб
10. Gradient Descent-29PmNG7fuuM.pt-BR.vtt 1.52Кб
10. Gradient Descent-29PmNG7fuuM.zh-CN.vtt 1.41Кб
10. Grid Search Lab.html 7.08Кб
10. ICA Applications.html 7.32Кб
10. Interview with Art - Part 2.html 7.92Кб
10. Interview with Art - Part 2-Vvzl2J5K7-Y.ar.vtt 2.82Кб
10. Interview with Art - Part 2-Vvzl2J5K7-Y.en.vtt 2.16Кб
10. Interview with Art - Part 2-Vvzl2J5K7-Y.ja-JP.vtt 2.52Кб
10. Interview with Art - Part 2-Vvzl2J5K7-Y.mp4 13.17Мб
10. Interview with Art - Part 2-Vvzl2J5K7-Y.pt-BR.vtt 2.40Кб
10. Interview with Art - Part 2-Vvzl2J5K7-Y.zh-CN.vtt 2.07Кб
10. K-Means Cluster Visualization.html 9.03Кб
10. K-Means Cluster Visualization-iCTPBcowJRY.ar.vtt 2.07Кб
10. K-Means Cluster Visualization-iCTPBcowJRY.en.vtt 1.55Кб
10. K-Means Cluster Visualization-iCTPBcowJRY.mp4 3.34Мб
10. K-Means Cluster Visualization-iCTPBcowJRY.pt-BR.vtt 1.45Кб
10. K-Means Cluster Visualization-iCTPBcowJRY.zh-CN.vtt 1.32Кб
10. K-Means Cluster Visualization-ZMfwPUrOFsE.ar.vtt 583б
10. K-Means Cluster Visualization-ZMfwPUrOFsE.en.vtt 451б
10. K-Means Cluster Visualization-ZMfwPUrOFsE.mp4 1.14Мб
10. K-Means Cluster Visualization-ZMfwPUrOFsE.pt-BR.vtt 454б
10. K-Means Cluster Visualization-ZMfwPUrOFsE.zh-CN.vtt 424б
10. L6 6 ICA Applications MAIN V1 V1 V1-th12mTv1B7g.en.vtt 4.16Кб
10. L6 6 ICA Applications MAIN V1 V1 V1-th12mTv1B7g.mp4 9.87Мб
10. L6 6 ICA Applications MAIN V1 V1 V1-th12mTv1B7g.pt-BR.vtt 4.07Кб
10. Linear Regression Answer.html 7.72Кб
10. Linear Regression Answer-L5QBqYDNJn0.en.vtt 5.16Кб
10. Linear Regression Answer-L5QBqYDNJn0.mp4 4.53Мб
10. Linear Regression Answer-L5QBqYDNJn0.pt-BR.vtt 4.81Кб
10. Linear Regression Answer-L5QBqYDNJn0.zh-CN.vtt 4.70Кб
10. MC Control Incremental Mean.html 7.80Кб
10. MC Control Incremental Mean-E2RITH-2NUE.en.vtt 5.43Кб
10. MC Control Incremental Mean-E2RITH-2NUE.mp4 20.07Мб
10. MC Control Incremental Mean-E2RITH-2NUE.pt-BR.vtt 5.84Кб
10. MC Control Incremental Mean-E2RITH-2NUE.zh-CN.vtt 4.52Кб
10. Mean Squared Error.html 7.58Кб
10. Mean Squared Error-MRyxmZDngI4.en.vtt 2.49Кб
10. Mean Squared Error-MRyxmZDngI4.mp4 1.83Мб
10. Mean Squared Error-MRyxmZDngI4.pt-BR.vtt 2.26Кб
10. Mini Project DP (Parts 0 and 1).html 8.52Кб
10. MinMax Rescaler Coding Quiz.html 9.52Кб
10. MinMax Rescaler Coding Quiz-ePXAzoGVviM.ar.vtt 1.10Кб
10. MinMax Rescaler Coding Quiz-ePXAzoGVviM.en.vtt 828б
10. MinMax Rescaler Coding Quiz-ePXAzoGVviM.mp4 1.58Мб
10. MinMax Rescaler Coding Quiz-ePXAzoGVviM.pt-BR.vtt 891б
10. MinMax Rescaler Coding Quiz-ePXAzoGVviM.zh-CN.vtt 668б
10. MinMax Rescaler Coding Quiz-xTEkF0voyoM.ar.vtt 624б
10. MinMax Rescaler Coding Quiz-xTEkF0voyoM.en.vtt 418б
10. MinMax Rescaler Coding Quiz-xTEkF0voyoM.mp4 745.32Кб
10. MinMax Rescaler Coding Quiz-xTEkF0voyoM.pt-BR.vtt 454б
10. MinMax Rescaler Coding Quiz-xTEkF0voyoM.zh-CN.vtt 396б
10. MLND - Unsupervised Learning - L3 10 Expectation Maximization Pt 2 MAIN V1 V2-B_xXd0mFUm4.en.vtt 6.98Кб
10. MLND - Unsupervised Learning - L3 10 Expectation Maximization Pt 2 MAIN V1 V2-B_xXd0mFUm4.mp4 26.30Мб
10. MLND - Unsupervised Learning - L3 10 Expectation Maximization Pt 2 MAIN V1 V2-B_xXd0mFUm4.pt-BR.vtt 6.94Кб
10. MLND - Unsupervised Learning - L3 10 Expectation Maximization Pt 2 MAIN V1 V2-B_xXd0mFUm4.zh-CN.vtt 5.98Кб
10. Outro.html 6.10Кб
10. Perceptron Algorithm--zhTROHtscQ.en.vtt 2.64Кб
10. Perceptron Algorithm--zhTROHtscQ.ja-JP.vtt 2.89Кб
10. Perceptron Algorithm--zhTROHtscQ.mp4 1.92Мб
10. Perceptron Algorithm--zhTROHtscQ.pt-BR.vtt 2.41Кб
10. Perceptron Algorithm--zhTROHtscQ.zh-CN.vtt 2.35Кб
10. Perceptron Trick.html 12.47Кб
10. Practice Finding Centers.html 10.62Кб
10. Practice Finding Centers-FZVBF1HR4U0.ar.vtt 122б
10. Practice Finding Centers-FZVBF1HR4U0.en.vtt 109б
10. Practice Finding Centers-FZVBF1HR4U0.mp4 577.97Кб
10. Practice Finding Centers-FZVBF1HR4U0.pt-BR.vtt 109б
10. Practice Finding Centers-FZVBF1HR4U0.zh-CN.vtt 113б
10. Practice Finding Centers-PRjmvj6Vubs.ar.vtt 1019б
10. Practice Finding Centers-PRjmvj6Vubs.en.vtt 804б
10. Practice Finding Centers-PRjmvj6Vubs.mp4 3.87Мб
10. Practice Finding Centers-PRjmvj6Vubs.pt-BR.vtt 853б
10. Practice Finding Centers-PRjmvj6Vubs.zh-CN.vtt 701б
10. Quiz Action-Value Functions.html 7.63Кб
10. Quiz Convolution Output Shape.html 10.18Кб
10. Quiz Random vs Pre-initialized Weights.html 9.70Кб
10. Quiz TensorFlow Softmax.html 11.01Кб
10. Quiz Testing in sklearn.html 11.81Кб
10. Reaching Out on LinkedIn.html 9.33Кб
10. Regularization Quiz.html 7.86Кб
10. Regularization-Quiz-E0eEW6V0_sA.en-US.vtt 638б
10. Regularization-Quiz-E0eEW6V0_sA.ja-JP.vtt 681б
10. Regularization-Quiz-E0eEW6V0_sA.mp4 598.33Кб
10. Regularization-Quiz-E0eEW6V0_sA.pt-BR.vtt 643б
10. Regularization-Quiz-E0eEW6V0_sA.zh-CN.vtt 557б
10. Resources.html 6.41Кб
10. SL NB 09 Bayesian Learning 3 V1 V4-u-Hj4RsJn1o.en.vtt 3.21Кб
10. SL NB 09 Bayesian Learning 3 V1 V4-u-Hj4RsJn1o.mp4 9.33Мб
10. SL NB 09 Bayesian Learning 3 V1 V4-u-Hj4RsJn1o.pt-BR.vtt 3.00Кб
10. SL NB 09 Bayesian Learning 3 V1 V4-u-Hj4RsJn1o.zh-CN.vtt 2.74Кб
10. SVM 08 The C Parameter V2-6CxPhVo0hRw.en.vtt 2.81Кб
10. SVM 08 The C Parameter V2-6CxPhVo0hRw.mp4 7.03Мб
10. SVM 08 The C Parameter V2-6CxPhVo0hRw.pt-BR.vtt 2.47Кб
10. SVM 08 The C Parameter V2-6CxPhVo0hRw.zh-CN.vtt 2.45Кб
10. TD Control Sarsamax.html 7.26Кб
10. TD Control Sarsamax-4DxoYuR7aZ4.en.vtt 4.58Кб
10. TD Control Sarsamax-4DxoYuR7aZ4.mp4 16.53Мб
10. TD Control Sarsamax-4DxoYuR7aZ4.zh-CN.vtt 3.83Кб
10. The C Parameter.html 7.07Кб
10. Training Optimization.html 8.28Кб
10. Training Optimization-UiGKhx9pUYc.en.vtt 824б
10. Training Optimization-UiGKhx9pUYc.mp4 2.96Мб
10. Training Optimization-UiGKhx9pUYc.pt-BR.vtt 874б
10. Training Optimization-UiGKhx9pUYc.zh-CN.vtt 840б
11. [Solution] Grid Search Lab.html 7.10Кб
11. 09 Quiz Fbeta Score SC V1-KSswld4_9bY.en.vtt 4.03Кб
11. 09 Quiz Fbeta Score SC V1-KSswld4_9bY.mp4 2.68Мб
11. 09 Quiz Fbeta Score SC V1-KSswld4_9bY.pt-BR.vtt 3.72Кб
11. Action Values.html 12.87Кб
11. Boost Your Visibility.html 8.55Кб
11. Camadas convolucionais-RnM1D-XI--8.en.vtt 9.99Кб
11. Camadas convolucionais-RnM1D-XI--8.mp4 17.05Мб
11. Camadas convolucionais-RnM1D-XI--8.pt-BR.vtt 11.00Кб
11. Camadas convolucionais-RnM1D-XI--8.zh-CN.vtt 8.71Кб
11. Commit messages best practices.html 10.08Кб
11. Convolutional Layers (Part 2).html 9.13Кб
11. DBSCAN.html 7.70Кб
11. Discounted Return.html 8.06Кб
11. Discounted Return-opXGNPwwn7g.en.vtt 7.16Кб
11. Discounted Return-opXGNPwwn7g.mp4 14.30Мб
11. Discounted Return-opXGNPwwn7g.pt-BR.vtt 7.96Кб
11. Discounted Return-opXGNPwwn7g.zh-CN.vtt 5.97Кб
11. Dropout.html 6.75Кб
11. Dropout RENDER-6DcImJS8uV8.en-US.vtt 2.64Кб
11. Dropout RENDER-6DcImJS8uV8.ja-JP.vtt 3.09Кб
11. Dropout RENDER-6DcImJS8uV8.mp4 2.58Мб
11. Dropout RENDER-6DcImJS8uV8.pt-BR.vtt 2.67Кб
11. Dropout RENDER-6DcImJS8uV8.zh-CN.vtt 2.32Кб
11. Early Stopping.html 8.26Кб
11. F-beta Score.html 11.03Кб
11. Gradient Descent-Math-7sxA5Ap8AWM.en.vtt 10.81Кб
11. Gradient Descent-Math-7sxA5Ap8AWM.ja-JP.vtt 11.41Кб
11. Gradient Descent-Math-7sxA5Ap8AWM.mp4 11.25Мб
11. Gradient Descent-Math-7sxA5Ap8AWM.pt-BR.vtt 10.84Кб
11. Gradient Descent-Math-7sxA5Ap8AWM.zh-CN.vtt 9.46Кб
11. Gradient Descent The Math.html 7.59Кб
11. Implementation.html 7.81Кб
11. Implementing Deep Q-Learning.html 7.66Кб
11. K-Means Clustering Visualization 2.html 7.83Кб
11. K-Means Clustering Visualization 2-fQXXa-CAoS0.ar.vtt 4.85Кб
11. K-Means Clustering Visualization 2-fQXXa-CAoS0.en.vtt 3.51Кб
11. K-Means Clustering Visualization 2-fQXXa-CAoS0.mp4 10.53Мб
11. K-Means Clustering Visualization 2-fQXXa-CAoS0.pt-BR.vtt 3.39Кб
11. K-Means Clustering Visualization 2-fQXXa-CAoS0.zh-CN.vtt 3.04Кб
11. Linear Function Approximation.html 6.84Кб
11. Linear Function Approximation-OJ5wrB7o-pI.en.vtt 6.91Кб
11. Linear Function Approximation-OJ5wrB7o-pI.mp4 28.67Мб
11. Linear Function Approximation-OJ5wrB7o-pI.pt-BR.vtt 7.81Кб
11. Linear Function Approximation-OJ5wrB7o-pI.zh-CN.vtt 5.81Кб
11. Logistic Regression Question-wQXKdeVHTmc.en.vtt 2.29Кб
11. Logistic Regression Question-wQXKdeVHTmc.mp4 2.96Мб
11. Logistic Regression Question-wQXKdeVHTmc.pt-BR.vtt 2.01Кб
11. Logistic Regression Question-wQXKdeVHTmc.zh-CN.vtt 1.85Кб
11. Logistic Regression Quiz.html 8.36Кб
11. Minimizing Error Functions.html 9.62Кб
11. Minimizing Error Functions-RbT2TXN_6tY.en.vtt 4.50Кб
11. Minimizing Error Functions-RbT2TXN_6tY.mp4 3.85Мб
11. Minimizing Error Functions-RbT2TXN_6tY.pt-BR.vtt 4.58Кб
11. MinMax Scaler in sklearn.html 6.97Кб
11. MinMax Scaler in sklearn-lgoh5R05YM0.ar.vtt 7.96Кб
11. MinMax Scaler in sklearn-lgoh5R05YM0.en.vtt 6.09Кб
11. MinMax Scaler in sklearn-lgoh5R05YM0.mp4 14.90Мб
11. MinMax Scaler in sklearn-lgoh5R05YM0.pt-BR.vtt 5.62Кб
11. MinMax Scaler in sklearn-lgoh5R05YM0.zh-CN.vtt 5.41Кб
11. MLND SL NB Naive Bayes Algorithm-CQBMB9jwcp8.en.vtt 6.47Кб
11. MLND SL NB Naive Bayes Algorithm-CQBMB9jwcp8.mp4 5.14Мб
11. MLND SL NB Naive Bayes Algorithm-CQBMB9jwcp8.pt-BR.vtt 6.23Кб
11. MLND SL NB Naive Bayes Algorithm-CQBMB9jwcp8.zh-CN.vtt 5.56Кб
11. MLND - Unsupervised Learning - L2 08 DBSCAN MAIN V1 V2--dqyFkfnctI.en.vtt 6.58Кб
11. MLND - Unsupervised Learning - L2 08 DBSCAN MAIN V1 V2--dqyFkfnctI.mp4 19.97Мб
11. MLND - Unsupervised Learning - L2 08 DBSCAN MAIN V1 V2--dqyFkfnctI.pt-BR.vtt 5.79Кб
11. MLND - Unsupervised Learning - L2 08 DBSCAN MAIN V1 V2--dqyFkfnctI.zh-CN.vtt 6.11Кб
11. MLND - Unsupervised Learning - L3 11 Visual Example Of EM Progress MAIN V1 V1-9x3d_eVJrJE.en.vtt 3.18Кб
11. MLND - Unsupervised Learning - L3 11 Visual Example Of EM Progress MAIN V1 V1-9x3d_eVJrJE.mp4 19.74Мб
11. MLND - Unsupervised Learning - L3 11 Visual Example Of EM Progress MAIN V1 V1-9x3d_eVJrJE.pt-BR.vtt 2.95Кб
11. MLND - Unsupervised Learning - L3 11 Visual Example Of EM Progress MAIN V1 V1-9x3d_eVJrJE.zh-CN.vtt 2.88Кб
11. Model Complexity Graph-NnS0FJyVcDQ.en.vtt 5.32Кб
11. Model Complexity Graph-NnS0FJyVcDQ.mp4 4.90Мб
11. Model Complexity Graph-NnS0FJyVcDQ.pt-BR.vtt 5.52Кб
11. Model Complexity Graph-NnS0FJyVcDQ.zh-CN.vtt 4.65Кб
11. Multiclass Entropy.html 9.26Кб
11. Naive Bayes Algorithm 1.html 8.37Кб
11. Optimal Policies.html 6.58Кб
11. Optimal Policies-2rguYpVyCto.en.vtt 3.91Кб
11. Optimal Policies-2rguYpVyCto.mp4 7.11Мб
11. Optimal Policies-2rguYpVyCto.pt-BR.vtt 4.20Кб
11. Optimal Policies-2rguYpVyCto.zh-CN.vtt 3.32Кб
11. Outro.html 6.07Кб
11. Perceptron Algorithm.html 16.19Кб
11. Perceptron Algorithm Pseudocode-p8Q3yu9YqYk.en.vtt 3.45Кб
11. Perceptron Algorithm Pseudocode-p8Q3yu9YqYk.ja-JP.vtt 3.87Кб
11. Perceptron Algorithm Pseudocode-p8Q3yu9YqYk.mp4 2.87Мб
11. Perceptron Algorithm Pseudocode-p8Q3yu9YqYk.pt-BR.vtt 3.27Кб
11. Polynomial Kernel 1.html 7.10Кб
11. Practice Finding New Axes.html 10.50Кб
11. Practice Finding New Axes-aZqYc7v8BK4.ar.vtt 2.99Кб
11. Practice Finding New Axes-aZqYc7v8BK4.en.vtt 2.07Кб
11. Practice Finding New Axes-aZqYc7v8BK4.mp4 6.31Мб
11. Practice Finding New Axes-aZqYc7v8BK4.pt-BR.vtt 2.03Кб
11. Practice Finding New Axes-aZqYc7v8BK4.zh-CN.vtt 1.84Кб
11. Practice Finding New Axes-th34aboBOO0.ar.vtt 203б
11. Practice Finding New Axes-th34aboBOO0.en.vtt 139б
11. Practice Finding New Axes-th34aboBOO0.mp4 350.64Кб
11. Practice Finding New Axes-th34aboBOO0.pt-BR.vtt 141б
11. Quiz Incremental Mean.html 10.29Кб
11. ReLU and Softmax Activation Functions.html 17.06Кб
11. Solution Convolution Output Shape.html 10.67Кб
11. Solution Random Vs Preinitialized Thoughts-sOuoRZRKDzs.en.vtt 1.14Кб
11. Solution Random Vs Preinitialized Thoughts-sOuoRZRKDzs.mp4 2.83Мб
11. Solution Random Vs Preinitialized Thoughts-sOuoRZRKDzs.pt-BR.vtt 1.02Кб
11. Solution Random Vs Preinitialized Thoughts-sOuoRZRKDzs.zh-CN.vtt 965б
11. Solution Random vs Pre-initialized Weight.html 8.73Кб
11. Supervised Learning Outro V2-7X2SDqzGrdU.en.vtt 540б
11. Supervised Learning Outro V2-7X2SDqzGrdU.mp4 2.33Мб
11. Supervised Learning Outro V2-7X2SDqzGrdU.zh-CN.vtt 488б
11. SVM 09 Polynomial Kernel 1 V1-8t2tVDHNBnk.en.vtt 2.98Кб
11. SVM 09 Polynomial Kernel 1 V1-8t2tVDHNBnk.mp4 7.08Мб
11. SVM 09 Polynomial Kernel 1 V1-8t2tVDHNBnk.pt-BR.vtt 2.65Кб
11. SVM 09 Polynomial Kernel 1 V1-8t2tVDHNBnk.zh-CN.vtt 2.80Кб
11. Visual Example of EM Progress.html 8.24Кб
1-14-machine-learning-and-stanley2x.jpg 121.98Кб
12. 13 L One Hot Encoding-phYsxqlilUk.en.vtt 707б
12. 13 L One Hot Encoding-phYsxqlilUk.ja-JP.vtt 765б
12. 13 L One Hot Encoding-phYsxqlilUk.mp4 732.40Кб
12. 13 L One Hot Encoding-phYsxqlilUk.pt-BR.vtt 657б
12. 13 L One Hot Encoding-phYsxqlilUk.zh-CN.vtt 629б
12. DBSCAN implementation.html 7.44Кб
12. DL 53 Q Regularization-KxROxcRsHL8.en.vtt 1.15Кб
12. DL 53 Q Regularization-KxROxcRsHL8.mp4 1.01Мб
12. DL 53 Q Regularization-KxROxcRsHL8.pt-BR.vtt 1.16Кб
12. DL 53 Q Regularization-KxROxcRsHL8.zh-CN.vtt 1.02Кб
12. Dropout Pt. 2.html 6.77Кб
12. Dropout Pt. 2-8nG8zzJMbZw.en-US.vtt 1.23Кб
12. Dropout Pt. 2-8nG8zzJMbZw.ja-JP.vtt 1.44Кб
12. Dropout Pt. 2-8nG8zzJMbZw.mp4 1.24Мб
12. Dropout Pt. 2-8nG8zzJMbZw.pt-BR.vtt 1.05Кб
12. Dropout Pt. 2-8nG8zzJMbZw.zh-CN.vtt 1.10Кб
12. Expectation Maximization.html 8.14Кб
12. Gradient Descent The Code.html 12.30Кб
12. Implementation.html 9.82Кб
12. Kernel Functions.html 6.75Кб
12. Kernel Functions-RdkPVYyVOvU.en.vtt 2.94Кб
12. Kernel Functions-RdkPVYyVOvU.mp4 8.91Мб
12. Kernel Functions-RdkPVYyVOvU.pt-BR.vtt 3.16Кб
12. Kernel Functions-RdkPVYyVOvU.zh-CN.vtt 2.49Кб
12. K-Means Clustering Visualization 3.html 7.37Кб
12. K-Means Clustering Visualization 3-WfwX3B4d8_I.ar.vtt 3.67Кб
12. K-Means Clustering Visualization 3-WfwX3B4d8_I.en.vtt 2.59Кб
12. K-Means Clustering Visualization 3-WfwX3B4d8_I.mp4 6.92Мб
12. K-Means Clustering Visualization 3-WfwX3B4d8_I.pt-BR.vtt 2.55Кб
12. K-Means Clustering Visualization 3-WfwX3B4d8_I.zh-CN.vtt 2.27Кб
12. Logistic Regression Answer.html 7.73Кб
12. Logistic Regression Answer-JuAJd9Qvs6U.en.vtt 5.97Кб
12. Logistic Regression Answer-JuAJd9Qvs6U.mp4 6.14Мб
12. Logistic Regression Answer-JuAJd9Qvs6U.pt-BR.vtt 5.99Кб
12. Logistic Regression Answer-JuAJd9Qvs6U.zh-CN.vtt 5.41Кб
12. MC Control Policy Evaluation.html 7.82Кб
12. MC Control Policy Evaluation-3_opwMzpEEI.en.vtt 2.22Кб
12. MC Control Policy Evaluation-3_opwMzpEEI.mp4 9.10Мб
12. MC Control Policy Evaluation-3_opwMzpEEI.pt-BR.vtt 2.51Кб
12. MC Control Policy Evaluation-3_opwMzpEEI.zh-CN.vtt 1.82Кб
12. Mean vs Total Error.html 8.87Кб
12. Mini Project TD (Part 3).html 7.49Кб
12. MLND SL DT 10 Q Information Gain MAIN V1-tVLOLPEtLFw.en.vtt 771б
12. MLND SL DT 10 Q Information Gain MAIN V1-tVLOLPEtLFw.mp4 2.16Мб
12. MLND SL DT 10 Q Information Gain MAIN V1-tVLOLPEtLFw.pt-BR.vtt 723б
12. MLND SL DT 10 Q Information Gain MAIN V1-tVLOLPEtLFw.zh-CN.vtt 727б
12. MLND SL NB Solution Naive Bayes Algorithm-QDj3xzjuYmo.en.vtt 1.74Кб
12. MLND SL NB Solution Naive Bayes Algorithm-QDj3xzjuYmo.mp4 1.41Мб
12. MLND SL NB Solution Naive Bayes Algorithm-QDj3xzjuYmo.pt-BR.vtt 1.70Кб
12. MLND SL NB Solution Naive Bayes Algorithm-QDj3xzjuYmo.zh-CN.vtt 1.50Кб
12. MLND - Unsupervised Learning - L2 09 DBSCAN Implementation MAIN V1 V1-qEMUzQFylg8.en.vtt 842б
12. MLND - Unsupervised Learning - L2 09 DBSCAN Implementation MAIN V1 V1-qEMUzQFylg8.mp4 3.63Мб
12. MLND - Unsupervised Learning - L2 09 DBSCAN Implementation MAIN V1 V1-qEMUzQFylg8.pt-BR.vtt 786б
12. MLND - Unsupervised Learning - L2 09 DBSCAN Implementation MAIN V1 V1-qEMUzQFylg8.zh-CN.vtt 769б
12. Naive Bayes Algorithm 2.html 7.01Кб
12. Non-Linear Regions.html 8.25Кб
12. Non-Linear Regions-B8UrWnHh1Wc.en.vtt 1.77Кб
12. Non-Linear Regions-B8UrWnHh1Wc.mp4 1.33Мб
12. Non-Linear Regions-B8UrWnHh1Wc.pt-BR.vtt 1.51Кб
12. Non-Linear Regions-B8UrWnHh1Wc.zh-CN.vtt 1.56Кб
12. One-Hot Encoding.html 9.38Кб
12. Outro SC V1-YD1grQje9fw.en.vtt 1.64Кб
12. Outro SC V1-YD1grQje9fw.mp4 1.39Мб
12. Outro SC V1-YD1grQje9fw.pt-BR.vtt 1.71Кб
12. Polynomial Kernel 2.html 8.27Кб
12. Quiz Information Gain.html 9.51Кб
12. Quiz Number of Parameters.html 10.15Кб
12. Quiz on Algorithms Requiring Rescaling.html 9.18Кб
12. Quiz on Algorithms Requiring Rescaling-ntRkOeSZutw.ar.vtt 1.73Кб
12. Quiz on Algorithms Requiring Rescaling-ntRkOeSZutw.en.vtt 1.32Кб
12. Quiz on Algorithms Requiring Rescaling-ntRkOeSZutw.mp4 2.51Мб
12. Quiz on Algorithms Requiring Rescaling-ntRkOeSZutw.pt-BR.vtt 1.38Кб
12. Quiz on Algorithms Requiring Rescaling-ntRkOeSZutw.zh-CN.vtt 1.10Кб
12. Quiz on Algorithms Requiring Rescaling-oEhevl5DWpk.ar.vtt 4.80Кб
12. Quiz on Algorithms Requiring Rescaling-oEhevl5DWpk.en.vtt 3.85Кб
12. Quiz on Algorithms Requiring Rescaling-oEhevl5DWpk.mp4 12.12Мб
12. Quiz on Algorithms Requiring Rescaling-oEhevl5DWpk.pt-BR.vtt 3.82Кб
12. Quiz on Algorithms Requiring Rescaling-oEhevl5DWpk.zh-CN.vtt 3.13Кб
12. Quiz Optimal Policies.html 13.52Кб
12. Quiz Pole-Balancing.html 12.72Кб
12. Reflect on your commit messages-_0AHmKkfjTo.ar.vtt 678б
12. Reflect on your commit messages-_0AHmKkfjTo.en.vtt 501б
12. Reflect on your commit messages-_0AHmKkfjTo.ja-JP.vtt 610б
12. Reflect on your commit messages-_0AHmKkfjTo.mp4 3.03Мб
12. Reflect on your commit messages-_0AHmKkfjTo.pt-BR.vtt 538б
12. Reflect on your commit messages-_0AHmKkfjTo.zh-CN.vtt 473б
12. Reflect on your commit messages.html 8.54Кб
12. Regularization.html 9.30Кб
12. ROC Curve.html 6.44Кб
12. ROC Curve-2Iw5TiGzJI4.en.vtt 8.66Кб
12. ROC Curve-2Iw5TiGzJI4.mp4 6.66Мб
12. ROC Curve-2Iw5TiGzJI4.pt-BR.vtt 8.12Кб
12. ROC Curve-2Iw5TiGzJI4.zh-CN.vtt 7.30Кб
12. Stride and Padding.html 8.32Кб
12. Stride and Padding-0r9o8hprDXQ.en.vtt 4.41Кб
12. Stride and Padding-0r9o8hprDXQ.mp4 7.98Мб
12. Stride and Padding-0r9o8hprDXQ.pt-BR.vtt 4.55Кб
12. Stride and Padding-0r9o8hprDXQ.zh-CN.vtt 3.74Кб
12. Summary.html 6.49Кб
12. SVM 10 Polynomial Kernel 2 V2-9RfFvZ9DIRg.en.vtt 4.16Кб
12. SVM 10 Polynomial Kernel 2 V2-9RfFvZ9DIRg.mp4 9.69Мб
12. SVM 10 Polynomial Kernel 2 V2-9RfFvZ9DIRg.pt-BR.vtt 3.29Кб
12. SVM 10 Polynomial Kernel 2 V2-9RfFvZ9DIRg.zh-CN.vtt 3.70Кб
12. TensorFlow Implementation.html 7.04Кб
12. Up Next.html 7.98Кб
12. Validating the Training.html 8.59Кб
12. Validating The Training-Oxm9ofvov3I.en.vtt 2.65Кб
12. Validating The Training-Oxm9ofvov3I.mp4 5.51Мб
12. Validating The Training-Oxm9ofvov3I.pt-BR.vtt 2.28Кб
12. Validating The Training-Oxm9ofvov3I.zh-CN.vtt 2.31Кб
12. Which Data is Ready for PCA.html 11.43Кб
12. Which Data is Ready for PCA-JSVsHbGUuIE.ar.vtt 769б
12. Which Data is Ready for PCA-JSVsHbGUuIE.en.vtt 622б
12. Which Data is Ready for PCA-JSVsHbGUuIE.mp4 3.35Мб
12. Which Data is Ready for PCA-JSVsHbGUuIE.pt-BR.vtt 655б
12. Which Data is Ready for PCA-JSVsHbGUuIE.zh-CN.vtt 560б
12. Which Data is Ready for PCA-Su7kIUVPu6w.ar.vtt 1.81Кб
12. Which Data is Ready for PCA-Su7kIUVPu6w.en.vtt 1.27Кб
12. Which Data is Ready for PCA-Su7kIUVPu6w.mp4 6.68Мб
12. Which Data is Ready for PCA-Su7kIUVPu6w.pt-BR.vtt 1.30Кб
12. Which Data is Ready for PCA-Su7kIUVPu6w.zh-CN.vtt 1.11Кб
13. [Lab] DBSCAN.html 7.57Кб
13. 13 Quiz Sensitivity And Specificty V3-O17MnhWBmKA.en.vtt 505б
13. 13 Quiz Sensitivity And Specificty V3-O17MnhWBmKA.mp4 888.58Кб
13. 13 Quiz Sensitivity And Specificty V3-O17MnhWBmKA.pt-BR.vtt 420б
13. 13 Quiz Sensitivity And Specificty V3-O17MnhWBmKA.zh-CN.vtt 487б
13. Building a Spam Classifier.html 7.95Кб
13. Convolutional Layers in Keras.html 12.67Кб
13. Error Functions.html 8.36Кб
13. Error Functions-YfUUunxWIJw.en.vtt 790б
13. Error Functions-YfUUunxWIJw.ja-JP.vtt 910б
13. Error Functions-YfUUunxWIJw.mp4 3.54Мб
13. Error Functions-YfUUunxWIJw.pt-BR.vtt 804б
13. Error Functions-YfUUunxWIJw.zh-CN.vtt 739б
13. GMM Implementation.html 8.15Кб
13. Implementing Gradient Descent.html 28.22Кб
13. Information Gain-k9iZL53PAmw.en.vtt 3.35Кб
13. Information Gain-k9iZL53PAmw.mp4 9.24Мб
13. Information Gain-k9iZL53PAmw.pt-BR.vtt 2.81Кб
13. Information Gain-k9iZL53PAmw.zh-CN.vtt 2.90Кб
13. MC Control Policy Improvement.html 7.82Кб
13. MC Control Policy Improvement-2RKH-BInX7s.en.vtt 6.73Кб
13. MC Control Policy Improvement-2RKH-BInX7s.mp4 22.00Мб
13. MC Control Policy Improvement-2RKH-BInX7s.pt-BR.vtt 7.10Кб
13. MC Control Policy Improvement-2RKH-BInX7s.zh-CN.vtt 5.59Кб
13. MDPs, Part 1.html 8.59Кб
13. MDPs, Part 1-NBWbluSbxPg.en.vtt 4.00Кб
13. MDPs, Part 1-NBWbluSbxPg.mp4 3.86Мб
13. MDPs, Part 1-NBWbluSbxPg.pt-BR.vtt 4.29Кб
13. MDPs, Part 1-NBWbluSbxPg.zh-CN.vtt 3.38Кб
13. Mini-batch Gradient Descent.html 9.23Кб
13. Mini Project DP (Part 2).html 8.51Кб
13. MLND Outro-sFvMBncQjr8.en.vtt 514б
13. MLND Outro-sFvMBncQjr8.mp4 2.05Мб
13. MLND Outro-sFvMBncQjr8.pt-BR.vtt 533б
13. MLND Outro-sFvMBncQjr8.zh-CN.vtt 437б
13. MLND - Unsupervised Learning - L3 13 GMM Implementation MAIN V1 V2-zWrC_2Npy9E.en.vtt 635б
13. MLND - Unsupervised Learning - L3 13 GMM Implementation MAIN V1 V2-zWrC_2Npy9E.mp4 2.98Мб
13. MLND - Unsupervised Learning - L3 13 GMM Implementation MAIN V1 V2-zWrC_2Npy9E.pt-BR.vtt 694б
13. MLND - Unsupervised Learning - L3 13 GMM Implementation MAIN V1 V2-zWrC_2Npy9E.zh-CN.vtt 561б
13. Non-Linear Function Approximation.html 6.86Кб
13. Non-Linear Function Approximation-rITnmpD2mN8.en.vtt 1.56Кб
13. Non-Linear Function Approximation-rITnmpD2mN8.mp4 4.95Мб
13. Non-Linear Function Approximation-rITnmpD2mN8.pt-BR.vtt 1.80Кб
13. Non-Linear Function Approximation-rITnmpD2mN8.zh-CN.vtt 1.30Кб
13. Outro.html 6.49Кб
13. Participating in open source projects.html 8.28Кб
13. Participating in open source projects-OxL-gMTizUA.ar.vtt 768б
13. Participating in open source projects-OxL-gMTizUA.en.vtt 476б
13. Participating in open source projects-OxL-gMTizUA.ja-JP.vtt 599б
13. Participating in open source projects-OxL-gMTizUA.mp4 2.77Мб
13. Participating in open source projects-OxL-gMTizUA.pt-BR.vtt 551б
13. Participating in open source projects-OxL-gMTizUA.zh-CN.vtt 438б
13. Polynomial Kernel 3.html 7.09Кб
13. Quiz Sensitivity and Specificity.html 10.23Кб
13. Quiz TensorFlow Cross Entropy.html 11.37Кб
13. Quiz TensorFlow Dropout.html 14.32Кб
13. Regression Metrics.html 6.40Кб
13. Regression-Metrics-906P4BPnl9A.en-US.vtt 4.23Кб
13. Regression-Metrics-906P4BPnl9A.mp4 3.35Мб
13. Regression-Metrics-906P4BPnl9A.pt-BR.vtt 3.93Кб
13. Regression-Metrics-906P4BPnl9A.zh-CN.vtt 3.62Кб
13. Regularization 2.html 8.22Кб
13. Regularization-ndYnUrx8xvs.en.vtt 8.07Кб
13. Regularization-ndYnUrx8xvs.mp4 7.57Мб
13. Regularization-ndYnUrx8xvs.pt-BR.vtt 8.78Кб
13. Regularization-ndYnUrx8xvs.zh-CN.vtt 6.96Кб
13. Sklearn.html 7.16Кб
13. Sklearn-3zHUAXcoZ7c.ar.vtt 8.90Кб
13. Sklearn-3zHUAXcoZ7c.en.vtt 6.64Кб
13. Sklearn-3zHUAXcoZ7c.mp4 23.31Мб
13. Sklearn-3zHUAXcoZ7c.pt-BR.vtt 6.47Кб
13. Sklearn-3zHUAXcoZ7c.zh-CN.vtt 5.59Кб
13. Solution Information Gain.html 8.15Кб
13. Solution Number of Parameters.html 9.13Кб
13. Summary.html 11.61Кб
13. Support Vector Machines.html 7.66Кб
13. SVM 11 Polynomial Kernel 3 V1-XmbK8OjbX5U.en.vtt 10.29Кб
13. SVM 11 Polynomial Kernel 3 V1-XmbK8OjbX5U.mp4 26.81Мб
13. SVM 11 Polynomial Kernel 3 V1-XmbK8OjbX5U.pt-BR.vtt 8.21Кб
13. SVM 11 Polynomial Kernel 3 V1-XmbK8OjbX5U.zh-CN.vtt 8.71Кб
13. SVM Question-Fwnjx0s_AIw.en.vtt 607б
13. SVM Question-Fwnjx0s_AIw.mp4 595.52Кб
13. SVM Question-Fwnjx0s_AIw.pt-BR.vtt 512б
13. SVM Question-Fwnjx0s_AIw.zh-CN.vtt 590б
13. TD Control Expected Sarsa.html 7.26Кб
13. TD Control Expected Sarsa-kEKupCyU0P0.en.vtt 1.22Кб
13. TD Control Expected Sarsa-kEKupCyU0P0.mp4 4.28Мб
13. TD Control Expected Sarsa-kEKupCyU0P0.zh-CN.vtt 1.02Кб
13. When Does an Axis Dominate.html 11.43Кб
13. When Does an Axis Dominate-4hJlaYRHdpA.ar.vtt 597б
13. When Does an Axis Dominate-4hJlaYRHdpA.en.vtt 472б
13. When Does an Axis Dominate-4hJlaYRHdpA.mp4 1.67Мб
13. When Does an Axis Dominate-4hJlaYRHdpA.pt-BR.vtt 474б
13. When Does an Axis Dominate-4hJlaYRHdpA.zh-CN.vtt 408б
13. When Does an Axis Dominate-5Uon6hUTl8Y.ar.vtt 1.22Кб
13. When Does an Axis Dominate-5Uon6hUTl8Y.en.vtt 984б
13. When Does an Axis Dominate-5Uon6hUTl8Y.mp4 5.18Мб
13. When Does an Axis Dominate-5Uon6hUTl8Y.pt-BR.vtt 977б
13. When Does an Axis Dominate-5Uon6hUTl8Y.zh-CN.vtt 879б
13. Wrap Up.html 6.43Кб
13. Wrap Up-x6JggcDTcys.en.vtt 1.22Кб
13. Wrap Up-x6JggcDTcys.mp4 7.20Мб
13. Wrap Up-x6JggcDTcys.pt-BR.vtt 1.49Кб
13. Wrap Up-x6JggcDTcys.zh-CN.vtt 1.10Кб
14. [Lab Solution] DBSCAN.html 7.60Кб
14. 16 L Minimizing Cross-Entropy-YrDMXFhvh9E.en-US.vtt 3.00Кб
14. 16 L Minimizing Cross-Entropy-YrDMXFhvh9E.ja-JP.vtt 3.29Кб
14. 16 L Minimizing Cross-Entropy-YrDMXFhvh9E.mp4 3.09Мб
14. 16 L Minimizing Cross-Entropy-YrDMXFhvh9E.pt-BR.vtt 3.07Кб
14. 16 L Minimizing Cross-Entropy-YrDMXFhvh9E.zh-CN.vtt 2.85Кб
14. Absolute Error vs Squared Error.html 11.33Кб
14. Absolute Vs Squared Error-csvdjaqt1GM.en.vtt 831б
14. Absolute Vs Squared Error-csvdjaqt1GM.mp4 660.25Кб
14. Absolute Vs Squared Error-csvdjaqt1GM.pt-BR.vtt 793б
14. DLND REG 12 Absolute Vs Squared Error 2 V1 (1)-7El1OH17Oi4.en.vtt 983б
14. DLND REG 12 Absolute Vs Squared Error 2 V1 (1)-7El1OH17Oi4.mp4 692.80Кб
14. DLND REG 12 Absolute Vs Squared Error 2 V1 (1)-7El1OH17Oi4.pt-BR.vtt 956б
14. DLND REG 13 Absolute Vs Squared Error 3 V1 (1)-bIVGf_dDkrY.en.vtt 1.00Кб
14. DLND REG 13 Absolute Vs Squared Error 3 V1 (1)-bIVGf_dDkrY.mp4 873.14Кб
14. DLND REG 13 Absolute Vs Squared Error 3 V1 (1)-bIVGf_dDkrY.pt-BR.vtt 970б
14. Dropout.html 8.17Кб
14. Dropout-Ty6K6YiGdBs.en.vtt 4.71Кб
14. Dropout-Ty6K6YiGdBs.mp4 4.22Мб
14. Dropout-Ty6K6YiGdBs.pt-BR.vtt 4.66Кб
14. Dropout-Ty6K6YiGdBs.zh-CN.vtt 4.06Кб
14. Error Functions-jfKShxGAbok.en.vtt 9.45Кб
14. Error Functions-jfKShxGAbok.ja-JP.vtt 10.57Кб
14. Error Functions-jfKShxGAbok.mp4 7.21Мб
14. Error Functions-jfKShxGAbok.pt-BR.vtt 9.14Кб
14. Error Functions-jfKShxGAbok.zh-CN.vtt 8.34Кб
14. GMM Examples Applications.html 9.16Кб
14. Implementation.html 8.44Кб
14. Interview with Art - Part 3.html 7.93Кб
14. Interview with Art - Part 3-M6PKr3S1rPg.ar.vtt 5.33Кб
14. Interview with Art - Part 3-M6PKr3S1rPg.en.vtt 4.10Кб
14. Interview with Art - Part 3-M6PKr3S1rPg.ja-JP.vtt 4.71Кб
14. Interview with Art - Part 3-M6PKr3S1rPg.mp4 25.04Мб
14. Interview with Art - Part 3-M6PKr3S1rPg.pt-BR.vtt 4.56Кб
14. Interview with Art - Part 3-M6PKr3S1rPg.zh-CN.vtt 3.67Кб
14. Log-loss Error Function.html 10.03Кб
14. Maximizing Information Gain.html 7.42Кб
14. Maximizing Information Gain-3FgJOpKfdY8.en.vtt 4.00Кб
14. Maximizing Information Gain-3FgJOpKfdY8.mp4 13.14Мб
14. Maximizing Information Gain-3FgJOpKfdY8.pt-BR.vtt 3.34Кб
14. Maximizing Information Gain-3FgJOpKfdY8.zh-CN.vtt 3.69Кб
14. MDPs, Part 2.html 7.23Кб
14. MDPs, Part 2-CUTtQvxKkNw.en.vtt 6.81Кб
14. MDPs, Part 2-CUTtQvxKkNw.mp4 6.82Мб
14. MDPs, Part 2-CUTtQvxKkNw.pt-BR.vtt 7.27Кб
14. MDPs, Part 2-CUTtQvxKkNw.zh-CN.vtt 5.71Кб
14. Measurable vs. Latent Features Quiz.html 10.90Кб
14. Measurable vs. Latent Features Quiz-20QVVrTcp2A.ar.vtt 745б
14. Measurable vs. Latent Features Quiz-20QVVrTcp2A.en.vtt 573б
14. Measurable vs. Latent Features Quiz-20QVVrTcp2A.mp4 341.60Кб
14. Measurable vs. Latent Features Quiz-20QVVrTcp2A.pt-BR.vtt 599б
14. Measurable vs. Latent Features Quiz-20QVVrTcp2A.zh-CN.vtt 499б
14. Measurable vs. Latent Features Quiz-UeSD19oit_w.ar.vtt 820б
14. Measurable vs. Latent Features Quiz-UeSD19oit_w.en.vtt 702б
14. Measurable vs. Latent Features Quiz-UeSD19oit_w.mp4 2.48Мб
14. Measurable vs. Latent Features Quiz-UeSD19oit_w.pt-BR.vtt 716б
14. Measurable vs. Latent Features Quiz-UeSD19oit_w.zh-CN.vtt 593б
14. Minimizing Cross Entropy.html 8.38Кб
14. MLND - Unsupervised Learning - L3 15 GMM Examples And Applications MAIN V2 V1-FRoxeLp81Bg.en.vtt 6.50Кб
14. MLND - Unsupervised Learning - L3 15 GMM Examples And Applications MAIN V2 V1-FRoxeLp81Bg.mp4 31.64Мб
14. MLND - Unsupervised Learning - L3 15 GMM Examples And Applications MAIN V2 V1-FRoxeLp81Bg.pt-BR.vtt 6.43Кб
14. MLND - Unsupervised Learning - L3 15 GMM Examples And Applications MAIN V2 V1-FRoxeLp81Bg.zh-CN.vtt 5.62Кб
14. Multilayer Perceptrons.html 22.71Кб
14. Multilayer perceptrons-Rs9petvTBLk.en-US.vtt 1.65Кб
14. Multilayer perceptrons-Rs9petvTBLk.ja-JP.vtt 1.92Кб
14. Multilayer perceptrons-Rs9petvTBLk.mp4 2.85Мб
14. Multilayer perceptrons-Rs9petvTBLk.pt-BR.vtt 1.71Кб
14. Multilayer perceptrons-Rs9petvTBLk.zh-CN.vtt 1.39Кб
14. Policy Improvement.html 8.08Кб
14. Policy Improvement-4_adUEK0IHg.en.vtt 8.10Кб
14. Policy Improvement-4_adUEK0IHg.mp4 30.38Мб
14. Policy Improvement-4_adUEK0IHg.pt-BR.vtt 8.94Кб
14. Policy Improvement-4_adUEK0IHg.zh-CN.vtt 6.90Кб
14. Project.html 7.38Кб
14. Quiz Dimensionality.html 17.05Кб
14. Quiz Epsilon-Greedy Policies.html 15.35Кб
14. Quiz Parameter Sharing.html 10.30Кб
14. RBF Kernel 1.html 7.04Кб
14. Solution Sensitivity and Specificity.html 8.69Кб
14. Solution Sensitivty And Specificity-GBZjyeMjKxc.en.vtt 850б
14. Solution Sensitivty And Specificity-GBZjyeMjKxc.mp4 1.57Мб
14. Solution Sensitivty And Specificity-GBZjyeMjKxc.pt-BR.vtt 772б
14. Solution Sensitivty And Specificity-GBZjyeMjKxc.zh-CN.vtt 766б
14. Some challenges of k-means.html 7.32Кб
14. Some challenges of k-means-e2CdlG5P4WA.ar.vtt 882б
14. Some challenges of k-means-e2CdlG5P4WA.en.vtt 601б
14. Some challenges of k-means-e2CdlG5P4WA.mp4 2.82Мб
14. Some challenges of k-means-e2CdlG5P4WA.pt-BR.vtt 540б
14. Some challenges of k-means-e2CdlG5P4WA.zh-CN.vtt 530б
14. Summary.html 6.55Кб
14. Summary-MTEBk43oByU.en.vtt 1.61Кб
14. Summary-MTEBk43oByU.mp4 9.91Мб
14. Summary-MTEBk43oByU.pt-BR.vtt 1.87Кб
14. Summary-MTEBk43oByU.zh-CN.vtt 1.37Кб
14. Support Vector Machines Quiz.html 8.09Кб
14. SVM 12 RBF Kernel 1 V3-xdkIulxXWfQ.en.vtt 7.45Кб
14. SVM 12 RBF Kernel 1 V3-xdkIulxXWfQ.mp4 18.60Мб
14. SVM 12 RBF Kernel 1 V3-xdkIulxXWfQ.pt-BR.vtt 6.21Кб
14. SVM 12 RBF Kernel 1 V3-xdkIulxXWfQ.zh-CN.vtt 6.40Кб
15. Backpropagation.html 21.05Кб
15. Backpropagation-MZL97-2joxQ.en-US.vtt 2.42Кб
15. Backpropagation-MZL97-2joxQ.ja-JP.vtt 2.67Кб
15. Backpropagation-MZL97-2joxQ.mp4 3.44Мб
15. Backpropagation-MZL97-2joxQ.pt-BR.vtt 2.41Кб
15. Backpropagation-MZL97-2joxQ.zh-CN.vtt 2.14Кб
15. Categorical Cross-Entropy.html 11.39Кб
15. Cluster Analysis Process.html 8.19Кб
15. DBSCAN examples applications.html 7.92Кб
15. Discrete vs. Continuous-Rm2KxFaPiJg.en.vtt 5.70Кб
15. Discrete vs. Continuous-Rm2KxFaPiJg.ja-JP.vtt 5.39Кб
15. Discrete vs. Continuous-Rm2KxFaPiJg.mp4 5.35Мб
15. Discrete vs. Continuous-Rm2KxFaPiJg.pt-BR.vtt 5.67Кб
15. Discrete vs. Continuous-Rm2KxFaPiJg.zh-CN.vtt 4.70Кб
15. Discrete vs Continuous.html 10.77Кб
15. Discrete vs Continuous-rdP-RPDFkl0.en.vtt 551б
15. Discrete vs Continuous-rdP-RPDFkl0.ja-JP.vtt 561б
15. Discrete vs Continuous-rdP-RPDFkl0.mp4 2.26Мб
15. Discrete vs Continuous-rdP-RPDFkl0.pt-BR.vtt 584б
15. Discrete vs Continuous-rdP-RPDFkl0.zh-CN.vtt 481б
15. Exploration vs. Exploitation.html 18.16Кб
15. From Four Features to Two.html 11.27Кб
15. From Four Features to Two-MEtIAGKweXU.ar.vtt 2.30Кб
15. From Four Features to Two-MEtIAGKweXU.en.vtt 1.86Кб
15. From Four Features to Two-MEtIAGKweXU.mp4 7.71Мб
15. From Four Features to Two-MEtIAGKweXU.pt-BR.vtt 1.85Кб
15. From Four Features to Two-MEtIAGKweXU.zh-CN.vtt 1.43Кб
15. From Four Features to Two-xJtmPbEfpFo.ar.vtt 1.32Кб
15. From Four Features to Two-xJtmPbEfpFo.en.vtt 1.02Кб
15. From Four Features to Two-xJtmPbEfpFo.mp4 3.87Мб
15. From Four Features to Two-xJtmPbEfpFo.pt-BR.vtt 1.00Кб
15. From Four Features to Two-xJtmPbEfpFo.zh-CN.vtt 801б
15. Implementation.html 10.50Кб
15. Limitations of K-Means.html 8.73Кб
15. Limitations of K-Means-4Fkfu37el_k.ar.vtt 1.31Кб
15. Limitations of K-Means-4Fkfu37el_k.en.vtt 855б
15. Limitations of K-Means-4Fkfu37el_k.mp4 4.67Мб
15. Limitations of K-Means-4Fkfu37el_k.pt-BR.vtt 856б
15. Limitations of K-Means-4Fkfu37el_k.zh-CN.vtt 812б
15. Limitations of K-Means-nvLhUSSUhiY.ar.vtt 385б
15. Limitations of K-Means-nvLhUSSUhiY.en.vtt 315б
15. Limitations of K-Means-nvLhUSSUhiY.mp4 991.73Кб
15. Limitations of K-Means-nvLhUSSUhiY.pt-BR.vtt 306б
15. Limitations of K-Means-nvLhUSSUhiY.zh-CN.vtt 277б
15. Linear Regression in scikit-learn.html 17.35Кб
15. Local Minima.html 8.21Кб
15. Local Minima-gF_sW_nY-xw.en.vtt 1.14Кб
15. Local Minima-gF_sW_nY-xw.mp4 819.86Кб
15. Local Minima-gF_sW_nY-xw.pt-BR.vtt 1.05Кб
15. Local Minima-gF_sW_nY-xw.zh-CN.vtt 1.01Кб
15. Mini Project TD (Part 4).html 7.48Кб
15. MLND SL DT 13 Random Forests MAIN V1-n5DhXhcYKcw.en.vtt 2.65Кб
15. MLND SL DT 13 Random Forests MAIN V1-n5DhXhcYKcw.mp4 9.20Мб
15. MLND SL DT 13 Random Forests MAIN V1-n5DhXhcYKcw.pt-BR.vtt 2.50Кб
15. MLND SL DT 13 Random Forests MAIN V1-n5DhXhcYKcw.zh-CN.vtt 2.50Кб
15. MLND - Unsupervised Learning - L2 10 DBSCAN Examples Applications MAIN V1 V2-GhyFsjQ4FkA.en.vtt 4.50Кб
15. MLND - Unsupervised Learning - L2 10 DBSCAN Examples Applications MAIN V1 V2-GhyFsjQ4FkA.mp4 17.78Мб
15. MLND - Unsupervised Learning - L2 10 DBSCAN Examples Applications MAIN V1 V2-GhyFsjQ4FkA.pt-BR.vtt 4.37Кб
15. MLND - Unsupervised Learning - L2 10 DBSCAN Examples Applications MAIN V1 V2-GhyFsjQ4FkA.zh-CN.vtt 3.98Кб
15. MLND - Unsupervised Learning - L3 16 Cluster Analysis Process MAIN V1 V1-aI2wW4fcU1I.en.vtt 4.27Кб
15. MLND - Unsupervised Learning - L3 16 Cluster Analysis Process MAIN V1 V1-aI2wW4fcU1I.mp4 11.70Мб
15. MLND - Unsupervised Learning - L3 16 Cluster Analysis Process MAIN V1 V1-aI2wW4fcU1I.pt-BR.vtt 4.37Кб
15. MLND - Unsupervised Learning - L3 16 Cluster Analysis Process MAIN V1 V1-aI2wW4fcU1I.zh-CN.vtt 3.71Кб
15. More on Sensitivity and Specificity.html 11.33Кб
15. Participating in open source projects 2.html 8.04Кб
15. Participating in open source projects 2-elZCLxVvJrY.ar.vtt 2.16Кб
15. Participating in open source projects 2-elZCLxVvJrY.en.vtt 1.46Кб
15. Participating in open source projects 2-elZCLxVvJrY.ja-JP.vtt 1.81Кб
15. Participating in open source projects 2-elZCLxVvJrY.mp4 3.30Мб
15. Participating in open source projects 2-elZCLxVvJrY.pt-BR.vtt 1.69Кб
15. Participating in open source projects 2-elZCLxVvJrY.zh-CN.vtt 1.30Кб
15. Pooling Layers.html 8.57Кб
15. Pooling Layers-OkkIZNs7Cyc.en.vtt 5.40Кб
15. Pooling Layers-OkkIZNs7Cyc.mp4 5.82Мб
15. Pooling Layers-OkkIZNs7Cyc.pt-BR.vtt 5.81Кб
15. Pooling Layers-OkkIZNs7Cyc.zh-CN.vtt 4.64Кб
15. Quiz One-Step Dynamics, Part 1.html 11.85Кб
15. Random Forests.html 7.43Кб
15. RBF Kernel 2.html 7.04Кб
15. Solution Parameter Sharing.html 9.26Кб
15. Spam Classifier - Workspace.html 7.29Кб
15. Support Vector Machines Answer.html 7.66Кб
15. SVM 13 RBF Kernel 2 V1-ozl9UWVP0MI.en.vtt 1.27Кб
15. SVM 13 RBF Kernel 2 V1-ozl9UWVP0MI.mp4 5.06Мб
15. SVM 13 RBF Kernel 2 V1-ozl9UWVP0MI.pt-BR.vtt 1.13Кб
15. SVM 13 RBF Kernel 2 V1-ozl9UWVP0MI.zh-CN.vtt 1.13Кб
15. SVM Answer-JrUtTwfnsfM.en.vtt 3.06Кб
15. SVM Answer-JrUtTwfnsfM.mp4 3.26Мб
15. SVM Answer-JrUtTwfnsfM.pt-BR.vtt 2.86Кб
15. SVM Answer-JrUtTwfnsfM.zh-CN.vtt 2.88Кб
16. [Quiz] DBSCAN.html 8.67Кб
16. 15 Quiz Diagnosing Cancer V3-4UzkwecBJro.en.vtt 508б
16. 15 Quiz Diagnosing Cancer V3-4UzkwecBJro.mp4 1.14Мб
16. 15 Quiz Diagnosing Cancer V3-4UzkwecBJro.pt-BR.vtt 472б
16. 15 Quiz Diagnosing Cancer V3-4UzkwecBJro.zh-CN.vtt 456б
16. 17 L Transition Into Practical Aspects Of Learning-bKqkRFOOKoA.en-US.vtt 793б
16. 17 L Transition Into Practical Aspects Of Learning-bKqkRFOOKoA.ja-JP.vtt 893б
16. 17 L Transition Into Practical Aspects Of Learning-bKqkRFOOKoA.mp4 3.63Мб
16. 17 L Transition Into Practical Aspects Of Learning-bKqkRFOOKoA.pt-BR.vtt 707б
16. 17 L Transition Into Practical Aspects Of Learning-bKqkRFOOKoA.zh-CN.vtt 704б
16. Analyzing Performance.html 9.25Кб
16. Cluster Validation.html 8.15Кб
16. Compression While Preserving Information-_TJeoCTDykE.ar.vtt 1.18Кб
16. Compression While Preserving Information-_TJeoCTDykE.en.vtt 896б
16. Compression While Preserving Information-_TJeoCTDykE.mp4 3.17Мб
16. Compression While Preserving Information-_TJeoCTDykE.pt-BR.vtt 826б
16. Compression While Preserving Information-_TJeoCTDykE.zh-CN.vtt 814б
16. Compression While Preserving Information.html 10.75Кб
16. Compression While Preserving Information-NjuenhkC-44.ar.vtt 3.67Кб
16. Compression While Preserving Information-NjuenhkC-44.en.vtt 2.98Кб
16. Compression While Preserving Information-NjuenhkC-44.mp4 12.50Мб
16. Compression While Preserving Information-NjuenhkC-44.pt-BR.vtt 3.03Кб
16. Compression While Preserving Information-NjuenhkC-44.zh-CN.vtt 2.51Кб
16. Counterintuitive Clusters.html 8.78Кб
16. Counterintuitive Clusters-aveIz1JYeAg.ar.vtt 1.35Кб
16. Counterintuitive Clusters-aveIz1JYeAg.en.vtt 991б
16. Counterintuitive Clusters-aveIz1JYeAg.mp4 4.11Мб
16. Counterintuitive Clusters-aveIz1JYeAg.pt-BR.vtt 1.02Кб
16. Counterintuitive Clusters-aveIz1JYeAg.zh-CN.vtt 924б
16. Counterintuitive Clusters-StmEUgT1XSY.ar.vtt 2.93Кб
16. Counterintuitive Clusters-StmEUgT1XSY.en.vtt 2.17Кб
16. Counterintuitive Clusters-StmEUgT1XSY.mp4 8.13Мб
16. Counterintuitive Clusters-StmEUgT1XSY.pt-BR.vtt 2.19Кб
16. Counterintuitive Clusters-StmEUgT1XSY.zh-CN.vtt 1.90Кб
16. DL 18 Q Softmax V2-RC_A9Tu99y4.en.vtt 5.37Кб
16. DL 18 Q Softmax V2-RC_A9Tu99y4.ja-JP.vtt 5.66Кб
16. DL 18 Q Softmax V2-RC_A9Tu99y4.mp4 4.01Мб
16. DL 18 Q Softmax V2-RC_A9Tu99y4.pt-BR.vtt 5.06Кб
16. DL 18 Q Softmax V2-RC_A9Tu99y4.zh-CN.vtt 4.37Кб
16. DL 18 S Softmax-n8S-v_LCTms.en.vtt 2.59Кб
16. DL 18 S Softmax-n8S-v_LCTms.ja-JP.vtt 2.56Кб
16. DL 18 S Softmax-n8S-v_LCTms.mp4 1.95Мб
16. DL 18 S Softmax-n8S-v_LCTms.pt-BR.vtt 2.52Кб
16. DL 18 S Softmax-n8S-v_LCTms.zh-CN.vtt 2.31Кб
16. Higher Dimensions.html 7.57Кб
16. Higher Dimensions--UvpQV1qmiE.en.vtt 2.94Кб
16. Higher Dimensions--UvpQV1qmiE.mp4 2.65Мб
16. Higher Dimensions--UvpQV1qmiE.pt-BR.vtt 2.78Кб
16. Hyperparameters.html 13.73Кб
16. Implementation.html 8.52Кб
16. Implementing Backpropagation.html 22.96Кб
16. Max Pooling Layers in Keras.html 11.49Кб
16. Mini Project DP (Part 3).html 8.50Кб
16. MLND - Unsupervised Learning - L3 17 Cluster Validation MAINv1 V1-N13ML_GUuZQ.en.vtt 2.12Кб
16. MLND - Unsupervised Learning - L3 17 Cluster Validation MAINv1 V1-N13ML_GUuZQ.mp4 5.85Мб
16. MLND - Unsupervised Learning - L3 17 Cluster Validation MAINv1 V1-N13ML_GUuZQ.pt-BR.vtt 2.28Кб
16. MLND - Unsupervised Learning - L3 17 Cluster Validation MAINv1 V1-N13ML_GUuZQ.zh-CN.vtt 1.76Кб
16. Neural Networks.html 7.63Кб
16. Neural Networks-xFu1_2K2D2U.en.vtt 10.18Кб
16. Neural Networks-xFu1_2K2D2U.mp4 9.77Мб
16. Neural Networks-xFu1_2K2D2U.pt-BR.vtt 9.75Кб
16. Neural Networks-xFu1_2K2D2U.zh-CN.vtt 9.66Кб
16. Outro.html 6.72Кб
16. Practical Aspects of Learning.html 8.51Кб
16. Quiz Diagnosing Cancer.html 9.54Кб
16. Quiz One-Step Dynamics, Part 2.html 15.50Кб
16. Quiz - Softmax-NNoezNnAMTY.en.vtt 495б
16. Quiz - Softmax-NNoezNnAMTY.ja-JP.vtt 551б
16. Quiz - Softmax-NNoezNnAMTY.mp4 1.73Мб
16. Quiz - Softmax-NNoezNnAMTY.pt-BR.vtt 501б
16. Quiz - Softmax-NNoezNnAMTY.zh-CN.vtt 548б
16. RBF Kernel 3.html 7.04Кб
16. Softmax.html 12.93Кб
16. Starring interesting repositories.html 9.45Кб
16. Starring interesting repositories-U3FUxkm1MxI.ar.vtt 542б
16. Starring interesting repositories-U3FUxkm1MxI.en.vtt 419б
16. Starring interesting repositories-U3FUxkm1MxI.ja-JP.vtt 492б
16. Starring interesting repositories-U3FUxkm1MxI.mp4 2.45Мб
16. Starring interesting repositories-U3FUxkm1MxI.pt-BR.vtt 460б
16. Starring interesting repositories-U3FUxkm1MxI.zh-CN.vtt 392б
16. Starring interesting repositories-ZwMY5rAAd7Q.ar.vtt 812б
16. Starring interesting repositories-ZwMY5rAAd7Q.en.vtt 634б
16. Starring interesting repositories-ZwMY5rAAd7Q.ja-JP.vtt 777б
16. Starring interesting repositories-ZwMY5rAAd7Q.mp4 3.46Мб
16. Starring interesting repositories-ZwMY5rAAd7Q.pt-BR.vtt 705б
16. Starring interesting repositories-ZwMY5rAAd7Q.zh-CN.vtt 556б
16. SVM 14 RBF Kernel 3 V1-DctkE8kaWPY.en.vtt 3.53Кб
16. SVM 14 RBF Kernel 3 V1-DctkE8kaWPY.mp4 9.26Мб
16. SVM 14 RBF Kernel 3 V1-DctkE8kaWPY.pt-BR.vtt 2.75Кб
16. SVM 14 RBF Kernel 3 V1-DctkE8kaWPY.zh-CN.vtt 2.99Кб
16. Vanishing Gradient.html 8.26Кб
16. Vanishing Gradient-W_JJm_5syFw.en.vtt 1.46Кб
16. Vanishing Gradient-W_JJm_5syFw.mp4 1.32Мб
16. Vanishing Gradient-W_JJm_5syFw.pt-BR.vtt 1.56Кб
16. Vanishing Gradient-W_JJm_5syFw.zh-CN.vtt 1.24Кб
16. Visualizing CNNs.html 16.25Кб
17. 16 Solution Diagnosing Cancer V3-IJYvt2ssUFk.en.vtt 1.47Кб
17. 16 Solution Diagnosing Cancer V3-IJYvt2ssUFk.mp4 2.31Мб
17. 16 Solution Diagnosing Cancer V3-IJYvt2ssUFk.pt-BR.vtt 1.34Кб
17. 16 Solution Diagnosing Cancer V3-IJYvt2ssUFk.zh-CN.vtt 1.25Кб
17. CNNs for Image Classification.html 11.35Кб
17. CNNs For Image Classification-l9vg_1YUlzg.en.vtt 11.37Кб
17. CNNs For Image Classification-l9vg_1YUlzg.mp4 18.16Мб
17. CNNs For Image Classification-l9vg_1YUlzg.pt-BR.vtt 12.21Кб
17. CNNs For Image Classification-l9vg_1YUlzg.zh-CN.vtt 9.72Кб
17. Composite Features.html 10.87Кб
17. Composite Features-0ZBp8oWySAc.ar.vtt 784б
17. Composite Features-0ZBp8oWySAc.en.vtt 596б
17. Composite Features-0ZBp8oWySAc.mp4 2.83Мб
17. Composite Features-0ZBp8oWySAc.pt-BR.vtt 549б
17. Composite Features-0ZBp8oWySAc.zh-CN.vtt 498б
17. Composite Features-spVqFnSvlIU.ar.vtt 5.42Кб
17. Composite Features-spVqFnSvlIU.en.vtt 4.40Кб
17. Composite Features-spVqFnSvlIU.mp4 18.11Мб
17. Composite Features-spVqFnSvlIU.pt-BR.vtt 4.50Кб
17. Composite Features-spVqFnSvlIU.zh-CN.vtt 3.63Кб
17. Counterintuitive Clusters 2.html 8.67Кб
17. Counterintuitive Clusters 2-HyjBus7S2gY.ar.vtt 1.86Кб
17. Counterintuitive Clusters 2-HyjBus7S2gY.en.vtt 1.48Кб
17. Counterintuitive Clusters 2-HyjBus7S2gY.mp4 7.25Мб
17. Counterintuitive Clusters 2-HyjBus7S2gY.pt-BR.vtt 1.54Кб
17. Counterintuitive Clusters 2-HyjBus7S2gY.zh-CN.vtt 1.37Кб
17. Counterintuitive Clusters 2-xSQTzAeeoEc.ar.vtt 841б
17. Counterintuitive Clusters 2-xSQTzAeeoEc.en.vtt 665б
17. Counterintuitive Clusters 2-xSQTzAeeoEc.mp4 1.99Мб
17. Counterintuitive Clusters 2-xSQTzAeeoEc.pt-BR.vtt 672б
17. Counterintuitive Clusters 2-xSQTzAeeoEc.zh-CN.vtt 633б
17. Decision Trees in sklearn.html 16.50Кб
17. External Validation Indices.html 8.44Кб
17. Further Reading.html 7.16Кб
17. Kernel Method.html 7.65Кб
17. Kernel Method Quiz-x0JqH6-Dhvw.en.vtt 2.90Кб
17. Kernel Method Quiz-x0JqH6-Dhvw.mp4 3.09Мб
17. Kernel Method Quiz-x0JqH6-Dhvw.pt-BR.vtt 2.66Кб
17. Kernel Method Quiz-x0JqH6-Dhvw.zh-CN.vtt 2.72Кб
17. MDPs, Part 3.html 7.21Кб
17. MDPs, Part 3-UlXHFbla3QI.en.vtt 2.97Кб
17. MDPs, Part 3-UlXHFbla3QI.mp4 14.75Мб
17. MDPs, Part 3-UlXHFbla3QI.pt-BR.vtt 3.38Кб
17. MDPs, Part 3-UlXHFbla3QI.zh-CN.vtt 2.42Кб
17. Mini Project MC (Part 3).html 8.16Кб
17. MLND - Unsupervised Learning - L3 18 External Validation Indices MAIN V1 V2-rXZM5X2-5D0.en.vtt 6.29Кб
17. MLND - Unsupervised Learning - L3 18 External Validation Indices MAIN V1 V2-rXZM5X2-5D0.mp4 23.18Мб
17. MLND - Unsupervised Learning - L3 18 External Validation Indices MAIN V1 V2-rXZM5X2-5D0.pt-BR.vtt 5.84Кб
17. MLND - Unsupervised Learning - L3 18 External Validation Indices MAIN V1 V2-rXZM5X2-5D0.zh-CN.vtt 5.35Кб
17. Multiple Linear Regression.html 13.91Кб
17. Next Steps.html 8.07Кб
17. Numerical Stability-_SbGcOS-jcQ.en-US.vtt 764б
17. Numerical Stability-_SbGcOS-jcQ.ja-JP.vtt 810б
17. Numerical Stability-_SbGcOS-jcQ.mp4 631.89Кб
17. Numerical Stability-_SbGcOS-jcQ.pt-BR.vtt 823б
17. Numerical Stability-_SbGcOS-jcQ.zh-CN.vtt 669б
17. One-Hot Encoding.html 8.36Кб
17. One-Hot Encoding-AePvjhyvsBo.en.vtt 2.23Кб
17. One-Hot Encoding-AePvjhyvsBo.ja-JP.vtt 2.55Кб
17. One-Hot Encoding-AePvjhyvsBo.mp4 1.65Мб
17. One-Hot Encoding-AePvjhyvsBo.pt-BR.vtt 2.03Кб
17. One-Hot Encoding-AePvjhyvsBo.zh-CN.vtt 2.03Кб
17. Other Activation Functions.html 8.64Кб
17. Other Activation Functions-kA-1vUt6cvQ.en.vtt 2.68Кб
17. Other Activation Functions-kA-1vUt6cvQ.mp4 2.30Мб
17. Other Activation Functions-kA-1vUt6cvQ.pt-BR.vtt 2.55Кб
17. Other Activation Functions-kA-1vUt6cvQ.zh-CN.vtt 2.34Кб
17. Policy Iteration.html 8.07Кб
17. Policy Iteration-gqv7o1kBDc0.en.vtt 2.08Кб
17. Policy Iteration-gqv7o1kBDc0.mp4 8.14Мб
17. Policy Iteration-gqv7o1kBDc0.pt-BR.vtt 2.37Кб
17. Policy Iteration-gqv7o1kBDc0.zh-CN.vtt 1.75Кб
17. Quiz Numerical Stability.html 9.08Кб
17. Solution Diagnosing Cancer.html 11.05Кб
17. Summary.html 10.92Кб
17. SVMs in sklearn.html 15.65Кб
17. TensorFlow Convolution Layer.html 11.04Кб
18. Batch vs Stochastic Gradient Descent.html 8.40Кб
18. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.en.vtt 4.64Кб
18. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.mp4 3.95Мб
18. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.pt-BR.vtt 4.63Кб
18. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.zh-CN.vtt 4.10Кб
18. Closed Form Solution.html 7.77Кб
18. Closed Form Solution-G3fRVgLa5gI.en.vtt 3.54Кб
18. Closed Form Solution-G3fRVgLa5gI.mp4 2.84Мб
18. Closed Form Solution-G3fRVgLa5gI.pt-BR.vtt 3.39Кб
18. CNNs in Keras Practical Example.html 10.10Кб
18. CNNs in Keras Practical Example-faFvmGDwXX0.en.vtt 5.39Кб
18. CNNs in Keras Practical Example-faFvmGDwXX0.mp4 8.71Мб
18. CNNs in Keras Practical Example-faFvmGDwXX0.pt-BR.vtt 6.12Кб
18. CNNs in Keras Practical Example-faFvmGDwXX0.zh-CN.vtt 4.78Кб
18. Explore The Design Space.html 9.29Кб
18. Explore the Design Space-FG7M9tWH2nQ.en.vtt 3.39Кб
18. Explore the Design Space-FG7M9tWH2nQ.ja-JP.vtt 4.13Кб
18. Explore the Design Space-FG7M9tWH2nQ.mp4 5.00Мб
18. Explore the Design Space-FG7M9tWH2nQ.pt-BR.vtt 3.63Кб
18. Explore the Design Space-FG7M9tWH2nQ.zh-CN.vtt 2.92Кб
18. Finite MDPs.html 12.01Кб
18. Images-1GdiN5Wc8LA.mp4 395.42Кб
18. Implementation.html 8.98Кб
18. Kernel Method Quiz.html 8.21Кб
18. Maximal Variance.html 10.44Кб
18. Maximal Variance-FpQm_dYA9LM.ar.vtt 490б
18. Maximal Variance-FpQm_dYA9LM.en.vtt 406б
18. Maximal Variance-FpQm_dYA9LM.mp4 1.50Мб
18. Maximal Variance-FpQm_dYA9LM.pt-BR.vtt 402б
18. Maximal Variance-FpQm_dYA9LM.zh-CN.vtt 299б
18. Maximal Variance-tfYAGBIR_Ws.ar.vtt 3.33Кб
18. Maximal Variance-tfYAGBIR_Ws.en.vtt 2.72Кб
18. Maximal Variance-tfYAGBIR_Ws.mp4 11.53Мб
18. Maximal Variance-tfYAGBIR_Ws.pt-BR.vtt 2.82Кб
18. Maximal Variance-tfYAGBIR_Ws.zh-CN.vtt 2.24Кб
18. Maximum Likelihood.html 10.88Кб
18. Maximum Likelihood 1-1yJx-QtlvNI.en.vtt 1.64Кб
18. Maximum Likelihood 1-1yJx-QtlvNI.ja-JP.vtt 1.91Кб
18. Maximum Likelihood 1-1yJx-QtlvNI.mp4 5.75Мб
18. Maximum Likelihood 1-1yJx-QtlvNI.pt-BR.vtt 1.61Кб
18. Maximum Likelihood 1-1yJx-QtlvNI.zh-CN.vtt 1.43Кб
18. Maximum Likelihood 2-6nUUeQ9AeUA.en.vtt 4.41Кб
18. Maximum Likelihood 2-6nUUeQ9AeUA.ja-JP.vtt 4.38Кб
18. Maximum Likelihood 2-6nUUeQ9AeUA.mp4 3.85Мб
18. Maximum Likelihood 2-6nUUeQ9AeUA.pt-BR.vtt 4.49Кб
18. Maximum Likelihood 2-6nUUeQ9AeUA.zh-CN.vtt 3.67Кб
18. MC Control Constant-alpha, Part 1.html 7.82Кб
18. MC Control Constant-alpha-QFV1nI9Zpoo.en.vtt 3.95Кб
18. MC Control Constant-alpha-QFV1nI9Zpoo.mp4 12.46Мб
18. MC Control Constant-alpha-QFV1nI9Zpoo.pt-BR.vtt 4.05Кб
18. MC Control Constant-alpha-QFV1nI9Zpoo.zh-CN.vtt 3.23Кб
18. Normalized Inputs and Initial Weights .html 8.45Кб
18. Normalized Inputs And Initial Weights-WaHQ9-UXIIg.en.vtt 4.26Кб
18. Normalized Inputs And Initial Weights-WaHQ9-UXIIg.ja-JP.vtt 4.30Кб
18. Normalized Inputs And Initial Weights-WaHQ9-UXIIg.mp4 4.10Мб
18. Normalized Inputs And Initial Weights-WaHQ9-UXIIg.pt-BR.vtt 4.29Кб
18. Normalized Inputs And Initial Weights-WaHQ9-UXIIg.zh-CN.vtt 3.56Кб
18. Outro.html 6.81Кб
18. Quiz Adjusted Rand Index.html 8.61Кб
18. Refresh on ROC Curves.html 11.78Кб
18. ROC Curve-2Iw5TiGzJI4.en.vtt 8.66Кб
18. ROC Curve-2Iw5TiGzJI4.mp4 6.66Мб
18. ROC Curve-2Iw5TiGzJI4.pt-BR.vtt 8.12Кб
18. ROC Curve-2Iw5TiGzJI4.zh-CN.vtt 7.30Кб
18. Titanic Survival Model with Decision Trees.html 7.84Кб
19. (Optional) Closed form Solution Math.html 15.07Кб
19. [Solution] Titanic Survival Model.html 7.79Кб
19. 17 Quiz ROC Curve 1 PT2 V1-Xv3v59_CfEU.en.vtt 791б
19. 17 Quiz ROC Curve 1 PT2 V1-Xv3v59_CfEU.mp4 1.11Мб
19. 17 Quiz ROC Curve 1 PT2 V1-Xv3v59_CfEU.pt-BR.vtt 678б
19. 17 Quiz ROC Curve 1 PT2 V1-Xv3v59_CfEU.zh-CN.vtt 729б
19. 21 L Measuring Performance-byP0DJImOSk.en-US.vtt 5.81Кб
19. 21 L Measuring Performance-byP0DJImOSk.ja-JP.vtt 6.82Кб
19. 21 L Measuring Performance-byP0DJImOSk.mp4 5.50Мб
19. 21 L Measuring Performance-byP0DJImOSk.pt-BR.vtt 6.08Кб
19. 21 L Measuring Performance-byP0DJImOSk.zh-CN.vtt 5.23Кб
19. Advantages of Maximal Variance.html 10.84Кб
19. Advantages of Maximal Variance-jQaYAlZ1fp0.ar.vtt 2.73Кб
19. Advantages of Maximal Variance-jQaYAlZ1fp0.en.vtt 2.06Кб
19. Advantages of Maximal Variance-jQaYAlZ1fp0.mp4 6.82Мб
19. Advantages of Maximal Variance-jQaYAlZ1fp0.pt-BR.vtt 1.97Кб
19. Advantages of Maximal Variance-jQaYAlZ1fp0.zh-CN.vtt 1.80Кб
19. Advantages of Maximal Variance-TbT6a6qaj08.ar.vtt 938б
19. Advantages of Maximal Variance-TbT6a6qaj08.en.vtt 685б
19. Advantages of Maximal Variance-TbT6a6qaj08.mp4 2.76Мб
19. Advantages of Maximal Variance-TbT6a6qaj08.pt-BR.vtt 707б
19. Advantages of Maximal Variance-TbT6a6qaj08.zh-CN.vtt 584б
19. Internal Validation Indices.html 8.51Кб
19. Kernel Method Answer.html 7.68Кб
19. Kernel Method Answer-dRFd6HaAXys.en.vtt 4.78Кб
19. Kernel Method Answer-dRFd6HaAXys.mp4 6.35Мб
19. Kernel Method Answer-dRFd6HaAXys.pt-BR.vtt 5.30Кб
19. Kernel Method Answer-dRFd6HaAXys.zh-CN.vtt 4.54Кб
19. Learning Rate Decay.html 8.23Кб
19. Learning Rate-TwJ8aSZoh2U.en.vtt 1.12Кб
19. Learning Rate-TwJ8aSZoh2U.mp4 927.05Кб
19. Learning Rate-TwJ8aSZoh2U.pt-BR.vtt 1.26Кб
19. Learning Rate-TwJ8aSZoh2U.zh-CN.vtt 1020б
19. Maximizing Probabilities.html 10.33Кб
19. MC Control Constant-alpha, Part 2.html 16.12Кб
19. Measuring Performance .html 8.36Кб
19. Mini project CNNs in Keras.html 9.21Кб
19. Mini Project DP (Part 4).html 8.51Кб
19. MLND - Unsupervised Learning - L3 20 Internal Validation Indices MAIN V1 V2-39JruOTptKI.en.vtt 10.24Кб
19. MLND - Unsupervised Learning - L3 20 Internal Validation Indices MAIN V1 V2-39JruOTptKI.mp4 40.74Мб
19. MLND - Unsupervised Learning - L3 20 Internal Validation Indices MAIN V1 V2-39JruOTptKI.pt-BR.vtt 9.62Кб
19. MLND - Unsupervised Learning - L3 20 Internal Validation Indices MAIN V1 V2-39JruOTptKI.zh-CN.vtt 9.04Кб
19. Quiz - Cross 1--xxrisIvD0E.en.vtt 918б
19. Quiz - Cross 1--xxrisIvD0E.ja-JP.vtt 1000б
19. Quiz - Cross 1--xxrisIvD0E.mp4 3.02Мб
19. Quiz - Cross 1--xxrisIvD0E.pt-BR.vtt 947б
19. Quiz - Cross 1--xxrisIvD0E.zh-CN.vtt 813б
19. Quiz Cross Entropy-njq6bYrPqSU.en.vtt 2.30Кб
19. Quiz Cross Entropy-njq6bYrPqSU.ja-JP.vtt 2.43Кб
19. Quiz Cross Entropy-njq6bYrPqSU.mp4 1.86Мб
19. Quiz Cross Entropy-njq6bYrPqSU.pt-BR.vtt 2.28Кб
19. Quiz Cross Entropy-njq6bYrPqSU.zh-CN.vtt 2.07Кб
19. Quiz ROC Curve.html 9.72Кб
19. Summary.html 12.71Кб
19. TensorFlow Max Pooling.html 11.43Кб
1omsg2-mkguagky1c64uflw.gif 183.96Кб
2. (FreeCoursesOnline.Me) Download Udacity, Masterclass, Lynda, PHLearn, Pluralsight Free.url 286б
20. 29 L Optimizing A Logistic Classifier-U_7nO1dm2tY.en-US.vtt 845б
20. 29 L Optimizing A Logistic Classifier-U_7nO1dm2tY.ja-JP.vtt 1004б
20. 29 L Optimizing A Logistic Classifier-U_7nO1dm2tY.mp4 3.42Мб
20. 29 L Optimizing A Logistic Classifier-U_7nO1dm2tY.pt-BR.vtt 769б
20. 29 L Optimizing A Logistic Classifier-U_7nO1dm2tY.zh-CN.vtt 777б
20. Cross-Entropy 1.html 8.60Кб
20. Cross Entropy 1-iREoPUrpXvE.en.vtt 4.81Кб
20. Cross Entropy 1-iREoPUrpXvE.ja-JP.vtt 5.00Кб
20. Cross Entropy 1-iREoPUrpXvE.mp4 4.22Мб
20. Cross Entropy 1-iREoPUrpXvE.pt-BR.vtt 5.00Кб
20. Cross Entropy 1-iREoPUrpXvE.zh-CN.vtt 4.11Кб
20. Image Augmentation in Keras.html 10.17Кб
20. Image Augmentation in Keras-odStujZq3GY.en.vtt 8.22Кб
20. Image Augmentation in Keras-odStujZq3GY.mp4 10.26Мб
20. Image Augmentation in Keras-odStujZq3GY.pt-BR.vtt 8.49Кб
20. Image Augmentation in Keras-odStujZq3GY.zh-CN.vtt 7.02Кб
20. Implementation.html 8.61Кб
20. Linear Regression Warnings.html 9.49Кб
20. Maximal Variance and Information Loss.html 10.72Кб
20. Maximal Variance and Information Loss-DX_f02bUHT0.ar.vtt 570б
20. Maximal Variance and Information Loss-DX_f02bUHT0.en.vtt 457б
20. Maximal Variance and Information Loss-DX_f02bUHT0.mp4 2.01Мб
20. Maximal Variance and Information Loss-DX_f02bUHT0.pt-BR.vtt 423б
20. Maximal Variance and Information Loss-DX_f02bUHT0.zh-CN.vtt 342б
20. Maximal Variance and Information Loss-hfmvk8DzTGA.ar.vtt 3.70Кб
20. Maximal Variance and Information Loss-hfmvk8DzTGA.en.vtt 2.84Кб
20. Maximal Variance and Information Loss-hfmvk8DzTGA.mp4 13.26Мб
20. Maximal Variance and Information Loss-hfmvk8DzTGA.pt-BR.vtt 2.94Кб
20. Maximal Variance and Information Loss-hfmvk8DzTGA.zh-CN.vtt 2.37Кб
20. Optimizing a Logistic Classifier.html 8.45Кб
20. Outro.html 7.29Кб
20. Quiz Pooling Intuition.html 9.91Кб
20. Random Restart.html 8.22Кб
20. Random Restart-idyBBCzXiqg.en.vtt 466б
20. Random Restart-idyBBCzXiqg.mp4 394.99Кб
20. Random Restart-idyBBCzXiqg.pt-BR.vtt 478б
20. Random Restart-idyBBCzXiqg.zh-CN.vtt 419б
20. Recap and Challenge.html 7.67Кб
20. Recap and Challenge-ecREasTrKu4.en.vtt 1.48Кб
20. Recap and Challenge-ecREasTrKu4.mp4 2.29Мб
20. Recap and Challenge-ecREasTrKu4.pt-BR.vtt 1.47Кб
20. Recap and Challenge-ecREasTrKu4.zh-CN.vtt 1.38Кб
20. Silhouette Coefficient .html 8.09Кб
20. Solution ROC Curve.html 8.55Кб
20. Solution ROC Curve-sdUUf6RRmXI.en.vtt 943б
20. Solution ROC Curve-sdUUf6RRmXI.mp4 1.11Мб
20. Solution ROC Curve-sdUUf6RRmXI.pt-BR.vtt 643б
20. Solution ROC Curve-sdUUf6RRmXI.zh-CN.vtt 829б
20. Truncated Policy Iteration.html 8.15Кб
20. Truncated Policy Iteration-a-RvCxlPMho.en.vtt 3.39Кб
20. Truncated Policy Iteration-a-RvCxlPMho.mp4 14.13Мб
20. Truncated Policy Iteration-a-RvCxlPMho.pt-BR.vtt 3.74Кб
20. Truncated Policy Iteration-a-RvCxlPMho.zh-CN.vtt 2.90Кб
21. 30 L Stochastic Gradient Descent-U9iEGUd9kJ0.en.vtt 4.11Кб
21. 30 L Stochastic Gradient Descent-U9iEGUd9kJ0.ja-JP.vtt 4.84Кб
21. 30 L Stochastic Gradient Descent-U9iEGUd9kJ0.mp4 3.92Мб
21. 30 L Stochastic Gradient Descent-U9iEGUd9kJ0.pt-BR.vtt 3.92Кб
21. 30 L Stochastic Gradient Descent-U9iEGUd9kJ0.zh-CN.vtt 3.87Кб
21. Comparing our Results with Doctors.html 8.53Кб
21. Cross-Entropy 2.html 11.08Кб
21. CrossEntropy V1-1BnhC6e0TFw.en.vtt 8.03Кб
21. CrossEntropy V1-1BnhC6e0TFw.ja-JP.vtt 8.47Кб
21. CrossEntropy V1-1BnhC6e0TFw.mp4 6.61Мб
21. CrossEntropy V1-1BnhC6e0TFw.pt-BR.vtt 7.81Кб
21. CrossEntropy V1-1BnhC6e0TFw.zh-CN.vtt 6.67Кб
21. Formula For Cross 1-qvr_ego_d6w.en.vtt 607б
21. Formula For Cross 1-qvr_ego_d6w.ja-JP.vtt 698б
21. Formula For Cross 1-qvr_ego_d6w.mp4 2.08Мб
21. Formula For Cross 1-qvr_ego_d6w.pt-BR.vtt 719б
21. Formula For Cross 1-qvr_ego_d6w.zh-CN.vtt 545б
21. GMM Cluster Validation Lab.html 8.37Кб
21. Implementation.html 10.58Кб
21. Info Loss and Principal Components.html 9.18Кб
21. Info Loss and Principal Components-LTPV8lxQeZQ.ar.vtt 3.05Кб
21. Info Loss and Principal Components-LTPV8lxQeZQ.en.vtt 2.20Кб
21. Info Loss and Principal Components-LTPV8lxQeZQ.mp4 10.32Мб
21. Info Loss and Principal Components-LTPV8lxQeZQ.pt-BR.vtt 2.25Кб
21. Info Loss and Principal Components-LTPV8lxQeZQ.zh-CN.vtt 1.97Кб
21. K-means Clustering.html 7.67Кб
21. K-means Clustering-pv_i08zjpQw.en.vtt 3.81Кб
21. K-means Clustering-pv_i08zjpQw.mp4 13.20Мб
21. K-means Clustering-pv_i08zjpQw.pt-BR.vtt 3.46Кб
21. K-means Clustering-pv_i08zjpQw.zh-CN.vtt 3.57Кб
21. Mini project Image Augmentation in Keras.html 9.32Кб
21. Mini Project MC (Part 4).html 8.13Кб
21. Momentum.html 8.18Кб
21. Momentum-r-rYz_PEWC8.en.vtt 2.50Кб
21. Momentum-r-rYz_PEWC8.mp4 2.14Мб
21. Momentum-r-rYz_PEWC8.pt-BR.vtt 2.70Кб
21. Momentum-r-rYz_PEWC8.zh-CN.vtt 2.21Кб
21. Polynomial Regression.html 7.59Кб
21. Polynomial Regression-DBhWG-PagEQ.en.vtt 1.29Кб
21. Polynomial Regression-DBhWG-PagEQ.mp4 982.28Кб
21. Polynomial Regression-DBhWG-PagEQ.pt-BR.vtt 1.18Кб
21. ROC Curve-fWwe_JlpnlQ.en.vtt 3.04Кб
21. ROC Curve-fWwe_JlpnlQ.mp4 2.68Мб
21. ROC Curve-fWwe_JlpnlQ.pt-BR.vtt 2.64Кб
21. ROC Curve-fWwe_JlpnlQ.zh-CN.vtt 2.58Кб
21. Solution Pooling Intuition.html 9.46Кб
21. Stochastic Gradient Descent.html 8.40Кб
22. 31 L Momentum And Learning Rate Decay-O3QYdmQjXds.en.vtt 2.36Кб
22. 31 L Momentum And Learning Rate Decay-O3QYdmQjXds.ja-JP.vtt 2.70Кб
22. 31 L Momentum And Learning Rate Decay-O3QYdmQjXds.mp4 2.30Мб
22. 31 L Momentum And Learning Rate Decay-O3QYdmQjXds.pt-BR.vtt 2.39Кб
22. 31 L Momentum And Learning Rate Decay-O3QYdmQjXds.zh-CN.vtt 2.09Кб
22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.en.vtt 4.72Кб
22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.ja-JP.vtt 4.94Кб
22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.mp4 4.14Мб
22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.pt-BR.vtt 4.54Кб
22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.zh-CN.vtt 4.01Кб
22. GMM Cluster Validation Lab Solution.html 8.26Кб
22. Groundbreaking CNN Architectures.html 9.57Кб
22. Groundbreaking CNN Architectures-ddrB-mhMfkY.en.vtt 3.94Кб
22. Groundbreaking CNN Architectures-ddrB-mhMfkY.mp4 8.09Мб
22. Groundbreaking CNN Architectures-ddrB-mhMfkY.pt-BR.vtt 4.26Кб
22. Groundbreaking CNN Architectures-ddrB-mhMfkY.zh-CN.vtt 3.52Кб
22. Hierarchical Clustering.html 7.69Кб
22. Hierarchical Clustering-1PldDT8AwMA.en.vtt 2.19Кб
22. Hierarchical Clustering-1PldDT8AwMA.mp4 8.45Мб
22. Hierarchical Clustering-1PldDT8AwMA.pt-BR.vtt 2.04Кб
22. Hierarchical Clustering-1PldDT8AwMA.zh-CN.vtt 2.14Кб
22. Mini Project DP (Part 5).html 8.50Кб
22. Momentum and Learning Rate Decay.html 8.43Кб
22. Multi-Class Cross Entropy.html 9.59Кб
22. Neighborhood Composite Feature.html 11.05Кб
22. Neighborhood Composite Feature-adXoa85rnPM.ar.vtt 865б
22. Neighborhood Composite Feature-adXoa85rnPM.en.vtt 644б
22. Neighborhood Composite Feature-adXoa85rnPM.mp4 2.77Мб
22. Neighborhood Composite Feature-adXoa85rnPM.pt-BR.vtt 688б
22. Neighborhood Composite Feature-adXoa85rnPM.zh-CN.vtt 580б
22. Neighborhood Composite Feature-WxAWorS2SLg.ar.vtt 1.04Кб
22. Neighborhood Composite Feature-WxAWorS2SLg.en.vtt 797б
22. Neighborhood Composite Feature-WxAWorS2SLg.mp4 2.68Мб
22. Neighborhood Composite Feature-WxAWorS2SLg.pt-BR.vtt 880б
22. Neighborhood Composite Feature-WxAWorS2SLg.zh-CN.vtt 720б
22. Optimizers in Keras.html 9.03Кб
22. Quiz Pooling Mechanics.html 10.35Кб
22. Regularization.html 7.53Кб
22. Regularization-PyFNIcsNma0.en.vtt 10.87Кб
22. Regularization-PyFNIcsNma0.mp4 8.76Мб
22. Regularization-PyFNIcsNma0.pt-BR.vtt 10.38Кб
22. Summary.html 15.74Кб
22. Visualization.html 8.51Кб
22. Visualization-aGIGB4Ta3_A.en.vtt 1.85Кб
22. Visualization-aGIGB4Ta3_A.mp4 2.43Мб
22. Visualization-aGIGB4Ta3_A.pt-BR.vtt 1.78Кб
22. Visualization-aGIGB4Ta3_A.zh-CN.vtt 1.48Кб
23. 32 L Parameter Hyperspace!-5a3-iIhdguc.en.vtt 2.30Кб
23. 32 L Parameter Hyperspace!-5a3-iIhdguc.ja-JP.vtt 2.64Кб
23. 32 L Parameter Hyperspace!-5a3-iIhdguc.mp4 2.23Мб
23. 32 L Parameter Hyperspace!-5a3-iIhdguc.pt-BR.vtt 2.51Кб
23. 32 L Parameter Hyperspace!-5a3-iIhdguc.zh-CN.vtt 2.15Кб
23. Conclusion-hJEuaOUu2yA.en.vtt 1.83Кб
23. Conclusion-hJEuaOUu2yA.mp4 9.75Мб
23. Conclusion-hJEuaOUu2yA.pt-BR.vtt 1.87Кб
23. Conclusion-hJEuaOUu2yA.zh-CN.vtt 1.74Кб
23. Conclusion-pyeojf0NniQ.en.vtt 558б
23. Conclusion-pyeojf0NniQ.mp4 1.57Мб
23. Conclusion-pyeojf0NniQ.pt-BR.vtt 590б
23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.en.vtt 1.62Кб
23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.ja-JP.vtt 1.71Кб
23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.mp4 1.49Мб
23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.pt-BR.vtt 1.42Кб
23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.zh-CN.vtt 1.46Кб
23. Error Functions Around the World.html 8.37Кб
23. Error Functions Around the World-34AAcTECu2A.en.vtt 1.17Кб
23. Error Functions Around the World-34AAcTECu2A.mp4 1.73Мб
23. Error Functions Around the World-34AAcTECu2A.pt-BR.vtt 1.08Кб
23. Error Functions Around the World-34AAcTECu2A.zh-CN.vtt 1.13Кб
23. Error Function-V5kkHldUlVU.en.vtt 4.87Кб
23. Error Function-V5kkHldUlVU.ja-JP.vtt 4.68Кб
23. Error Function-V5kkHldUlVU.mp4 4.84Мб
23. Error Function-V5kkHldUlVU.pt-BR.vtt 5.19Кб
23. Error Function-V5kkHldUlVU.zh-CN.vtt 4.15Кб
23. Logistic Regression.html 10.20Кб
23. Outro.html 7.38Кб
23. Parameter Hyperspace .html 8.33Кб
23. PCA for Feature Transformation.html 9.14Кб
23. PCA for Feature Transformation-8kUPRUEMCA8.ar.vtt 5.66Кб
23. PCA for Feature Transformation-8kUPRUEMCA8.en.vtt 4.15Кб
23. PCA for Feature Transformation-8kUPRUEMCA8.mp4 20.77Мб
23. PCA for Feature Transformation-8kUPRUEMCA8.pt-BR.vtt 4.40Кб
23. PCA for Feature Transformation-8kUPRUEMCA8.zh-CN.vtt 3.51Кб
23. Solution Pooling Mechanics.html 9.37Кб
23. Summary.html 7.47Кб
23. Value Iteration.html 8.06Кб
23. Value Iteration-XNeQn8N36y8.en.vtt 4.18Кб
23. Value Iteration-XNeQn8N36y8.mp4 15.65Мб
23. Value Iteration-XNeQn8N36y8.pt-BR.vtt 4.47Кб
23. Value Iteration-XNeQn8N36y8.zh-CN.vtt 3.42Кб
23. Visualizando CNNs-mnqS_EhEZVg.en.vtt 3.87Кб
23. Visualizando CNNs-mnqS_EhEZVg.mp4 9.20Мб
23. Visualizando CNNs-mnqS_EhEZVg.pt-BR.vtt 3.83Кб
23. Visualizando CNNs-mnqS_EhEZVg.zh-CN.vtt 3.33Кб
23. Visualizing CNNs (Part 1).html 10.64Кб
23. What is the network looking at.html 8.68Кб
23. What Is The Neural Network Looking At-qN-rvoxPbBw.en.vtt 2.17Кб
23. What Is The Neural Network Looking At-qN-rvoxPbBw.mp4 3.46Мб
23. What Is The Neural Network Looking At-qN-rvoxPbBw.pt-BR.vtt 1.72Кб
23. What Is The Neural Network Looking At-qN-rvoxPbBw.zh-CN.vtt 1.87Кб
24. Confusion Matrix-Question 1-9GLNjmMUB_4.en.vtt 5.71Кб
24. Confusion Matrix-Question 1-9GLNjmMUB_4.en-US.vtt 5.52Кб
24. Confusion Matrix-Question 1-9GLNjmMUB_4.mp4 5.04Мб
24. Confusion Matrix-Question 1-9GLNjmMUB_4.pt-BR.vtt 4.76Кб
24. Confusion Matrix-Question 1-9GLNjmMUB_4.zh-CN.vtt 4.96Кб
24. Gradient Descent.html 16.38Кб
24. Gradient Descent-rhVIF-nigrY.en.vtt 3.85Кб
24. Gradient Descent-rhVIF-nigrY.ja-JP.vtt 3.85Кб
24. Gradient Descent-rhVIF-nigrY.mp4 3.76Мб
24. Gradient Descent-rhVIF-nigrY.pt-BR.vtt 3.98Кб
24. Implementation.html 10.83Кб
24. Maximum Number of PCs Quiz.html 10.57Кб
24. Maximum Number of PCs Quiz-oOUx6NHppdQ.ar.vtt 359б
24. Maximum Number of PCs Quiz-oOUx6NHppdQ.en.vtt 320б
24. Maximum Number of PCs Quiz-oOUx6NHppdQ.mp4 1.81Мб
24. Maximum Number of PCs Quiz-oOUx6NHppdQ.pt-BR.vtt 326б
24. Maximum Number of PCs Quiz-oOUx6NHppdQ.zh-CN.vtt 243б
24. Maximum Number of PCs Quiz-q4c5n5W2aUc.ar.vtt 559б
24. Maximum Number of PCs Quiz-q4c5n5W2aUc.en.vtt 473б
24. Maximum Number of PCs Quiz-q4c5n5W2aUc.mp4 2.35Мб
24. Maximum Number of PCs Quiz-q4c5n5W2aUc.pt-BR.vtt 497б
24. Maximum Number of PCs Quiz-q4c5n5W2aUc.zh-CN.vtt 422б
24. Neural Network Regression.html 8.07Кб
24. Neural Network Regression-aUJCBqBfEnI.mp4 3.46Мб
24. Neural Network Regression-aUJCBqBfEnI.pt-BR.vtt 3.55Кб
24. Quiz Mini-batch.html 27.62Кб
24. Quiz Pooling Practice.html 9.71Кб
24. Refresh on Confusion Matrices.html 16.05Кб
24. Visualizing CNNs (Part 2).html 15.16Кб
25. Confusion Matrix.html 8.51Кб
25. Confusion Matrix-3rpN-YYlfes.en.vtt 1.66Кб
25. Confusion Matrix-3rpN-YYlfes.mp4 3.07Мб
25. Confusion Matrix-3rpN-YYlfes.pt-BR.vtt 1.54Кб
25. Confusion Matrix-3rpN-YYlfes.zh-CN.vtt 1.41Кб
25. Epochs.html 15.07Кб
25. Gradient Descent Algorithm-snxmBgi_GeU.en.vtt 2.55Кб
25. Gradient Descent Algorithm-snxmBgi_GeU.ja-JP.vtt 2.68Кб
25. Gradient Descent Algorithm-snxmBgi_GeU.mp4 1.98Мб
25. Gradient Descent Algorithm-snxmBgi_GeU.pt-BR.vtt 2.64Кб
25. Gradient Descent Algorithm-snxmBgi_GeU.zh-CN.vtt 2.21Кб
25. Logistic Regression Algorithm.html 8.46Кб
25. Mini Project DP (Part 6).html 8.51Кб
25. Neural Networks Playground.html 8.75Кб
25. ReviewDefinition of PCA.html 9.08Кб
25. ReviewDefinition of PCA-oFBGXUUuKyI.ar.vtt 4.60Кб
25. ReviewDefinition of PCA-oFBGXUUuKyI.en.vtt 3.17Кб
25. ReviewDefinition of PCA-oFBGXUUuKyI.mp4 12.62Мб
25. ReviewDefinition of PCA-oFBGXUUuKyI.pt-BR.vtt 3.37Кб
25. ReviewDefinition of PCA-oFBGXUUuKyI.zh-CN.vtt 2.73Кб
25. Solution Pooling Practice.html 8.99Кб
25. Transfer Learning.html 19.60Кб
25. Transfer Learning-LHG5FltaR6I.en.vtt 6.00Кб
25. Transfer Learning-LHG5FltaR6I.mp4 13.32Мб
25. Transfer Learning-LHG5FltaR6I.pt-BR.vtt 6.51Кб
25. Transfer Learning-LHG5FltaR6I.zh-CN.vtt 5.39Кб
26. Applying PCA to Real Data.html 9.06Кб
26. Check Your Understanding.html 11.32Кб
26. Conclusion.html 8.47Кб
26. Conclusion-WhpE_8sTt-0.en.vtt 3.64Кб
26. Conclusion-WhpE_8sTt-0.mp4 8.20Мб
26. Conclusion-WhpE_8sTt-0.pt-BR.vtt 3.28Кб
26. Conclusion-WhpE_8sTt-0.zh-CN.vtt 3.26Кб
26. Keras Lab-a50un22BsLI.en.vtt 586б
26. Keras Lab-a50un22BsLI.mp4 2.19Мб
26. Keras Lab-a50un22BsLI.pt-BR.vtt 574б
26. Keras Lab-a50un22BsLI.zh-CN.vtt 540б
26. Mini Project Intro.html 8.22Кб
26. Pre-Lab Gradient Descent.html 10.01Кб
26. Quiz Average Pooling.html 9.55Кб
26. Transfer Learning in Keras.html 9.70Кб
26. Transfer Learning in Keras-HsIAznMM1LA.en.vtt 6.11Кб
26. Transfer Learning in Keras-HsIAznMM1LA.mp4 12.92Мб
26. Transfer Learning in Keras-HsIAznMM1LA.pt-BR.vtt 6.77Кб
26. Transfer Learning in Keras-HsIAznMM1LA.zh-CN.vtt 5.69Кб
27. Notebook Gradient Descent.html 8.69Кб
27. PCA on the Enron Finance Data.html 10.94Кб
27. PCA on the Enron Finance Data-6ufIq2nrTwg.ar.vtt 694б
27. PCA on the Enron Finance Data-6ufIq2nrTwg.en.vtt 579б
27. PCA on the Enron Finance Data-6ufIq2nrTwg.mp4 2.38Мб
27. PCA on the Enron Finance Data-6ufIq2nrTwg.pt-BR.vtt 573б
27. PCA on the Enron Finance Data-6ufIq2nrTwg.zh-CN.vtt 485б
27. PCA on the Enron Finance Data-w5XWkq_Y-rY.ar.vtt 2.06Кб
27. PCA on the Enron Finance Data-w5XWkq_Y-rY.en.vtt 1.49Кб
27. PCA on the Enron Finance Data-w5XWkq_Y-rY.en-US.vtt 1.50Кб
27. PCA on the Enron Finance Data-w5XWkq_Y-rY.mp4 4.57Мб
27. PCA on the Enron Finance Data-w5XWkq_Y-rY.pt-BR.vtt 1.54Кб
27. PCA on the Enron Finance Data-w5XWkq_Y-rY.zh-CN.vtt 1.25Кб
27. Pre-Lab IMDB Data in Keras.html 12.44Кб
27. Solution Average Pooling.html 8.99Кб
27. Summary.html 14.53Кб
27. Useful Resources.html 9.68Кб
28. 1x1 Convolutions.html 9.21Кб
28. 1x1 Convolutions-Zmzgerm6SjA.en.vtt 1.69Кб
28. 1x1 Convolutions-Zmzgerm6SjA.ja-JP.vtt 1.89Кб
28. 1x1 Convolutions-Zmzgerm6SjA.mp4 3.16Мб
28. 1x1 Convolutions-Zmzgerm6SjA.pt-BR.vtt 1.89Кб
28. 1x1 Convolutions-Zmzgerm6SjA.zh-CN.vtt 1.48Кб
28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.en.vtt 4.27Кб
28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.ja-JP.vtt 4.35Кб
28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.mp4 3.20Мб
28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.pt-BR.vtt 4.24Кб
28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.zh-CN.vtt 3.61Кб
28. Lab IMDB Data in Keras.html 8.66Кб
28. Mini Project Introduction.html 8.60Кб
28. Mini Project Introduction-Rgf3YVFWl-M.en.vtt 510б
28. Mini Project Introduction-Rgf3YVFWl-M.mp4 1.15Мб
28. Mini Project Introduction-Rgf3YVFWl-M.pt-BR.vtt 538б
28. Mini Project Introduction-Rgf3YVFWl-M.zh-CN.vtt 475б
28. PCA in sklearn.html 9.44Кб
28. PCA in sklearn-SBYdqlLgbGk.ar.vtt 7.05Кб
28. PCA in sklearn-SBYdqlLgbGk.en.vtt 5.28Кб
28. PCA in sklearn-SBYdqlLgbGk.mp4 20.88Мб
28. PCA in sklearn-SBYdqlLgbGk.pt-BR.vtt 5.34Кб
28. PCA in sklearn-SBYdqlLgbGk.zh-CN.vtt 4.70Кб
28. Perceptron vs Gradient Descent.html 8.77Кб
29. Conclusion-wOiUQDgGD9E.en.vtt 725б
29. Conclusion-wOiUQDgGD9E.mp4 2.58Мб
29. Conclusion-wOiUQDgGD9E.pt-BR.vtt 1.02Кб
29. Conclusion-wOiUQDgGD9E.zh-CN.vtt 655б
29. Inception Module.html 9.23Кб
29. Inception Module-SlTm03bEOxA.en.vtt 1.58Кб
29. Inception Module-SlTm03bEOxA.ja-JP.vtt 1.77Кб
29. Inception Module-SlTm03bEOxA.mp4 7.48Мб
29. Inception Module-SlTm03bEOxA.pt-BR.vtt 1.56Кб
29. Inception Module-SlTm03bEOxA.zh-CN.vtt 1.42Кб
29. Mini Project Dermatologist AI.html 20.17Кб
29. Neural Networks Outro V2-pwA5shUkRVc.mp4 3.30Мб
29. Neural Networks Outro V2-pwA5shUkRVc.pt-BR.vtt 755б
29. Outro.html 7.88Кб
29. Outro.html 8.06Кб
29. When to Use PCA.html 9.00Кб
29. When to Use PCA-hJZHcmJBk1o.ar.vtt 7.44Кб
29. When to Use PCA-hJZHcmJBk1o.en.vtt 5.39Кб
29. When to Use PCA-hJZHcmJBk1o.mp4 17.53Мб
29. When to Use PCA-hJZHcmJBk1o.pt-BR.vtt 5.46Кб
29. When to Use PCA-hJZHcmJBk1o.zh-CN.vtt 4.84Кб
2944258660.gif 354.86Кб
2946478670.gif 314.99Кб
2949288751.gif 328.96Кб
2956218691.gif 229.48Кб
2959748717.gif 276.20Кб
2962878580.gif 309.06Кб
2963418671.gif 348.25Кб
2966288580.gif 318.82Кб
2967238555.gif 256.98Кб
2970968572.gif 337.13Кб
2979238559.gif 187.05Кб
2981618588.gif 235.05Кб
2985858609.gif 336.50Кб
2991788616.gif 439.26Кб
2-card-21.png 175.83Кб
3. (NulledPremium.com) Download Cracked Website Themes, Plugins, Scripts And Stock Images.url 163б
30. Convolutional Network in TensorFlow.html 19.47Кб
30. PCA for Facial Recognition.html 10.98Кб
30. PCA for Facial Recognition-B_JKtLN-i5I.ar.vtt 2.30Кб
30. PCA for Facial Recognition-B_JKtLN-i5I.en.vtt 1.72Кб
30. PCA for Facial Recognition-B_JKtLN-i5I.mp4 6.99Мб
30. PCA for Facial Recognition-B_JKtLN-i5I.pt-BR.vtt 1.74Кб
30. PCA for Facial Recognition-B_JKtLN-i5I.zh-CN.vtt 1.52Кб
30. PCA for Facial Recognition-WyoU2otqsd8.ar.vtt 3.15Кб
30. PCA for Facial Recognition-WyoU2otqsd8.en.vtt 2.34Кб
30. PCA for Facial Recognition-WyoU2otqsd8.mp4 10.82Мб
30. PCA for Facial Recognition-WyoU2otqsd8.pt-BR.vtt 2.50Кб
30. PCA for Facial Recognition-WyoU2otqsd8.zh-CN.vtt 1.92Кб
3004978616.gif 164.57Кб
3013998667.gif 404.61Кб
3034378634.gif 173.12Кб
3040398570.gif 148.74Кб
3050028596.gif 192.14Кб
3056738546.gif 183.68Кб
3058428551.gif 124.68Кб
3059228570.gif 159.84Кб
3059748569.gif 254.86Кб
3062928590.gif 152.82Кб
3065198593.gif 227.95Кб
3073008570.gif 259.15Кб
3075798615.gif 342.10Кб
3076888537.gif 156.58Кб
3079068542.gif 327.62Кб
3081768538.gif 202.88Кб
3083018581.gif 195.15Кб
3090048570.gif 262.99Кб
3094188555.gif 287.30Кб
3095478574.gif 253.89Кб
3097488603.gif 261.83Кб
3099598537.gif 262.83Кб
31. Eigenfaces Code.html 8.88Кб
31. Eigenfaces Code-LgLYw-G4sLQ.ar.vtt 8.59Кб
31. Eigenfaces Code-LgLYw-G4sLQ.en.vtt 6.25Кб
31. Eigenfaces Code-LgLYw-G4sLQ.mp4 32.42Мб
31. Eigenfaces Code-LgLYw-G4sLQ.pt-BR.vtt 6.60Кб
31. Eigenfaces Code-LgLYw-G4sLQ.zh-CN.vtt 5.45Кб
31. TensorFlow Convolution Layer.html 12.42Кб
32. Solution TensorFlow Convolution Layer.html 10.37Кб
3204138549.gif 496.66Кб
3204388552.gif 463.62Кб
3214548558.gif 467.80Кб
3215618544.gif 460.56Кб
3219238538.gif 511.71Кб
33. TensorFlow Pooling Layer.html 11.03Кб
34. Solution TensorFlow Pooling Layer.html 9.96Кб
35. CNNs - Additional Resources.html 9.49Кб
4. (FTUApps.com) Download Cracked Developers Applications For Free.url 239б
5. (Discuss.FTUForum.com) FTU Discussion Forum.url 294б
6485174133.gif 458.07Кб
6499079068.gif 445.94Кб
6509638772.gif 711.08Кб
6551597473.gif 444.36Кб
a-b-c-fill-nn.png 305.51Кб
accuracy-quiz.png 105.85Кб
actionvalue.png 628.42Кб
admissions-data.png 118.38Кб
all-ranks.png 308.47Кб
amazon-aws.png 55.95Кб
amazonwebservices-logo.svg.png 107.16Кб
and-quiz.png 265.78Кб
and-quiz.png 265.78Кб
and-table.png 69.13Кб
and-to-or.png 606.14Кб
and-to-or.png 606.14Кб
arch.png 1.20Мб
article-2278590-1792e332000005dc-394-634x615.jpg 103.03Кб
atari-network.png 309.97Кб
aws-add-sec-group.png 41.71Кб
aws-create-account.png 13.50Кб
backgammonboard.svg.png 112.81Кб
backprop-error.gif 2.93Кб
backprop-general.gif 2.20Кб
backprop-network.png 13.07Кб
backprop-weight-update.gif 1.68Кб
batch-stochastic.png 196.92Кб
beemo.gif 223.77Кб
bootstrap.min.css 137.64Кб
bootstrap.min.js 49.85Кб
cat-1.jpeg 230.78Кб
cat-2.jpeg 231.25Кб
cat-3.png 575.91Кб
chess-game.jpg 7.54Мб
circle-data.png 49.91Кб
circle-data.png 49.91Кб
codecogseqn-2.png 2.26Кб
codecogseqn-43.gif 7.96Кб
codecogseqn-49.gif 2.09Кб
codecogseqn-58.gif 919б
codecogseqn-60-2.png 8.94Кб
codecogseqn-61.gif 2.07Кб
codecogseqn-62.gif 1.31Кб
complexity.png 95.64Кб
confusion.png 188.85Кб
confusion-matrix.png 310.94Кб
constant-alpha.png 143.69Кб
conv-dims.png 28.55Кб
convolutionalnetworksquiz.png 1.18Мб
convolution-schematic.gif 63.63Кб
convolution-schematic.gif 63.63Кб
cross-entropy-diagram.png 62.67Кб
curves.png 188.47Кб
data.png 49.54Кб
dataframe.png 14.38Кб
decision-trees.png 117.04Кб
derivative-example.png 55.08Кб
diagonal-line-1.png 5.76Кб
diagonal-line-1.png 5.76Кб
diagonal-line-2.png 6.62Кб
diagonal-line-2.png 6.62Кб
dog-1210559-1280.jpg 222.96Кб
dropout-node.jpeg 62.69Кб
e.gif 1.18Кб
edit-security-group.png 12.76Кб
eeg-ica.png 170.89Кб
eggsdata.png 41.81Кб
email.png 148.53Кб
enable-gpu.png 73.47Кб
est-action.png 150.55Кб
example-after-bias.png 65.72Кб
example-before-bias.png 36.91Кб
example-data.png 92.11Кб
expected-sarsa.png 254.43Кб
exploration-vs.-exploitation.png 204.28Кб
external-indices-quiz.png 96.46Кб
f1.gif 2.01Кб
f2.gif 1.88Кб
f4.gif 1.13Кб
f6.gif 1.60Кб
fbeta.png 337.08Кб
feb-26-2019-16-19-56.gif 6.33Мб
filter-depth.png 127.76Кб
frozen-lake-6.jpg 1.50Мб
full-padding-no-strides-transposed.gif 221.74Кб
gif-1.gif 1.03Кб
gmm-1d-quiz.png 26.76Кб
gmm-2d-quiz.png 78.44Кб
gmm-quiz.png 80.65Кб
go.jpg 614.80Кб
gradient-descent.png 71.96Кб
grid-layer-1.png 35.30Кб
grid-layer-1.png 35.30Кб
heaviside-step-function-2.gif 3.29Кб
heaviside-step-graph-2.png 26.27Кб
heirarchy-diagram.jpg 53.61Кб
hidden-errors.gif 2.80Кб
hidden-layer-weights.gif 1.75Кб
house.png 491.52Кб
How you can help Team-FTU.txt 237б
hq-new-and-or-percep-fixed.png 92.57Кб
hq-new-plot-perceptron-combine.png 224.89Кб
hq-new-plot-perceptron-combine-v2.png 200.83Кб
hq-new-xor-table.png 38.62Кб
hq-perceptron.png 115.94Кб
improve.png 124.46Кб
incremental.png 151.93Кб
index.html 4.59Кб
index.html 5.84Кб
index.html 4.35Кб
index.html 4.25Кб
index.html 4.20Кб
index.html 4.11Кб
index.html 4.82Кб
index.html 4.92Кб
index.html 5.09Кб
index.html 4.22Кб
index.html 4.72Кб
index.html 5.86Кб
index.html 4.77Кб
index.html 5.59Кб
index.html 5.20Кб
index.html 5.34Кб
index.html 4.77Кб
index.html 4.16Кб
index.html 4.76Кб
index.html 5.43Кб
index.html 4.25Кб
index.html 5.57Кб
index.html 6.16Кб
index.html 5.21Кб
index.html 6.85Кб
index.html 4.09Кб
index.html 4.89Кб
index.html 4.13Кб
index.html 4.73Кб
index.html 4.09Кб
index.html 4.56Кб
index.html 6.27Кб
index.html 4.54Кб
index.html 6.28Кб
index.html 6.42Кб
index.html 6.63Кб
index.html 4.10Кб
index.html 4.43Кб
index.html 4.40Кб
index.html 5.55Кб
index.html 5.03Кб
index.html 6.16Кб
index.html 5.92Кб
index.html 5.39Кб
index.html 4.26Кб
index.html 5.15Кб
index.html 5.04Кб
index.html 4.69Кб
index.html 4.59Кб
index.html 4.87Кб
index.html 4.13Кб
index.html 5.87Кб
index.html 5.43Кб
index.html 4.64Кб
index.html 4.71Кб
index.html 4.08Кб
index.html 4.28Кб
index.html 6.28Кб
index.html 5.42Кб
index.html 5.10Кб
index.html 7.00Кб
index.html 177.71Кб
index.jpg 11.56Кб
inputs-matrix.png 5.61Кб
input-times-weights.png 51.82Кб
iteration.png 241.36Кб
jquery.mCustomScrollbar.concat.min.js 44.42Кб
jquery.mCustomScrollbar.min.css 41.83Кб
jquery-3.3.1.min.js 84.89Кб
just-a-2d-reg.png 68.49Кб
just-a-simple-lin-reg.png 25.95Кб
KaTeX_AMS-Regular.ttf 69.75Кб
KaTeX_AMS-Regular.woff 39.26Кб
KaTeX_AMS-Regular.woff2 32.43Кб
KaTeX_Caligraphic-Bold.ttf 19.13Кб
KaTeX_Caligraphic-Bold.woff 11.85Кб
KaTeX_Caligraphic-Bold.woff2 10.35Кб
KaTeX_Caligraphic-Regular.ttf 18.52Кб
KaTeX_Caligraphic-Regular.woff 11.59Кб
KaTeX_Caligraphic-Regular.woff2 10.17Кб
KaTeX_Fraktur-Bold.ttf 35.13Кб
KaTeX_Fraktur-Bold.woff 22.84Кб
KaTeX_Fraktur-Bold.woff2 20.01Кб
KaTeX_Fraktur-Regular.ttf 33.84Кб
KaTeX_Fraktur-Regular.woff 22.31Кб
KaTeX_Fraktur-Regular.woff2 19.39Кб
KaTeX_Main-Bold.ttf 60.27Кб
KaTeX_Main-Bold.woff 35.89Кб
KaTeX_Main-Bold.woff2 29.90Кб
KaTeX_Main-BoldItalic.ttf 43.77Кб
KaTeX_Main-BoldItalic.woff 25.61Кб
KaTeX_Main-BoldItalic.woff2 21.67Кб
KaTeX_Main-Italic.ttf 46.83Кб
KaTeX_Main-Italic.woff 26.56Кб
KaTeX_Main-Italic.woff2 22.52Кб
KaTeX_Main-Regular.ttf 68.43Кб
KaTeX_Main-Regular.woff 38.52Кб
KaTeX_Main-Regular.woff2 32.09Кб
KaTeX_Math-BoldItalic.ttf 38.81Кб
KaTeX_Math-BoldItalic.woff 22.65Кб
KaTeX_Math-BoldItalic.woff2 19.57Кб
KaTeX_Math-Italic.ttf 40.48Кб
KaTeX_Math-Italic.woff 23.26Кб
KaTeX_Math-Italic.woff2 19.95Кб
KaTeX_SansSerif-Bold.ttf 33.23Кб
KaTeX_SansSerif-Bold.woff 18.72Кб
KaTeX_SansSerif-Bold.woff2 15.62Кб
KaTeX_SansSerif-Italic.ttf 30.57Кб
KaTeX_SansSerif-Italic.woff 17.70Кб
KaTeX_SansSerif-Italic.woff2 14.86Кб
KaTeX_SansSerif-Regular.ttf 29.45Кб
KaTeX_SansSerif-Regular.woff 16.39Кб
KaTeX_SansSerif-Regular.woff2 13.70Кб
KaTeX_Script-Regular.ttf 24.28Кб
KaTeX_Script-Regular.woff 13.53Кб
KaTeX_Script-Regular.woff2 11.99Кб
KaTeX_Size1-Regular.ttf 12.86Кб
KaTeX_Size1-Regular.woff 6.82Кб
KaTeX_Size1-Regular.woff2 5.69Кб
KaTeX_Size2-Regular.ttf 12.12Кб
KaTeX_Size2-Regular.woff 6.53Кб
KaTeX_Size2-Regular.woff2 5.43Кб
KaTeX_Size3-Regular.ttf 8.16Кб
KaTeX_Size3-Regular.woff 4.66Кб
KaTeX_Size3-Regular.woff2 3.77Кб
KaTeX_Size4-Regular.ttf 11.02Кб
KaTeX_Size4-Regular.woff 6.30Кб
KaTeX_Size4-Regular.woff2 5.06Кб
KaTeX_Typewriter-Regular.ttf 35.46Кб
KaTeX_Typewriter-Regular.woff 20.43Кб
KaTeX_Typewriter-Regular.woff2 17.13Кб
katex.min.css 21.56Кб
katex.min.js 231.26Кб
kernel-trick.png 98.86Кб
launch.png 8.90Кб
launch-instance.png 22.52Кб
layer-1-grid.png 45.73Кб
layer-1-grid.png 45.73Кб
layers.png 286.10Кб
learning-curves.png 109.03Кб
legend.png 102.05Кб
lesions.png 1.57Мб
linear-boundary.png 75.16Кб
linear-equation.gif 1.23Кб
lin-reg-no-outliers.png 28.61Кб
lin-reg-w-outliers.png 27.55Кб
local-minima.png 38.08Кб
logistic-regression-quiz.png 984.45Кб
m.gif 3.82Кб
margin-geometry-images.001.jpeg 225.57Кб
margin-geometry-images.002.jpeg 215.44Кб
margin-geometry-images.003.jpeg 253.58Кб
margin-geometry-images.004.jpeg 272.85Кб
margin-geometry-images.005.jpeg 281.30Кб
margin-geometry-images.008.jpeg 369.43Кб
matengai-of-kuniga-coast-in-oki-island-shimane-pref600.jpg 247.02Кб
mat-headshot.png 179.99Кб
mat-leonard-circle.png 384.91Кб
matrix-mult-3.png 78.97Кб
maxpool.jpeg 37.07Кб
maxpool.jpeg 37.07Кб
max-pooling.png 25.19Кб
maze.png 4.20Кб
mc-control-constant-a.png 274.97Кб
mc-control-glie.png 297.18Кб
mc-pred-action.png 363.61Кб
mc-pred-state.png 348.13Кб
medical.png 186.53Кб
meme.png 209.05Кб
meme.png 209.05Кб
meme.png 209.05Кб
meme.png 209.05Кб
meme.png 209.05Кб
minibatch.png 136.77Кб
min-samples-split.png 81.16Кб
mnist-012.png 20.21Кб
models.png 627.96Кб
monkey-doctor.png 189.92Кб
mse.png 3.21Кб
multi-layer.png 214.34Кб
multilayer-diagram-weights.png 48.57Кб
naive-bayes-quiz.png 166.43Кб
nature.png 893.03Кб
neilsen-pic.png 11.25Кб
network-with-labeled-nodes.png 52.00Кб
network-with-labeled-weights.png 59.44Кб
new-confusion-matrix.png 186.16Кб
new-tab.gif 181.31Кб
nn.png 105.99Кб
notmnist.png 54.15Кб
open-agent-monitor-main.gif 2.73Мб
open-terminal.gif 819.23Кб
or-quiz.png 393.62Кб
or-quiz.png 393.62Кб
p2-limit-increase.png 188.22Кб
p2xlarge-limit-request.png 129.66Кб
paper-notes.svg.png 67.42Кб
parrot-ar-drone.jpg 146.51Кб
perceptron-equation-2.gif 6.08Кб
perceptron-formula.gif 5.77Кб
perceptron-graphics.001.jpeg 232.64Кб
perceptronquiz.png 93.69Кб
perceptronquiz.png 93.69Кб
plyr.css 23.62Кб
plyr.polyfilled.min.js 126.16Кб
points.png 53.43Кб
points.png 63.17Кб
points.png 63.17Кб
poker-hand-3-of-a-kind.png 128.64Кб
policy-eval.png 259.66Кб
polynomial-kernel-2-quiz.png 79.56Кб
pooling-dims.png 29.17Кб
precision-quiz.png 250.81Кб
precision-recall.png 156.71Кб
profile-pics.jpg 595.62Кб
profiles-view.png 223.53Кб
Project Description - Capstone Project.html 10.99Кб
Project Description - Capstone Proposal.html 9.61Кб
Project Description - Creating Customer Segments.html 8.73Кб
Project Description - Dog Breed Classifier.html 8.85Кб
Project Description - Finding Donors for CharityML.html 7.89Кб
Project Description - Improve Your LinkedIn Profile.html 8.03Кб
Project Description - Optimize Your GitHub Profile.html 9.89Кб
Project Description - Predicting Boston Housing Prices.html 8.51Кб
Project Description - Teach a Quadcopter How to Fly.html 6.83Кб
project-prep-create-your-portfolio-2.png 19.30Кб
project-prep-create-your-portfolio-2.png 19.30Кб
Project Rubric - Capstone Project.html 13.12Кб
Project Rubric - Capstone Proposal.html 9.34Кб
Project Rubric - Creating Customer Segments.html 11.96Кб
Project Rubric - Dog Breed Classifier.html 13.90Кб
Project Rubric - Finding Donors for CharityML.html 11.76Кб
Project Rubric - Improve Your LinkedIn Profile.html 16.33Кб
Project Rubric - Optimize Your GitHub Profile.html 9.85Кб
Project Rubric - Predicting Boston Housing Prices.html 11.08Кб
Project Rubric - Teach a Quadcopter How to Fly.html 8.74Кб
pup.jpg 181.27Кб
quadraticlinearregression.png 23.56Кб
quiz.jpg 174.18Кб
recall-quiz.png 228.26Кб
recommending-apps.png 140.56Кб
redacted-linkedinresults.png 230.77Кб
regularization-quiz.png 87.90Кб
regularization-quiz.png 420.85Кб
relu.png 33.15Кб
relu-network.png 31.09Кб
retriever-patch.png 435.51Кб
retriever-patch-shifted.png 443.24Кб
review-and-launch.png 15.75Кб
roc.png 78.96Кб
roc-curve.png 31.48Кб
roc-curves.png 137.28Кб
run-main.gif 1.99Мб
sample-confusion-matrix.png 130.52Кб
sample-roc-curve.png 46.33Кб
sarsa.png 286.80Кб
sarsamax.png 264.54Кб
screen-shot-2016-11-24-at-10.05.37-pm.png 12.74Кб
screen-shot-2016-11-24-at-10.05.46-pm.png 21.93Кб
screen-shot-2016-11-24-at-12.08.11-pm.png 2.90Мб
screen-shot-2016-11-24-at-12.08.11-pm.png 2.90Мб
screen-shot-2016-11-24-at-12.09.02-pm.png 3.09Мб
screen-shot-2016-11-24-at-12.09.02-pm.png 3.09Мб
screen-shot-2016-11-24-at-12.09.24-pm.png 3.49Мб
screen-shot-2016-11-24-at-12.09.24-pm.png 3.49Мб
screen-shot-2016-11-24-at-12.49.08-pm.png 57.32Кб
screen-shot-2016-11-24-at-12.49.43-pm.png 165.60Кб
screen-shot-2016-11-24-at-12.50.54-pm.png 64.61Кб
screen-shot-2016-11-24-at-12.51.47-pm.png 24.32Кб
screen-shot-2016-11-24-at-12.51.51-pm.png 12.33Кб
screen-shot-2017-06-13-at-12.58.03-pm.png 196.32Кб
screen-shot-2017-08-09-at-7.09.54-pm.png 128.88Кб
screen-shot-2017-08-31-at-3.27.10-pm.png 463.09Кб
screen-shot-2017-09-20-at-12.02.06-pm.png 27.64Кб
screen-shot-2017-09-21-at-12.20.30-pm.png 203.11Кб
screen-shot-2017-09-21-at-12.20.30-pm.png 203.11Кб
screen-shot-2017-09-21-at-12.20.50-pm.png 210.59Кб
screen-shot-2017-09-21-at-3.08.03-pm.png 152.93Кб
screen-shot-2017-09-21-at-3.25.10-pm.png 55.60Кб
screen-shot-2017-09-21-at-3.46.12-pm.png 52.28Кб
screen-shot-2017-09-21-at-4.34.08-pm.png 26.85Кб
screen-shot-2017-09-24-at-4.28.04-pm.png 622.69Кб
screen-shot-2017-09-25-at-11.35.38-am.png 25.22Кб
screen-shot-2017-09-25-at-5.51.40-pm.png 64.59Кб
screen-shot-2017-09-25-at-6.02.37-pm.png 78.84Кб
screen-shot-2017-09-25-at-9.18.00-pm.png 52.48Кб
screen-shot-2017-09-26-at-11.03.16-pm.png 259.66Кб
screen-shot-2017-09-26-at-2.18.38-pm.png 405.83Кб
screen-shot-2017-09-26-at-4.22.09-pm.png 219.33Кб
screen-shot-2017-10-02-at-10.41.44-am.png 12.87Кб
screen-shot-2017-10-04-at-2.46.11-pm.png 58.97Кб
screen-shot-2017-10-04-at-4.58.58-pm.png 716.00Кб
screen-shot-2017-10-04-at-5.01.26-pm.png 271.87Кб
screen-shot-2017-10-05-at-3.55.40-pm.png 84.70Кб
screen-shot-2017-10-12-at-5.47.45-pm.png 73.59Кб
screen-shot-2017-10-17-at-11.02.44-am.png 56.50Кб
screen-shot-2017-11-26-at-10.30.15-am.png 145.10Кб
screen-shot-2017-11-26-at-9.38.24-am.png 440.90Кб
screen-shot-2017-11-26-at-9.55.20-am.png 414.22Кб
screen-shot-2017-12-17-at-12.49.34-pm.png 332.55Кб
screen-shot-2017-12-17-at-9.41.03-am.png 158.23Кб
screen-shot-2018-01-03-at-2.20.30-pm.png 647.38Кб
screen-shot-2018-01-03-at-2.23.38-pm.png 187.90Кб
screen-shot-2018-01-06-at-10.44.48-pm.png 285.48Кб
screen-shot-2018-01-06-at-8.13.20-pm.png 50.77Кб
screen-shot-2018-01-06-at-8.13.20-pm.png 50.77Кб
screen-shot-2018-01-06-at-9.30.27-pm.png 66.38Кб
screen-shot-2018-01-06-at-9.41.01-pm.png 110.70Кб
screen-shot-2018-01-08-at-5.37.22-am.png 33.23Кб
screen-shot-2018-01-08-at-5.38.03-am.png 276.13Кб
screen-shot-2018-02-23-at-5.00.25-pm.png 754.27Кб
screen-shot-2018-02-23-at-5.11.40-pm.png 200.67Кб
screen-shot-2018-04-14-at-3.13.15-pm.png 47.10Кб
screen-shot-2018-05-22-at-12.25.34-pm.png 6.09Кб
screen-shot-2018-05-22-at-12.27.22-pm.png 4.20Кб
screen-shot-2018-05-22-at-12.27.55-pm.png 4.28Кб
screen-shot-2018-06-12-at-5.07.10-pm.png 257.46Кб
screen-shot-2018-06-12-at-5.07.10-pm.png 257.46Кб
screen-shot-2018-07-19-at-5.39.37-pm.png 131.05Кб
screen-shot-2018-09-21-at-11.36.43-am.png 1.67Мб
screen-shot-2018-09-21-at-12.02.03-pm.png 56.19Кб
screen-shot-2018-11-09-at-7.38.47-pm.png 110.58Кб
screen-shot-2018-11-09-at-7.48.22-pm.png 1.57Мб
screen-shot-2018-11-09-at-7.49.34-pm.png 238.98Кб
screen-shot-2018-11-09-at-7.49.50-pm.png 375.54Кб
screen-shot-2019-01-14-at-4.05.23-pm.png 154.60Кб
screen-shot-2019-02-26-at-4.09.24-pm.png 104.90Кб
screen-shot-2019-02-26-at-4.25.04-pm.png 20.85Кб
sebastian-katie-jay.png 779.77Кб
semi-supervised-learning.jpg 36.85Кб
semi-supervised-learning.jpg 36.85Кб
sensitivity-specificity.png 155.14Кб
session.png 30.85Кб
sigmoid.png 27.73Кб
sigmoid-derivative.gif 2.09Кб
sigmoids.png 58.24Кб
simple-neuron.png 49.12Кб
skin-disease-classes.png 1.64Мб
smalldf.png 10.51Кб
softmax.png 27.08Кб
softmax-input-output.png 52.45Кб
softmax-math.png 4.27Кб
spam.png 67.76Кб
spamham.png 135.09Кб
speaking.png 17.08Кб
statevalue.png 1000.89Кб
step-0.png 301.99Кб
step-0.png 301.99Кб
step-0.png 301.99Кб
step1-file-upload.png 290.73Кб
step1-file-upload.png 290.73Кб
step1-file-upload.png 290.73Кб
step-2-file-upload.png 258.26Кб
step-2-file-upload.png 258.26Кб
step-2-file-upload.png 258.26Кб
stop.png 47.54Кб
student-acceptance.png 20.47Кб
student-data.png 91.85Кб
student-quiz.png 748.98Кб
student-quiz.png 748.98Кб
styles.css 4.02Кб
submit-workspace.png 546.65Кб
summary.png 93.72Кб
svm-image.png 45.08Кб
table.png 192.08Кб
talent-program.png 336.13Кб
td-prediction.png 311.15Кб
teeth-whiskers-tongue.png 331.90Кб
tensorflow.png 85.28Кб
threshold.png 468.31Кб
thumbs-up.jpg 612.52Кб
trees.png 300.00Кб
truncated-eval.png 225.19Кб
truncated-iter.png 274.00Кб
two-layer-network.png 17.15Кб
udacimak.png 461.07Кб
unnamed-134180-instructor-note-0.gif 32.85Кб
unnamed-project-desc-0.gif 94.58Кб
unnamed-project-desc-1.gif 19.15Кб
value-iteration.png 381.24Кб
vlcsnap-2016-11-24-15h52m47s438.png 280.29Кб
vlcsnap-2016-11-24-16h01m35s262.png 341.28Кб
weight-label-reference.gif 2.83Кб
weights-0-1-2.png 24.61Кб
xor.png 214.95Кб
xor.png 214.95Кб
xor-quiz.png 94.14Кб
xor-quiz.png 94.14Кб
y.gif 1.41Кб
z93yz2vrgdaacqjowbaabie8yaaackcwmaaadshdeaaabpwhgaaia0yqwaaecamayaacbngamaajamjaeaaegtxgaaakqjywaaan 6.40Кб
Статистика распространения по странам
Россия (RU) 1
Эквадор (EC) 1
Индия (IN) 1
Всего 3
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент