Общая информация
Название 2023 Python for Deep Learning and Artificial Intelligence
Тип
Размер 7.01Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[TGx]Downloaded from torrentgalaxy.to .txt 585б
0 688.43Кб
1 978.91Кб
1.1 python-for-deep-learning-and-ai.zip 74.67Мб
1. Classical Machine Learning Introduction.mp4 31.98Мб
1. Introduction to Computer Vision with Deep Learning.mp4 42.97Мб
1. Introduction to NLP.mp4 22.55Мб
1. Jupyter Notebook Introduction.mp4 103.08Мб
1. Machine Learning Process Introduction.mp4 37.98Мб
1. Overview of Image Classification using CNNs.mp4 44.06Мб
1. Python Introduction Part 1.mp4 33.55Мб
1. Transfer Learning Introduction.mp4 57.43Мб
1. What is Convolutional Neural Network.mp4 64.20Мб
1. What is Neuron.mp4 20.85Мб
1. What is Overfitting.mp4 42.76Мб
10 503.13Кб
10. CNN Parameter Calculations Part 2.mp4 43.15Мб
10. Code Along in Python Part 1.mp4 34.36Мб
10. Data Visualization Part 2.mp4 107.25Мб
10. Deep Learning Tools.mp4 31.78Мб
10. LeNet-5 Architecture Explained.mp4 71.12Мб
10. Pair Plot.mp4 41.94Мб
10. Seaborn Introduction Part 2.mp4 59.72Мб
10. TensorFlow TFDS and Cats vs Dogs Data Download.mp4 42.39Мб
10. Train Model with TFDS Data Without Saving Locally Part 2.mp4 38.45Мб
100 353.76Кб
101 583.29Кб
102 657.83Кб
103 302.42Кб
104 457.96Кб
105 798.54Кб
106 348.65Кб
107 652.85Кб
108 941.61Кб
109 19.37Кб
11 610.13Кб
11. AlexNet Architecture Explained.mp4 98.72Мб
11. CNN Parameter Calculations Part 3.mp4 61.42Мб
11. Code Along in Python Part 2.mp4 59.15Мб
11. Data Preprocessing.mp4 36.38Мб
11. import VGG16 from Keras.mp4 51.02Мб
11. MLops with AWS.mp4 21.64Мб
11. Store Data in Local Directory.mp4 53.07Мб
11. Train Test Split.mp4 8.74Мб
110 227.67Кб
111 505.41Кб
112 425.09Кб
113 812.29Кб
114 398.02Кб
115 332.16Кб
116 704.37Кб
117 1023.54Кб
118 28.20Кб
119 185.41Кб
12 62.23Кб
12. Code Along in Python Part 3.mp4 44.10Мб
12. Data Augmentation for Training.mp4 25.63Мб
12. GoogLeNet (Inception V1) Architecture Explained.mp4 68.39Мб
12. Import Neural Networks APIs.mp4 37.05Мб
12. Load Dataset for Baseline Classifier.mp4 82.94Мб
12. Model Training.mp4 58.94Мб
12. TF-IDF Vectorization.mp4 34.71Мб
120 381.15Кб
121 468.25Кб
122 470.04Кб
123 506.49Кб
124 55.65Кб
125 384.36Кб
126 668.00Кб
127 457.20Кб
128 753.06Кб
129 953.96Кб
13 811.88Кб
13. Building Baseline CNN Classifier.mp4 41.62Мб
13. Code Along in Python Part 4.mp4 66.67Мб
13. How to Get Input Shape and Class Weights.mp4 21.19Мб
13. Make CNN Model with VGG16 Transfer Learning.mp4 63.92Мб
13. Model Evaluation and Prediction on Real Data.mp4 22.26Мб
13. Model Load and Save.mp4 32.08Мб
13. RestNet Architecture Explained.mp4 56.84Мб
130 367.48Кб
131 824.96Кб
132 149.61Кб
133 999.75Кб
134 731.21Кб
135 887.02Кб
136 265.88Кб
137 449.80Кб
138 507.25Кб
139 532.77Кб
14 613.06Кб
14. How to Calculate Size of Output Layers of CNN and MaxPool.mp4 61.32Мб
14. Image Class Prediction.mp4 52.31Мб
14. MobileNet Architecture Explained.mp4 121.33Мб
14. Model Load and Store.mp4 22.07Мб
14. Model Training for Better Accuracy.mp4 23.35Мб
14. Neural Network Model Building.mp4 60.87Мб
140 747.67Кб
141 906.56Кб
142 705.46Кб
143 158.50Кб
144 554.63Кб
15 467.27Кб
15. EfficientNet Architecture Explained.mp4 104.30Мб
15. How to Calculate Number of Parameters in CNN and FCN.mp4 68.68Мб
15. Model Summary Explanation.mp4 48.80Мб
15. Train Any Model for Transfer Learning.mp4 63.27Мб
16 998.44Кб
16. Model Training.mp4 56.27Мб
16. Model Training and Layers Analysis.mp4 39.91Мб
16. Save and Load Model with Class Names.mp4 40.38Мб
17 338.62Кб
17. Model Evaluation.mp4 16.11Мб
17. Model Training and Validation Accuracy Plot.mp4 25.97Мб
17. Online Prediction of Flowers Classes.mp4 96.93Мб
18 362.44Кб
18. Building Dataset for Regularized CNN.mp4 17.50Мб
18. Model Save and Load.mp4 23.62Мб
19 655.34Кб
19. Prediction on Real-Life Data.mp4 50.94Мб
19. Regularized CNN Model Building and Training.mp4 42.45Мб
2 767.17Кб
2. 5 Steps of Computer Vision Model Building.mp4 27.68Мб
2. Introduction to TensorFlow Datasets (TFDS).mp4 74.65Мб
2. L1, L2 and Early Stopping Regularization.mp4 44.80Мб
2. Load Flowers Dataset for Classification.mp4 67.98Мб
2. Logistic Regression.mp4 34.43Мб
2. Multi-Layer Perceptron.mp4 55.11Мб
2. Python Introduction Part 2.mp4 37.83Мб
2. Types of Machine Learning.mp4 19.29Мб
2. What are Key NLP Techniques.mp4 39.58Мб
2. Working Principle of CNN.mp4 80.21Мб
20 674.53Кб
20. Training Log Analysis.mp4 25.54Мб
21 353.11Кб
21. Load Model and Do the Prediction.mp4 83.40Мб
22 899.99Кб
22. CNN Model Visualization.mp4 14.31Мб
23 976.60Кб
24 926.51Кб
25 332.61Кб
26 626.19Кб
27 15.67Кб
28 125.51Кб
29 336.75Кб
3 713.51Кб
3. Convolutional Filters.mp4 114.04Мб
3. Download Flowers Data.mp4 50.00Мб
3. Download Humans or Horses Dataset Part 1.mp4 56.15Мб
3. Fashion MNIST Dataset Download.mp4 63.20Мб
3. How Dropout and Batch Normalization Prevents Overfitting.mp4 42.73Мб
3. Overview of NLP Tools.mp4 64.53Мб
3. Python Introduction Part 3.mp4 34.65Мб
3. Shallow vs Deep Neural Networks.mp4 13.85Мб
3. Supervised Learning.mp4 25.54Мб
3. Support Vector Machine - SVM.mp4 37.66Мб
30 31.49Кб
31 244.94Кб
32 483.78Кб
33 823.61Кб
34 942.61Кб
35 86.06Кб
36 191.58Кб
37 744.69Кб
38 822.22Кб
39 588.98Кб
4 939.67Кб
4. Activation Function.mp4 40.33Мб
4. Common Challenges in NLP.mp4 19.13Мб
4. Decision Tree.mp4 25.51Мб
4. Download Humans or Horses Dataset Part 2.mp4 76.02Мб
4. Fashion MNIST Dataset Analysis.mp4 87.76Мб
4. Feature Maps.mp4 66.88Мб
4. Flowers Data Visualization.mp4 48.69Мб
4. Numpy Introduction Part 1.mp4 40.09Мб
4. Unsupervised Learning.mp4 43.24Мб
4. What is Data Augmentation [Theory].mp4 48.57Мб
40 695.22Кб
41 130.77Кб
42 332.76Кб
43 285.63Кб
44 871.73Кб
45 62.26Кб
46 581.51Кб
47 161.97Кб
48 744.31Кб
49 868.75Кб
5 683.91Кб
5. Bag of Words - The Simples Word Embedding Technique.mp4 27.31Мб
5. Numpy Introduction Part 2.mp4 36.30Мб
5. Padding and Strides.mp4 102.33Мб
5. Preparing Data with Image Data Generator.mp4 51.15Мб
5. Random Forest.mp4 17.48Мб
5. Reinforcement Learning.mp4 16.27Мб
5. Sample Data Load with ImageDataGenerator for Augmentation.mp4 71.05Мб
5. Train Test Split for Data.mp4 25.82Мб
5. Use of Image Data Generator.mp4 73.36Мб
5. What is Back Propagation.mp4 79.40Мб
50 182.15Кб
51 447.69Кб
52 913.51Кб
53 952.39Кб
54 992.07Кб
55 702.32Кб
56 949.87Кб
57 866.47Кб
58 1007.48Кб
59 62.14Кб
6 287.64Кб
6. Baseline CNN Model Building.mp4 46.36Мб
6. Data Display in Subplots Matrix.mp4 89.22Мб
6. Deep Neural Network Model Building.mp4 36.53Мб
6. L2 Regularization.mp4 38.30Мб
6. Optimizers in Deep Learning.mp4 52.07Мб
6. Pandas Introduction.mp4 49.56Мб
6. Pooling Layers.mp4 86.51Мб
6. Random Rotation Augmentation.mp4 55.82Мб
6. Term Frequency - Inverse Document Frequency (TF-IDF).mp4 20.02Мб
6. What is Deep Learning and ML.mp4 30.21Мб
60 803.42Кб
61 1021.32Кб
62 453.09Кб
63 208.86Кб
64 316.47Кб
65 440.66Кб
66 655.46Кб
67 670.91Кб
68 61.90Кб
69 230.61Кб
7 75.52Кб
7. Activation Function.mp4 72.66Мб
7. CNN Introduction.mp4 53.03Мб
7. How to Calculate Number of Parameters in CNN.mp4 63.81Мб
7. L1 Regularization.mp4 18.74Мб
7. Load Spam Dataset.mp4 18.56Мб
7. Matplotlib Introduction Part 1.mp4 64.76Мб
7. Model Summary and Training.mp4 64.97Мб
7. Random Shift Augmentation.mp4 45.94Мб
7. Steps to Build Neural Network.mp4 64.08Мб
7. What is Neural Network.mp4 33.22Мб
70 208.09Кб
71 221.80Кб
72 322.60Кб
73 925.30Кб
74 963.62Кб
75 778.35Кб
76 868.50Кб
77 33.95Кб
78 244.64Кб
79 277.51Кб
8 796.86Кб
8. Baseline CNN Model Training.mp4 46.34Мб
8. Building CNN Model.mp4 60.68Мб
8. Customer Churn Dataset Loading.mp4 26.00Мб
8. Discovering Overfitting - Early Stopping.mp4 77.54Мб
8. Dropout.mp4 32.36Мб
8. How Deep Learning Process Works.mp4 23.95Мб
8. Matplotlib Introduction Part 2.mp4 70.10Мб
8. Model Evaluation.mp4 31.51Мб
8. Other Types of Data Augmentation.mp4 73.34Мб
8. Text Preprocessing.mp4 45.77Мб
80 564.32Кб
81 624.93Кб
82 64.77Кб
83 392.65Кб
84 718.49Кб
85 630.12Кб
86 689.70Кб
87 929.95Кб
88 95.45Кб
89 434.74Кб
9 248.49Кб
9. All Types of Augmentation at Once.mp4 32.66Мб
9. Application of Deep Learning.mp4 28.61Мб
9. CNN Architectures Comparison.mp4 55.56Мб
9. CNN Parameter Calculation.mp4 44.78Мб
9. Data Visualization Part 1.mp4 50.22Мб
9. Feature Engineering.mp4 33.70Мб
9. Model Save and Load for Prediction.mp4 44.68Мб
9. ROC-AUC Curve.mp4 13.46Мб
9. Seaborn Introduction Part 1.mp4 30.58Мб
9. Train Model with TFDS Data Without Saving Locally Part 1.mp4 41.30Мб
90 561.79Кб
91 713.16Кб
92 19.63Кб
93 176.41Кб
94 345.22Кб
95 967.85Кб
96 477.45Кб
97 638.67Кб
98 713.36Кб
99 295.82Кб
TutsNode.net.txt 63б
Статистика распространения по странам
Индия (IN) 4
Россия (RU) 4
Великобритания (GB) 2
Китай (CN) 2
Турция (TR) 2
Непал (NP) 1
Эквадор (EC) 1
Румыния (RO) 1
Сербия (RS) 1
Малайзия (MY) 1
Индонезия (ID) 1
Сингапур (SG) 1
Дания (DK) 1
Чешская Республика (CZ) 1
Чили (CL) 1
Канада (CA) 1
Всего 25
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент