Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
эти файлы или скачать torrent-файл.
|
[TGx]Downloaded from torrentgalaxy.to .txt |
585б |
0 |
61б |
1 |
22б |
1. Become An Alumni.html |
944б |
1. Bonus Lecture.html |
3.29Кб |
1. Breaking The Flow.mp4 |
20.33Мб |
1. Breaking The Flow.srt |
2.98Кб |
1. Course Outline.mp4 |
77.26Мб |
1. Course Outline.srt |
9.17Кб |
1. Data Engineering Introduction.mp4 |
13.50Мб |
1. Data Engineering Introduction.srt |
4.25Кб |
1. Endorsements On LinkedIn.html |
2.05Кб |
1. Milestone Projects!.html |
738б |
1. Section Overview.mp4 |
13.35Мб |
1. Section Overview.mp4 |
13.32Мб |
1. Section Overview.mp4 |
12.46Мб |
1. Section Overview.mp4 |
12.21Мб |
1. Section Overview.mp4 |
10.92Мб |
1. Section Overview.mp4 |
10.87Мб |
1. Section Overview.mp4 |
10.20Мб |
1. Section Overview.mp4 |
8.96Мб |
1. Section Overview.mp4 |
8.60Мб |
1. Section Overview.mp4 |
6.03Мб |
1. Section Overview.srt |
2.12Кб |
1. Section Overview.srt |
2.69Кб |
1. Section Overview.srt |
4.65Кб |
1. Section Overview.srt |
1.84Кб |
1. Section Overview.srt |
4.10Кб |
1. Section Overview.srt |
3.75Кб |
1. Section Overview.srt |
3.11Кб |
1. Section Overview.srt |
3.11Кб |
1. Section Overview.srt |
2.77Кб |
1. Section Overview.srt |
4.89Мб |
1. Statistics and Mathematics.html |
710б |
1. The 2 Paths.mp4 |
9.75Мб |
1. The 2 Paths.srt |
4.71Кб |
1. What Is A Programming Language.mp4 |
104.77Мб |
1. What Is A Programming Language.srt |
7.04Кб |
1. What Is Machine Learning.mp4 |
28.33Мб |
1. What Is Machine Learning.srt |
8.67Кб |
10 |
1.83Мб |
10.1 Conda documentation on sharing an environment.html |
172б |
10.1 Loading TensorFlow 2.0 into a Colab Notebook (if it isn't the default).html |
129б |
10.1 pandas-anatomy-of-a-dataframe.png |
333.24Кб |
10.1 Pandas Categorical Datatype Documentation.html |
143б |
10.1 Standard deviation and variance explained.html |
116б |
10. CWD Git + Github 2.mp4 |
118.35Мб |
10. CWD Git + Github 2.srt |
18.25Кб |
10. Filling Missing Numerical Values.mp4 |
106.34Мб |
10. Filling Missing Numerical Values.srt |
16.94Кб |
10. Finding Patterns 3.mp4 |
137.86Мб |
10. Finding Patterns 3.srt |
18.88Кб |
10. For Loops.mp4 |
34.31Мб |
10. For Loops.srt |
7.53Кб |
10. How To Succeed.html |
280б |
10. Manipulating Data 2.mp4 |
86.53Мб |
10. Manipulating Data 2.srt |
13.85Кб |
10. Modelling - Tuning.mp4 |
15.98Мб |
10. Modelling - Tuning.srt |
4.86Кб |
10. Optional Learn SQL.html |
410б |
10. Optional TensorFlow 2.0 Default Issue.mp4 |
28.11Мб |
10. Optional TensorFlow 2.0 Default Issue.srt |
4.48Кб |
10. Quick Note Regular Expressions.html |
632б |
10. Quick Tip Clean, Transform, Reduce.mp4 |
16.54Мб |
10. Quick Tip Clean, Transform, Reduce.srt |
6.42Кб |
10. Sharing your Conda Environment.html |
2.41Кб |
10. Standard Deviation and Variance.mp4 |
51.16Мб |
10. Standard Deviation and Variance.srt |
9.35Кб |
100 |
807.23Кб |
101 |
1.01Мб |
102 |
1.99Мб |
103 |
279.85Кб |
104 |
758.60Кб |
105 |
445.92Кб |
106 |
894.56Кб |
107 |
1.29Мб |
108 |
1.42Мб |
109 |
1.76Мб |
11 |
1.61Мб |
11.1 6-step-ml-framework.png |
324.24Кб |
11.1 Floating point numbers.html |
104б |
11.1 Google Colab example GPU usage.html |
114б |
11.1 Introduction to Pandas Jupyter Notebook (with annotations).html |
185б |
11.2 heart-disease.csv |
11.06Кб |
11.2 Introduction to Pandas Jupyter Notebook (from the videos).html |
191б |
11.3 Dataquest Jupyter Notebook for Beginners Tutorial.html |
117б |
11.4 Jupyter Notebook documentation.html |
111б |
11. Contributing To Open Source.mp4 |
130.26Мб |
11. Contributing To Open Source.srt |
17.13Кб |
11. Filling Missing Categorical Values.mp4 |
66.92Мб |
11. Filling Missing Categorical Values.srt |
11.20Кб |
11. Getting Your Data Ready Convert Data To Numbers.mp4 |
135.02Мб |
11. Getting Your Data Ready Convert Data To Numbers.srt |
22.71Кб |
11. Hadoop, HDFS and MapReduce.mp4 |
10.10Мб |
11. Hadoop, HDFS and MapReduce.srt |
4.70Кб |
11. Iterables.mp4 |
43.21Мб |
11. Iterables.srt |
6.85Кб |
11. Jupyter Notebook Walkthrough.mp4 |
67.35Мб |
11. Jupyter Notebook Walkthrough.srt |
15.14Кб |
11. Manipulating Data 3.mp4 |
91.02Мб |
11. Manipulating Data 3.srt |
13.71Кб |
11. Modelling - Comparison.mp4 |
44.88Мб |
11. Modelling - Comparison.srt |
13.09Кб |
11. Numbers.mp4 |
72.71Мб |
11. Numbers.srt |
11.13Кб |
11. Plotting From Pandas DataFrames 2.mp4 |
98.80Мб |
11. Plotting From Pandas DataFrames 2.srt |
13.63Кб |
11. Preparing Our Data For Machine Learning.mp4 |
72.60Мб |
11. Preparing Our Data For Machine Learning.srt |
12.02Кб |
11. Reshape and Transpose.mp4 |
53.53Мб |
11. Reshape and Transpose.srt |
9.53Кб |
11. Using A GPU.mp4 |
80.59Мб |
11. Using A GPU.srt |
12.11Кб |
110 |
1.81Мб |
111 |
1.29Мб |
112 |
1.40Мб |
113 |
1.58Мб |
114 |
1.65Мб |
115 |
406.60Кб |
116 |
591.30Кб |
117 |
1.36Мб |
118 |
1.61Мб |
119 |
258.21Кб |
12 |
228.27Кб |
12.1 Introduction to Google Colab example notebook.html |
116б |
12.1 Matrix Multiplication Explained.html |
119б |
12.1 Solution Repl.html |
92б |
12.2 Google Colab Example of GPU speed up versus CPU.html |
114б |
12. Apache Spark and Apache Flink.mp4 |
5.76Мб |
12. Apache Spark and Apache Flink.srt |
2.31Кб |
12. Assignment Pandas Practice.html |
2.05Кб |
12. Choosing The Right Models.mp4 |
96.43Мб |
12. Choosing The Right Models.srt |
12.97Кб |
12. Contributing To Open Source 2.mp4 |
113.05Мб |
12. Contributing To Open Source 2.srt |
10.18Кб |
12. Dot Product vs Element Wise.mp4 |
83.93Мб |
12. Dot Product vs Element Wise.srt |
15.34Кб |
12. Exercise Tricky Counter.mp4 |
16.39Мб |
12. Exercise Tricky Counter.srt |
3.58Кб |
12. Fitting A Machine Learning Model.mp4 |
55.52Мб |
12. Fitting A Machine Learning Model.srt |
10.47Кб |
12. Getting Your Data Ready Handling Missing Values With Pandas.mp4 |
104.84Мб |
12. Getting Your Data Ready Handling Missing Values With Pandas.srt |
16.94Кб |
12. Jupyter Notebook Walkthrough 2.mp4 |
103.90Мб |
12. Jupyter Notebook Walkthrough 2.srt |
22.48Кб |
12. Math Functions.mp4 |
41.82Мб |
12. Math Functions.srt |
5.43Кб |
12. Optional GPU and Google Colab.mp4 |
45.88Мб |
12. Optional GPU and Google Colab.srt |
5.99Кб |
12. Overfitting and Underfitting Definitions.html |
1.97Кб |
12. Plotting from Pandas DataFrames 3.mp4 |
74.71Мб |
12. Plotting from Pandas DataFrames 3.srt |
11.46Кб |
120 |
523.60Кб |
121 |
624.11Кб |
122 |
105.59Кб |
123 |
658.21Кб |
124 |
669.52Кб |
125 |
992.58Кб |
126 |
1.08Мб |
127 |
1.12Мб |
128 |
1.22Мб |
129 |
1.23Мб |
13 |
760.04Кб |
13.1 Google Colab.html |
95б |
13.1 heart-disease.csv |
11.06Кб |
13.2 Course notebooks - Github.html |
108б |
13. Coding Challenges.html |
948б |
13. DEVELOPER FUNDAMENTALS I.mp4 |
59.71Мб |
13. DEVELOPER FUNDAMENTALS I.srt |
5.22Кб |
13. Exercise Nut Butter Store Sales.mp4 |
91.32Мб |
13. Exercise Nut Butter Store Sales.srt |
16.96Кб |
13. Experimentation.mp4 |
21.33Мб |
13. Experimentation.srt |
4.98Кб |
13. Experimenting With Machine Learning Models.mp4 |
55.35Мб |
13. Experimenting With Machine Learning Models.srt |
9.63Кб |
13. Extension Feature Scaling.html |
2.93Кб |
13. How To Download The Course Assignments.mp4 |
66.78Мб |
13. How To Download The Course Assignments.srt |
11.06Кб |
13. Jupyter Notebook Walkthrough 3.mp4 |
71.42Мб |
13. Jupyter Notebook Walkthrough 3.srt |
11.49Кб |
13. Kafka and Stream Processing.mp4 |
19.24Мб |
13. Kafka and Stream Processing.srt |
5.05Кб |
13. Optional Reloading Colab Notebook.mp4 |
88.66Мб |
13. Optional Reloading Colab Notebook.srt |
7.77Кб |
13. Plotting from Pandas DataFrames 4.mp4 |
49.00Мб |
13. Plotting from Pandas DataFrames 4.srt |
9.41Кб |
13. range().mp4 |
28.33Мб |
13. range().srt |
5.86Кб |
13. Splitting Data.mp4 |
82.68Мб |
13. Splitting Data.srt |
13.51Кб |
130 |
1.50Мб |
131 |
1.56Мб |
132 |
1.97Мб |
133 |
1.16Мб |
134 |
1.74Мб |
135 |
230.79Кб |
136 |
344.59Кб |
137 |
676.77Кб |
138 |
986.08Кб |
139 |
999.06Кб |
14 |
1.70Мб |
14.1 Documentation on how many images Google recommends for image problems.html |
129б |
14.1 Exercise Repl.html |
106б |
14. Challenge What's wrong with splitting data after filling it.html |
1.72Кб |
14. Comparison Operators.mp4 |
26.38Мб |
14. Comparison Operators.srt |
5.26Кб |
14. enumerate().mp4 |
24.80Мб |
14. enumerate().srt |
4.56Кб |
14. Exercise Contribute To Open Source.html |
1.45Кб |
14. Loading Our Data Labels.mp4 |
114.82Мб |
14. Loading Our Data Labels.srt |
16.08Кб |
14. Note Correction in the upcoming video (splitting data).html |
2.16Кб |
14. Operator Precedence.mp4 |
14.43Мб |
14. Operator Precedence.srt |
3.50Кб |
14. Plotting from Pandas DataFrames 5.mp4 |
56.96Мб |
14. Plotting from Pandas DataFrames 5.srt |
11.63Кб |
14. Tools We Will Use.mp4 |
27.33Мб |
14. Tools We Will Use.srt |
5.99Кб |
14. TuningImproving Our Model.mp4 |
102.78Мб |
14. TuningImproving Our Model.srt |
17.64Кб |
140 |
252.49Кб |
141 |
1.50Мб |
142 |
1.65Мб |
143 |
299.84Кб |
144 |
1.04Мб |
145 |
1.23Мб |
146 |
1.44Мб |
147 |
490.04Кб |
148 |
668.11Кб |
149 |
1.10Мб |
15 |
1.17Мб |
15.1 Exercise Repl.html |
106б |
15. Custom Evaluation Function.mp4 |
103.35Мб |
15. Custom Evaluation Function.srt |
16.11Кб |
15. Exercise Operator Precedence.html |
683б |
15. Getting Your Data Ready Handling Missing Values With Scikit-learn.mp4 |
136.89Мб |
15. Getting Your Data Ready Handling Missing Values With Scikit-learn.srt |
23.13Кб |
15. Optional Elements of AI.html |
975б |
15. Plotting from Pandas DataFrames 6.mp4 |
82.04Мб |
15. Plotting from Pandas DataFrames 6.srt |
11.08Кб |
15. Preparing The Images.mp4 |
133.89Мб |
15. Preparing The Images.srt |
15.12Кб |
15. Sorting Arrays.mp4 |
32.83Мб |
15. Sorting Arrays.srt |
8.80Кб |
15. Tuning Hyperparameters.mp4 |
108.00Мб |
15. Tuning Hyperparameters.srt |
15.67Кб |
15. While Loops.mp4 |
28.32Мб |
15. While Loops.srt |
7.36Кб |
150 |
1.67Мб |
151 |
482.75Кб |
152 |
672.73Кб |
153 |
964.09Кб |
154 |
1.14Мб |
155 |
1.40Мб |
156 |
1.73Мб |
157 |
1.96Мб |
158 |
23.59Кб |
159 |
80.01Кб |
16 |
180.54Кб |
16.1 Base Numbers.html |
111б |
16.1 Introduction to NumPy Jupyter Notebook (from the videos).html |
190б |
16.1 Scikit-Learn machine learning map (how to choose the right machine learning model).html |
133б |
16.2 Introduction to NumPy Jupyter Notebook (with annotations).html |
184б |
16.3 numpy-images.zip |
7.27Мб |
16. Choosing The Right Model For Your Data.mp4 |
143.26Мб |
16. Choosing The Right Model For Your Data.srt |
21.38Кб |
16. Optional bin() and complex.mp4 |
21.90Мб |
16. Optional bin() and complex.srt |
4.80Кб |
16. Plotting from Pandas DataFrames 7.mp4 |
119.75Мб |
16. Plotting from Pandas DataFrames 7.srt |
14.95Кб |
16. Reducing Data.mp4 |
93.48Мб |
16. Reducing Data.srt |
14.62Кб |
16. Tuning Hyperparameters 2.mp4 |
104.12Мб |
16. Tuning Hyperparameters 2.srt |
15.10Кб |
16. Turn Images Into NumPy Arrays.mp4 |
85.91Мб |
16. Turn Images Into NumPy Arrays.srt |
10.42Кб |
16. Turning Data Labels Into Numbers.mp4 |
107.46Мб |
16. Turning Data Labels Into Numbers.srt |
13.76Кб |
16. While Loops 2.mp4 |
25.93Мб |
16. While Loops 2.srt |
6.42Кб |
160 |
864.14Кб |
161 |
923.18Кб |
162 |
1.39Мб |
163 |
1.66Мб |
164 |
1.78Мб |
165 |
1.93Мб |
166 |
142.16Кб |
167 |
378.52Кб |
168 |
491.55Кб |
169 |
766.20Кб |
17 |
719.62Кб |
17.1 Blog post by Rachel Thomas (of fast.ai) on how and why you should create a validation set.html |
108б |
17.1 Python Keywords.html |
117б |
17. Assignment NumPy Practice.html |
2.17Кб |
17. break, continue, pass.mp4 |
22.22Мб |
17. break, continue, pass.srt |
5.25Кб |
17. Choosing The Right Model For Your Data 2 (Regression).mp4 |
86.92Мб |
17. Choosing The Right Model For Your Data 2 (Regression).srt |
11.98Кб |
17. Creating Our Own Validation Set.mp4 |
66.44Мб |
17. Creating Our Own Validation Set.srt |
11.32Кб |
17. Customizing Your Plots.mp4 |
92.21Мб |
17. Customizing Your Plots.srt |
13.95Кб |
17. RandomizedSearchCV.mp4 |
85.83Мб |
17. RandomizedSearchCV.srt |
12.65Кб |
17. Tuning Hyperparameters 3.mp4 |
63.02Мб |
17. Tuning Hyperparameters 3.srt |
9.92Кб |
17. Variables.mp4 |
93.56Мб |
17. Variables.srt |
16.04Кб |
170 |
866.85Кб |
171 |
1022.10Кб |
172 |
1.40Мб |
173 |
36.59Кб |
174 |
85.96Кб |
175 |
821.29Кб |
176 |
1.38Мб |
177 |
121.31Кб |
178 |
576.08Кб |
179 |
1.09Мб |
18 |
145.63Кб |
18.1 Documentation for loading images in TensorFlow.html |
114б |
18.1 Exercise Repl.html |
99б |
18.2 Solution Repl.html |
99б |
18.2 TensorFlow guidelines for loading all kinds of data (turning your data into Tensors).html |
98б |
18. Customizing Your Plots 2.mp4 |
123.60Мб |
18. Customizing Your Plots 2.srt |
13.29Кб |
18. Expressions vs Statements.mp4 |
10.97Мб |
18. Expressions vs Statements.srt |
1.72Кб |
18. Improving Hyperparameters.mp4 |
79.29Мб |
18. Improving Hyperparameters.srt |
11.03Кб |
18. Optional Extra NumPy resources.html |
1.02Кб |
18. Our First GUI.mp4 |
49.63Мб |
18. Our First GUI.srt |
10.37Кб |
18. Preprocess Images.mp4 |
90.10Мб |
18. Preprocess Images.srt |
12.93Кб |
18. Quick Note Confusion Matrix Labels.html |
1.10Кб |
18. Quick Note Decision Trees.html |
221б |
180 |
1.12Мб |
181 |
806.00Кб |
182 |
1006.00Кб |
183 |
1.18Мб |
184 |
1.40Мб |
185 |
1.61Мб |
186 |
1.74Мб |
187 |
1.78Мб |
188 |
189.22Кб |
189 |
477.86Кб |
19 |
198.33Кб |
19.1 Exercise Repl.html |
116б |
19.1 Introduction to Matplotlib Notebook (from the videos).html |
195б |
19. Augmented Assignment Operator.mp4 |
15.32Мб |
19. Augmented Assignment Operator.srt |
2.95Кб |
19. DEVELOPER FUNDAMENTALS IV.mp4 |
50.22Мб |
19. DEVELOPER FUNDAMENTALS IV.srt |
7.82Кб |
19. Evaluating Our Model.mp4 |
71.60Мб |
19. Evaluating Our Model.srt |
15.11Кб |
19. Preproccessing Our Data.mp4 |
139.30Мб |
19. Preproccessing Our Data.srt |
17.80Кб |
19. Preprocess Images 2.mp4 |
105.07Мб |
19. Preprocess Images 2.srt |
12.89Кб |
19. Quick Tip How ML Algorithms Work.mp4 |
11.06Мб |
19. Quick Tip How ML Algorithms Work.srt |
1.91Кб |
19. Saving And Sharing Your Plots.mp4 |
49.52Мб |
19. Saving And Sharing Your Plots.srt |
5.83Кб |
190 |
1.37Мб |
191 |
1.53Мб |
192 |
374.89Кб |
193 |
1.48Мб |
194 |
1.62Мб |
195 |
1.85Мб |
196 |
1.91Мб |
197 |
326.98Кб |
198 |
1.02Мб |
199 |
1.22Мб |
2 |
511.78Кб |
2.1 End-to-end Heart Disease Classification Notebook (with annotations).html |
201б |
2.1 How to Think About Communicating and Sharing Your Work (blog post).html |
142б |
2.1 Introduction to Matplotlib Jupyter Notebook (from the upcoming videos).html |
195б |
2.1 Introduction to NumPy Jupyter Notebook (with annotations).html |
184б |
2.1 Introduction to Scikit-Learn Jupyter Notebook (from the upcoming videos).html |
197б |
2.1 Kaggle.html |
92б |
2.1 python.org.html |
84б |
2.1 Structured Data Projects on GitHub.html |
155б |
2.2 End-to-end Bluebook Bulldozer Regression Notebook (same as in videos).html |
214б |
2.2 Matplotlib Documentation.html |
103б |
2.2 NumPy Documentation.html |
83б |
2.2 Scikit-Learn Documentation.html |
108б |
2.2 Structured Data Projects on GitHub.html |
155б |
2.3 End-to-end Bluebook Bulldozer Regression Notebook (with annotations).html |
208б |
2.3 End-to-end Heart Disease Classification Notebook (same as in videos).html |
207б |
2.3 Introduction to NumPy Jupyter Notebook (from the upcoming videos).html |
190б |
2.3 Introduction to Scikit-Learn Jupyter Notebook (with annotations).html |
191б |
2.4 Kaggle Bluebook for Bulldozers Competition.html |
118б |
2. AIMachine LearningData Science.mp4 |
19.67Мб |
2. AIMachine LearningData Science.srt |
6.36Кб |
2. Communicating Your Work.mp4 |
20.20Мб |
2. Communicating Your Work.srt |
4.84Кб |
2. Conditional Logic.mp4 |
74.58Мб |
2. Conditional Logic.srt |
15.66Кб |
2. Deep Learning and Unstructured Data.mp4 |
102.04Мб |
2. Deep Learning and Unstructured Data.srt |
20.20Кб |
2. Downloading Workbooks and Assignments.html |
967б |
2. Introducing Our Framework.mp4 |
11.38Мб |
2. Introducing Our Framework.srt |
3.70Кб |
2. Introducing Our Tools.mp4 |
19.29Мб |
2. Introducing Our Tools.srt |
4.34Кб |
2. Join Our Online Classroom!.html |
2.53Кб |
2. Matplotlib Introduction.mp4 |
31.51Мб |
2. Matplotlib Introduction.srt |
8.03Кб |
2. NumPy Introduction.mp4 |
26.84Мб |
2. NumPy Introduction.srt |
7.50Кб |
2. Project Overview.mp4 |
34.44Мб |
2. Project Overview.mp4 |
32.94Мб |
2. Project Overview.srt |
10.02Кб |
2. Project Overview.srt |
6.66Кб |
2. Python + Machine Learning Monthly.html |
917б |
2. Python Interpreter.mp4 |
78.01Мб |
2. Python Interpreter.srt |
8.47Кб |
2. Quick Note Upcoming Video.html |
587б |
2. Scikit-learn Introduction.mp4 |
40.63Мб |
2. Scikit-learn Introduction.srt |
10.60Кб |
2. Thank You.mp4 |
11.11Мб |
2. Thank You.srt |
3.64Кб |
2. What Is Data.mp4 |
42.22Мб |
2. What Is Data.srt |
7.62Кб |
20 |
1.11Мб |
20.1 Solution Repl.html |
102б |
20. Assignment Matplotlib Practice.html |
2.05Кб |
20. Choosing The Right Model For Your Data 3 (Classification).mp4 |
118.84Мб |
20. Choosing The Right Model For Your Data 3 (Classification).srt |
17.13Кб |
20. Evaluating Our Model 2.mp4 |
41.53Мб |
20. Evaluating Our Model 2.srt |
7.41Кб |
20. Exercise Find Duplicates.mp4 |
20.26Мб |
20. Exercise Find Duplicates.srt |
4.39Кб |
20. Making Predictions.mp4 |
79.21Мб |
20. Making Predictions.srt |
11.37Кб |
20. Strings.mp4 |
30.98Мб |
20. Strings.srt |
6.29Кб |
20. Turning Data Into Batches.mp4 |
87.77Мб |
20. Turning Data Into Batches.srt |
11.61Кб |
200 |
1.49Мб |
201 |
1.50Мб |
202 |
170.18Кб |
203 |
632.16Кб |
204 |
1.56Мб |
205 |
1.69Мб |
206 |
443.98Кб |
207 |
1.06Мб |
208 |
1.17Мб |
209 |
1.30Мб |
21 |
1006.09Кб |
21.1 End-to-end Bluebook Bulldozer Regression Notebook (with annotations).html |
208б |
21.1 Yann LeCun's (OG of deep learning) Tweet on Batch Sizes.html |
118б |
21.2 End-to-end Bluebook Bulldozer Regression Notebook (same as in videos).html |
214б |
21. Evaluating Our Model 3.mp4 |
64.84Мб |
21. Evaluating Our Model 3.srt |
11.55Кб |
21. Feature Importance.mp4 |
142.30Мб |
21. Feature Importance.srt |
17.26Кб |
21. Fitting A Model To The Data.mp4 |
56.56Мб |
21. Fitting A Model To The Data.srt |
9.33Кб |
21. Functions.mp4 |
48.60Мб |
21. Functions.srt |
9.20Кб |
21. String Concatenation.mp4 |
7.34Мб |
21. String Concatenation.srt |
1.42Кб |
21. Turning Data Into Batches 2.mp4 |
149.38Мб |
21. Turning Data Into Batches 2.srt |
20.15Кб |
210 |
1.45Мб |
211 |
502.61Кб |
212 |
600.80Кб |
213 |
1.02Мб |
214 |
1.31Мб |
215 |
1.44Мб |
216 |
1.50Мб |
217 |
685.17Кб |
218 |
769.78Кб |
219 |
1.15Мб |
22 |
111.04Кб |
22. Finding The Most Important Features.mp4 |
127.49Мб |
22. Finding The Most Important Features.srt |
22.33Кб |
22. Making Predictions With Our Model.mp4 |
66.50Мб |
22. Making Predictions With Our Model.srt |
12.08Кб |
22. Parameters and Arguments.mp4 |
23.14Мб |
22. Parameters and Arguments.srt |
4.88Кб |
22. Type Conversion.mp4 |
18.99Мб |
22. Type Conversion.srt |
3.09Кб |
22. Visualizing Our Data.mp4 |
121.99Мб |
22. Visualizing Our Data.srt |
15.66Кб |
220 |
1.47Мб |
221 |
1.67Мб |
222 |
1.67Мб |
223 |
1.67Мб |
224 |
1.68Мб |
225 |
1.89Мб |
226 |
1.97Мб |
227 |
77.15Кб |
228 |
336.73Кб |
229 |
488.40Кб |
23 |
1.74Мб |
23.1 End-to-end Heart Disease Classification Notebook (with annotations).html |
201б |
23.1 TensorFlow Hub (resource for pre-trained deep learning models and more).html |
79б |
23.2 End-to-end Heart Disease Classification Notebook (same as in videos).html |
207б |
23. Default Parameters and Keyword Arguments.mp4 |
38.15Мб |
23. Default Parameters and Keyword Arguments.srt |
5.98Кб |
23. Escape Sequences.mp4 |
23.16Мб |
23. Escape Sequences.srt |
5.01Кб |
23. predict() vs predict_proba().mp4 |
54.33Мб |
23. predict() vs predict_proba().srt |
11.56Кб |
23. Preparing Our Inputs and Outputs.mp4 |
50.07Мб |
23. Preparing Our Inputs and Outputs.srt |
7.78Кб |
23. Reviewing The Project.mp4 |
86.14Мб |
23. Reviewing The Project.srt |
13.81Кб |
230 |
572.74Кб |
231 |
618.56Кб |
232 |
682.14Кб |
233 |
859.04Кб |
234 |
1.16Мб |
235 |
1.37Мб |
236 |
1.62Мб |
237 |
46.05Кб |
238 |
71.95Кб |
239 |
362.20Кб |
24 |
138.24Кб |
24.1 Exercise Repl.html |
104б |
24. Formatted Strings.mp4 |
49.25Мб |
24. Formatted Strings.srt |
8.84Кб |
24. Making Predictions With Our Model (Regression).mp4 |
44.91Мб |
24. Making Predictions With Our Model (Regression).srt |
9.13Кб |
24. Optional How machines learn and what's going on behind the scenes.html |
2.72Кб |
24. return.mp4 |
63.04Мб |
24. return.srt |
14.97Кб |
240 |
506.02Кб |
241 |
1.20Мб |
242 |
1.71Мб |
243 |
1.76Мб |
244 |
428.37Кб |
245 |
449.99Кб |
246 |
554.77Кб |
247 |
775.69Кб |
248 |
859.93Кб |
249 |
877.36Кб |
25 |
521.44Кб |
25.1 Andrei Karpathy's talk on AI at Tesla.html |
95б |
25.1 Exercise Repl.html |
101б |
25.2 Papers with Code (a great resource for some of the best machine learning papers with code examples).html |
88б |
25.3 MobileNetV2 (the model we're using) on TensorFlow Hub.html |
132б |
25.4 PyTorch Hub (PyTorch version of TensorFlow Hub).html |
85б |
25.5 TensorFlow Hub (resource for pre-trained deep learning models and more).html |
79б |
25. Building A Deep Learning Model.mp4 |
121.85Мб |
25. Building A Deep Learning Model.srt |
15.92Кб |
25. Evaluating A Machine Learning Model (Score).mp4 |
87.14Мб |
25. Evaluating A Machine Learning Model (Score).srt |
12.86Кб |
25. Exercise Tesla.html |
402б |
25. String Indexes.mp4 |
49.15Мб |
25. String Indexes.srt |
9.21Кб |
250 |
1.24Мб |
251 |
1.78Мб |
252 |
37.34Кб |
253 |
38.42Кб |
254 |
105.58Кб |
255 |
157.58Кб |
256 |
689.05Кб |
257 |
751.56Кб |
258 |
1.13Мб |
259 |
1.20Мб |
26 |
1.02Мб |
26.1 Keras in TensorFlow Overview Documentation.html |
108б |
26. Building A Deep Learning Model 2.mp4 |
105.90Мб |
26. Building A Deep Learning Model 2.srt |
12.54Кб |
26. Evaluating A Machine Learning Model 2 (Cross Validation).mp4 |
95.97Мб |
26. Evaluating A Machine Learning Model 2 (Cross Validation).srt |
17.25Кб |
26. Immutability.mp4 |
20.80Мб |
26. Immutability.srt |
3.50Кб |
26. Methods vs Functions.mp4 |
30.69Мб |
26. Methods vs Functions.srt |
5.25Кб |
260 |
1.63Мб |
261 |
1.67Мб |
262 |
1.74Мб |
263 |
1.80Мб |
264 |
1.86Мб |
265 |
303.94Кб |
266 |
340.48Кб |
267 |
351.71Кб |
268 |
585.23Кб |
269 |
616.91Кб |
27 |
553.85Кб |
27.1 String Methods.html |
115б |
27.1 The Softmax Function (activation function we use in our model).html |
107б |
27.2 Built in Functions.html |
109б |
27.2 Step by step breakdown of a convolutional neural network (what MobileNetV2 is made of).html |
172б |
27.3 MobileNetV2 (the model we're using) architecture explanation by Sik-Ho Tsang.html |
163б |
27. Building A Deep Learning Model 3.mp4 |
105.92Мб |
27. Building A Deep Learning Model 3.srt |
11.20Кб |
27. Built-In Functions + Methods.mp4 |
69.39Мб |
27. Built-In Functions + Methods.srt |
10.27Кб |
27. Docstrings.mp4 |
17.34Мб |
27. Docstrings.srt |
4.28Кб |
27. Evaluating A Classification Model 1 (Accuracy).mp4 |
31.41Мб |
27. Evaluating A Classification Model 1 (Accuracy).srt |
5.87Кб |
270 |
725.01Кб |
271 |
778.12Кб |
272 |
846.69Кб |
273 |
873.71Кб |
274 |
1.01Мб |
275 |
1.01Мб |
276 |
1.62Мб |
277 |
1.75Мб |
278 |
251.15Кб |
279 |
677.97Кб |
28 |
412.44Кб |
28.1 [Article] How to choose loss & activation functions when building a deep learning model.html |
169б |
28. Booleans.mp4 |
16.55Мб |
28. Booleans.srt |
3.94Кб |
28. Building A Deep Learning Model 4.mp4 |
86.30Мб |
28. Building A Deep Learning Model 4.srt |
12.02Кб |
28. Clean Code.mp4 |
19.66Мб |
28. Clean Code.srt |
5.36Кб |
28. Evaluating A Classification Model 2 (ROC Curve).mp4 |
66.03Мб |
28. Evaluating A Classification Model 2 (ROC Curve).srt |
12.28Кб |
280 |
1.01Мб |
281 |
1.08Мб |
282 |
1.45Мб |
283 |
1.46Мб |
284 |
1.61Мб |
285 |
17.85Кб |
286 |
588.37Кб |
287 |
699.48Кб |
288 |
865.17Кб |
289 |
1.07Мб |
29 |
9.24Кб |
29. args and kwargs.mp4 |
43.02Мб |
29. args and kwargs.srt |
8.09Кб |
29. Evaluating A Classification Model 3 (ROC Curve).mp4 |
50.61Мб |
29. Evaluating A Classification Model 3 (ROC Curve).srt |
10.04Кб |
29. Exercise Type Conversion.mp4 |
50.34Мб |
29. Exercise Type Conversion.srt |
8.58Кб |
29. Summarizing Our Model.mp4 |
45.44Мб |
29. Summarizing Our Model.srt |
5.98Кб |
290 |
1.48Мб |
291 |
1.57Мб |
292 |
139.63Кб |
293 |
512.61Кб |
294 |
669.16Кб |
295 |
696.36Кб |
296 |
1.52Мб |
297 |
1.54Мб |
298 |
1.75Мб |
299 |
1.79Мб |
3 |
261.51Кб |
3.1 A 6 Step Field Guide for Machine Learning Modelling (blog post).html |
147б |
3.1 Getting started with Conda (documentation).html |
139б |
3.1 Glot.io.html |
77б |
3.1 Introduction to Pandas Jupyter Notebook (from the upcoming videos).html |
191б |
3.1 Teachable Machine.html |
101б |
3.2 10-minutes to pandas (from the pandas documentation).html |
127б |
3.2 conda-cheatsheet.pdf |
211.29Кб |
3.2 Repl.it.html |
77б |
3.3 Getting your computer ready for machine learning How, what and why you should use Anaconda, Miniconda and Conda (blog post).html |
167б |
3.3 Pandas Documentation.html |
106б |
3.4 Conda documentation.html |
93б |
3.4 Introduction to Pandas Jupyter Notebook (with annotations).html |
185б |
3. 6 Step Machine Learning Framework.mp4 |
23.46Мб |
3. 6 Step Machine Learning Framework.srt |
6.63Кб |
3. Communicating With Managers.mp4 |
18.38Мб |
3. Communicating With Managers.srt |
4.53Кб |
3. Course Review.html |
169б |
3. Endorsements On LinkedIN.html |
2.05Кб |
3. Exercise Machine Learning Playground.mp4 |
42.60Мб |
3. Exercise Machine Learning Playground.srt |
8.09Кб |
3. Exercise Meet The Community.html |
2.51Кб |
3. How To Run Python Code.mp4 |
52.86Мб |
3. How To Run Python Code.srt |
6.56Кб |
3. Importing And Using Matplotlib.mp4 |
86.45Мб |
3. Importing And Using Matplotlib.srt |
16.05Кб |
3. Indentation In Python.mp4 |
28.03Мб |
3. Indentation In Python.srt |
5.27Кб |
3. Pandas Introduction.mp4 |
27.44Мб |
3. Pandas Introduction.srt |
7.01Кб |
3. Project Environment Setup.mp4 |
101.27Мб |
3. Project Environment Setup.mp4 |
100.76Мб |
3. Project Environment Setup.srt |
15.91Кб |
3. Project Environment Setup.srt |
14.39Кб |
3. Quick Note Correction In Next Video.html |
1.25Кб |
3. Quick Note Upcoming Video.html |
390б |
3. Setting Up With Google.html |
568б |
3. What If I Don't Have Enough Experience.mp4 |
160.95Мб |
3. What If I Don't Have Enough Experience.srt |
19.98Кб |
3. What Is A Data Engineer.mp4 |
15.16Мб |
3. What Is A Data Engineer.srt |
4.90Кб |
3. What is Conda.mp4 |
12.48Мб |
3. What is Conda.srt |
3.41Кб |
30 |
151.94Кб |
30.1 Python Comments Best Practices.html |
106б |
30.1 Solution Repl.html |
108б |
30.1 TensorBoard Callback Documentation.html |
134б |
30. DEVELOPER FUNDAMENTALS II.mp4 |
29.25Мб |
30. DEVELOPER FUNDAMENTALS II.srt |
5.30Кб |
30. Evaluating Our Model.mp4 |
79.29Мб |
30. Evaluating Our Model.srt |
10.42Кб |
30. Exercise Functions.mp4 |
21.85Мб |
30. Exercise Functions.srt |
4.69Кб |
30. Reading Extension ROC Curve + AUC.html |
1.48Кб |
300 |
1.97Мб |
301 |
636.33Кб |
302 |
882.91Кб |
303 |
908.84Кб |
304 |
957.46Кб |
305 |
1.03Мб |
306 |
1.08Мб |
307 |
1.13Мб |
308 |
1.30Мб |
309 |
1.80Мб |
31 |
227.55Кб |
31.1 Early Stopping Callback (a way to stop your model from training when it stops improving) Documentation.html |
136б |
31.1 Notebook from video with updated confusion matrix labels.html |
191б |
31. Evaluating A Classification Model 4 (Confusion Matrix).mp4 |
77.73Мб |
31. Evaluating A Classification Model 4 (Confusion Matrix).srt |
15.11Кб |
31. Exercise Password Checker.mp4 |
51.10Мб |
31. Exercise Password Checker.srt |
7.89Кб |
31. Preventing Overfitting.mp4 |
36.51Мб |
31. Preventing Overfitting.srt |
5.54Кб |
31. Scope.mp4 |
20.14Мб |
31. Scope.srt |
3.82Кб |
310 |
1.90Мб |
311 |
259.75Кб |
312 |
1.04Мб |
313 |
1.40Мб |
314 |
76.75Кб |
315 |
671.02Кб |
316 |
748.12Кб |
317 |
1.97Мб |
318 |
250.08Кб |
319 |
454.37Кб |
32 |
678.20Кб |
32. Evaluating A Classification Model 5 (Confusion Matrix).mp4 |
63.77Мб |
32. Evaluating A Classification Model 5 (Confusion Matrix).srt |
11.18Кб |
32. Lists.mp4 |
21.96Мб |
32. Lists.srt |
5.57Кб |
32. Scope Rules.mp4 |
37.68Мб |
32. Scope Rules.srt |
8.48Кб |
32. Training Your Deep Neural Network.mp4 |
166.60Мб |
32. Training Your Deep Neural Network.srt |
23.07Кб |
33 |
253.82Кб |
33.1 Exercise Repl.html |
92б |
33. Evaluating A Classification Model 6 (Classification Report).mp4 |
87.24Мб |
33. Evaluating A Classification Model 6 (Classification Report).srt |
14.56Кб |
33. Evaluating Performance With TensorBoard.mp4 |
74.19Мб |
33. Evaluating Performance With TensorBoard.srt |
9.57Кб |
33. global Keyword.mp4 |
36.50Мб |
33. global Keyword.srt |
6.67Кб |
33. List Slicing.mp4 |
49.86Мб |
33. List Slicing.srt |
8.50Кб |
34 |
706.84Кб |
34.1 Exercise Repl.html |
93б |
34.1 Solution Repl.html |
95б |
34. Evaluating A Regression Model 1 (R2 Score).mp4 |
70.39Мб |
34. Evaluating A Regression Model 1 (R2 Score).srt |
12.01Кб |
34. Make And Transform Predictions.mp4 |
154.98Мб |
34. Make And Transform Predictions.srt |
19.18Кб |
34. Matrix.mp4 |
19.15Мб |
34. Matrix.srt |
4.13Кб |
34. nonlocal Keyword.mp4 |
18.25Мб |
34. nonlocal Keyword.srt |
4.07Кб |
35 |
781.81Кб |
35.1 List Methods.html |
113б |
35.1 TensorFlow documentation for the unbatch() function.html |
127б |
35. Evaluating A Regression Model 2 (MAE).mp4 |
28.53Мб |
35. Evaluating A Regression Model 2 (MAE).srt |
5.70Кб |
35. List Methods.mp4 |
61.75Мб |
35. List Methods.srt |
10.75Кб |
35. Transform Predictions To Text.mp4 |
129.87Мб |
35. Transform Predictions To Text.srt |
17.58Кб |
35. Why Do We Need Scope.mp4 |
19.17Мб |
35. Why Do We Need Scope.srt |
4.77Кб |
36 |
1.16Мб |
36.1 Python Keywords.html |
117б |
36.2 Exercise Repl.html |
94б |
36. Evaluating A Regression Model 3 (MSE).mp4 |
54.90Мб |
36. Evaluating A Regression Model 3 (MSE).srt |
9.23Кб |
36. List Methods 2.mp4 |
27.40Мб |
36. List Methods 2.srt |
4.48Кб |
36. Pure Functions.mp4 |
67.36Мб |
36. Pure Functions.srt |
10.06Кб |
36. Visualizing Model Predictions.mp4 |
119.31Мб |
36. Visualizing Model Predictions.srt |
17.02Кб |
37 |
1.65Мб |
37. List Methods 3.mp4 |
27.67Мб |
37. List Methods 3.srt |
5.01Кб |
37. Machine Learning Model Evaluation.html |
7.12Кб |
37. map().mp4 |
38.38Мб |
37. map().srt |
6.29Кб |
37. Visualizing And Evaluate Model Predictions 2.mp4 |
143.78Мб |
37. Visualizing And Evaluate Model Predictions 2.srt |
17.64Кб |
38 |
1.15Мб |
38.1 Exercise Repl.html |
94б |
38. Common List Patterns.mp4 |
40.47Мб |
38. Common List Patterns.srt |
5.83Кб |
38. Evaluating A Model With Cross Validation and Scoring Parameter.mp4 |
91.49Мб |
38. Evaluating A Model With Cross Validation and Scoring Parameter.srt |
17.96Кб |
38. filter().mp4 |
23.56Мб |
38. filter().srt |
5.05Кб |
38. Visualizing And Evaluate Model Predictions 3.mp4 |
113.21Мб |
38. Visualizing And Evaluate Model Predictions 3.srt |
13.82Кб |
39 |
1.23Мб |
39. Evaluating A Model With Scikit-learn Functions.mp4 |
94.82Мб |
39. Evaluating A Model With Scikit-learn Functions.srt |
16.32Кб |
39. List Unpacking.mp4 |
13.86Мб |
39. List Unpacking.srt |
2.91Кб |
39. Saving And Loading A Trained Model.mp4 |
126.98Мб |
39. Saving And Loading A Trained Model.srt |
16.85Кб |
39. zip().mp4 |
21.27Мб |
39. zip().srt |
3.26Кб |
4 |
1.40Мб |
4.1 Kaggle Dog Breed Identification Competition (the basis of our upcoming project).html |
119б |
4.1 matplotlib-anatomy-of-a-plot-with-code.png |
654.77Кб |
4.1 pandas-anatomy-of-a-dataframe.png |
333.24Кб |
4.1 Truthy vs Falsey Stackoverflow.html |
170б |
4.2 Google Colab (our workspace for the upcoming project).html |
95б |
4.2 matplotlib-anatomy-of-a-plot.png |
369.39Кб |
4.3 Google Colab IO example (how to get data in and out of your Colab notebook).html |
113б |
4.4 Introduction to Google Colab example notebook.html |
116б |
4.5 End-to-end Dog Vision Notebook (the project we'll be working through).html |
182б |
4. Anatomy Of A Matplotlib Figure.mp4 |
82.15Мб |
4. Anatomy Of A Matplotlib Figure.srt |
14.16Кб |
4. Communicating With Co-Workers.mp4 |
18.99Мб |
4. Communicating With Co-Workers.srt |
5.54Кб |
4. Conda Environments.mp4 |
30.56Мб |
4. Conda Environments.srt |
6.15Кб |
4. How Did We Get Here.mp4 |
30.50Мб |
4. How Did We Get Here.srt |
7.07Кб |
4. Learning Guideline.html |
325б |
4. NumPy DataTypes and Attributes.mp4 |
78.99Мб |
4. NumPy DataTypes and Attributes.srt |
19.19Кб |
4. Optional Windows Project Environment Setup.mp4 |
35.83Мб |
4. Optional Windows Project Environment Setup.srt |
5.55Кб |
4. Our First Python Program.mp4 |
47.20Мб |
4. Our First Python Program.srt |
9.03Кб |
4. Refresher What Is Machine Learning.mp4 |
88.27Мб |
4. Refresher What Is Machine Learning.srt |
6.33Кб |
4. Series, Data Frames and CSVs.mp4 |
95.37Мб |
4. Series, Data Frames and CSVs.srt |
16.82Кб |
4. Setting Up Google Colab.mp4 |
74.24Мб |
4. Setting Up Google Colab.srt |
9.64Кб |
4. Step 1~4 Framework Setup.mp4 |
85.69Мб |
4. Step 1~4 Framework Setup.srt |
12.44Кб |
4. The Final Challenge.html |
169б |
4. Truthy vs Falsey.mp4 |
42.82Мб |
4. Truthy vs Falsey.srt |
5.99Кб |
4. Types of Machine Learning Problems.mp4 |
60.50Мб |
4. Types of Machine Learning Problems.srt |
13.98Кб |
4. What Is A Data Engineer 2.mp4 |
24.24Мб |
4. What Is A Data Engineer 2.srt |
6.33Кб |
4. Your First Day.mp4 |
27.92Мб |
4. Your First Day.srt |
5.27Кб |
40 |
1.24Мб |
40. Improving A Machine Learning Model.mp4 |
90.94Мб |
40. Improving A Machine Learning Model.srt |
14.86Кб |
40. None.mp4 |
7.93Мб |
40. None.srt |
2.19Кб |
40. reduce().mp4 |
52.27Мб |
40. reduce().srt |
8.39Кб |
40. Training Model On Full Dataset.mp4 |
139.82Мб |
40. Training Model On Full Dataset.srt |
19.17Кб |
41 |
1.18Мб |
41.1 Dog Vision Prediction Probabilities Array.html |
170б |
41. Dictionaries.mp4 |
32.70Мб |
41. Dictionaries.srt |
7.09Кб |
41. List Comprehensions.mp4 |
53.34Мб |
41. List Comprehensions.srt |
9.38Кб |
41. Making Predictions On Test Images.mp4 |
140.83Мб |
41. Making Predictions On Test Images.srt |
20.31Кб |
41. Tuning Hyperparameters.mp4 |
175.74Мб |
41. Tuning Hyperparameters.srt |
30.61Кб |
42 |
810.92Кб |
42.1 Dog Vision Predictions with MobileNetV2 Ready for Kaggle Submission.html |
180б |
42. DEVELOPER FUNDAMENTALS III.mp4 |
26.63Мб |
42. DEVELOPER FUNDAMENTALS III.srt |
3.59Кб |
42. Set Comprehensions.mp4 |
35.38Мб |
42. Set Comprehensions.srt |
6.58Кб |
42. Submitting Model to Kaggle.mp4 |
121.34Мб |
42. Submitting Model to Kaggle.srt |
16.58Кб |
42. Tuning Hyperparameters 2.mp4 |
116.77Мб |
42. Tuning Hyperparameters 2.srt |
16.97Кб |
43 |
969.49Кб |
43.1 End-to-end Dog Vision Notebook (with annotations).html |
185б |
43.1 Exercise Repl.html |
100б |
43.2 End-to-end Dog Vision Notebook (from the videos).html |
191б |
43.2 Solution Repl.html |
102б |
43. Dictionary Keys.mp4 |
20.37Мб |
43. Dictionary Keys.srt |
4.17Кб |
43. Exercise Comprehensions.mp4 |
21.96Мб |
43. Exercise Comprehensions.srt |
4.94Кб |
43. Making Predictions On Our Images.mp4 |
119.24Мб |
43. Making Predictions On Our Images.srt |
18.57Кб |
43. Tuning Hyperparameters 3.mp4 |
121.78Мб |
43. Tuning Hyperparameters 3.srt |
18.82Кб |
44 |
2.00Мб |
44.1 Dictionary Methods.html |
119б |
44. Dictionary Methods.mp4 |
27.16Мб |
44. Dictionary Methods.srt |
5.26Кб |
44. Finishing Dog Vision Where to next.html |
3.86Кб |
44. Note Metric Comparison Improvement.html |
2.18Кб |
44. Python Exam Testing Your Understanding.html |
1.12Кб |
45 |
552.38Кб |
45.1 Exercise Repl.html |
97б |
45. Dictionary Methods 2.mp4 |
42.39Мб |
45. Dictionary Methods 2.srt |
7.14Кб |
45. Modules in Python.mp4 |
82.18Мб |
45. Modules in Python.srt |
12.67Кб |
45. Quick Tip Correlation Analysis.mp4 |
16.92Мб |
45. Quick Tip Correlation Analysis.srt |
3.09Кб |
46 |
1.50Мб |
46. Quick Note Upcoming Videos.html |
448б |
46. Saving And Loading A Model.mp4 |
52.60Мб |
46. Saving And Loading A Model.srt |
9.85Кб |
46. Tuples.mp4 |
25.65Мб |
46. Tuples.srt |
5.69Кб |
47 |
1.66Мб |
47.1 Tuple Methods.html |
114б |
47. Optional PyCharm.mp4 |
53.06Мб |
47. Optional PyCharm.srt |
10.51Кб |
47. Saving And Loading A Model 2.mp4 |
56.77Мб |
47. Saving And Loading A Model 2.srt |
8.98Кб |
47. Tuples 2.mp4 |
16.99Мб |
47. Tuples 2.srt |
3.08Кб |
48 |
82.64Кб |
48.1 Reading extension Scikit-Learn's Pipeline class explained.html |
146б |
48. Packages in Python.mp4 |
72.42Мб |
48. Packages in Python.srt |
12.45Кб |
48. Putting It All Together.mp4 |
150.57Мб |
48. Putting It All Together.srt |
29.62Кб |
48. Sets.mp4 |
36.98Мб |
48. Sets.srt |
8.43Кб |
49 |
105.44Кб |
49.1 Exercise Repl.html |
91б |
49.1 Introduction to Scikit-Learn Jupyter Notebook (from the videos).html |
197б |
49.2 Introduction to Scikit-Learn Jupyter Notebook (with annotations).html |
191б |
49.2 Sets Methods.html |
112б |
49. Different Ways To Import.mp4 |
47.96Мб |
49. Different Ways To Import.srt |
7.49Кб |
49. Putting It All Together 2.mp4 |
116.85Мб |
49. Putting It All Together 2.srt |
16.11Кб |
49. Sets 2.mp4 |
64.26Мб |
49. Sets 2.srt |
9.24Кб |
5 |
1.05Мб |
5.1 Google Colab FAQ (things you should know about Google Colab).html |
110б |
5.1 Machine Learning Playground.html |
88б |
5.1 Miniconda download documentation.html |
107б |
5.2 Google Colab (our workspace for the upcoming project).html |
95б |
5. Creating NumPy Arrays.mp4 |
66.77Мб |
5. Creating NumPy Arrays.srt |
12.44Кб |
5. Data from URLs.html |
1.09Кб |
5. Downloading the data for the next two projects.html |
1.64Кб |
5. Exercise YouTube Recommendation Engine.mp4 |
19.43Мб |
5. Exercise YouTube Recommendation Engine.srt |
5.65Кб |
5. Google Colab Workspace.mp4 |
39.63Мб |
5. Google Colab Workspace.srt |
6.32Кб |
5. Latest Version Of Python.mp4 |
10.70Мб |
5. Latest Version Of Python.srt |
2.69Кб |
5. Mac Environment Setup.mp4 |
144.39Мб |
5. Mac Environment Setup.srt |
23.93Кб |
5. Quick Note Upcoming Videos.html |
1018б |
5. Quick Note Upcoming Videos.html |
565б |
5. Scatter Plot And Bar Plot.mp4 |
67.03Мб |
5. Scatter Plot And Bar Plot.srt |
14.67Кб |
5. Step 1~4 Framework Setup.mp4 |
105.50Мб |
5. Step 1~4 Framework Setup.srt |
16.60Кб |
5. Ternary Operator.mp4 |
19.70Мб |
5. Ternary Operator.srt |
4.81Кб |
5. Types of Data.mp4 |
29.33Мб |
5. Types of Data.srt |
6.52Кб |
5. Weekend Project Principle.mp4 |
23.58Мб |
5. Weekend Project Principle.srt |
8.98Кб |
5. What Is A Data Engineer 3.mp4 |
24.29Мб |
5. What Is A Data Engineer 3.srt |
5.41Кб |
50 |
507.13Кб |
50. Next Steps.html |
959б |
50. Scikit-Learn Practice.html |
2.07Кб |
51 |
949.81Кб |
51. Bonus Resource Python Cheatsheet.html |
489б |
52 |
1.01Мб |
53 |
1.16Мб |
54 |
1.23Мб |
55 |
1.88Мб |
56 |
103.74Кб |
57 |
662.69Кб |
58 |
1.22Мб |
59 |
1.96Мб |
6 |
876.91Кб |
6.1 fast_template by fast.ai (a template you can use for your blog on GitHub Pages).html |
106б |
6.1 Kaggle Dog Breed Identification Competition Data.html |
115б |
6.1 Python 2 vs Python 3.html |
128б |
6.1 Scikit-Learn Reference Notebook.html |
194б |
6.2 Devblog by Hashnode (an easy and free way to create a blog you own).html |
89б |
6.2 Google Colab IO example (how to get data in and out of your Colab notebook).html |
113б |
6.2 The Story of Python.html |
104б |
6.3 Python 2 vs Python 3 - another one.html |
161б |
6. Communicating With Outside World.mp4 |
14.52Мб |
6. Communicating With Outside World.srt |
4.51Кб |
6. Describing Data with Pandas.mp4 |
75.56Мб |
6. Describing Data with Pandas.srt |
13.58Кб |
6. Exploring Our Data.mp4 |
137.81Мб |
6. Exploring Our Data.srt |
19.97Кб |
6. Getting Our Tools Ready.mp4 |
79.36Мб |
6. Getting Our Tools Ready.srt |
12.78Кб |
6. Histograms And Subplots.mp4 |
69.75Мб |
6. Histograms And Subplots.srt |
12.44Кб |
6. JTS Learn to Learn.mp4 |
11.14Мб |
6. JTS Learn to Learn.srt |
2.49Кб |
6. Mac Environment Setup 2.mp4 |
125.46Мб |
6. Mac Environment Setup 2.srt |
20.69Кб |
6. NumPy Random Seed.mp4 |
51.92Мб |
6. NumPy Random Seed.srt |
9.72Кб |
6. Python 2 vs Python 3.mp4 |
69.49Мб |
6. Python 2 vs Python 3.srt |
8.43Кб |
6. Scikit-learn Cheatsheet.mp4 |
75.13Мб |
6. Scikit-learn Cheatsheet.srt |
10.08Кб |
6. Short Circuiting.mp4 |
19.40Мб |
6. Short Circuiting.srt |
4.47Кб |
6. Types of Evaluation.mp4 |
17.75Мб |
6. Types of Evaluation.srt |
4.33Кб |
6. Types of Machine Learning.mp4 |
22.76Мб |
6. Types of Machine Learning.srt |
5.27Кб |
6. Uploading Project Data.mp4 |
51.98Мб |
6. Uploading Project Data.srt |
8.64Кб |
6. What Is A Data Engineer 4.mp4 |
14.93Мб |
6. What Is A Data Engineer 4.srt |
3.86Кб |
60 |
752.19Кб |
61 |
1.24Мб |
62 |
85.49Кб |
63 |
1.20Мб |
64 |
1.57Мб |
65 |
25.84Кб |
66 |
641.40Кб |
67 |
1.18Мб |
68 |
452.26Кб |
69 |
531.71Кб |
7 |
1.02Мб |
7.1 car-sales.csv |
369б |
7.1 Example Scikit-Learn Workflow Notebook.html |
192б |
7.1 heart-disease.csv |
11.06Кб |
7.1 Miniconda download documentation.html |
107б |
7.1 OLTP vs OLAP.html |
126б |
7.2 A Primer on ACID Transactions.html |
117б |
7. Are You Getting It Yet.html |
160б |
7. Exercise How Does Python Work.mp4 |
25.96Мб |
7. Exercise How Does Python Work.srt |
2.85Кб |
7. Exploring Our Data.mp4 |
66.88Мб |
7. Exploring Our Data.srt |
11.40Кб |
7. Exploring Our Data 2.mp4 |
52.04Мб |
7. Exploring Our Data 2.srt |
8.60Кб |
7. Features In Data.mp4 |
36.78Мб |
7. Features In Data.srt |
6.75Кб |
7. JTS Start With Why.mp4 |
15.43Мб |
7. JTS Start With Why.srt |
2.96Кб |
7. Logical Operators.mp4 |
28.33Мб |
7. Logical Operators.srt |
8.10Кб |
7. Selecting and Viewing Data with Pandas.mp4 |
72.35Мб |
7. Selecting and Viewing Data with Pandas.srt |
14.59Кб |
7. Setting Up Our Data.mp4 |
42.26Мб |
7. Setting Up Our Data.srt |
6.38Кб |
7. Storytelling.mp4 |
12.03Мб |
7. Storytelling.srt |
4.10Кб |
7. Subplots Option 2.mp4 |
38.09Мб |
7. Subplots Option 2.srt |
6.40Кб |
7. Types Of Databases.mp4 |
32.55Мб |
7. Types Of Databases.srt |
8.37Кб |
7. Typical scikit-learn Workflow.mp4 |
190.18Мб |
7. Typical scikit-learn Workflow.srt |
31.71Кб |
7. Viewing Arrays and Matrices.mp4 |
70.64Мб |
7. Viewing Arrays and Matrices.srt |
12.89Кб |
7. Windows Environment Setup.mp4 |
47.92Мб |
7. Windows Environment Setup.srt |
7.62Кб |
70 |
1.79Мб |
71 |
520.31Кб |
72 |
696.56Кб |
73 |
1000.84Кб |
74 |
1.06Мб |
75 |
1.90Мб |
76 |
1.34Мб |
77 |
1.73Мб |
78 |
235.38Кб |
79 |
776.48Кб |
8 |
1.43Мб |
8.1 Standard deviation and variance explained.html |
116б |
8. Communicating and sharing your work Further reading.html |
3.14Кб |
8. Exercise Logical Operators.mp4 |
46.62Мб |
8. Exercise Logical Operators.srt |
8.40Кб |
8. Feature Engineering.mp4 |
159.14Мб |
8. Feature Engineering.srt |
22.13Кб |
8. Finding Patterns.mp4 |
63.34Мб |
8. Finding Patterns.srt |
13.39Кб |
8. Learning Python.mp4 |
38.52Мб |
8. Learning Python.srt |
2.59Кб |
8. Manipulating Arrays.mp4 |
80.65Мб |
8. Manipulating Arrays.srt |
16.17Кб |
8. Modelling - Splitting Data.mp4 |
27.52Мб |
8. Modelling - Splitting Data.srt |
7.71Кб |
8. Optional Debugging Warnings In Jupyter.mp4 |
176.13Мб |
8. Optional Debugging Warnings In Jupyter.srt |
25.51Кб |
8. Quick Note Upcoming Video.html |
481б |
8. Quick Note Upcoming Videos.html |
352б |
8. Quick Tip Data Visualizations.mp4 |
12.25Мб |
8. Quick Tip Data Visualizations.srt |
2.34Кб |
8. Selecting and Viewing Data with Pandas Part 2.mp4 |
106.50Мб |
8. Selecting and Viewing Data with Pandas Part 2.srt |
17.92Кб |
8. Setting Up Our Data 2.mp4 |
20.87Мб |
8. Setting Up Our Data 2.srt |
2.18Кб |
8. What Is Machine Learning Round 2.mp4 |
25.51Мб |
8. What Is Machine Learning Round 2.srt |
6.07Кб |
8. Windows Environment Setup 2.mp4 |
227.60Мб |
8. Windows Environment Setup 2.srt |
31.61Кб |
80 |
881.70Кб |
81 |
1.08Мб |
82 |
1.47Мб |
83 |
1.55Мб |
84 |
1.70Мб |
85 |
1.86Мб |
86 |
93.48Кб |
87 |
171.84Кб |
88 |
320.14Кб |
89 |
67.08Кб |
9 |
631.48Кб |
9.1 Jake VanderPlas's Data Manipulation with Pandas.html |
146б |
9.1 scikit-learn-data.zip |
20.83Кб |
9.1 Standard deviation and variance explained.html |
116б |
9.2 car-sales-missing-data.csv |
287б |
9. CWD Git + Github.mp4 |
176.11Мб |
9. CWD Git + Github.srt |
21.17Кб |
9. Finding Patterns 2.mp4 |
99.92Мб |
9. Finding Patterns 2.srt |
22.32Кб |
9. Getting Your Data Ready Splitting Your Data.mp4 |
63.66Мб |
9. Getting Your Data Ready Splitting Your Data.srt |
12.08Кб |
9. Importing TensorFlow 2.mp4 |
116.76Мб |
9. Importing TensorFlow 2.srt |
16.79Кб |
9. is vs ==.mp4 |
33.57Мб |
9. is vs ==.srt |
8.12Кб |
9. Linux Environment Setup.html |
1.03Кб |
9. Manipulating Arrays 2.mp4 |
67.90Мб |
9. Manipulating Arrays 2.srt |
11.49Кб |
9. Manipulating Data.mp4 |
104.99Мб |
9. Manipulating Data.srt |
18.07Кб |
9. Modelling - Picking the Model.mp4 |
23.24Мб |
9. Modelling - Picking the Model.srt |
6.21Кб |
9. Optional OLTP Databases.mp4 |
79.68Мб |
9. Optional OLTP Databases.srt |
12.11Кб |
9. Plotting From Pandas DataFrames.mp4 |
60.35Мб |
9. Plotting From Pandas DataFrames.srt |
9.02Кб |
9. Python Data Types.mp4 |
28.85Мб |
9. Python Data Types.srt |
5.22Кб |
9. Section Review.mp4 |
5.56Мб |
9. Section Review.srt |
2.34Кб |
9. Turning Data Into Numbers.mp4 |
146.17Мб |
9. Turning Data Into Numbers.srt |
22.32Кб |
90 |
1.32Мб |
91 |
1.82Мб |
92 |
1.85Мб |
93 |
1.96Мб |
94 |
1.35Мб |
95 |
1.41Мб |
96 |
323.31Кб |
97 |
652.73Кб |
98 |
724.17Кб |
99 |
729.93Кб |
TutsNode.com.txt |
63б |