Общая информация
Название Complete Machine Learning & Data Science Bootcamp 2021
Тип
Размер 19.54Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[TGx]Downloaded from torrentgalaxy.to .txt 585б
0 61б
1 22б
1. Become An Alumni.html 944б
1. Bonus Lecture.html 3.29Кб
1. Breaking The Flow.mp4 20.33Мб
1. Breaking The Flow.srt 2.98Кб
1. Course Outline.mp4 77.26Мб
1. Course Outline.srt 9.17Кб
1. Data Engineering Introduction.mp4 13.50Мб
1. Data Engineering Introduction.srt 4.25Кб
1. Endorsements On LinkedIn.html 2.05Кб
1. Milestone Projects!.html 738б
1. Section Overview.mp4 13.35Мб
1. Section Overview.mp4 13.32Мб
1. Section Overview.mp4 12.46Мб
1. Section Overview.mp4 12.21Мб
1. Section Overview.mp4 10.92Мб
1. Section Overview.mp4 10.87Мб
1. Section Overview.mp4 10.20Мб
1. Section Overview.mp4 8.96Мб
1. Section Overview.mp4 8.60Мб
1. Section Overview.mp4 6.03Мб
1. Section Overview.srt 2.12Кб
1. Section Overview.srt 2.69Кб
1. Section Overview.srt 4.65Кб
1. Section Overview.srt 1.84Кб
1. Section Overview.srt 4.10Кб
1. Section Overview.srt 3.75Кб
1. Section Overview.srt 3.11Кб
1. Section Overview.srt 3.11Кб
1. Section Overview.srt 2.77Кб
1. Section Overview.srt 4.89Мб
1. Statistics and Mathematics.html 710б
1. The 2 Paths.mp4 9.75Мб
1. The 2 Paths.srt 4.71Кб
1. What Is A Programming Language.mp4 104.77Мб
1. What Is A Programming Language.srt 7.04Кб
1. What Is Machine Learning.mp4 28.33Мб
1. What Is Machine Learning.srt 8.67Кб
10 1.83Мб
10.1 Conda documentation on sharing an environment.html 172б
10.1 Loading TensorFlow 2.0 into a Colab Notebook (if it isn't the default).html 129б
10.1 pandas-anatomy-of-a-dataframe.png 333.24Кб
10.1 Pandas Categorical Datatype Documentation.html 143б
10.1 Standard deviation and variance explained.html 116б
10. CWD Git + Github 2.mp4 118.35Мб
10. CWD Git + Github 2.srt 18.25Кб
10. Filling Missing Numerical Values.mp4 106.34Мб
10. Filling Missing Numerical Values.srt 16.94Кб
10. Finding Patterns 3.mp4 137.86Мб
10. Finding Patterns 3.srt 18.88Кб
10. For Loops.mp4 34.31Мб
10. For Loops.srt 7.53Кб
10. How To Succeed.html 280б
10. Manipulating Data 2.mp4 86.53Мб
10. Manipulating Data 2.srt 13.85Кб
10. Modelling - Tuning.mp4 15.98Мб
10. Modelling - Tuning.srt 4.86Кб
10. Optional Learn SQL.html 410б
10. Optional TensorFlow 2.0 Default Issue.mp4 28.11Мб
10. Optional TensorFlow 2.0 Default Issue.srt 4.48Кб
10. Quick Note Regular Expressions.html 632б
10. Quick Tip Clean, Transform, Reduce.mp4 16.54Мб
10. Quick Tip Clean, Transform, Reduce.srt 6.42Кб
10. Sharing your Conda Environment.html 2.41Кб
10. Standard Deviation and Variance.mp4 51.16Мб
10. Standard Deviation and Variance.srt 9.35Кб
100 807.23Кб
101 1.01Мб
102 1.99Мб
103 279.85Кб
104 758.60Кб
105 445.92Кб
106 894.56Кб
107 1.29Мб
108 1.42Мб
109 1.76Мб
11 1.61Мб
11.1 6-step-ml-framework.png 324.24Кб
11.1 Floating point numbers.html 104б
11.1 Google Colab example GPU usage.html 114б
11.1 Introduction to Pandas Jupyter Notebook (with annotations).html 185б
11.2 heart-disease.csv 11.06Кб
11.2 Introduction to Pandas Jupyter Notebook (from the videos).html 191б
11.3 Dataquest Jupyter Notebook for Beginners Tutorial.html 117б
11.4 Jupyter Notebook documentation.html 111б
11. Contributing To Open Source.mp4 130.26Мб
11. Contributing To Open Source.srt 17.13Кб
11. Filling Missing Categorical Values.mp4 66.92Мб
11. Filling Missing Categorical Values.srt 11.20Кб
11. Getting Your Data Ready Convert Data To Numbers.mp4 135.02Мб
11. Getting Your Data Ready Convert Data To Numbers.srt 22.71Кб
11. Hadoop, HDFS and MapReduce.mp4 10.10Мб
11. Hadoop, HDFS and MapReduce.srt 4.70Кб
11. Iterables.mp4 43.21Мб
11. Iterables.srt 6.85Кб
11. Jupyter Notebook Walkthrough.mp4 67.35Мб
11. Jupyter Notebook Walkthrough.srt 15.14Кб
11. Manipulating Data 3.mp4 91.02Мб
11. Manipulating Data 3.srt 13.71Кб
11. Modelling - Comparison.mp4 44.88Мб
11. Modelling - Comparison.srt 13.09Кб
11. Numbers.mp4 72.71Мб
11. Numbers.srt 11.13Кб
11. Plotting From Pandas DataFrames 2.mp4 98.80Мб
11. Plotting From Pandas DataFrames 2.srt 13.63Кб
11. Preparing Our Data For Machine Learning.mp4 72.60Мб
11. Preparing Our Data For Machine Learning.srt 12.02Кб
11. Reshape and Transpose.mp4 53.53Мб
11. Reshape and Transpose.srt 9.53Кб
11. Using A GPU.mp4 80.59Мб
11. Using A GPU.srt 12.11Кб
110 1.81Мб
111 1.29Мб
112 1.40Мб
113 1.58Мб
114 1.65Мб
115 406.60Кб
116 591.30Кб
117 1.36Мб
118 1.61Мб
119 258.21Кб
12 228.27Кб
12.1 Introduction to Google Colab example notebook.html 116б
12.1 Matrix Multiplication Explained.html 119б
12.1 Solution Repl.html 92б
12.2 Google Colab Example of GPU speed up versus CPU.html 114б
12. Apache Spark and Apache Flink.mp4 5.76Мб
12. Apache Spark and Apache Flink.srt 2.31Кб
12. Assignment Pandas Practice.html 2.05Кб
12. Choosing The Right Models.mp4 96.43Мб
12. Choosing The Right Models.srt 12.97Кб
12. Contributing To Open Source 2.mp4 113.05Мб
12. Contributing To Open Source 2.srt 10.18Кб
12. Dot Product vs Element Wise.mp4 83.93Мб
12. Dot Product vs Element Wise.srt 15.34Кб
12. Exercise Tricky Counter.mp4 16.39Мб
12. Exercise Tricky Counter.srt 3.58Кб
12. Fitting A Machine Learning Model.mp4 55.52Мб
12. Fitting A Machine Learning Model.srt 10.47Кб
12. Getting Your Data Ready Handling Missing Values With Pandas.mp4 104.84Мб
12. Getting Your Data Ready Handling Missing Values With Pandas.srt 16.94Кб
12. Jupyter Notebook Walkthrough 2.mp4 103.90Мб
12. Jupyter Notebook Walkthrough 2.srt 22.48Кб
12. Math Functions.mp4 41.82Мб
12. Math Functions.srt 5.43Кб
12. Optional GPU and Google Colab.mp4 45.88Мб
12. Optional GPU and Google Colab.srt 5.99Кб
12. Overfitting and Underfitting Definitions.html 1.97Кб
12. Plotting from Pandas DataFrames 3.mp4 74.71Мб
12. Plotting from Pandas DataFrames 3.srt 11.46Кб
120 523.60Кб
121 624.11Кб
122 105.59Кб
123 658.21Кб
124 669.52Кб
125 992.58Кб
126 1.08Мб
127 1.12Мб
128 1.22Мб
129 1.23Мб
13 760.04Кб
13.1 Google Colab.html 95б
13.1 heart-disease.csv 11.06Кб
13.2 Course notebooks - Github.html 108б
13. Coding Challenges.html 948б
13. DEVELOPER FUNDAMENTALS I.mp4 59.71Мб
13. DEVELOPER FUNDAMENTALS I.srt 5.22Кб
13. Exercise Nut Butter Store Sales.mp4 91.32Мб
13. Exercise Nut Butter Store Sales.srt 16.96Кб
13. Experimentation.mp4 21.33Мб
13. Experimentation.srt 4.98Кб
13. Experimenting With Machine Learning Models.mp4 55.35Мб
13. Experimenting With Machine Learning Models.srt 9.63Кб
13. Extension Feature Scaling.html 2.93Кб
13. How To Download The Course Assignments.mp4 66.78Мб
13. How To Download The Course Assignments.srt 11.06Кб
13. Jupyter Notebook Walkthrough 3.mp4 71.42Мб
13. Jupyter Notebook Walkthrough 3.srt 11.49Кб
13. Kafka and Stream Processing.mp4 19.24Мб
13. Kafka and Stream Processing.srt 5.05Кб
13. Optional Reloading Colab Notebook.mp4 88.66Мб
13. Optional Reloading Colab Notebook.srt 7.77Кб
13. Plotting from Pandas DataFrames 4.mp4 49.00Мб
13. Plotting from Pandas DataFrames 4.srt 9.41Кб
13. range().mp4 28.33Мб
13. range().srt 5.86Кб
13. Splitting Data.mp4 82.68Мб
13. Splitting Data.srt 13.51Кб
130 1.50Мб
131 1.56Мб
132 1.97Мб
133 1.16Мб
134 1.74Мб
135 230.79Кб
136 344.59Кб
137 676.77Кб
138 986.08Кб
139 999.06Кб
14 1.70Мб
14.1 Documentation on how many images Google recommends for image problems.html 129б
14.1 Exercise Repl.html 106б
14. Challenge What's wrong with splitting data after filling it.html 1.72Кб
14. Comparison Operators.mp4 26.38Мб
14. Comparison Operators.srt 5.26Кб
14. enumerate().mp4 24.80Мб
14. enumerate().srt 4.56Кб
14. Exercise Contribute To Open Source.html 1.45Кб
14. Loading Our Data Labels.mp4 114.82Мб
14. Loading Our Data Labels.srt 16.08Кб
14. Note Correction in the upcoming video (splitting data).html 2.16Кб
14. Operator Precedence.mp4 14.43Мб
14. Operator Precedence.srt 3.50Кб
14. Plotting from Pandas DataFrames 5.mp4 56.96Мб
14. Plotting from Pandas DataFrames 5.srt 11.63Кб
14. Tools We Will Use.mp4 27.33Мб
14. Tools We Will Use.srt 5.99Кб
14. TuningImproving Our Model.mp4 102.78Мб
14. TuningImproving Our Model.srt 17.64Кб
140 252.49Кб
141 1.50Мб
142 1.65Мб
143 299.84Кб
144 1.04Мб
145 1.23Мб
146 1.44Мб
147 490.04Кб
148 668.11Кб
149 1.10Мб
15 1.17Мб
15.1 Exercise Repl.html 106б
15. Custom Evaluation Function.mp4 103.35Мб
15. Custom Evaluation Function.srt 16.11Кб
15. Exercise Operator Precedence.html 683б
15. Getting Your Data Ready Handling Missing Values With Scikit-learn.mp4 136.89Мб
15. Getting Your Data Ready Handling Missing Values With Scikit-learn.srt 23.13Кб
15. Optional Elements of AI.html 975б
15. Plotting from Pandas DataFrames 6.mp4 82.04Мб
15. Plotting from Pandas DataFrames 6.srt 11.08Кб
15. Preparing The Images.mp4 133.89Мб
15. Preparing The Images.srt 15.12Кб
15. Sorting Arrays.mp4 32.83Мб
15. Sorting Arrays.srt 8.80Кб
15. Tuning Hyperparameters.mp4 108.00Мб
15. Tuning Hyperparameters.srt 15.67Кб
15. While Loops.mp4 28.32Мб
15. While Loops.srt 7.36Кб
150 1.67Мб
151 482.75Кб
152 672.73Кб
153 964.09Кб
154 1.14Мб
155 1.40Мб
156 1.73Мб
157 1.96Мб
158 23.59Кб
159 80.01Кб
16 180.54Кб
16.1 Base Numbers.html 111б
16.1 Introduction to NumPy Jupyter Notebook (from the videos).html 190б
16.1 Scikit-Learn machine learning map (how to choose the right machine learning model).html 133б
16.2 Introduction to NumPy Jupyter Notebook (with annotations).html 184б
16.3 numpy-images.zip 7.27Мб
16. Choosing The Right Model For Your Data.mp4 143.26Мб
16. Choosing The Right Model For Your Data.srt 21.38Кб
16. Optional bin() and complex.mp4 21.90Мб
16. Optional bin() and complex.srt 4.80Кб
16. Plotting from Pandas DataFrames 7.mp4 119.75Мб
16. Plotting from Pandas DataFrames 7.srt 14.95Кб
16. Reducing Data.mp4 93.48Мб
16. Reducing Data.srt 14.62Кб
16. Tuning Hyperparameters 2.mp4 104.12Мб
16. Tuning Hyperparameters 2.srt 15.10Кб
16. Turn Images Into NumPy Arrays.mp4 85.91Мб
16. Turn Images Into NumPy Arrays.srt 10.42Кб
16. Turning Data Labels Into Numbers.mp4 107.46Мб
16. Turning Data Labels Into Numbers.srt 13.76Кб
16. While Loops 2.mp4 25.93Мб
16. While Loops 2.srt 6.42Кб
160 864.14Кб
161 923.18Кб
162 1.39Мб
163 1.66Мб
164 1.78Мб
165 1.93Мб
166 142.16Кб
167 378.52Кб
168 491.55Кб
169 766.20Кб
17 719.62Кб
17.1 Blog post by Rachel Thomas (of fast.ai) on how and why you should create a validation set.html 108б
17.1 Python Keywords.html 117б
17. Assignment NumPy Practice.html 2.17Кб
17. break, continue, pass.mp4 22.22Мб
17. break, continue, pass.srt 5.25Кб
17. Choosing The Right Model For Your Data 2 (Regression).mp4 86.92Мб
17. Choosing The Right Model For Your Data 2 (Regression).srt 11.98Кб
17. Creating Our Own Validation Set.mp4 66.44Мб
17. Creating Our Own Validation Set.srt 11.32Кб
17. Customizing Your Plots.mp4 92.21Мб
17. Customizing Your Plots.srt 13.95Кб
17. RandomizedSearchCV.mp4 85.83Мб
17. RandomizedSearchCV.srt 12.65Кб
17. Tuning Hyperparameters 3.mp4 63.02Мб
17. Tuning Hyperparameters 3.srt 9.92Кб
17. Variables.mp4 93.56Мб
17. Variables.srt 16.04Кб
170 866.85Кб
171 1022.10Кб
172 1.40Мб
173 36.59Кб
174 85.96Кб
175 821.29Кб
176 1.38Мб
177 121.31Кб
178 576.08Кб
179 1.09Мб
18 145.63Кб
18.1 Documentation for loading images in TensorFlow.html 114б
18.1 Exercise Repl.html 99б
18.2 Solution Repl.html 99б
18.2 TensorFlow guidelines for loading all kinds of data (turning your data into Tensors).html 98б
18. Customizing Your Plots 2.mp4 123.60Мб
18. Customizing Your Plots 2.srt 13.29Кб
18. Expressions vs Statements.mp4 10.97Мб
18. Expressions vs Statements.srt 1.72Кб
18. Improving Hyperparameters.mp4 79.29Мб
18. Improving Hyperparameters.srt 11.03Кб
18. Optional Extra NumPy resources.html 1.02Кб
18. Our First GUI.mp4 49.63Мб
18. Our First GUI.srt 10.37Кб
18. Preprocess Images.mp4 90.10Мб
18. Preprocess Images.srt 12.93Кб
18. Quick Note Confusion Matrix Labels.html 1.10Кб
18. Quick Note Decision Trees.html 221б
180 1.12Мб
181 806.00Кб
182 1006.00Кб
183 1.18Мб
184 1.40Мб
185 1.61Мб
186 1.74Мб
187 1.78Мб
188 189.22Кб
189 477.86Кб
19 198.33Кб
19.1 Exercise Repl.html 116б
19.1 Introduction to Matplotlib Notebook (from the videos).html 195б
19. Augmented Assignment Operator.mp4 15.32Мб
19. Augmented Assignment Operator.srt 2.95Кб
19. DEVELOPER FUNDAMENTALS IV.mp4 50.22Мб
19. DEVELOPER FUNDAMENTALS IV.srt 7.82Кб
19. Evaluating Our Model.mp4 71.60Мб
19. Evaluating Our Model.srt 15.11Кб
19. Preproccessing Our Data.mp4 139.30Мб
19. Preproccessing Our Data.srt 17.80Кб
19. Preprocess Images 2.mp4 105.07Мб
19. Preprocess Images 2.srt 12.89Кб
19. Quick Tip How ML Algorithms Work.mp4 11.06Мб
19. Quick Tip How ML Algorithms Work.srt 1.91Кб
19. Saving And Sharing Your Plots.mp4 49.52Мб
19. Saving And Sharing Your Plots.srt 5.83Кб
190 1.37Мб
191 1.53Мб
192 374.89Кб
193 1.48Мб
194 1.62Мб
195 1.85Мб
196 1.91Мб
197 326.98Кб
198 1.02Мб
199 1.22Мб
2 511.78Кб
2.1 End-to-end Heart Disease Classification Notebook (with annotations).html 201б
2.1 How to Think About Communicating and Sharing Your Work (blog post).html 142б
2.1 Introduction to Matplotlib Jupyter Notebook (from the upcoming videos).html 195б
2.1 Introduction to NumPy Jupyter Notebook (with annotations).html 184б
2.1 Introduction to Scikit-Learn Jupyter Notebook (from the upcoming videos).html 197б
2.1 Kaggle.html 92б
2.1 python.org.html 84б
2.1 Structured Data Projects on GitHub.html 155б
2.2 End-to-end Bluebook Bulldozer Regression Notebook (same as in videos).html 214б
2.2 Matplotlib Documentation.html 103б
2.2 NumPy Documentation.html 83б
2.2 Scikit-Learn Documentation.html 108б
2.2 Structured Data Projects on GitHub.html 155б
2.3 End-to-end Bluebook Bulldozer Regression Notebook (with annotations).html 208б
2.3 End-to-end Heart Disease Classification Notebook (same as in videos).html 207б
2.3 Introduction to NumPy Jupyter Notebook (from the upcoming videos).html 190б
2.3 Introduction to Scikit-Learn Jupyter Notebook (with annotations).html 191б
2.4 Kaggle Bluebook for Bulldozers Competition.html 118б
2. AIMachine LearningData Science.mp4 19.67Мб
2. AIMachine LearningData Science.srt 6.36Кб
2. Communicating Your Work.mp4 20.20Мб
2. Communicating Your Work.srt 4.84Кб
2. Conditional Logic.mp4 74.58Мб
2. Conditional Logic.srt 15.66Кб
2. Deep Learning and Unstructured Data.mp4 102.04Мб
2. Deep Learning and Unstructured Data.srt 20.20Кб
2. Downloading Workbooks and Assignments.html 967б
2. Introducing Our Framework.mp4 11.38Мб
2. Introducing Our Framework.srt 3.70Кб
2. Introducing Our Tools.mp4 19.29Мб
2. Introducing Our Tools.srt 4.34Кб
2. Join Our Online Classroom!.html 2.53Кб
2. Matplotlib Introduction.mp4 31.51Мб
2. Matplotlib Introduction.srt 8.03Кб
2. NumPy Introduction.mp4 26.84Мб
2. NumPy Introduction.srt 7.50Кб
2. Project Overview.mp4 34.44Мб
2. Project Overview.mp4 32.94Мб
2. Project Overview.srt 10.02Кб
2. Project Overview.srt 6.66Кб
2. Python + Machine Learning Monthly.html 917б
2. Python Interpreter.mp4 78.01Мб
2. Python Interpreter.srt 8.47Кб
2. Quick Note Upcoming Video.html 587б
2. Scikit-learn Introduction.mp4 40.63Мб
2. Scikit-learn Introduction.srt 10.60Кб
2. Thank You.mp4 11.11Мб
2. Thank You.srt 3.64Кб
2. What Is Data.mp4 42.22Мб
2. What Is Data.srt 7.62Кб
20 1.11Мб
20.1 Solution Repl.html 102б
20. Assignment Matplotlib Practice.html 2.05Кб
20. Choosing The Right Model For Your Data 3 (Classification).mp4 118.84Мб
20. Choosing The Right Model For Your Data 3 (Classification).srt 17.13Кб
20. Evaluating Our Model 2.mp4 41.53Мб
20. Evaluating Our Model 2.srt 7.41Кб
20. Exercise Find Duplicates.mp4 20.26Мб
20. Exercise Find Duplicates.srt 4.39Кб
20. Making Predictions.mp4 79.21Мб
20. Making Predictions.srt 11.37Кб
20. Strings.mp4 30.98Мб
20. Strings.srt 6.29Кб
20. Turning Data Into Batches.mp4 87.77Мб
20. Turning Data Into Batches.srt 11.61Кб
200 1.49Мб
201 1.50Мб
202 170.18Кб
203 632.16Кб
204 1.56Мб
205 1.69Мб
206 443.98Кб
207 1.06Мб
208 1.17Мб
209 1.30Мб
21 1006.09Кб
21.1 End-to-end Bluebook Bulldozer Regression Notebook (with annotations).html 208б
21.1 Yann LeCun's (OG of deep learning) Tweet on Batch Sizes.html 118б
21.2 End-to-end Bluebook Bulldozer Regression Notebook (same as in videos).html 214б
21. Evaluating Our Model 3.mp4 64.84Мб
21. Evaluating Our Model 3.srt 11.55Кб
21. Feature Importance.mp4 142.30Мб
21. Feature Importance.srt 17.26Кб
21. Fitting A Model To The Data.mp4 56.56Мб
21. Fitting A Model To The Data.srt 9.33Кб
21. Functions.mp4 48.60Мб
21. Functions.srt 9.20Кб
21. String Concatenation.mp4 7.34Мб
21. String Concatenation.srt 1.42Кб
21. Turning Data Into Batches 2.mp4 149.38Мб
21. Turning Data Into Batches 2.srt 20.15Кб
210 1.45Мб
211 502.61Кб
212 600.80Кб
213 1.02Мб
214 1.31Мб
215 1.44Мб
216 1.50Мб
217 685.17Кб
218 769.78Кб
219 1.15Мб
22 111.04Кб
22. Finding The Most Important Features.mp4 127.49Мб
22. Finding The Most Important Features.srt 22.33Кб
22. Making Predictions With Our Model.mp4 66.50Мб
22. Making Predictions With Our Model.srt 12.08Кб
22. Parameters and Arguments.mp4 23.14Мб
22. Parameters and Arguments.srt 4.88Кб
22. Type Conversion.mp4 18.99Мб
22. Type Conversion.srt 3.09Кб
22. Visualizing Our Data.mp4 121.99Мб
22. Visualizing Our Data.srt 15.66Кб
220 1.47Мб
221 1.67Мб
222 1.67Мб
223 1.67Мб
224 1.68Мб
225 1.89Мб
226 1.97Мб
227 77.15Кб
228 336.73Кб
229 488.40Кб
23 1.74Мб
23.1 End-to-end Heart Disease Classification Notebook (with annotations).html 201б
23.1 TensorFlow Hub (resource for pre-trained deep learning models and more).html 79б
23.2 End-to-end Heart Disease Classification Notebook (same as in videos).html 207б
23. Default Parameters and Keyword Arguments.mp4 38.15Мб
23. Default Parameters and Keyword Arguments.srt 5.98Кб
23. Escape Sequences.mp4 23.16Мб
23. Escape Sequences.srt 5.01Кб
23. predict() vs predict_proba().mp4 54.33Мб
23. predict() vs predict_proba().srt 11.56Кб
23. Preparing Our Inputs and Outputs.mp4 50.07Мб
23. Preparing Our Inputs and Outputs.srt 7.78Кб
23. Reviewing The Project.mp4 86.14Мб
23. Reviewing The Project.srt 13.81Кб
230 572.74Кб
231 618.56Кб
232 682.14Кб
233 859.04Кб
234 1.16Мб
235 1.37Мб
236 1.62Мб
237 46.05Кб
238 71.95Кб
239 362.20Кб
24 138.24Кб
24.1 Exercise Repl.html 104б
24. Formatted Strings.mp4 49.25Мб
24. Formatted Strings.srt 8.84Кб
24. Making Predictions With Our Model (Regression).mp4 44.91Мб
24. Making Predictions With Our Model (Regression).srt 9.13Кб
24. Optional How machines learn and what's going on behind the scenes.html 2.72Кб
24. return.mp4 63.04Мб
24. return.srt 14.97Кб
240 506.02Кб
241 1.20Мб
242 1.71Мб
243 1.76Мб
244 428.37Кб
245 449.99Кб
246 554.77Кб
247 775.69Кб
248 859.93Кб
249 877.36Кб
25 521.44Кб
25.1 Andrei Karpathy's talk on AI at Tesla.html 95б
25.1 Exercise Repl.html 101б
25.2 Papers with Code (a great resource for some of the best machine learning papers with code examples).html 88б
25.3 MobileNetV2 (the model we're using) on TensorFlow Hub.html 132б
25.4 PyTorch Hub (PyTorch version of TensorFlow Hub).html 85б
25.5 TensorFlow Hub (resource for pre-trained deep learning models and more).html 79б
25. Building A Deep Learning Model.mp4 121.85Мб
25. Building A Deep Learning Model.srt 15.92Кб
25. Evaluating A Machine Learning Model (Score).mp4 87.14Мб
25. Evaluating A Machine Learning Model (Score).srt 12.86Кб
25. Exercise Tesla.html 402б
25. String Indexes.mp4 49.15Мб
25. String Indexes.srt 9.21Кб
250 1.24Мб
251 1.78Мб
252 37.34Кб
253 38.42Кб
254 105.58Кб
255 157.58Кб
256 689.05Кб
257 751.56Кб
258 1.13Мб
259 1.20Мб
26 1.02Мб
26.1 Keras in TensorFlow Overview Documentation.html 108б
26. Building A Deep Learning Model 2.mp4 105.90Мб
26. Building A Deep Learning Model 2.srt 12.54Кб
26. Evaluating A Machine Learning Model 2 (Cross Validation).mp4 95.97Мб
26. Evaluating A Machine Learning Model 2 (Cross Validation).srt 17.25Кб
26. Immutability.mp4 20.80Мб
26. Immutability.srt 3.50Кб
26. Methods vs Functions.mp4 30.69Мб
26. Methods vs Functions.srt 5.25Кб
260 1.63Мб
261 1.67Мб
262 1.74Мб
263 1.80Мб
264 1.86Мб
265 303.94Кб
266 340.48Кб
267 351.71Кб
268 585.23Кб
269 616.91Кб
27 553.85Кб
27.1 String Methods.html 115б
27.1 The Softmax Function (activation function we use in our model).html 107б
27.2 Built in Functions.html 109б
27.2 Step by step breakdown of a convolutional neural network (what MobileNetV2 is made of).html 172б
27.3 MobileNetV2 (the model we're using) architecture explanation by Sik-Ho Tsang.html 163б
27. Building A Deep Learning Model 3.mp4 105.92Мб
27. Building A Deep Learning Model 3.srt 11.20Кб
27. Built-In Functions + Methods.mp4 69.39Мб
27. Built-In Functions + Methods.srt 10.27Кб
27. Docstrings.mp4 17.34Мб
27. Docstrings.srt 4.28Кб
27. Evaluating A Classification Model 1 (Accuracy).mp4 31.41Мб
27. Evaluating A Classification Model 1 (Accuracy).srt 5.87Кб
270 725.01Кб
271 778.12Кб
272 846.69Кб
273 873.71Кб
274 1.01Мб
275 1.01Мб
276 1.62Мб
277 1.75Мб
278 251.15Кб
279 677.97Кб
28 412.44Кб
28.1 [Article] How to choose loss & activation functions when building a deep learning model.html 169б
28. Booleans.mp4 16.55Мб
28. Booleans.srt 3.94Кб
28. Building A Deep Learning Model 4.mp4 86.30Мб
28. Building A Deep Learning Model 4.srt 12.02Кб
28. Clean Code.mp4 19.66Мб
28. Clean Code.srt 5.36Кб
28. Evaluating A Classification Model 2 (ROC Curve).mp4 66.03Мб
28. Evaluating A Classification Model 2 (ROC Curve).srt 12.28Кб
280 1.01Мб
281 1.08Мб
282 1.45Мб
283 1.46Мб
284 1.61Мб
285 17.85Кб
286 588.37Кб
287 699.48Кб
288 865.17Кб
289 1.07Мб
29 9.24Кб
29. args and kwargs.mp4 43.02Мб
29. args and kwargs.srt 8.09Кб
29. Evaluating A Classification Model 3 (ROC Curve).mp4 50.61Мб
29. Evaluating A Classification Model 3 (ROC Curve).srt 10.04Кб
29. Exercise Type Conversion.mp4 50.34Мб
29. Exercise Type Conversion.srt 8.58Кб
29. Summarizing Our Model.mp4 45.44Мб
29. Summarizing Our Model.srt 5.98Кб
290 1.48Мб
291 1.57Мб
292 139.63Кб
293 512.61Кб
294 669.16Кб
295 696.36Кб
296 1.52Мб
297 1.54Мб
298 1.75Мб
299 1.79Мб
3 261.51Кб
3.1 A 6 Step Field Guide for Machine Learning Modelling (blog post).html 147б
3.1 Getting started with Conda (documentation).html 139б
3.1 Glot.io.html 77б
3.1 Introduction to Pandas Jupyter Notebook (from the upcoming videos).html 191б
3.1 Teachable Machine.html 101б
3.2 10-minutes to pandas (from the pandas documentation).html 127б
3.2 conda-cheatsheet.pdf 211.29Кб
3.2 Repl.it.html 77б
3.3 Getting your computer ready for machine learning How, what and why you should use Anaconda, Miniconda and Conda (blog post).html 167б
3.3 Pandas Documentation.html 106б
3.4 Conda documentation.html 93б
3.4 Introduction to Pandas Jupyter Notebook (with annotations).html 185б
3. 6 Step Machine Learning Framework.mp4 23.46Мб
3. 6 Step Machine Learning Framework.srt 6.63Кб
3. Communicating With Managers.mp4 18.38Мб
3. Communicating With Managers.srt 4.53Кб
3. Course Review.html 169б
3. Endorsements On LinkedIN.html 2.05Кб
3. Exercise Machine Learning Playground.mp4 42.60Мб
3. Exercise Machine Learning Playground.srt 8.09Кб
3. Exercise Meet The Community.html 2.51Кб
3. How To Run Python Code.mp4 52.86Мб
3. How To Run Python Code.srt 6.56Кб
3. Importing And Using Matplotlib.mp4 86.45Мб
3. Importing And Using Matplotlib.srt 16.05Кб
3. Indentation In Python.mp4 28.03Мб
3. Indentation In Python.srt 5.27Кб
3. Pandas Introduction.mp4 27.44Мб
3. Pandas Introduction.srt 7.01Кб
3. Project Environment Setup.mp4 101.27Мб
3. Project Environment Setup.mp4 100.76Мб
3. Project Environment Setup.srt 15.91Кб
3. Project Environment Setup.srt 14.39Кб
3. Quick Note Correction In Next Video.html 1.25Кб
3. Quick Note Upcoming Video.html 390б
3. Setting Up With Google.html 568б
3. What If I Don't Have Enough Experience.mp4 160.95Мб
3. What If I Don't Have Enough Experience.srt 19.98Кб
3. What Is A Data Engineer.mp4 15.16Мб
3. What Is A Data Engineer.srt 4.90Кб
3. What is Conda.mp4 12.48Мб
3. What is Conda.srt 3.41Кб
30 151.94Кб
30.1 Python Comments Best Practices.html 106б
30.1 Solution Repl.html 108б
30.1 TensorBoard Callback Documentation.html 134б
30. DEVELOPER FUNDAMENTALS II.mp4 29.25Мб
30. DEVELOPER FUNDAMENTALS II.srt 5.30Кб
30. Evaluating Our Model.mp4 79.29Мб
30. Evaluating Our Model.srt 10.42Кб
30. Exercise Functions.mp4 21.85Мб
30. Exercise Functions.srt 4.69Кб
30. Reading Extension ROC Curve + AUC.html 1.48Кб
300 1.97Мб
301 636.33Кб
302 882.91Кб
303 908.84Кб
304 957.46Кб
305 1.03Мб
306 1.08Мб
307 1.13Мб
308 1.30Мб
309 1.80Мб
31 227.55Кб
31.1 Early Stopping Callback (a way to stop your model from training when it stops improving) Documentation.html 136б
31.1 Notebook from video with updated confusion matrix labels.html 191б
31. Evaluating A Classification Model 4 (Confusion Matrix).mp4 77.73Мб
31. Evaluating A Classification Model 4 (Confusion Matrix).srt 15.11Кб
31. Exercise Password Checker.mp4 51.10Мб
31. Exercise Password Checker.srt 7.89Кб
31. Preventing Overfitting.mp4 36.51Мб
31. Preventing Overfitting.srt 5.54Кб
31. Scope.mp4 20.14Мб
31. Scope.srt 3.82Кб
310 1.90Мб
311 259.75Кб
312 1.04Мб
313 1.40Мб
314 76.75Кб
315 671.02Кб
316 748.12Кб
317 1.97Мб
318 250.08Кб
319 454.37Кб
32 678.20Кб
32. Evaluating A Classification Model 5 (Confusion Matrix).mp4 63.77Мб
32. Evaluating A Classification Model 5 (Confusion Matrix).srt 11.18Кб
32. Lists.mp4 21.96Мб
32. Lists.srt 5.57Кб
32. Scope Rules.mp4 37.68Мб
32. Scope Rules.srt 8.48Кб
32. Training Your Deep Neural Network.mp4 166.60Мб
32. Training Your Deep Neural Network.srt 23.07Кб
33 253.82Кб
33.1 Exercise Repl.html 92б
33. Evaluating A Classification Model 6 (Classification Report).mp4 87.24Мб
33. Evaluating A Classification Model 6 (Classification Report).srt 14.56Кб
33. Evaluating Performance With TensorBoard.mp4 74.19Мб
33. Evaluating Performance With TensorBoard.srt 9.57Кб
33. global Keyword.mp4 36.50Мб
33. global Keyword.srt 6.67Кб
33. List Slicing.mp4 49.86Мб
33. List Slicing.srt 8.50Кб
34 706.84Кб
34.1 Exercise Repl.html 93б
34.1 Solution Repl.html 95б
34. Evaluating A Regression Model 1 (R2 Score).mp4 70.39Мб
34. Evaluating A Regression Model 1 (R2 Score).srt 12.01Кб
34. Make And Transform Predictions.mp4 154.98Мб
34. Make And Transform Predictions.srt 19.18Кб
34. Matrix.mp4 19.15Мб
34. Matrix.srt 4.13Кб
34. nonlocal Keyword.mp4 18.25Мб
34. nonlocal Keyword.srt 4.07Кб
35 781.81Кб
35.1 List Methods.html 113б
35.1 TensorFlow documentation for the unbatch() function.html 127б
35. Evaluating A Regression Model 2 (MAE).mp4 28.53Мб
35. Evaluating A Regression Model 2 (MAE).srt 5.70Кб
35. List Methods.mp4 61.75Мб
35. List Methods.srt 10.75Кб
35. Transform Predictions To Text.mp4 129.87Мб
35. Transform Predictions To Text.srt 17.58Кб
35. Why Do We Need Scope.mp4 19.17Мб
35. Why Do We Need Scope.srt 4.77Кб
36 1.16Мб
36.1 Python Keywords.html 117б
36.2 Exercise Repl.html 94б
36. Evaluating A Regression Model 3 (MSE).mp4 54.90Мб
36. Evaluating A Regression Model 3 (MSE).srt 9.23Кб
36. List Methods 2.mp4 27.40Мб
36. List Methods 2.srt 4.48Кб
36. Pure Functions.mp4 67.36Мб
36. Pure Functions.srt 10.06Кб
36. Visualizing Model Predictions.mp4 119.31Мб
36. Visualizing Model Predictions.srt 17.02Кб
37 1.65Мб
37. List Methods 3.mp4 27.67Мб
37. List Methods 3.srt 5.01Кб
37. Machine Learning Model Evaluation.html 7.12Кб
37. map().mp4 38.38Мб
37. map().srt 6.29Кб
37. Visualizing And Evaluate Model Predictions 2.mp4 143.78Мб
37. Visualizing And Evaluate Model Predictions 2.srt 17.64Кб
38 1.15Мб
38.1 Exercise Repl.html 94б
38. Common List Patterns.mp4 40.47Мб
38. Common List Patterns.srt 5.83Кб
38. Evaluating A Model With Cross Validation and Scoring Parameter.mp4 91.49Мб
38. Evaluating A Model With Cross Validation and Scoring Parameter.srt 17.96Кб
38. filter().mp4 23.56Мб
38. filter().srt 5.05Кб
38. Visualizing And Evaluate Model Predictions 3.mp4 113.21Мб
38. Visualizing And Evaluate Model Predictions 3.srt 13.82Кб
39 1.23Мб
39. Evaluating A Model With Scikit-learn Functions.mp4 94.82Мб
39. Evaluating A Model With Scikit-learn Functions.srt 16.32Кб
39. List Unpacking.mp4 13.86Мб
39. List Unpacking.srt 2.91Кб
39. Saving And Loading A Trained Model.mp4 126.98Мб
39. Saving And Loading A Trained Model.srt 16.85Кб
39. zip().mp4 21.27Мб
39. zip().srt 3.26Кб
4 1.40Мб
4.1 Kaggle Dog Breed Identification Competition (the basis of our upcoming project).html 119б
4.1 matplotlib-anatomy-of-a-plot-with-code.png 654.77Кб
4.1 pandas-anatomy-of-a-dataframe.png 333.24Кб
4.1 Truthy vs Falsey Stackoverflow.html 170б
4.2 Google Colab (our workspace for the upcoming project).html 95б
4.2 matplotlib-anatomy-of-a-plot.png 369.39Кб
4.3 Google Colab IO example (how to get data in and out of your Colab notebook).html 113б
4.4 Introduction to Google Colab example notebook.html 116б
4.5 End-to-end Dog Vision Notebook (the project we'll be working through).html 182б
4. Anatomy Of A Matplotlib Figure.mp4 82.15Мб
4. Anatomy Of A Matplotlib Figure.srt 14.16Кб
4. Communicating With Co-Workers.mp4 18.99Мб
4. Communicating With Co-Workers.srt 5.54Кб
4. Conda Environments.mp4 30.56Мб
4. Conda Environments.srt 6.15Кб
4. How Did We Get Here.mp4 30.50Мб
4. How Did We Get Here.srt 7.07Кб
4. Learning Guideline.html 325б
4. NumPy DataTypes and Attributes.mp4 78.99Мб
4. NumPy DataTypes and Attributes.srt 19.19Кб
4. Optional Windows Project Environment Setup.mp4 35.83Мб
4. Optional Windows Project Environment Setup.srt 5.55Кб
4. Our First Python Program.mp4 47.20Мб
4. Our First Python Program.srt 9.03Кб
4. Refresher What Is Machine Learning.mp4 88.27Мб
4. Refresher What Is Machine Learning.srt 6.33Кб
4. Series, Data Frames and CSVs.mp4 95.37Мб
4. Series, Data Frames and CSVs.srt 16.82Кб
4. Setting Up Google Colab.mp4 74.24Мб
4. Setting Up Google Colab.srt 9.64Кб
4. Step 1~4 Framework Setup.mp4 85.69Мб
4. Step 1~4 Framework Setup.srt 12.44Кб
4. The Final Challenge.html 169б
4. Truthy vs Falsey.mp4 42.82Мб
4. Truthy vs Falsey.srt 5.99Кб
4. Types of Machine Learning Problems.mp4 60.50Мб
4. Types of Machine Learning Problems.srt 13.98Кб
4. What Is A Data Engineer 2.mp4 24.24Мб
4. What Is A Data Engineer 2.srt 6.33Кб
4. Your First Day.mp4 27.92Мб
4. Your First Day.srt 5.27Кб
40 1.24Мб
40. Improving A Machine Learning Model.mp4 90.94Мб
40. Improving A Machine Learning Model.srt 14.86Кб
40. None.mp4 7.93Мб
40. None.srt 2.19Кб
40. reduce().mp4 52.27Мб
40. reduce().srt 8.39Кб
40. Training Model On Full Dataset.mp4 139.82Мб
40. Training Model On Full Dataset.srt 19.17Кб
41 1.18Мб
41.1 Dog Vision Prediction Probabilities Array.html 170б
41. Dictionaries.mp4 32.70Мб
41. Dictionaries.srt 7.09Кб
41. List Comprehensions.mp4 53.34Мб
41. List Comprehensions.srt 9.38Кб
41. Making Predictions On Test Images.mp4 140.83Мб
41. Making Predictions On Test Images.srt 20.31Кб
41. Tuning Hyperparameters.mp4 175.74Мб
41. Tuning Hyperparameters.srt 30.61Кб
42 810.92Кб
42.1 Dog Vision Predictions with MobileNetV2 Ready for Kaggle Submission.html 180б
42. DEVELOPER FUNDAMENTALS III.mp4 26.63Мб
42. DEVELOPER FUNDAMENTALS III.srt 3.59Кб
42. Set Comprehensions.mp4 35.38Мб
42. Set Comprehensions.srt 6.58Кб
42. Submitting Model to Kaggle.mp4 121.34Мб
42. Submitting Model to Kaggle.srt 16.58Кб
42. Tuning Hyperparameters 2.mp4 116.77Мб
42. Tuning Hyperparameters 2.srt 16.97Кб
43 969.49Кб
43.1 End-to-end Dog Vision Notebook (with annotations).html 185б
43.1 Exercise Repl.html 100б
43.2 End-to-end Dog Vision Notebook (from the videos).html 191б
43.2 Solution Repl.html 102б
43. Dictionary Keys.mp4 20.37Мб
43. Dictionary Keys.srt 4.17Кб
43. Exercise Comprehensions.mp4 21.96Мб
43. Exercise Comprehensions.srt 4.94Кб
43. Making Predictions On Our Images.mp4 119.24Мб
43. Making Predictions On Our Images.srt 18.57Кб
43. Tuning Hyperparameters 3.mp4 121.78Мб
43. Tuning Hyperparameters 3.srt 18.82Кб
44 2.00Мб
44.1 Dictionary Methods.html 119б
44. Dictionary Methods.mp4 27.16Мб
44. Dictionary Methods.srt 5.26Кб
44. Finishing Dog Vision Where to next.html 3.86Кб
44. Note Metric Comparison Improvement.html 2.18Кб
44. Python Exam Testing Your Understanding.html 1.12Кб
45 552.38Кб
45.1 Exercise Repl.html 97б
45. Dictionary Methods 2.mp4 42.39Мб
45. Dictionary Methods 2.srt 7.14Кб
45. Modules in Python.mp4 82.18Мб
45. Modules in Python.srt 12.67Кб
45. Quick Tip Correlation Analysis.mp4 16.92Мб
45. Quick Tip Correlation Analysis.srt 3.09Кб
46 1.50Мб
46. Quick Note Upcoming Videos.html 448б
46. Saving And Loading A Model.mp4 52.60Мб
46. Saving And Loading A Model.srt 9.85Кб
46. Tuples.mp4 25.65Мб
46. Tuples.srt 5.69Кб
47 1.66Мб
47.1 Tuple Methods.html 114б
47. Optional PyCharm.mp4 53.06Мб
47. Optional PyCharm.srt 10.51Кб
47. Saving And Loading A Model 2.mp4 56.77Мб
47. Saving And Loading A Model 2.srt 8.98Кб
47. Tuples 2.mp4 16.99Мб
47. Tuples 2.srt 3.08Кб
48 82.64Кб
48.1 Reading extension Scikit-Learn's Pipeline class explained.html 146б
48. Packages in Python.mp4 72.42Мб
48. Packages in Python.srt 12.45Кб
48. Putting It All Together.mp4 150.57Мб
48. Putting It All Together.srt 29.62Кб
48. Sets.mp4 36.98Мб
48. Sets.srt 8.43Кб
49 105.44Кб
49.1 Exercise Repl.html 91б
49.1 Introduction to Scikit-Learn Jupyter Notebook (from the videos).html 197б
49.2 Introduction to Scikit-Learn Jupyter Notebook (with annotations).html 191б
49.2 Sets Methods.html 112б
49. Different Ways To Import.mp4 47.96Мб
49. Different Ways To Import.srt 7.49Кб
49. Putting It All Together 2.mp4 116.85Мб
49. Putting It All Together 2.srt 16.11Кб
49. Sets 2.mp4 64.26Мб
49. Sets 2.srt 9.24Кб
5 1.05Мб
5.1 Google Colab FAQ (things you should know about Google Colab).html 110б
5.1 Machine Learning Playground.html 88б
5.1 Miniconda download documentation.html 107б
5.2 Google Colab (our workspace for the upcoming project).html 95б
5. Creating NumPy Arrays.mp4 66.77Мб
5. Creating NumPy Arrays.srt 12.44Кб
5. Data from URLs.html 1.09Кб
5. Downloading the data for the next two projects.html 1.64Кб
5. Exercise YouTube Recommendation Engine.mp4 19.43Мб
5. Exercise YouTube Recommendation Engine.srt 5.65Кб
5. Google Colab Workspace.mp4 39.63Мб
5. Google Colab Workspace.srt 6.32Кб
5. Latest Version Of Python.mp4 10.70Мб
5. Latest Version Of Python.srt 2.69Кб
5. Mac Environment Setup.mp4 144.39Мб
5. Mac Environment Setup.srt 23.93Кб
5. Quick Note Upcoming Videos.html 1018б
5. Quick Note Upcoming Videos.html 565б
5. Scatter Plot And Bar Plot.mp4 67.03Мб
5. Scatter Plot And Bar Plot.srt 14.67Кб
5. Step 1~4 Framework Setup.mp4 105.50Мб
5. Step 1~4 Framework Setup.srt 16.60Кб
5. Ternary Operator.mp4 19.70Мб
5. Ternary Operator.srt 4.81Кб
5. Types of Data.mp4 29.33Мб
5. Types of Data.srt 6.52Кб
5. Weekend Project Principle.mp4 23.58Мб
5. Weekend Project Principle.srt 8.98Кб
5. What Is A Data Engineer 3.mp4 24.29Мб
5. What Is A Data Engineer 3.srt 5.41Кб
50 507.13Кб
50. Next Steps.html 959б
50. Scikit-Learn Practice.html 2.07Кб
51 949.81Кб
51. Bonus Resource Python Cheatsheet.html 489б
52 1.01Мб
53 1.16Мб
54 1.23Мб
55 1.88Мб
56 103.74Кб
57 662.69Кб
58 1.22Мб
59 1.96Мб
6 876.91Кб
6.1 fast_template by fast.ai (a template you can use for your blog on GitHub Pages).html 106б
6.1 Kaggle Dog Breed Identification Competition Data.html 115б
6.1 Python 2 vs Python 3.html 128б
6.1 Scikit-Learn Reference Notebook.html 194б
6.2 Devblog by Hashnode (an easy and free way to create a blog you own).html 89б
6.2 Google Colab IO example (how to get data in and out of your Colab notebook).html 113б
6.2 The Story of Python.html 104б
6.3 Python 2 vs Python 3 - another one.html 161б
6. Communicating With Outside World.mp4 14.52Мб
6. Communicating With Outside World.srt 4.51Кб
6. Describing Data with Pandas.mp4 75.56Мб
6. Describing Data with Pandas.srt 13.58Кб
6. Exploring Our Data.mp4 137.81Мб
6. Exploring Our Data.srt 19.97Кб
6. Getting Our Tools Ready.mp4 79.36Мб
6. Getting Our Tools Ready.srt 12.78Кб
6. Histograms And Subplots.mp4 69.75Мб
6. Histograms And Subplots.srt 12.44Кб
6. JTS Learn to Learn.mp4 11.14Мб
6. JTS Learn to Learn.srt 2.49Кб
6. Mac Environment Setup 2.mp4 125.46Мб
6. Mac Environment Setup 2.srt 20.69Кб
6. NumPy Random Seed.mp4 51.92Мб
6. NumPy Random Seed.srt 9.72Кб
6. Python 2 vs Python 3.mp4 69.49Мб
6. Python 2 vs Python 3.srt 8.43Кб
6. Scikit-learn Cheatsheet.mp4 75.13Мб
6. Scikit-learn Cheatsheet.srt 10.08Кб
6. Short Circuiting.mp4 19.40Мб
6. Short Circuiting.srt 4.47Кб
6. Types of Evaluation.mp4 17.75Мб
6. Types of Evaluation.srt 4.33Кб
6. Types of Machine Learning.mp4 22.76Мб
6. Types of Machine Learning.srt 5.27Кб
6. Uploading Project Data.mp4 51.98Мб
6. Uploading Project Data.srt 8.64Кб
6. What Is A Data Engineer 4.mp4 14.93Мб
6. What Is A Data Engineer 4.srt 3.86Кб
60 752.19Кб
61 1.24Мб
62 85.49Кб
63 1.20Мб
64 1.57Мб
65 25.84Кб
66 641.40Кб
67 1.18Мб
68 452.26Кб
69 531.71Кб
7 1.02Мб
7.1 car-sales.csv 369б
7.1 Example Scikit-Learn Workflow Notebook.html 192б
7.1 heart-disease.csv 11.06Кб
7.1 Miniconda download documentation.html 107б
7.1 OLTP vs OLAP.html 126б
7.2 A Primer on ACID Transactions.html 117б
7. Are You Getting It Yet.html 160б
7. Exercise How Does Python Work.mp4 25.96Мб
7. Exercise How Does Python Work.srt 2.85Кб
7. Exploring Our Data.mp4 66.88Мб
7. Exploring Our Data.srt 11.40Кб
7. Exploring Our Data 2.mp4 52.04Мб
7. Exploring Our Data 2.srt 8.60Кб
7. Features In Data.mp4 36.78Мб
7. Features In Data.srt 6.75Кб
7. JTS Start With Why.mp4 15.43Мб
7. JTS Start With Why.srt 2.96Кб
7. Logical Operators.mp4 28.33Мб
7. Logical Operators.srt 8.10Кб
7. Selecting and Viewing Data with Pandas.mp4 72.35Мб
7. Selecting and Viewing Data with Pandas.srt 14.59Кб
7. Setting Up Our Data.mp4 42.26Мб
7. Setting Up Our Data.srt 6.38Кб
7. Storytelling.mp4 12.03Мб
7. Storytelling.srt 4.10Кб
7. Subplots Option 2.mp4 38.09Мб
7. Subplots Option 2.srt 6.40Кб
7. Types Of Databases.mp4 32.55Мб
7. Types Of Databases.srt 8.37Кб
7. Typical scikit-learn Workflow.mp4 190.18Мб
7. Typical scikit-learn Workflow.srt 31.71Кб
7. Viewing Arrays and Matrices.mp4 70.64Мб
7. Viewing Arrays and Matrices.srt 12.89Кб
7. Windows Environment Setup.mp4 47.92Мб
7. Windows Environment Setup.srt 7.62Кб
70 1.79Мб
71 520.31Кб
72 696.56Кб
73 1000.84Кб
74 1.06Мб
75 1.90Мб
76 1.34Мб
77 1.73Мб
78 235.38Кб
79 776.48Кб
8 1.43Мб
8.1 Standard deviation and variance explained.html 116б
8. Communicating and sharing your work Further reading.html 3.14Кб
8. Exercise Logical Operators.mp4 46.62Мб
8. Exercise Logical Operators.srt 8.40Кб
8. Feature Engineering.mp4 159.14Мб
8. Feature Engineering.srt 22.13Кб
8. Finding Patterns.mp4 63.34Мб
8. Finding Patterns.srt 13.39Кб
8. Learning Python.mp4 38.52Мб
8. Learning Python.srt 2.59Кб
8. Manipulating Arrays.mp4 80.65Мб
8. Manipulating Arrays.srt 16.17Кб
8. Modelling - Splitting Data.mp4 27.52Мб
8. Modelling - Splitting Data.srt 7.71Кб
8. Optional Debugging Warnings In Jupyter.mp4 176.13Мб
8. Optional Debugging Warnings In Jupyter.srt 25.51Кб
8. Quick Note Upcoming Video.html 481б
8. Quick Note Upcoming Videos.html 352б
8. Quick Tip Data Visualizations.mp4 12.25Мб
8. Quick Tip Data Visualizations.srt 2.34Кб
8. Selecting and Viewing Data with Pandas Part 2.mp4 106.50Мб
8. Selecting and Viewing Data with Pandas Part 2.srt 17.92Кб
8. Setting Up Our Data 2.mp4 20.87Мб
8. Setting Up Our Data 2.srt 2.18Кб
8. What Is Machine Learning Round 2.mp4 25.51Мб
8. What Is Machine Learning Round 2.srt 6.07Кб
8. Windows Environment Setup 2.mp4 227.60Мб
8. Windows Environment Setup 2.srt 31.61Кб
80 881.70Кб
81 1.08Мб
82 1.47Мб
83 1.55Мб
84 1.70Мб
85 1.86Мб
86 93.48Кб
87 171.84Кб
88 320.14Кб
89 67.08Кб
9 631.48Кб
9.1 Jake VanderPlas's Data Manipulation with Pandas.html 146б
9.1 scikit-learn-data.zip 20.83Кб
9.1 Standard deviation and variance explained.html 116б
9.2 car-sales-missing-data.csv 287б
9. CWD Git + Github.mp4 176.11Мб
9. CWD Git + Github.srt 21.17Кб
9. Finding Patterns 2.mp4 99.92Мб
9. Finding Patterns 2.srt 22.32Кб
9. Getting Your Data Ready Splitting Your Data.mp4 63.66Мб
9. Getting Your Data Ready Splitting Your Data.srt 12.08Кб
9. Importing TensorFlow 2.mp4 116.76Мб
9. Importing TensorFlow 2.srt 16.79Кб
9. is vs ==.mp4 33.57Мб
9. is vs ==.srt 8.12Кб
9. Linux Environment Setup.html 1.03Кб
9. Manipulating Arrays 2.mp4 67.90Мб
9. Manipulating Arrays 2.srt 11.49Кб
9. Manipulating Data.mp4 104.99Мб
9. Manipulating Data.srt 18.07Кб
9. Modelling - Picking the Model.mp4 23.24Мб
9. Modelling - Picking the Model.srt 6.21Кб
9. Optional OLTP Databases.mp4 79.68Мб
9. Optional OLTP Databases.srt 12.11Кб
9. Plotting From Pandas DataFrames.mp4 60.35Мб
9. Plotting From Pandas DataFrames.srt 9.02Кб
9. Python Data Types.mp4 28.85Мб
9. Python Data Types.srt 5.22Кб
9. Section Review.mp4 5.56Мб
9. Section Review.srt 2.34Кб
9. Turning Data Into Numbers.mp4 146.17Мб
9. Turning Data Into Numbers.srt 22.32Кб
90 1.32Мб
91 1.82Мб
92 1.85Мб
93 1.96Мб
94 1.35Мб
95 1.41Мб
96 323.31Кб
97 652.73Кб
98 724.17Кб
99 729.93Кб
TutsNode.com.txt 63б
Статистика распространения по странам
США (US) 4
Индия (IN) 2
Дания (DK) 1
Нидерланды (NL) 1
Эстония (EE) 1
Алжир (DZ) 1
Польша (PL) 1
Франция (FR) 1
Всего 12
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент