Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
эти файлы или скачать torrent-файл.
|
[TGx]Downloaded from torrentgalaxy.to .txt |
585б |
0 |
67.25Кб |
01-Chapter 1 What is deep learning.mp4 |
76.79Мб |
02-Chapter 1 Learning rules and representations from data.mp4 |
83.36Мб |
03-Chapter 1 Understanding how deep learning works, in three figures.mp4 |
102.93Мб |
04-Chapter 1 Before deep learning - A brief history of machine learning.mp4 |
82.65Мб |
05-Chapter 1 Back to neural networks.mp4 |
77.93Мб |
06-Chapter 1 Why deep learning Why now.mp4 |
56.47Мб |
07-Chapter 1 Algorithms.mp4 |
62.35Мб |
08-Chapter 2 The mathematical building blocks of neural networks.mp4 |
52.03Мб |
09-Chapter 2 Data representations for neural networks.mp4 |
47.57Мб |
1 |
240.01Кб |
10 |
520.29Кб |
10-Chapter 2 Real-world examples of data tensors.mp4 |
48.57Мб |
11 |
180.40Кб |
11-Chapter 2 The gears of neural networks - Tensor operations.mp4 |
46.50Мб |
12 |
403.53Кб |
12-Chapter 2 Tensor reshaping.mp4 |
36.72Мб |
13 |
804.37Кб |
13-Chapter 2 The engine of neural networks - Gradient-based optimization.mp4 |
49.96Мб |
14 |
71.86Кб |
14-Chapter 2 Derivative of a tensor operation - The gradient.mp4 |
69.46Мб |
15 |
212.96Кб |
15-Chapter 2 Chaining derivatives - The Backpropagation algorithm.mp4 |
55.02Мб |
16 |
51.61Кб |
16-Chapter 2 Looking back at our first example.mp4 |
53.70Мб |
17 |
965.69Кб |
17-Chapter 3 Introduction to Keras and TensorFlow.mp4 |
67.58Мб |
18 |
623.69Кб |
18-Chapter 3 Setting up a deep learning workspace.mp4 |
43.54Мб |
19 |
712.98Кб |
19-Chapter 3 First steps with TensorFlow.mp4 |
69.16Мб |
2 |
942.96Кб |
20 |
470.20Кб |
20-Chapter 3 Anatomy of a neural network - Understanding core Keras APIs.mp4 |
56.10Мб |
21 |
483.84Кб |
21-Chapter 3 The “compile” step - Configuring the learning process.mp4 |
68.01Мб |
22 |
291.13Кб |
22-Chapter 4 Getting started with neural networks - Classification and regression.mp4 |
53.42Мб |
23 |
469.29Кб |
23-Chapter 4 Building your model.mp4 |
64.19Мб |
24 |
135.48Кб |
24-Chapter 4 Classifying newswires - A multiclass classification example.mp4 |
56.83Мб |
25 |
496.95Кб |
25-Chapter 4 Predicting house prices - A regression example.mp4 |
61.83Мб |
26 |
547.91Кб |
26-Chapter 5 Fundamentals of machine learning.mp4 |
56.96Мб |
27 |
657.34Кб |
27-Chapter 5 The nature of generalization in deep learning.mp4 |
80.49Мб |
28 |
857.24Кб |
28-Chapter 5 Evaluating machine learning models.mp4 |
72.53Мб |
29 |
1012.92Кб |
29-Chapter 5 Improving model fit.mp4 |
40.50Мб |
3 |
878.90Кб |
30 |
107.12Кб |
30-Chapter 5 Improving generalization.mp4 |
69.36Мб |
31 |
425.25Кб |
31-Chapter 5 Regularizing your model.mp4 |
60.78Мб |
32 |
933.44Кб |
32-Chapter 6 The universal workflow of machine learning.mp4 |
66.92Мб |
33 |
84.42Кб |
33-Chapter 6 Collect a dataset.mp4 |
85.08Мб |
34 |
22.81Кб |
34-Chapter 6 Develop a model.mp4 |
44.39Мб |
35 |
908.00Кб |
35-Chapter 6 Beat a baseline.mp4 |
41.15Мб |
36 |
113.35Кб |
36-Chapter 6 Deploy the model.mp4 |
78.21Мб |
37 |
680.13Кб |
37-Chapter 6 Monitor your model in the wild.mp4 |
35.09Мб |
38 |
829.96Кб |
38-Chapter 7 Working with Keras - A deep dive.mp4 |
69.87Мб |
39 |
442.40Кб |
39-Chapter 7 Subclassing the Model class.mp4 |
35.13Мб |
4 |
659.96Кб |
40 |
19.64Кб |
40-Chapter 7 Using built-in training and evaluation loops.mp4 |
60.17Мб |
41 |
505.60Кб |
41-Chapter 7 Writing your own training and evaluation loops.mp4 |
45.80Мб |
42 |
660.75Кб |
42-Chapter 7 Make it fast with tf.function.mp4 |
35.99Мб |
43 |
174.24Кб |
43-Chapter 8 Introduction to deep learning for computer vision.mp4 |
40.65Мб |
44 |
344.74Кб |
44-Chapter 8 The convolution operation.mp4 |
74.39Мб |
45 |
225.68Кб |
45-Chapter 8 Training a convnet from scratch on a small dataset.mp4 |
67.09Мб |
46 |
741.62Кб |
46-Chapter 8 Data preprocessing.mp4 |
61.66Мб |
47 |
850.94Кб |
47-Chapter 8 Leveraging a pretrained model.mp4 |
65.11Мб |
48 |
93.12Кб |
48-Chapter 8 Feature extraction with a pretrained model.mp4 |
64.34Мб |
49 |
153.77Кб |
49-Chapter 9 Advanced deep learning for computer vision.mp4 |
99.77Мб |
5 |
353.91Кб |
50 |
89.95Кб |
50-Chapter 9 Modern convnet architecture patterns.mp4 |
58.74Мб |
51 |
264.11Кб |
51-Chapter 9 Residual connections.mp4 |
57.35Мб |
52 |
494.91Кб |
52-Chapter 9 Depthwise separable convolutions.mp4 |
67.90Мб |
53 |
553.28Кб |
53-Chapter 9 Interpreting what convnets learn.mp4 |
58.52Мб |
54 |
117.90Кб |
54-Chapter 9 Visualizing convnet filters.mp4 |
40.41Мб |
55 |
640.69Кб |
55-Chapter 9 Visualizing heatmaps of class activation.mp4 |
74.30Мб |
56 |
665.93Кб |
56-Chapter 10 Deep learning for timeseries.mp4 |
53.89Мб |
57 |
41.91Кб |
57-Chapter 10 Preparing the data.mp4 |
46.98Мб |
58 |
179.07Кб |
58-Chapter 10 Let’s try a basic machine learning model.mp4 |
45.05Мб |
59 |
544.05Кб |
59-Chapter 10 Understanding recurrent neural networks.mp4 |
40.46Мб |
6 |
109.55Кб |
60 |
883.05Кб |
60-Chapter 10 A recurrent layer in Keras.mp4 |
41.66Мб |
61 |
919.67Кб |
61-Chapter 10 Advanced use of recurrent neural networks.mp4 |
59.85Мб |
62 |
199.31Кб |
62-Chapter 10 Using bidirectional RNNs.mp4 |
64.89Мб |
63 |
1003.89Кб |
63-Chapter 11 Deep learning for text.mp4 |
57.88Мб |
64 |
110.17Кб |
64-Chapter 11 Preparing text data.mp4 |
46.48Мб |
65 |
307.35Кб |
65-Chapter 11 Vocabulary indexing.mp4 |
50.36Мб |
66 |
395.28Кб |
66-Chapter 11 Two approaches for representing groups of words - Sets and sequences.mp4 |
79.82Мб |
67 |
517.84Кб |
67-Chapter 11 Processing words as a sequence - The sequence model approach, Part 1.mp4 |
70.54Мб |
68 |
588.99Кб |
68-Chapter 11 Processing words as a sequence - The sequence model approach, Part 2.mp4 |
52.54Мб |
69 |
466.61Кб |
69-Chapter 11 The Transformer architecture.mp4 |
71.72Мб |
7 |
858.51Кб |
70 |
991.60Кб |
70-Chapter 11 The Transformer encoder.mp4 |
72.54Мб |
71 |
657.80Кб |
71-Chapter 11 Beyond text classification - Sequence-to-sequence learning.mp4 |
79.61Мб |
72 |
40.13Кб |
72-Chapter 11 Sequence-to-sequence learning with Transformer.mp4 |
56.14Мб |
73 |
435.98Кб |
73-Chapter 12 Generative deep learning.mp4 |
80.58Мб |
74 |
117.04Кб |
74-Chapter 12 How do you generate sequence data.mp4 |
81.89Мб |
75 |
445.28Кб |
75-Chapter 12 A text-generation callback with variable-temperature sampling.mp4 |
58.46Мб |
76 |
24.25Кб |
76-Chapter 12 DeepDream.mp4 |
57.37Мб |
77 |
512.38Кб |
77-Chapter 12 Neural style transfer.mp4 |
80.93Мб |
78 |
528.86Кб |
78-Chapter 12 Generating images with variational autoencoders.mp4 |
55.81Мб |
79 |
208.61Кб |
79-Chapter 12 Implementing a VAE with Keras.mp4 |
75.95Мб |
8 |
67.45Кб |
80 |
688.57Кб |
80-Chapter 12 A bag of tricks.mp4 |
62.51Мб |
81 |
977.49Кб |
81-Chapter 13 Best practices for the real world.mp4 |
62.98Мб |
82 |
624.95Кб |
82-Chapter 13 Hyperparameter optimization.mp4 |
75.06Мб |
83 |
473.27Кб |
83-Chapter 13 Scaling-up model training.mp4 |
53.61Мб |
84 |
343.28Кб |
84-Chapter 13 Multi-GPU training.mp4 |
37.54Мб |
85 |
429.12Кб |
85-Chapter 13 TPU training.mp4 |
41.58Мб |
86 |
866.41Кб |
86-Chapter 14 Conclusions.mp4 |
81.16Мб |
87 |
355.80Кб |
87-Chapter 14 Key enabling technologies.mp4 |
63.57Мб |
88 |
508.32Кб |
88-Chapter 14 Key network architectures.mp4 |
59.91Мб |
89 |
556.40Кб |
89-Chapter 14 The limitations of deep learning.mp4 |
60.28Мб |
9 |
429.98Кб |
90 |
606.43Кб |
90-Chapter 14 Local generalization vs. extreme generalization.mp4 |
45.33Мб |
91 |
468.29Кб |
91-Chapter 14 The purpose of intelligence.mp4 |
53.49Мб |
92 |
289.96Кб |
92-Chapter 14 Setting the course toward greater generality in AI.mp4 |
69.51Мб |
93 |
11.40Кб |
93-Chapter 14 Implementing intelligence - The missing ingredients.mp4 |
65.98Мб |
94 |
887.20Кб |
94-Chapter 14 The missing half of the picture.mp4 |
47.89Мб |
95-Chapter 14 Blending together deep learning and program synthesis.mp4 |
58.91Мб |
96-Chapter 14 Lifelong learning and modular subroutine reuse.mp4 |
84.14Мб |
TutsNode.com.txt |
63б |