Общая информация
Название Deep Learning with Python, Second Edition, Video Edition
Тип
Размер 5.76Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[TGx]Downloaded from torrentgalaxy.to .txt 585б
0 67.25Кб
01-Chapter 1 What is deep learning.mp4 76.79Мб
02-Chapter 1 Learning rules and representations from data.mp4 83.36Мб
03-Chapter 1 Understanding how deep learning works, in three figures.mp4 102.93Мб
04-Chapter 1 Before deep learning - A brief history of machine learning.mp4 82.65Мб
05-Chapter 1 Back to neural networks.mp4 77.93Мб
06-Chapter 1 Why deep learning Why now.mp4 56.47Мб
07-Chapter 1 Algorithms.mp4 62.35Мб
08-Chapter 2 The mathematical building blocks of neural networks.mp4 52.03Мб
09-Chapter 2 Data representations for neural networks.mp4 47.57Мб
1 240.01Кб
10 520.29Кб
10-Chapter 2 Real-world examples of data tensors.mp4 48.57Мб
11 180.40Кб
11-Chapter 2 The gears of neural networks - Tensor operations.mp4 46.50Мб
12 403.53Кб
12-Chapter 2 Tensor reshaping.mp4 36.72Мб
13 804.37Кб
13-Chapter 2 The engine of neural networks - Gradient-based optimization.mp4 49.96Мб
14 71.86Кб
14-Chapter 2 Derivative of a tensor operation - The gradient.mp4 69.46Мб
15 212.96Кб
15-Chapter 2 Chaining derivatives - The Backpropagation algorithm.mp4 55.02Мб
16 51.61Кб
16-Chapter 2 Looking back at our first example.mp4 53.70Мб
17 965.69Кб
17-Chapter 3 Introduction to Keras and TensorFlow.mp4 67.58Мб
18 623.69Кб
18-Chapter 3 Setting up a deep learning workspace.mp4 43.54Мб
19 712.98Кб
19-Chapter 3 First steps with TensorFlow.mp4 69.16Мб
2 942.96Кб
20 470.20Кб
20-Chapter 3 Anatomy of a neural network - Understanding core Keras APIs.mp4 56.10Мб
21 483.84Кб
21-Chapter 3 The “compile” step - Configuring the learning process.mp4 68.01Мб
22 291.13Кб
22-Chapter 4 Getting started with neural networks - Classification and regression.mp4 53.42Мб
23 469.29Кб
23-Chapter 4 Building your model.mp4 64.19Мб
24 135.48Кб
24-Chapter 4 Classifying newswires - A multiclass classification example.mp4 56.83Мб
25 496.95Кб
25-Chapter 4 Predicting house prices - A regression example.mp4 61.83Мб
26 547.91Кб
26-Chapter 5 Fundamentals of machine learning.mp4 56.96Мб
27 657.34Кб
27-Chapter 5 The nature of generalization in deep learning.mp4 80.49Мб
28 857.24Кб
28-Chapter 5 Evaluating machine learning models.mp4 72.53Мб
29 1012.92Кб
29-Chapter 5 Improving model fit.mp4 40.50Мб
3 878.90Кб
30 107.12Кб
30-Chapter 5 Improving generalization.mp4 69.36Мб
31 425.25Кб
31-Chapter 5 Regularizing your model.mp4 60.78Мб
32 933.44Кб
32-Chapter 6 The universal workflow of machine learning.mp4 66.92Мб
33 84.42Кб
33-Chapter 6 Collect a dataset.mp4 85.08Мб
34 22.81Кб
34-Chapter 6 Develop a model.mp4 44.39Мб
35 908.00Кб
35-Chapter 6 Beat a baseline.mp4 41.15Мб
36 113.35Кб
36-Chapter 6 Deploy the model.mp4 78.21Мб
37 680.13Кб
37-Chapter 6 Monitor your model in the wild.mp4 35.09Мб
38 829.96Кб
38-Chapter 7 Working with Keras - A deep dive.mp4 69.87Мб
39 442.40Кб
39-Chapter 7 Subclassing the Model class.mp4 35.13Мб
4 659.96Кб
40 19.64Кб
40-Chapter 7 Using built-in training and evaluation loops.mp4 60.17Мб
41 505.60Кб
41-Chapter 7 Writing your own training and evaluation loops.mp4 45.80Мб
42 660.75Кб
42-Chapter 7 Make it fast with tf.function.mp4 35.99Мб
43 174.24Кб
43-Chapter 8 Introduction to deep learning for computer vision.mp4 40.65Мб
44 344.74Кб
44-Chapter 8 The convolution operation.mp4 74.39Мб
45 225.68Кб
45-Chapter 8 Training a convnet from scratch on a small dataset.mp4 67.09Мб
46 741.62Кб
46-Chapter 8 Data preprocessing.mp4 61.66Мб
47 850.94Кб
47-Chapter 8 Leveraging a pretrained model.mp4 65.11Мб
48 93.12Кб
48-Chapter 8 Feature extraction with a pretrained model.mp4 64.34Мб
49 153.77Кб
49-Chapter 9 Advanced deep learning for computer vision.mp4 99.77Мб
5 353.91Кб
50 89.95Кб
50-Chapter 9 Modern convnet architecture patterns.mp4 58.74Мб
51 264.11Кб
51-Chapter 9 Residual connections.mp4 57.35Мб
52 494.91Кб
52-Chapter 9 Depthwise separable convolutions.mp4 67.90Мб
53 553.28Кб
53-Chapter 9 Interpreting what convnets learn.mp4 58.52Мб
54 117.90Кб
54-Chapter 9 Visualizing convnet filters.mp4 40.41Мб
55 640.69Кб
55-Chapter 9 Visualizing heatmaps of class activation.mp4 74.30Мб
56 665.93Кб
56-Chapter 10 Deep learning for timeseries.mp4 53.89Мб
57 41.91Кб
57-Chapter 10 Preparing the data.mp4 46.98Мб
58 179.07Кб
58-Chapter 10 Let’s try a basic machine learning model.mp4 45.05Мб
59 544.05Кб
59-Chapter 10 Understanding recurrent neural networks.mp4 40.46Мб
6 109.55Кб
60 883.05Кб
60-Chapter 10 A recurrent layer in Keras.mp4 41.66Мб
61 919.67Кб
61-Chapter 10 Advanced use of recurrent neural networks.mp4 59.85Мб
62 199.31Кб
62-Chapter 10 Using bidirectional RNNs.mp4 64.89Мб
63 1003.89Кб
63-Chapter 11 Deep learning for text.mp4 57.88Мб
64 110.17Кб
64-Chapter 11 Preparing text data.mp4 46.48Мб
65 307.35Кб
65-Chapter 11 Vocabulary indexing.mp4 50.36Мб
66 395.28Кб
66-Chapter 11 Two approaches for representing groups of words - Sets and sequences.mp4 79.82Мб
67 517.84Кб
67-Chapter 11 Processing words as a sequence - The sequence model approach, Part 1.mp4 70.54Мб
68 588.99Кб
68-Chapter 11 Processing words as a sequence - The sequence model approach, Part 2.mp4 52.54Мб
69 466.61Кб
69-Chapter 11 The Transformer architecture.mp4 71.72Мб
7 858.51Кб
70 991.60Кб
70-Chapter 11 The Transformer encoder.mp4 72.54Мб
71 657.80Кб
71-Chapter 11 Beyond text classification - Sequence-to-sequence learning.mp4 79.61Мб
72 40.13Кб
72-Chapter 11 Sequence-to-sequence learning with Transformer.mp4 56.14Мб
73 435.98Кб
73-Chapter 12 Generative deep learning.mp4 80.58Мб
74 117.04Кб
74-Chapter 12 How do you generate sequence data.mp4 81.89Мб
75 445.28Кб
75-Chapter 12 A text-generation callback with variable-temperature sampling.mp4 58.46Мб
76 24.25Кб
76-Chapter 12 DeepDream.mp4 57.37Мб
77 512.38Кб
77-Chapter 12 Neural style transfer.mp4 80.93Мб
78 528.86Кб
78-Chapter 12 Generating images with variational autoencoders.mp4 55.81Мб
79 208.61Кб
79-Chapter 12 Implementing a VAE with Keras.mp4 75.95Мб
8 67.45Кб
80 688.57Кб
80-Chapter 12 A bag of tricks.mp4 62.51Мб
81 977.49Кб
81-Chapter 13 Best practices for the real world.mp4 62.98Мб
82 624.95Кб
82-Chapter 13 Hyperparameter optimization.mp4 75.06Мб
83 473.27Кб
83-Chapter 13 Scaling-up model training.mp4 53.61Мб
84 343.28Кб
84-Chapter 13 Multi-GPU training.mp4 37.54Мб
85 429.12Кб
85-Chapter 13 TPU training.mp4 41.58Мб
86 866.41Кб
86-Chapter 14 Conclusions.mp4 81.16Мб
87 355.80Кб
87-Chapter 14 Key enabling technologies.mp4 63.57Мб
88 508.32Кб
88-Chapter 14 Key network architectures.mp4 59.91Мб
89 556.40Кб
89-Chapter 14 The limitations of deep learning.mp4 60.28Мб
9 429.98Кб
90 606.43Кб
90-Chapter 14 Local generalization vs. extreme generalization.mp4 45.33Мб
91 468.29Кб
91-Chapter 14 The purpose of intelligence.mp4 53.49Мб
92 289.96Кб
92-Chapter 14 Setting the course toward greater generality in AI.mp4 69.51Мб
93 11.40Кб
93-Chapter 14 Implementing intelligence - The missing ingredients.mp4 65.98Мб
94 887.20Кб
94-Chapter 14 The missing half of the picture.mp4 47.89Мб
95-Chapter 14 Blending together deep learning and program synthesis.mp4 58.91Мб
96-Chapter 14 Lifelong learning and modular subroutine reuse.mp4 84.14Мб
TutsNode.com.txt 63б
Статистика распространения по странам
США (US) 3
Бразилия (BR) 2
Вьетнам (VN) 1
Алжир (DZ) 1
Польша (PL) 1
Аргентина (AR) 1
Индия (IN) 1
Всего 10
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент