Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
эти файлы или скачать torrent-файл.
|
0 |
222.83Кб |
01-Probability and Statistics for Machine Learning - Introduction.mp4 |
239.66Мб |
02-Topics.mp4 |
40.79Мб |
03-1.1 Orientation to the Machine Learning Foundations Series.mp4 |
97.76Мб |
04-1.2 What Probability Theory Is.mp4 |
204.01Мб |
05-1.3 Events and Sample Spaces.mp4 |
229.10Мб |
06-1.4 Multiple Observations.mp4 |
269.17Мб |
07-1.5 Factorials and Combinatorics.mp4 |
245.56Мб |
08-1.6 Exercises.mp4 |
350.65Мб |
09-1.7 The Law of Large Numbers and the Gambler's Fallacy.mp4 |
517.83Мб |
1 |
1.11Мб |
10 |
201.23Кб |
10-1.8 Probability Distributions in Statistics.mp4 |
210.66Мб |
11 |
1.17Мб |
11-1.9 Bayesian versus Frequentist Statistics.mp4 |
355.60Мб |
12 |
1.37Мб |
12-1.10 Applications of Probability to Machine Learning.mp4 |
258.26Мб |
13 |
740.23Кб |
13-Topics.mp4 |
38.76Мб |
14 |
1.26Мб |
14-2.1 Discrete and Continuous Variables.mp4 |
112.33Мб |
15 |
1.78Мб |
15-2.2 Probability Mass Functions.mp4 |
132.32Мб |
16 |
21.47Кб |
16-2.3 Probability Density Functions.mp4 |
104.91Мб |
17 |
398.74Кб |
17-2.4 Exercises on Probability Functions.mp4 |
147.59Мб |
18 |
579.15Кб |
18-2.5 Expected Value.mp4 |
150.86Мб |
19 |
137.14Кб |
19-2.6 Exercises on Expected Value.mp4 |
264.14Мб |
2 |
14.18Кб |
20 |
408.35Кб |
20-Topics.mp4 |
23.27Мб |
21 |
544.52Кб |
21-3.1 The Mean, a Measure of Central Tendency.mp4 |
351.47Мб |
22 |
1.35Мб |
22-3.2 Medians.mp4 |
111.29Мб |
23 |
90.50Кб |
23-3.3 Modes.mp4 |
266.20Мб |
24 |
726.58Кб |
24-3.4 Quantiles - Percentiles, Quartiles, and Deciles.mp4 |
334.05Мб |
25 |
1.95Мб |
25-3.5 Box-and-Whisker Plots.mp4 |
367.43Мб |
26 |
1.92Мб |
26-3.6 Variance, a Measure of Dispersion.mp4 |
467.80Мб |
27 |
1.47Мб |
27-3.7 Standard Deviation.mp4 |
155.49Мб |
28 |
1.53Мб |
28-3.8 Standard Error.mp4 |
234.92Мб |
29 |
850.26Кб |
29-3.9 Covariance, a Measure of Relatedness.mp4 |
525.85Мб |
3 |
1.03Мб |
30 |
1.80Мб |
30-3.10. Correlation.mp4 |
375.61Мб |
31 |
1.86Мб |
31-Topics.mp4 |
21.87Мб |
32 |
1.10Мб |
32-4.1 Joint Probability Distribution.mp4 |
89.18Мб |
33 |
1.74Мб |
33-4.2 Marginal Probability.mp4 |
146.85Мб |
34 |
1.28Мб |
34-4.3 Conditional Probability.mp4 |
163.03Мб |
35 |
453.64Кб |
35-4.4 Exercises.mp4 |
347.91Мб |
36 |
1.04Мб |
36-4.5 Chain Rule of Probabilities.mp4 |
112.33Мб |
37 |
351.17Кб |
37-4.6 Independent Random Variables.mp4 |
100.74Мб |
38 |
1.08Мб |
38-4.7 Conditional Independence.mp4 |
138.71Мб |
39 |
389.26Кб |
39-Topics.mp4 |
46.68Мб |
4 |
1.28Мб |
40 |
485.52Кб |
40-5.1 Uniform.mp4 |
130.14Мб |
41 |
921.97Кб |
41-5.2 Gaussian - Normal and Standard Normal.mp4 |
375.98Мб |
42 |
882.81Кб |
42-5.3 The Central Limit Theorem.mp4 |
592.89Мб |
43 |
1.12Мб |
43-5.4 Log-Normal.mp4 |
113.29Мб |
44 |
1.34Мб |
44-5.5 Exponential and Laplace.mp4 |
191.19Мб |
45 |
332.25Кб |
45-5.6 Binomial and Multinomial.mp4 |
341.29Мб |
46 |
1.99Мб |
46-5.7 Poisson.mp4 |
158.49Мб |
47 |
826.12Кб |
47-5.8 Mixture Distributions.mp4 |
150.85Мб |
48 |
857.77Кб |
48-5.9 Preprocessing Data for Model Input.mp4 |
124.93Мб |
49 |
183.82Кб |
49-5.10 Exercises.mp4 |
48.54Мб |
5 |
1.72Мб |
50 |
1.32Мб |
50-Topics.mp4 |
30.45Мб |
51 |
1.01Мб |
51-6.1 What Information Theory Is.mp4 |
39.54Мб |
52 |
97.55Кб |
52-6.2 Self-Information, Nats, and Bits.mp4 |
171.82Мб |
53 |
991.68Кб |
53-6.3 Shannon and Differential Entropy.mp4 |
314.08Мб |
54 |
1.51Мб |
54-6.4 Kullback-Leibler Divergence and Cross-Entropy.mp4 |
246.72Мб |
55 |
524.77Кб |
55-Topics.mp4 |
38.74Мб |
56 |
1.14Мб |
56-7.1 Applications of Statistics to Machine Learning.mp4 |
357.87Мб |
57 |
1.15Мб |
57-7.2 Review of Essential Probability Theory.mp4 |
450.63Мб |
58 |
424.58Кб |
58-7.3 z-scores and Outliers.mp4 |
410.74Мб |
59 |
1.15Мб |
59-7.4 Exercises on z-scores.mp4 |
231.62Мб |
6 |
149.29Кб |
60 |
1.40Мб |
60-7.5 p-values.mp4 |
562.72Мб |
61 |
1.29Мб |
61-7.6 Exercises on p-values.mp4 |
231.53Мб |
62 |
1.68Мб |
62-Topics.mp4 |
38.89Мб |
63 |
1.86Мб |
63-8.1 Single-Sample t-tests and Degrees of Freedom.mp4 |
477.56Мб |
64 |
1.07Мб |
64-8.2 Independent t-tests.mp4 |
475.31Мб |
65 |
723.31Кб |
65-8.3 Paired t-tests.mp4 |
583.99Мб |
66 |
1.67Мб |
66-8.4 Applications to Machine Learning.mp4 |
302.53Мб |
67 |
1.67Мб |
67-8.5 Exercises.mp4 |
244.96Мб |
68 |
731.25Кб |
68-8.6 Confidence Intervals.mp4 |
382.22Мб |
69 |
454.35Кб |
69-8.7 ANOVA - Analysis of Variance.mp4 |
164.99Мб |
7 |
172.04Кб |
70 |
1.09Мб |
70-Topics.mp4 |
33.38Мб |
71 |
1.26Мб |
71-9.1 The Pearson Correlation Coefficient.mp4 |
260.90Мб |
72 |
249.87Кб |
72-9.2 R-squared Coefficient of Determination.mp4 |
144.60Мб |
73 |
839.76Кб |
73-9.3 Correlation versus Causation.mp4 |
270.47Мб |
74 |
806.39Кб |
74-9.4 Correcting for Multiple Comparisons.mp4 |
209.68Мб |
75 |
338.04Кб |
75-Topics.mp4 |
50.39Мб |
76 |
1.39Мб |
76-10.1 Independent versus Dependent Variables.mp4 |
105.56Мб |
77 |
1.61Мб |
77-10.2 Linear Regression to Predict Continuous Values.mp4 |
220.88Мб |
78 |
1.46Мб |
78-10.3 Fitting a Line to Points on a Cartesian Plane.mp4 |
538.28Мб |
79 |
1.32Мб |
79-10.4 Linear Least Squares Exercise.mp4 |
177.16Мб |
8 |
446.04Кб |
80 |
1.21Мб |
80-10.5 Ordinary Least Squares.mp4 |
449.28Мб |
81 |
447.05Кб |
81-10.6 Categorical 'Dummy' Features.mp4 |
633.78Мб |
82 |
473.79Кб |
82-10.7 Logistic Regression to Predict Categories.mp4 |
458.83Мб |
83 |
1.11Мб |
83-10.8 Open-Ended Exercises.mp4 |
163.90Мб |
84 |
1.24Мб |
84-Topics.mp4 |
39.56Мб |
85 |
1.26Мб |
85-11.1 Machine Learning versus Frequentist Statistics.mp4 |
227.14Мб |
86 |
634.24Кб |
86-11.2 When to Use Bayesian Statistics.mp4 |
70.61Мб |
87 |
1.55Мб |
87-11.3 Prior Probabilities.mp4 |
166.68Мб |
88 |
747.80Кб |
88-11.4 Bayes' Theorem.mp4 |
568.97Мб |
89-11.5 Resources for Further Study of Probability and Statistics.mp4 |
75.21Мб |
9 |
709.99Кб |
90-Probability and Statistics for Machine Learning - Summary.mp4 |
73.67Мб |
TutsNode.com.txt |
61б |