Общая информация
Название [FreeCoursesOnline.Me] O`REILLY - Data Science Bookcamp, video edition
Тип
Размер 6.44Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
0. OneHack.us Premium Cracked Accounts-Tutorials-Guides-Articles Community Based Forum.url 377б
1. FreeCoursesOnline.Me Download Udacity, Masterclass, Lynda, PHLearn, Pluralsight Free.url 286б
100 - Chapter 20. Network-driven supervised machine learning.mp4 48.95Мб
101 - Chapter 20. The basics of supervised machine learning.mp4 49.20Мб
102 - Chapter 20. Measuring predicted label accuracy, Part 1.mp4 37.28Мб
103 - Chapter 20. Measuring predicted label accuracy, Part 2.mp4 55.24Мб
104 - Chapter 20. Optimizing KNN performance.mp4 35.68Мб
105 - Chapter 20. Running a grid search using scikit-learn.mp4 39.33Мб
106 - Chapter 20. Limitations of the KNN algorithm.mp4 63.16Мб
107 - Chapter 21. Training linear classifiers with logistic regression.mp4 58.26Мб
108 - Chapter 21. Training a linear classifier, Part 1.mp4 43.52Мб
109 - Chapter 21. Training a linear classifier, Part 2.mp4 73.26Мб
10 - Chapter 3. Using permutations to shuffle cards.mp4 35.40Мб
110 - Chapter 21. Improving linear classification with logistic regression, Part 1.mp4 43.42Мб
111 - Chapter 21. Improving linear classification with logistic regression, Part 2.mp4 43.12Мб
112 - Chapter 21. Training linear classifiers using scikit-learn.mp4 49.64Мб
113 - Chapter 21. Measuring feature importance with coefficients.mp4 93.13Мб
114 - Chapter 22. Training nonlinear classifiers with decision tree techniques.mp4 65.20Мб
115 - Chapter 22. Training a nested if_else model using two features.mp4 53.25Мб
116 - Chapter 22. Deciding which feature to split on.mp4 57.23Мб
117 - Chapter 22. Training if_else models with more than two features.mp4 57.79Мб
118 - Chapter 22. Training decision tree classifiers using scikit-learn.mp4 51.86Мб
119 - Chapter 22. Studying cancerous cells using feature importance.mp4 59.29Мб
11 - Chapter 4. Case study 1 solution.mp4 34.27Мб
120 - Chapter 22. Improving performance using random forest classification.mp4 57.38Мб
121 - Chapter 22. Training random forest classifiers using scikit-learn.mp4 52.96Мб
122 - Chapter 23. Case study 5 solution.mp4 32.94Мб
123 - Chapter 23. Exploring the experimental observations.mp4 38.99Мб
124 - Chapter 23. Training a predictive model using network features, Part 1.mp4 52.59Мб
125 - Chapter 23. Training a predictive model using network features, Part 2.mp4 53.87Мб
126 - Chapter 23. Adding profile features to the model.mp4 62.03Мб
127 - Chapter 23. Optimizing performance across a steady set of features.mp4 42.55Мб
128 - Chapter 23. Interpreting the trained model.mp4 64.17Мб
12 - Chapter 4. Optimizing strategies using the sample space for a 10-card deck.mp4 47.10Мб
13 - Case study 2 - Assessing online ad clicks for significance.mp4 31.40Мб
14 - Chapter 5. Basic probability and statistical analysis using SciPy.mp4 76.23Мб
15 - Chapter 5. Mean as a measure of centrality.mp4 36.58Мб
16 - Chapter 5. Variance as a measure of dispersion.mp4 73.89Мб
17 - Chapter 6. Making predictions using the central limit theorem and SciPy.mp4 58.61Мб
18 - Chapter 6. Comparing two sampled normal curves.mp4 31.46Мб
19 - Chapter 6. Determining the mean and variance of a population through random sampling.mp4 55.19Мб
1 - Case study 1 - Finding the winning strategy in a card game.mp4 6.89Мб
20 - Chapter 6. Computing the area beneath a normal curve.mp4 64.57Мб
21 - Chapter 7. Statistical hypothesis testing.mp4 39.19Мб
22 - Chapter 7. Assessing the divergence between sample mean and population mean.mp4 68.30Мб
23 - Chapter 7. Data dredging - Coming to false conclusions through oversampling.mp4 79.88Мб
24 - Chapter 7. Bootstrapping with replacement - Testing a hypothesis when the population variance is unknown 1.mp4 53.28Мб
25 - Chapter 7. Bootstrapping with replacement - Testing a hypothesis when the population variance is unknown 2.mp4 52.78Мб
26 - Chapter 7. Permutation testing - Comparing means of samples when the population parameters are unknown.mp4 43.69Мб
27 - Chapter 8. Analyzing tables using Pandas.mp4 40.87Мб
28 - Chapter 8. Retrieving table rows.mp4 38.24Мб
29 - Chapter 8. Saving and loading table data.mp4 40.28Мб
2 - Chapter 1. Computing probabilities using Python This section covers.mp4 56.75Мб
3. FTUApps.com Download Cracked Developers Applications For Free.url 239б
30 - Chapter 9. Case study 2 solution.mp4 33.60Мб
31 - Chapter 9. Determining statistical significance.mp4 43.58Мб
32 - Case study 3 - Tracking disease outbreaks using news headlines.mp4 6.60Мб
33 - Chapter 10. Clustering data into groups.mp4 61.40Мб
34 - Chapter 10. K-means - A clustering algorithm for grouping data into K central groups.mp4 61.20Мб
35 - Chapter 10. Using density to discover clusters.mp4 52.23Мб
36 - Chapter 10. Clustering based on non-Euclidean distance.mp4 68.79Мб
37 - Chapter 10. Analyzing clusters using Pandas.mp4 40.48Мб
38 - Chapter 11. Geographic location visualization and analysis.mp4 46.58Мб
39 - Chapter 11. Plotting maps using Cartopy.mp4 33.23Мб
3 - Chapter 1. Problem 2 - Analyzing multiple die rolls.mp4 60.89Мб
40 - Chapter 11. Visualizing maps.mp4 58.27Мб
41 - Chapter 11. Location tracking using GeoNamesCache.mp4 62.35Мб
42 - Chapter 11. Limitations of the GeoNamesCache library.mp4 69.19Мб
43 - Chapter 12. Case study 3 solution.mp4 34.63Мб
44 - Chapter 12. Visualizing and clustering the extracted location data.mp4 70.72Мб
45 - Case study 4 - Using online job postings to improve your data science resume.mp4 23.95Мб
46 - Chapter 13. Measuring text similarities.mp4 36.28Мб
47 - Chapter 13. Simple text comparison.mp4 44.00Мб
48 - Chapter 13. Replacing words with numeric values.mp4 42.07Мб
49 - Chapter 13. Vectorizing texts using word counts.mp4 44.50Мб
4 - Chapter 2. Plotting probabilities using Matplotlib.mp4 53.74Мб
50 - Chapter 13. Using normalization to improve TF vector similarity.mp4 48.56Мб
51 - Chapter 13. Using unit vector dot products to convert between relevance metrics.mp4 41.64Мб
52 - Chapter 13. Basic matrix operations, Part 1.mp4 48.78Мб
53 - Chapter 13. Basic matrix operations, Part 2.mp4 27.15Мб
54 - Chapter 13. Computational limits of matrix multiplication.mp4 47.81Мб
55 - Chapter 14. Dimension reduction of matrix data.mp4 61.74Мб
56 - Chapter 14. Reducing dimensions using rotation, Part 1.mp4 38.99Мб
57 - Chapter 14. Reducing dimensions using rotation, Part 2.mp4 37.56Мб
58 - Chapter 14. Dimension reduction using PCA and scikit-learn.mp4 64.72Мб
59 - Chapter 14. Clustering 4D data in two dimensions.mp4 54.44Мб
5 - Chapter 2. Comparing multiple coin-flip probability distributions.mp4 65.57Мб
60 - Chapter 14. Limitations of PCA.mp4 30.77Мб
61 - Chapter 14. Computing principal components without rotation.mp4 47.80Мб
62 - Chapter 14. Extracting eigenvectors using power iteration, Part 1.mp4 44.67Мб
63 - Chapter 14. Extracting eigenvectors using power iteration, Part 2.mp4 34.38Мб
64 - Chapter 14. Efficient dimension reduction using SVD and scikit-learn.mp4 68.60Мб
65 - Chapter 15. NLP analysis of large text datasets.mp4 47.16Мб
66 - Chapter 15. Vectorizing documents using scikit-learn.mp4 87.06Мб
67 - Chapter 15. Ranking words by both post frequency and count, Part 1.mp4 56.59Мб
68 - Chapter 15. Ranking words by both post frequency and count, Part 2.mp4 48.13Мб
69 - Chapter 15. Computing similarities across large document datasets.mp4 60.24Мб
6 - Chapter 3. Running random simulations in NumPy.mp4 36.35Мб
70 - Chapter 15. Clustering texts by topic, Part 1.mp4 73.30Мб
71 - Chapter 15. Clustering texts by topic, Part 2.mp4 87.08Мб
72 - Chapter 15. Visualizing text clusters.mp4 58.90Мб
73 - Chapter 15. Using subplots to display multiple word clouds, Part 1.mp4 50.57Мб
74 - Chapter 15. Using subplots to display multiple word clouds, Part 2.mp4 58.83Мб
75 - Chapter 16. Extracting text from web pages.mp4 39.55Мб
76 - Chapter 16. The structure of HTML documents.mp4 62.95Мб
77 - Chapter 16. Parsing HTML using Beautiful Soup, Part 1.mp4 40.42Мб
78 - Chapter 16. Parsing HTML using Beautiful Soup, Part 2.mp4 46.78Мб
79 - Chapter 17. Case study 4 solution.mp4 37.42Мб
7 - Chapter 3. Computing confidence intervals using histograms and NumPy arrays.mp4 47.59Мб
80 - Chapter 17. Exploring the HTML for skill descriptions.mp4 59.65Мб
81 - Chapter 17. Filtering jobs by relevance.mp4 73.18Мб
82 - Chapter 17. Clustering skills in relevant job postings.mp4 66.54Мб
83 - Chapter 17. Investigating the technical skill clusters.mp4 41.46Мб
84 - Chapter 17. Exploring clusters at alternative values of K.mp4 69.37Мб
85 - Chapter 17. Analyzing the 700 most relevant postings.mp4 40.95Мб
86 - Case study 5 - Predicting future friendships from social network data.mp4 80.40Мб
87 - Chapter 18. An introduction to graph theory and network analysis.mp4 74.88Мб
88 - Chapter 18. Analyzing web networks using NetworkX, Part 1.mp4 30.92Мб
89 - Chapter 18. Analyzing web networks using NetworkX, Part 2.mp4 53.06Мб
8 - Chapter 3. Deriving probabilities from histograms.mp4 57.63Мб
90 - Chapter 18. Utilizing undirected graphs to optimize the travel time between towns.mp4 57.39Мб
91 - Chapter 18. Computing the fastest travel time between nodes, Part 1.mp4 32.12Мб
92 - Chapter 18. Computing the fastest travel time between nodes, Part 2.mp4 49.04Мб
93 - Chapter 19. Dynamic graph theory techniques for node ranking and social network analysis.mp4 75.08Мб
94 - Chapter 19. Computing travel probabilities using matrix multiplication.mp4 40.21Мб
95 - Chapter 19. Deriving PageRank centrality from probability theory.mp4 48.36Мб
96 - Chapter 19. Computing PageRank centrality using NetworkX.mp4 44.66Мб
97 - Chapter 19. Community detection using Markov clustering, Part 1.mp4 60.05Мб
98 - Chapter 19. Community detection using Markov clustering, Part 2.mp4 75.21Мб
99 - Chapter 19. Uncovering friend groups in social networks.mp4 57.99Мб
9 - Chapter 3. Computing histograms in NumPy.mp4 52.99Мб
For $3, Get Anything Official like Windows 11 keys + Microsoft Office 365 Accounts! Hurry! Limited Time Offer.url 1.82Кб
How you can help our Group!.txt 204б
Статистика распространения по странам
Россия (RU) 2
Австрия (AT) 1
Швейцария (CH) 1
США (US) 1
Никарагуа (NI) 1
Всего 6
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент