Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
эти файлы или скачать torrent-файл.
|
[FreeCoursesOnline.Me].url |
133б |
[FreeTutorials.Eu].url |
129б |
[FTU Forum].url |
1.34Кб |
01. 00 Luis Introducing Ortal Newtitle121217-oXv7GiC-jrM.en.vtt |
1.51Кб |
01. 00 Luis Introducing Ortal Newtitle121217-oXv7GiC-jrM.mp4 |
10.69Мб |
01. 00 Luis Introducing Ortal Newtitle121217-oXv7GiC-jrM.pt-BR.vtt |
1.61Кб |
01. 00 Luis Introducing Ortal Newtitle121217-oXv7GiC-jrM.zh-CN.vtt |
1.35Кб |
01. 01 Welcome To The Deep Learning Program-3QPEmwq2NaE.mp4 |
11.28Мб |
01. Actor-Critic Methods.html |
5.45Кб |
01. Apresentando Alexis-38ExGpdyvJI.en.vtt |
694б |
01. Apresentando Alexis-38ExGpdyvJI.mp4 |
2.05Мб |
01. Apresentando Alexis-38ExGpdyvJI.pt-BR.vtt |
599б |
01. Apresentando Alexis-38ExGpdyvJI.zh-CN.vtt |
615б |
01. Autoencoder Lesson Intro.html |
6.49Кб |
01. CNN Project.html |
7.09Кб |
01. Convolutional Layers.html |
9.48Кб |
01. Deep Convolutional GANs.html |
6.69Кб |
01. Deep Reinforcement Learning.html |
6.50Кб |
01. Deep Reinforcement Learning-GPjK124RU5g.en.vtt |
6.45Кб |
01. Deep Reinforcement Learning-GPjK124RU5g.mp4 |
33.20Мб |
01. Deep Reinforcement Learning-GPjK124RU5g.pt-BR.vtt |
7.33Кб |
01. Deep Reinforcement Learning-GPjK124RU5g.zh-CN.vtt |
5.62Кб |
01. Embeddings Intro.html |
6.91Кб |
01. Enroll in your next ND program.html |
7.80Кб |
01. GANs Intro-F7XgI6TmaGI.en.vtt |
1.32Кб |
01. GANs Intro-F7XgI6TmaGI.en-US.vtt |
1.57Кб |
01. GANs Intro-F7XgI6TmaGI.mp4 |
3.24Мб |
01. GANs Intro-F7XgI6TmaGI.pt-BR.vtt |
1.29Кб |
01. GANs Intro-F7XgI6TmaGI.zh-CN.vtt |
1.45Кб |
01. Instructor.html |
5.70Кб |
01. Instructor.html |
6.01Кб |
01. Instructor.html |
8.52Кб |
01. Instructor.html |
6.18Кб |
01. Intro.html |
6.05Кб |
01. Intro.html |
8.36Кб |
01. Intro.html |
7.77Кб |
01. Intro.html |
5.99Кб |
01. Intro.html |
6.34Кб |
01. Intro.html |
5.79Кб |
01. Intro.html |
7.09Кб |
01. Introducing Alexis.html |
7.79Кб |
01. Introducing Andrew Trask.html |
7.04Кб |
01. Introducing Andrew Trask-ltO71Bm8b3M.en.vtt |
746б |
01. Introducing Andrew Trask-ltO71Bm8b3M.mp4 |
4.08Мб |
01. Introducing Andrew Trask-ltO71Bm8b3M.pt-BR.vtt |
1.26Кб |
01. Introducing Andrew Trask-ltO71Bm8b3M.zh-CN.vtt |
685б |
01. Introducing Ian Goodfellow.html |
6.55Кб |
01. Introducing Jay.html |
5.82Кб |
01. Introducing Ortal .html |
7.37Кб |
01. Introduction.html |
5.36Кб |
01. Introduction.html |
5.93Кб |
01. Introduction.html |
5.13Кб |
01. Introduction.html |
5.43Кб |
01. Introduction.html |
6.77Кб |
01. Introduction.html |
5.80Кб |
01. Introduction.html |
7.98Кб |
01. Introduction.html |
7.22Кб |
01. Introduction.html |
6.45Кб |
01. Introduction.html |
8.07Кб |
01. Introduction-6jSFl5kxIBs.en.vtt |
2.41Кб |
01. Introduction-6jSFl5kxIBs.mp4 |
5.15Мб |
01. Introduction-6jSFl5kxIBs.pt-BR.vtt |
2.43Кб |
01. Introduction-6jSFl5kxIBs.zh-CN.vtt |
2.11Кб |
01. Introduction-ek2PD9RDrWw.en.vtt |
1.04Кб |
01. Introduction-ek2PD9RDrWw.mp4 |
6.18Мб |
01. Introduction-ek2PD9RDrWw.pt-BR.vtt |
1.09Кб |
01. Introduction-ek2PD9RDrWw.zh-CN.vtt |
883б |
01. Introduction to GPU Workspaces.html |
15.37Кб |
01. Introduction to the Project.html |
5.16Кб |
01. Introduction to the Project-dOwEDeJp8yw.en.vtt |
2.35Кб |
01. Introduction to the Project-dOwEDeJp8yw.mp4 |
6.23Мб |
01. Introduction to the Project-dOwEDeJp8yw.pt-BR.vtt |
2.02Кб |
01. Introduction to the Project-dOwEDeJp8yw.zh-CN.vtt |
2.33Кб |
01. Introduction-W2EP3riQSus.en.vtt |
937б |
01. Introduction-W2EP3riQSus.mp4 |
4.93Мб |
01. Introduction-W2EP3riQSus.pt-BR.vtt |
1.02Кб |
01. Introduction-W2EP3riQSus.zh-CN.vtt |
822б |
01. Introduction-X_9l_ZqXXBA.en.vtt |
830б |
01. Introduction-X_9l_ZqXXBA.mp4 |
2.90Мб |
01. Introduction-X_9l_ZqXXBA.pt-BR.vtt |
866б |
01. Introduction-X_9l_ZqXXBA.zh-CN.vtt |
718б |
01. Introduction-yXErXQulI_o.en.vtt |
2.91Кб |
01. Introduction-yXErXQulI_o.mp4 |
20.67Мб |
01. Introduction-yXErXQulI_o.zh-CN.vtt |
2.48Кб |
01. Introduction-ZCpXvVdIdnY.en.vtt |
874б |
01. Introduction-ZCpXvVdIdnY.mp4 |
1.55Мб |
01. Introduction-ZCpXvVdIdnY.pt-BR.vtt |
857б |
01. Introduction-ZCpXvVdIdnY.zh-CN.vtt |
822б |
01. Intro to Deep Q-Learning.html |
5.96Кб |
01. Intro to Deep Q-Learning-o3cmuUDhP3I.en.vtt |
1.44Кб |
01. Intro to Deep Q-Learning-o3cmuUDhP3I.mp4 |
9.08Мб |
01. Intro to Deep Q-Learning-o3cmuUDhP3I.pt-BR.vtt |
1.67Кб |
01. Intro to Deep Q-Learning-o3cmuUDhP3I.zh-CN.vtt |
1.27Кб |
01. Intro to LSTM.html |
6.44Кб |
01. Last Project - Congrats-UUqU8SYBZ9Q.en.vtt |
792б |
01. Last Project - Congrats-UUqU8SYBZ9Q.mp4 |
2.20Мб |
01. Last Project - Congrats-UUqU8SYBZ9Q.pt-BR.vtt |
850б |
01. Last Project - Congrats-UUqU8SYBZ9Q.zh-CN.vtt |
764б |
01. M0 L3 C01 Intro- V3 No Slack-OH-5IlSH-eoPAU.mp4 |
6.09Мб |
01. M2L3 01 V1-YOSREyp04HA.en.vtt |
856б |
01. M2L3 01 V1-YOSREyp04HA.mp4 |
4.98Мб |
01. M2L3 01 V1-YOSREyp04HA.zh-CN.vtt |
787б |
01. Mean Squared Error Function.html |
6.07Кб |
01. Miniflow Introduction-Nqp_UifEwt0.en-US.vtt |
1.19Кб |
01. Miniflow Introduction-Nqp_UifEwt0.mp4 |
7.22Мб |
01. Miniflow Introduction-Nqp_UifEwt0.pt-BR.vtt |
1.23Кб |
01. Miniflow Introduction-Nqp_UifEwt0.zh-CN.vtt |
1.11Кб |
01. One Project Away!.html |
5.16Кб |
01. Overview.html |
7.17Кб |
01. Policy-Based Methods.html |
5.29Кб |
01. Project-3-Intro-qNpv7IjQzo0.en.vtt |
667б |
01. Project-3-Intro-qNpv7IjQzo0.en-US.vtt |
701б |
01. Project-3-Intro-qNpv7IjQzo0.mp4 |
667.23Кб |
01. Project-3-Intro-qNpv7IjQzo0.pt-BR.vtt |
720б |
01. Project-3-Intro-qNpv7IjQzo0.zh-CN.vtt |
640б |
01. Project Intro.html |
9.72Кб |
01. RL M2L4 01 Actor Critic Methods RENDER V1 V1-FXhyxJzgt8U.en.vtt |
1.54Кб |
01. RL M2L4 01 Actor Critic Methods RENDER V1 V1-FXhyxJzgt8U.mp4 |
10.38Мб |
01. RL M2L4 01 Actor Critic Methods RENDER V1 V1-FXhyxJzgt8U.pt-BR.vtt |
1.78Кб |
01. RL M2L4 01 Actor Critic Methods RENDER V1 V1-FXhyxJzgt8U.zh-CN.vtt |
1.36Кб |
01. Semi-supervised Learning.html |
6.93Кб |
01. Transfer Learning Intro.html |
7.12Кб |
01. Weight Initialization Intro.html |
5.65Кб |
01. Welcome To Linear Regression-zxZkTkM34BY.en.vtt |
1.15Кб |
01. Welcome To Linear Regression-zxZkTkM34BY.mp4 |
3.90Мб |
01. Welcome To Linear Regression-zxZkTkM34BY.pt-BR.vtt |
1.21Кб |
01. Welcome to MiniFlow.html |
6.02Кб |
01. Welcome to the Deep Learning Nanodegree Program.html |
5.36Кб |
02. 01 RNN Intro V6 Final-AIQEqg6F38A.en.vtt |
4.46Кб |
02. 01 RNN Intro V6 Final-AIQEqg6F38A.mp4 |
20.89Мб |
02. 01 RNN Intro V6 Final-AIQEqg6F38A.pt-BR.vtt |
4.75Кб |
02. 01 RNN Intro V6 Final-AIQEqg6F38A.zh-CN.vtt |
4.05Кб |
02. 02 Skin Cancer V4-70jGZeiTNgk.en.vtt |
1.86Кб |
02. 02 Skin Cancer V4-70jGZeiTNgk.mp4 |
4.73Мб |
02. 02 Skin Cancer V4-70jGZeiTNgk.pt-BR.vtt |
1.74Кб |
02. 02 Skin Cancer V4-70jGZeiTNgk.zh-CN.vtt |
1.68Кб |
02. A Better Score Function.html |
5.42Кб |
02. Andrew Trask - Intro-da1I0mea1jQ.en-US.vtt |
5.42Кб |
02. Andrew Trask - Intro-da1I0mea1jQ.mp4 |
23.76Мб |
02. Andrew Trask - Intro-da1I0mea1jQ.pt-BR.vtt |
3.68Кб |
02. Andrew Trask - Intro-da1I0mea1jQ.zh-CN.vtt |
4.94Кб |
02. Aplicações de CNNs-HrYNL_1SV2Y.en.vtt |
5.37Кб |
02. Aplicações de CNNs-HrYNL_1SV2Y.mp4 |
17.70Мб |
02. Aplicações de CNNs-HrYNL_1SV2Y.pt-BR.vtt |
5.66Кб |
02. Aplicações de CNNs-HrYNL_1SV2Y.zh-CN.vtt |
4.70Кб |
02. Applications.html |
7.15Кб |
02. Applications-CV6B84mKRNM.en.vtt |
3.22Кб |
02. Applications-CV6B84mKRNM.mp4 |
8.46Мб |
02. Applications-CV6B84mKRNM.pt-BR.vtt |
3.42Кб |
02. Applications-CV6B84mKRNM.zh-CN.vtt |
2.91Кб |
02. Applications of CNNs.html |
13.00Кб |
02. Autoencoders.html |
5.20Кб |
02. Autoencoders-ar5Iyx68cWc.en.vtt |
2.41Кб |
02. Autoencoders-ar5Iyx68cWc.mp4 |
2.22Мб |
02. Autoencoders-ar5Iyx68cWc.pt-BR.vtt |
2.36Кб |
02. Autoencoders-ar5Iyx68cWc.zh-CN.vtt |
2.18Кб |
02. Character-Wise RNN-dXl3eWCGLdU.en.vtt |
3.33Кб |
02. Character-Wise RNN-dXl3eWCGLdU.mp4 |
2.88Мб |
02. Character-Wise RNN-dXl3eWCGLdU.pt-BR.vtt |
3.66Кб |
02. Character-Wise RNN-dXl3eWCGLdU.zh-CN.vtt |
3.04Кб |
02. Character-wise RNNs.html |
5.90Кб |
02. Confusion Matrix.html |
8.20Кб |
02. Confusion Matrix-Question 1-9GLNjmMUB_4.en.vtt |
5.71Кб |
02. Confusion Matrix-Question 1-9GLNjmMUB_4.en-US.vtt |
5.52Кб |
02. Confusion Matrix-Question 1-9GLNjmMUB_4.mp4 |
5.04Мб |
02. Confusion Matrix-Question 1-9GLNjmMUB_4.pt-BR.vtt |
4.76Кб |
02. Confusion Matrix-Question 1-9GLNjmMUB_4.zh-CN.vtt |
4.96Кб |
02. Cool Things To Do With GANs-bo-ToTdhgew.en.vtt |
7.34Кб |
02. Cool Things To Do With GANs-bo-ToTdhgew.mp4 |
11.98Мб |
02. Cool Things To Do With GANs-bo-ToTdhgew.pt-BR.vtt |
6.86Кб |
02. Cool Things To Do With GANs-bo-ToTdhgew.zh-CN.vtt |
6.94Кб |
02. Create an AWS Account.html |
5.89Кб |
02. Data Dimensions.html |
5.76Кб |
02. Data Has Dimensions-F4NSv776X0c.en.vtt |
8.66Кб |
02. Data Has Dimensions-F4NSv776X0c.mp4 |
10.61Мб |
02. Data Has Dimensions-F4NSv776X0c.pt-BR.vtt |
8.80Кб |
02. Data Has Dimensions-F4NSv776X0c.zh-CN.vtt |
7.59Кб |
02. DCGAN Architecture.html |
5.62Кб |
02. Deconvolution-sX_AxtB6CHI.en.vtt |
7.21Кб |
02. Deconvolution-sX_AxtB6CHI.mp4 |
8.27Мб |
02. Deconvolution-sX_AxtB6CHI.pt-BR.vtt |
7.01Кб |
02. Deconvolution-sX_AxtB6CHI.zh-CN.vtt |
6.47Кб |
02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.en.vtt |
1.36Кб |
02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.mp4 |
1.48Мб |
02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.pt-BR.vtt |
1.46Кб |
02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.zh-CN.vtt |
1.26Кб |
02. Dog Breed Workspace.html |
5.46Кб |
02. Gradient Descent.html |
12.63Кб |
02. Gradient Descent-29PmNG7fuuM.en.vtt |
1.60Кб |
02. Gradient Descent-29PmNG7fuuM.mp4 |
2.46Мб |
02. Gradient Descent-29PmNG7fuuM.pt-BR.vtt |
1.52Кб |
02. Gradient Descent-29PmNG7fuuM.zh-CN.vtt |
1.41Кб |
02. Graphs.html |
10.19Кб |
02. Implementing Word2Vec.html |
5.52Кб |
02. Implementing Word2Vec-7M431_f9HgE.en.vtt |
16.86Кб |
02. Implementing Word2Vec-7M431_f9HgE.mp4 |
23.33Мб |
02. Implementing Word2Vec-7M431_f9HgE.pt-BR.vtt |
17.23Кб |
02. Implementing Word2Vec-7M431_f9HgE.zh-CN.vtt |
14.27Кб |
02. Installing TensorFlow.html |
8.81Кб |
02. Instructions.html |
11.03Кб |
02. Introduction.html |
6.11Кб |
02. Introduction.html |
8.36Кб |
02. Introduction.html |
5.56Кб |
02. Introduction-erwnzFD7AeE.en.vtt |
2.34Кб |
02. Introduction-erwnzFD7AeE.mp4 |
2.22Мб |
02. Introduction-erwnzFD7AeE.pt-BR.vtt |
2.17Кб |
02. Introduction-erwnzFD7AeE.zh-CN.vtt |
2.01Кб |
02. Introduction-tn-CrUTkCUc.en.vtt |
3.28Кб |
02. Introduction-tn-CrUTkCUc.mp4 |
7.54Мб |
02. Introduction-tn-CrUTkCUc.pt-BR.vtt |
3.09Кб |
02. Introduction-tn-CrUTkCUc.zh-CN.vtt |
2.84Кб |
02. Jupyter-qiYDWFLyXvg.ar.vtt |
3.41Кб |
02. Jupyter-qiYDWFLyXvg.en.vtt |
2.70Кб |
02. Jupyter-qiYDWFLyXvg.mp4 |
7.12Мб |
02. Jupyter-qiYDWFLyXvg.pt-BR.vtt |
2.41Кб |
02. Jupyter-qiYDWFLyXvg.zh-CN.vtt |
2.64Кб |
02. Keras.html |
19.58Кб |
02. M2L3 02 V2-ToS8vXGdODE.en.vtt |
9.07Кб |
02. M2L3 02 V2-ToS8vXGdODE.mp4 |
32.51Мб |
02. M2L3 02 V2-ToS8vXGdODE.zh-CN.vtt |
8.11Кб |
02. Meet Andrew.html |
7.31Кб |
02. Meet Your Instructors.html |
5.64Кб |
02. Meet Your Instructors--UOFRxCu414.en.vtt |
1.78Кб |
02. Meet Your Instructors--UOFRxCu414.mp4 |
11.25Мб |
02. Meet Your Instructors--UOFRxCu414.pt-BR.vtt |
1.95Кб |
02. Meet Your Instructors--UOFRxCu414.zh-CN.vtt |
1.63Кб |
02. Neural Nets as Value Functions.html |
6.00Кб |
02. Neural Nets as Value Functions-cBi7vLrk8QQ.en.vtt |
3.73Кб |
02. Neural Nets as Value Functions-cBi7vLrk8QQ.mp4 |
12.65Мб |
02. Neural Nets as Value Functions-cBi7vLrk8QQ.pt-BR.vtt |
3.93Кб |
02. Neural Nets as Value Functions-cBi7vLrk8QQ.zh-CN.vtt |
3.22Кб |
02. Ones and Zeros.html |
5.20Кб |
02. OpenAI Gym BlackjackEnv.html |
9.33Кб |
02. OpenAI Gym CliffWalkingEnv.html |
8.28Кб |
02. OpenAI Gym FrozenLakeEnv.html |
10.42Кб |
02. Policies.html |
5.81Кб |
02. Policies-hc3LrvaC13U.en.vtt |
4.79Кб |
02. Policies-hc3LrvaC13U.mp4 |
20.24Мб |
02. Policies-hc3LrvaC13U.pt-BR.vtt |
5.44Кб |
02. Policies-hc3LrvaC13U.zh-CN.vtt |
4.03Кб |
02. Project Introduction.html |
5.11Кб |
02. Project Workspace.html |
5.51Кб |
02. Quadcopter workspace.html |
6.05Кб |
02. Quiz Convolutional Layers.html |
11.02Кб |
02. Quiz Housing Prices.html |
8.38Кб |
02. Resources.html |
8.23Кб |
02. RL M2L4 02 A Better Score Function V2-_HBJ3l10-OE.en.vtt |
2.64Кб |
02. RL M2L4 02 A Better Score Function V2-_HBJ3l10-OE.mp4 |
8.68Мб |
02. RL M2L4 02 A Better Score Function V2-_HBJ3l10-OE.pt-BR.vtt |
3.09Кб |
02. RL M2L4 02 A Better Score Function V2-_HBJ3l10-OE.zh-CN.vtt |
2.34Кб |
02. RNN Introduction.html |
8.05Кб |
02. RNN vs LSTM.html |
5.66Кб |
02. RNN Vs LSTM-70MgF-IwAr8.en.vtt |
4.71Кб |
02. RNN Vs LSTM-70MgF-IwAr8.mp4 |
3.58Мб |
02. RNN Vs LSTM-70MgF-IwAr8.pt-BR.vtt |
4.24Кб |
02. RNN Vs LSTM-70MgF-IwAr8.zh-CN.vtt |
4.22Кб |
02. Semi-Supervised Classification with GANs.html |
6.03Кб |
02. Semi-Supervised Learning-_LRpHPxZaX0.en.vtt |
10.16Кб |
02. Semi-Supervised Learning-_LRpHPxZaX0.mp4 |
10.11Мб |
02. Semi-Supervised Learning-_LRpHPxZaX0.pt-BR.vtt |
9.52Кб |
02. Semi-Supervised Learning-_LRpHPxZaX0.zh-CN.vtt |
9.26Кб |
02. Sentiment Prediction-uGN3rZJRiMY.en.vtt |
8.66Кб |
02. Sentiment Prediction-uGN3rZJRiMY.mp4 |
11.25Мб |
02. Sentiment Prediction-uGN3rZJRiMY.pt-BR.vtt |
7.33Кб |
02. Sentiment Prediction-uGN3rZJRiMY.zh-CN.vtt |
8.00Кб |
02. Sentiment RNN.html |
5.24Кб |
02. Skin Cancer.html |
9.83Кб |
02. Style Transfer.html |
11.68Кб |
02. The Setting, Revisited.html |
6.58Кб |
02. The Setting, Revisited-V6Q1uF8a6kA.en.vtt |
5.60Кб |
02. The Setting, Revisited-V6Q1uF8a6kA.mp4 |
7.36Мб |
02. The Setting, Revisited-V6Q1uF8a6kA.pt-BR.vtt |
5.78Кб |
02. The Setting, Revisited-V6Q1uF8a6kA.zh-CN.vtt |
4.79Кб |
02. Training Optimization.html |
6.19Кб |
02. Training Optimization-UiGKhx9pUYc.en.vtt |
824б |
02. Training Optimization-UiGKhx9pUYc.mp4 |
2.96Мб |
02. Training Optimization-UiGKhx9pUYc.pt-BR.vtt |
874б |
02. Training Optimization-UiGKhx9pUYc.zh-CN.vtt |
840б |
02. Transfer Learning with VGGNet.html |
5.59Кб |
02. Transfer Learning--WmQwYr0DYjY.en.vtt |
6.92Кб |
02. Transfer Learning--WmQwYr0DYjY.mp4 |
8.28Мб |
02. Transfer Learning--WmQwYr0DYjY.pt-BR.vtt |
6.01Кб |
02. Transfer Learning--WmQwYr0DYjY.zh-CN.vtt |
6.42Кб |
02. TV Script Workspace.html |
5.44Кб |
02. Weight Initialization 1-6vXMYu_TQIA.en.vtt |
9.67Кб |
02. Weight Initialization 1-6vXMYu_TQIA.mp4 |
10.75Мб |
02. Weight Initialization 1-6vXMYu_TQIA.pt-BR.vtt |
8.17Кб |
02. Weight Initialization 1-6vXMYu_TQIA.zh-CN.vtt |
8.12Кб |
02. What are Jupyter notebooks.html |
12.27Кб |
02. What can you do with GANs.html |
6.52Кб |
02. Why Anaconda-VXukXZv7SCQ.ar.vtt |
4.95Кб |
02. Why Anaconda-VXukXZv7SCQ.en.vtt |
3.44Кб |
02. Why Anaconda-VXukXZv7SCQ.mp4 |
10.29Мб |
02. Why Anaconda-VXukXZv7SCQ.pt-BR.vtt |
3.23Кб |
02. Why Anaconda-VXukXZv7SCQ.zh-CN.vtt |
3.52Кб |
02. Why Policy-Based Methods.html |
5.30Кб |
02. Workspace Playground.html |
5.07Кб |
02. 项目简介-jvJtHYBX7sM.en.vtt |
1.04Кб |
02. 项目简介-jvJtHYBX7sM.mp4 |
1.61Мб |
02. 项目简介-jvJtHYBX7sM.pt-BR.vtt |
1.08Кб |
02. 项目简介-jvJtHYBX7sM.zh-CN.vtt |
1.07Кб |
02-guide-how-transfer-learning-v3-01.png |
251.26Кб |
02-guide-how-transfer-learning-v3-02.png |
219.27Кб |
02-guide-how-transfer-learning-v3-03.png |
228.93Кб |
02-guide-how-transfer-learning-v3-04.png |
255.16Кб |
02-guide-how-transfer-learning-v3-05.png |
232.52Кб |
02-guide-how-transfer-learning-v3-06.png |
259.12Кб |
02-guide-how-transfer-learning-v3-07.png |
233.30Кб |
02-guide-how-transfer-learning-v3-08.png |
241.57Кб |
02-guide-how-transfer-learning-v3-09.png |
228.05Кб |
02-guide-how-transfer-learning-v3-10.png |
241.76Кб |
03. 02 RNN History V4 Final-HbxAnYUfRnc.en.vtt |
3.67Кб |
03. 02 RNN History V4 Final-HbxAnYUfRnc.mp4 |
24.26Мб |
03. 02 RNN History V4 Final-HbxAnYUfRnc.pt-BR.vtt |
4.06Кб |
03. 02 RNN History V4 Final-HbxAnYUfRnc.zh-CN.vtt |
3.29Кб |
03. Apply Credits.html |
6.65Кб |
03. A Simple Autoencoder.html |
5.03Кб |
03. A-Simple-Autoencoders 21718-lXGdkCT8E1c.en.vtt |
12.95Кб |
03. A-Simple-Autoencoders 21718-lXGdkCT8E1c.mp4 |
15.66Мб |
03. Basics of LSTM.html |
5.67Кб |
03. Batch Normalization.html |
6.56Кб |
03. Building VGGNet-615SslQiGvo.en.vtt |
7.52Кб |
03. Building VGGNet-615SslQiGvo.mp4 |
8.87Мб |
03. Building VGGNet-615SslQiGvo.pt-BR.vtt |
6.26Кб |
03. Building VGGNet-615SslQiGvo.zh-CN.vtt |
6.26Кб |
03. Classification Problems 1.html |
9.61Кб |
03. Confusion Matrix 2.html |
5.76Кб |
03. Confusion-Matrix-Solution-ywwSzyU9rYs.en.vtt |
1.05Кб |
03. Confusion-Matrix-Solution-ywwSzyU9rYs.en-US.vtt |
1.10Кб |
03. Confusion-Matrix-Solution-ywwSzyU9rYs.mp4 |
1.10Мб |
03. Confusion-Matrix-Solution-ywwSzyU9rYs.pt-BR.vtt |
889б |
03. Confusion-Matrix-Solution-ywwSzyU9rYs.zh-CN.vtt |
956б |
03. Data in NumPy.html |
13.36Кб |
03. Data Preprocessing.html |
5.24Кб |
03. Data Preprocessing-h4-LwZU9_k8.en.vtt |
5.33Кб |
03. Data Preprocessing-h4-LwZU9_k8.mp4 |
6.86Мб |
03. Data Preprocessing-h4-LwZU9_k8.pt-BR.vtt |
4.56Кб |
03. Data Preprocessing-h4-LwZU9_k8.zh-CN.vtt |
4.45Кб |
03. DeepTraffic.html |
6.33Кб |
03. Discrete vs. Continuous Spaces.html |
6.12Кб |
03. Discrete vs. Continuous Spaces-uHstLeRzaE8.en.vtt |
6.54Кб |
03. Discrete vs. Continuous Spaces-uHstLeRzaE8.mp4 |
21.37Мб |
03. Discrete vs. Continuous Spaces-uHstLeRzaE8.pt-BR.vtt |
7.57Кб |
03. Discrete vs. Continuous Spaces-uHstLeRzaE8.zh-CN.vtt |
5.73Кб |
03. Episodic vs. Continuing Tasks.html |
6.63Кб |
03. Episodic vs. Continuing Tasks-E1I-BPanSM8.en.vtt |
2.82Кб |
03. Episodic vs. Continuing Tasks-E1I-BPanSM8.mp4 |
10.07Мб |
03. Episodic vs. Continuing Tasks-E1I-BPanSM8.pt-BR.vtt |
3.04Кб |
03. Episodic vs. Continuing Tasks-E1I-BPanSM8.zh-CN.vtt |
2.46Кб |
03. Exemplo de classificação-Dh625piH7Z0.en.vtt |
2.70Кб |
03. Exemplo de classificação-Dh625piH7Z0.mp4 |
2.07Мб |
03. Exemplo de classificação-Dh625piH7Z0.pt-BR.vtt |
2.51Кб |
03. Exemplo de classificação-Dh625piH7Z0.zh-CN.vtt |
2.37Кб |
03. Face Generation Workspace.html |
5.56Кб |
03. GPU Workspace Playground.html |
5.34Кб |
03. Gradient Descent-Math-7sxA5Ap8AWM.en.vtt |
10.81Кб |
03. Gradient Descent-Math-7sxA5Ap8AWM.mp4 |
11.25Мб |
03. Gradient Descent-Math-7sxA5Ap8AWM.pt-BR.vtt |
10.84Кб |
03. Gradient Descent-Math-7sxA5Ap8AWM.zh-CN.vtt |
9.46Кб |
03. Gradient Descent The Math.html |
5.93Кб |
03. Hello, Tensor World!.html |
8.95Кб |
03. How Computers Interpret Images.html |
9.02Кб |
03. How Computers Interpret Images-V4f6p6uRhu8.en.vtt |
5.52Кб |
03. How Computers Interpret Images-V4f6p6uRhu8.mp4 |
6.18Мб |
03. How Computers Interpret Images-V4f6p6uRhu8.pt-BR.vtt |
5.95Кб |
03. How Computers Interpret Images-V4f6p6uRhu8.zh-CN.vtt |
4.91Кб |
03. How GANs work.html |
6.82Кб |
03. Installing Jupyter Notebook.html |
5.80Кб |
03. Introducing Semi-Supervised Learning.html |
6.08Кб |
03. Introducing Semi-Supervised Learning-tnCClNy5z5c.en.vtt |
4.89Кб |
03. Introducing Semi-Supervised Learning-tnCClNy5z5c.mp4 |
5.88Мб |
03. Introducing Semi-Supervised Learning-tnCClNy5z5c.pt-BR.vtt |
4.57Кб |
03. Introducing Semi-Supervised Learning-tnCClNy5z5c.zh-CN.vtt |
4.61Кб |
03. Learning Plan.html |
8.64Кб |
03. Learning Rate.html |
6.12Кб |
03. Learning Rate-HLMjeDez7ps.en.vtt |
11.68Кб |
03. Learning Rate-HLMjeDez7ps.mp4 |
9.62Мб |
03. Learning Rate-HLMjeDez7ps.pt-BR.vtt |
10.29Кб |
03. Learning Rate-HLMjeDez7ps.zh-CN.vtt |
10.11Кб |
03. LSTM Basics-gjb68a4XsqE.en.vtt |
5.21Кб |
03. LSTM Basics-gjb68a4XsqE.mp4 |
4.03Мб |
03. LSTM Basics-gjb68a4XsqE.pt-BR.vtt |
5.06Кб |
03. LSTM Basics-gjb68a4XsqE.zh-CN.vtt |
4.59Кб |
03. M2L3 03 V2-TePX-0Bs23E.en.vtt |
5.99Кб |
03. M2L3 03 V2-TePX-0Bs23E.mp4 |
18.85Мб |
03. M2L3 03 V2-TePX-0Bs23E.zh-CN.vtt |
5.24Кб |
03. Materials.html |
9.20Кб |
03. MC Prediction State Values.html |
7.07Кб |
03. MC Prediction State Values-0q2wSWyuBj8.en.vtt |
8.51Кб |
03. MC Prediction State Values-0q2wSWyuBj8.mp4 |
33.39Мб |
03. MC Prediction State Values-0q2wSWyuBj8.pt-BR.vtt |
9.06Кб |
03. MC Prediction State Values-0q2wSWyuBj8.zh-CN.vtt |
7.20Кб |
03. MiniFlow Architecture.html |
10.25Кб |
03. Mini Project.html |
5.39Кб |
03. Monte Carlo Learning.html |
6.20Кб |
03. Monte Carlo Learning-qOviWYwcvsg.en.vtt |
2.84Кб |
03. Monte Carlo Learning-qOviWYwcvsg.mp4 |
10.41Мб |
03. Monte Carlo Learning-qOviWYwcvsg.pt-BR.vtt |
3.13Кб |
03. Monte Carlo Learning-qOviWYwcvsg.zh-CN.vtt |
2.50Кб |
03. Other Generative Models, How GANs Work-MF0QCP1OC9I.en.vtt |
7.42Кб |
03. Other Generative Models, How GANs Work-MF0QCP1OC9I.mp4 |
10.28Мб |
03. Other Generative Models, How GANs Work-MF0QCP1OC9I.pt-BR.vtt |
7.48Кб |
03. Other Generative Models, How GANs Work-MF0QCP1OC9I.zh-CN.vtt |
6.41Кб |
03. Policy Function Approximation.html |
5.31Кб |
03. Pre-Lab Student Admissions in Keras.html |
11.51Кб |
03. Quiz Interpret the Policy.html |
12.29Кб |
03. Replay Buffer.html |
6.54Кб |
03. RL M2L4 03 Two Function Approximators V1-37KQEgLaLfw.en.vtt |
1.68Кб |
03. RL M2L4 03 Two Function Approximators V1-37KQEgLaLfw.mp4 |
6.13Мб |
03. RL M2L4 03 Two Function Approximators V1-37KQEgLaLfw.pt-BR.vtt |
1.93Кб |
03. RL M2L4 03 Two Function Approximators V1-37KQEgLaLfw.zh-CN.vtt |
1.45Кб |
03. RNN History.html |
10.63Кб |
03. Sequence Batching.html |
5.89Кб |
03. Sequence-Batching-Z4OiyU0Cldg.en.vtt |
2.09Кб |
03. Sequence-Batching-Z4OiyU0Cldg.mp4 |
2.29Мб |
03. Sequence-Batching-Z4OiyU0Cldg.pt-BR.vtt |
2.33Кб |
03. Sequence-Batching-Z4OiyU0Cldg.zh-CN.vtt |
1.92Кб |
03. Solution Convolutional Layers.html |
6.74Кб |
03. Solution Housing Prices.html |
7.11Кб |
03. Solution Housing Prices-uhdTulw9-Nc.en.vtt |
939б |
03. Solution Housing Prices-uhdTulw9-Nc.mp4 |
1001.40Кб |
03. Solution Housing Prices-uhdTulw9-Nc.pt-BR.vtt |
1.00Кб |
03. Subsampling Solution.html |
5.51Кб |
03. Subsampling Solution-MAUM_mV_lj8.en.vtt |
5.99Кб |
03. Subsampling Solution-MAUM_mV_lj8.mp4 |
9.65Мб |
03. Subsampling Solution-MAUM_mV_lj8.pt-BR.vtt |
6.27Кб |
03. Subsampling Solution-MAUM_mV_lj8.zh-CN.vtt |
5.04Кб |
03. Survival Probability of Skin Cancer.html |
7.83Кб |
03. Survival Rate-QPlp3NeGuSk.en.vtt |
1.19Кб |
03. Survival Rate-QPlp3NeGuSk.mp4 |
1.52Мб |
03. Survival Rate-QPlp3NeGuSk.pt-BR.vtt |
1.08Кб |
03. Survival Rate-QPlp3NeGuSk.zh-CN.vtt |
996б |
03. TD Prediction TD(0).html |
6.24Кб |
03. TD Prediction TD(0)-CsD6b0csU7o.en.vtt |
8.83Кб |
03. TD Prediction TD(0)-CsD6b0csU7o.mp4 |
30.11Мб |
03. TD Prediction TD(0)-CsD6b0csU7o.zh-CN.vtt |
7.32Кб |
03. Testing.html |
6.09Кб |
03. Testing-EeBZpb-PSac.en.vtt |
2.41Кб |
03. Testing-EeBZpb-PSac.mp4 |
2.00Мб |
03. Testing-EeBZpb-PSac.pt-BR.vtt |
2.37Кб |
03. Testing-EeBZpb-PSac.zh-CN.vtt |
1.99Кб |
03. The Setting.html |
5.06Кб |
03. The Setting-nh8Gwdu19nc.en.vtt |
7.06Кб |
03. The Setting-nh8Gwdu19nc.mp4 |
7.75Мб |
03. The Setting-nh8Gwdu19nc.pt-BR.vtt |
7.31Кб |
03. The Setting-nh8Gwdu19nc.zh-CN.vtt |
6.05Кб |
03. Traffic Navigation with Deep Reinforcement Learning-az5ElmV4DhY.en.vtt |
7.35Кб |
03. Traffic Navigation with Deep Reinforcement Learning-az5ElmV4DhY.en-US.vtt |
7.75Кб |
03. Traffic Navigation with Deep Reinforcement Learning-az5ElmV4DhY.mp4 |
38.12Мб |
03. Traffic Navigation with Deep Reinforcement Learning-az5ElmV4DhY.pt-BR.vtt |
7.59Кб |
03. Traffic Navigation with Deep Reinforcement Learning-az5ElmV4DhY.zh-CN.vtt |
7.39Кб |
03. Two Function Approximators.html |
5.44Кб |
03. Uniform Distribution.html |
5.21Кб |
03. VGGNet.html |
5.53Кб |
03. Weight Initialization 2-BI3f0Cdc_nU.en.vtt |
9.47Кб |
03. Weight Initialization 2-BI3f0Cdc_nU.mp4 |
11.10Мб |
03. Weight Initialization 2-BI3f0Cdc_nU.pt-BR.vtt |
8.37Кб |
03. Weight Initialization 2-BI3f0Cdc_nU.zh-CN.vtt |
7.97Кб |
03. What is Anaconda.html |
10.71Кб |
03. Your Workspace.html |
9.92Кб |
04. 03 RNN Applications V3 Final-6JbTNARuKII.en.vtt |
2.71Кб |
04. 03 RNN Applications V3 Final-6JbTNARuKII.mp4 |
17.27Мб |
04. 03 RNN Applications V3 Final-6JbTNARuKII.pt-BR.vtt |
3.02Кб |
04. 03 RNN Applications V3 Final-6JbTNARuKII.zh-CN.vtt |
2.56Кб |
04. Accuracy.html |
6.68Кб |
04. Accuracy-s6SfhPTNOHA.en.vtt |
1.72Кб |
04. Accuracy-s6SfhPTNOHA.en-US.vtt |
2.08Кб |
04. Accuracy-s6SfhPTNOHA.mp4 |
2.34Мб |
04. Accuracy-s6SfhPTNOHA.pt-BR.vtt |
1.87Кб |
04. Accuracy-s6SfhPTNOHA.zh-CN.vtt |
1.63Кб |
04. Another Gridworld Example.html |
7.91Кб |
04. Another Gridworld Example-n9SbomnLb-U.en.vtt |
2.04Кб |
04. Another Gridworld Example-n9SbomnLb-U.mp4 |
4.69Мб |
04. Another Gridworld Example-n9SbomnLb-U.pt-BR.vtt |
2.16Кб |
04. Another Gridworld Example-n9SbomnLb-U.zh-CN.vtt |
1.65Кб |
04. Architecture of LSTM.html |
5.71Кб |
04. Character-wise RNN Notebook.html |
6.20Кб |
04. Classification Problems 2.html |
8.40Кб |
04. Creating Testing Sets.html |
5.58Кб |
04. Creating Testing Sets-BRBbrNLz1ho.en.vtt |
2.02Кб |
04. Creating Testing Sets-BRBbrNLz1ho.mp4 |
2.13Мб |
04. Creating Testing Sets-BRBbrNLz1ho.pt-BR.vtt |
1.74Кб |
04. Creating Testing Sets-BRBbrNLz1ho.zh-CN.vtt |
1.68Кб |
04. Data Prep.html |
5.90Кб |
04. Data Prep-P5hOx09mwaM.en.vtt |
5.35Кб |
04. Data Prep-P5hOx09mwaM.mp4 |
6.15Мб |
04. Data Prep-P5hOx09mwaM.pt-BR.vtt |
4.58Кб |
04. Data Prep-P5hOx09mwaM.zh-CN.vtt |
4.75Кб |
04. DCGAN Implementation.html |
6.19Кб |
04. DDPG Actor.html |
9.78Кб |
04. Element-wise Matrix Operations.html |
5.84Кб |
04. Element-wise Matrix Operations-vjUykZyzko4.en.vtt |
4.24Кб |
04. Element-wise Matrix Operations-vjUykZyzko4.mp4 |
4.03Мб |
04. Element-wise Matrix Operations-vjUykZyzko4.pt-BR.vtt |
4.32Кб |
04. Element-wise Matrix Operations-vjUykZyzko4.zh-CN.vtt |
3.97Кб |
04. Fitting A Line-gkdoknEEcaI.en.vtt |
1.41Кб |
04. Fitting A Line-gkdoknEEcaI.mp4 |
1.12Мб |
04. Fitting A Line-gkdoknEEcaI.pt-BR.vtt |
1.42Кб |
04. Fitting a Line Through Data.html |
7.08Кб |
04. Flappy Bird.html |
7.07Кб |
04. Forward Propagation.html |
14.99Кб |
04. Games, Equilibrium, GANs Solution Render-2zi8DOWIVas.en.vtt |
10.72Кб |
04. Games, Equilibrium, GANs Solution Render-2zi8DOWIVas.mp4 |
13.40Мб |
04. Games, Equilibrium, GANs Solution Render-2zi8DOWIVas.pt-BR.vtt |
11.23Кб |
04. Games, Equilibrium, GANs Solution Render-2zi8DOWIVas.zh-CN.vtt |
9.47Кб |
04. Games and Equilibria.html |
6.57Кб |
04. Get Access to GPU Instances.html |
8.57Кб |
04. Gradient Descent The Code.html |
14.99Кб |
04. Gridworld Example.html |
5.88Кб |
04. Gridworld Example-XeHBmPFqTsE.en.vtt |
2.56Кб |
04. Gridworld Example-XeHBmPFqTsE.mp4 |
2.38Мб |
04. Gridworld Example-XeHBmPFqTsE.pt-BR.vtt |
2.82Кб |
04. Gridworld Example-XeHBmPFqTsE.zh-CN.vtt |
2.06Кб |
04. Implementation.html |
9.45Кб |
04. Implementation.html |
8.08Кб |
04. Installing Anaconda.html |
7.65Кб |
04. Lab Student Admissions in Keras.html |
5.84Кб |
04. Launching the notebook server.html |
10.69Кб |
04. Learning Rate.html |
7.63Кб |
04. LSTM Architecture-ycwthhdx8ws.en.vtt |
1.49Кб |
04. LSTM Architecture-ycwthhdx8ws.mp4 |
1.07Мб |
04. LSTM Architecture-ycwthhdx8ws.pt-BR.vtt |
1.46Кб |
04. LSTM Architecture-ycwthhdx8ws.zh-CN.vtt |
1.34Кб |
04. M2L3 04 V1-QicxmyE5vTo.en.vtt |
5.35Кб |
04. M2L3 04 V1-QicxmyE5vTo.mp4 |
21.03Мб |
04. M2L3 04 V1-QicxmyE5vTo.zh-CN.vtt |
4.62Кб |
04. Making Batches.html |
5.47Кб |
04. Making Batches-jx7qwdw-94k.en.vtt |
4.50Кб |
04. Making Batches-jx7qwdw-94k.mp4 |
7.73Мб |
04. Making Batches-jx7qwdw-94k.pt-BR.vtt |
4.51Кб |
04. Making Batches-jx7qwdw-94k.zh-CN.vtt |
3.77Кб |
04. Max Pooling Layers.html |
7.80Кб |
04. Medical Classification.html |
7.85Кб |
04. Medical Classification-RCOSP60dV7U.en.vtt |
1.37Кб |
04. Medical Classification-RCOSP60dV7U.mp4 |
2.20Мб |
04. Medical Classification-RCOSP60dV7U.pt-BR.vtt |
1.18Кб |
04. Medical Classification-RCOSP60dV7U.zh-CN.vtt |
1.17Кб |
04. MLPs for Image Classification.html |
8.29Кб |
04. MLPs For Image Classification-TIFStebu530.en.vtt |
3.82Кб |
04. MLPs For Image Classification-TIFStebu530.mp4 |
4.40Мб |
04. MLPs For Image Classification-TIFStebu530.pt-BR.vtt |
4.06Кб |
04. MLPs For Image Classification-TIFStebu530.zh-CN.vtt |
3.42Кб |
04. OpenAI Gym.html |
6.98Кб |
04. OpenAI Gym-MktEOWp3QLg.en.vtt |
2.21Кб |
04. OpenAI Gym-MktEOWp3QLg.mp4 |
9.47Мб |
04. OpenAI Gym-MktEOWp3QLg.pt-BR.vtt |
2.48Кб |
04. OpenAI Gym-MktEOWp3QLg.zh-CN.vtt |
2.01Кб |
04. Overfitting and Underfitting.html |
6.24Кб |
04. Pretrained VGGNet-BpzI6Svmuv8.en.vtt |
2.04Кб |
04. Pretrained VGGNet-BpzI6Svmuv8.mp4 |
3.16Мб |
04. Pretrained VGGNet-BpzI6Svmuv8.pt-BR.vtt |
1.74Кб |
04. Pretrained VGGNet-BpzI6Svmuv8.zh-CN.vtt |
1.71Кб |
04. Program Structure.html |
12.80Кб |
04. Quiz Space Representations.html |
7.29Кб |
04. Quiz TensorFlow Linear Function.html |
31.43Кб |
04. Quiz Test Your Intuition.html |
12.64Кб |
04. RL M2L4 04 The Actor And The Critic V1-bvbE9F7urd4.en.vtt |
2.72Кб |
04. RL M2L4 04 The Actor And The Critic V1-bvbE9F7urd4.mp4 |
10.01Мб |
04. RL M2L4 04 The Actor And The Critic V1-bvbE9F7urd4.pt-BR.vtt |
3.03Кб |
04. RL M2L4 04 The Actor And The Critic V1-bvbE9F7urd4.zh-CN.vtt |
2.41Кб |
04. RNN Applications.html |
8.86Кб |
04. Simple Autoencoder Solution.html |
5.31Кб |
04. Simple Autoencoder Solution-Nv_D6DHfEk8.en.vtt |
7.04Кб |
04. Simple Autoencoder Solution-Nv_D6DHfEk8.mp4 |
8.59Мб |
04. Simple Autoencoder Solution-Nv_D6DHfEk8.pt-BR.vtt |
6.43Кб |
04. Simple Autoencoder Solution-Nv_D6DHfEk8.zh-CN.vtt |
5.88Кб |
04. Stochastic Policy Search.html |
5.30Кб |
04. Temporal Difference Learning.html |
5.99Кб |
04. Temporal Difference Learning-lpmDi0QeUm8.en.vtt |
4.12Кб |
04. Temporal Difference Learning-lpmDi0QeUm8.mp4 |
16.98Мб |
04. Temporal Difference Learning-lpmDi0QeUm8.pt-BR.vtt |
4.47Кб |
04. Temporal Difference Learning-lpmDi0QeUm8.zh-CN.vtt |
3.60Кб |
04. The Actor and The Critic.html |
5.43Кб |
04. The Notebooks.html |
7.39Кб |
04. Too Small.html |
5.19Кб |
04. Underfitting And Overfitting-xj4PlXMsN-Y.en.vtt |
7.49Кб |
04. Underfitting And Overfitting-xj4PlXMsN-Y.mp4 |
6.42Мб |
04. Underfitting And Overfitting-xj4PlXMsN-Y.pt-BR.vtt |
8.15Кб |
04. Underfitting And Overfitting-xj4PlXMsN-Y.zh-CN.vtt |
6.54Кб |
04. VGGNet Solution.html |
5.56Кб |
04. Weight Initialization 3-JIQl0jMpdsI.en.vtt |
4.24Кб |
04. Weight Initialization 3-JIQl0jMpdsI.mp4 |
5.43Мб |
04. Weight Initialization 3-JIQl0jMpdsI.pt-BR.vtt |
3.66Кб |
04. Weight Initialization 3-JIQl0jMpdsI.zh-CN.vtt |
3.57Кб |
04. 分类问题 2 -46PywnGa_cQ.en.vtt |
1.76Кб |
04. 分类问题 2 -46PywnGa_cQ.mp4 |
1.62Мб |
04. 分类问题 2 -46PywnGa_cQ.pt-BR.vtt |
1.60Кб |
04. 分类问题 2 -46PywnGa_cQ.zh-CN.vtt |
1.65Кб |
05. 04 RNN FFNN Reminder A V7 Final-_vrp2lZjXf0.en.vtt |
5.62Кб |
05. 04 RNN FFNN Reminder A V7 Final-_vrp2lZjXf0.mp4 |
25.79Мб |
05. 04 RNN FFNN Reminder A V7 Final-_vrp2lZjXf0.pt-BR.vtt |
6.07Кб |
05. 04 RNN FFNN Reminder A V7 Final-_vrp2lZjXf0.zh-CN.vtt |
4.96Кб |
05. 05 RNN FFNN Reminder B V6 Final-FfPjaGcZODc.en.vtt |
4.53Кб |
05. 05 RNN FFNN Reminder B V6 Final-FfPjaGcZODc.mp4 |
19.68Мб |
05. 05 RNN FFNN Reminder B V6 Final-FfPjaGcZODc.pt-BR.vtt |
4.65Кб |
05. 05 RNN FFNN Reminder B V6 Final-FfPjaGcZODc.zh-CN.vtt |
4.03Кб |
05. Accuracy 2.html |
5.76Кб |
05. Accuracy 2-ueYCLfd_aNQ.en.vtt |
688б |
05. Accuracy 2-ueYCLfd_aNQ.en-US.vtt |
720б |
05. Accuracy 2-ueYCLfd_aNQ.mp4 |
573.82Кб |
05. Accuracy 2-ueYCLfd_aNQ.pt.vtt |
656б |
05. Accuracy 2-ueYCLfd_aNQ.pt-BR.vtt |
618б |
05. Accuracy 2-ueYCLfd_aNQ.zh-CN.vtt |
528б |
05. Advantage Function.html |
5.44Кб |
05. An Iterative Method, Part 1.html |
7.40Кб |
05. An Iterative Method-AX-hG3KvwzY.en.vtt |
7.50Кб |
05. An Iterative Method-AX-hG3KvwzY.mp4 |
27.57Мб |
05. An Iterative Method-AX-hG3KvwzY.pt-BR.vtt |
8.24Кб |
05. An Iterative Method-AX-hG3KvwzY.zh-CN.vtt |
6.27Кб |
05. Batches Solution.html |
5.48Кб |
05. Batches Solution-DdfR0RjSC-Q.en.vtt |
2.64Кб |
05. Batches Solution-DdfR0RjSC-Q.mp4 |
3.88Мб |
05. Batches Solution-DdfR0RjSC-Q.pt-BR.vtt |
2.50Кб |
05. Batches Solution-DdfR0RjSC-Q.zh-CN.vtt |
2.40Кб |
05. Books to Read.html |
5.90Кб |
05. Building The Generator And Discriminator.html |
6.11Кб |
05. Building The Generator And Discriminator-OWytckbbeGQ.en.vtt |
15.17Кб |
05. Building The Generator And Discriminator-OWytckbbeGQ.mp4 |
17.97Мб |
05. Building The Generator And Discriminator-OWytckbbeGQ.pt-BR.vtt |
14.51Кб |
05. Building The Generator And Discriminator-OWytckbbeGQ.zh-CN.vtt |
13.74Кб |
05. Building the RNN.html |
5.43Кб |
05. Building The RNN 1-XTD6slf64fM.en.vtt |
13.87Кб |
05. Building The RNN 1-XTD6slf64fM.mp4 |
19.11Мб |
05. Building The RNN 1-XTD6slf64fM.pt-BR.vtt |
12.30Кб |
05. Building The RNN 1-XTD6slf64fM.zh-CN.vtt |
12.07Кб |
05. Categorical Cross-Entropy.html |
9.11Кб |
05. Categorical Cross-Entropy-3sDYifgjFck.en.vtt |
4.82Кб |
05. Categorical Cross-Entropy-3sDYifgjFck.mp4 |
5.42Мб |
05. Categorical Cross-Entropy-3sDYifgjFck.pt-BR.vtt |
5.13Кб |
05. Categorical Cross-Entropy-3sDYifgjFck.zh-CN.vtt |
4.24Кб |
05. Convolutional Autoencoders.html |
5.30Кб |
05. Convolutional Autoencoders-18SZVRaumGs.en.vtt |
14.17Кб |
05. Convolutional Autoencoders-18SZVRaumGs.mp4 |
21.51Мб |
05. Convolutional Autoencoders-18SZVRaumGs.pt-BR.vtt |
13.87Кб |
05. Convolutional Autoencoders-18SZVRaumGs.zh-CN.vtt |
12.04Кб |
05. Data Preparation.html |
5.55Кб |
05. Data Preparation-WfsDMq-b3y4.en.vtt |
7.04Кб |
05. Data Preparation-WfsDMq-b3y4.mp4 |
9.23Мб |
05. Data Preparation-WfsDMq-b3y4.pt-BR.vtt |
6.15Кб |
05. Data Preparation-WfsDMq-b3y4.zh-CN.vtt |
6.34Кб |
05. DCGAN and the Generator.html |
5.68Кб |
05. DCGAN And The Generator-CH6BxLTKt7s.en.vtt |
11.03Кб |
05. DCGAN And The Generator-CH6BxLTKt7s.mp4 |
16.03Мб |
05. DCGAN And The Generator-CH6BxLTKt7s.pt-BR.vtt |
9.09Кб |
05. DCGAN And The Generator-CH6BxLTKt7s.zh-CN.vtt |
9.62Кб |
05. DDPG Critic.html |
9.15Кб |
05. Discretization.html |
6.01Кб |
05. Discretization-j2eZyUpy--E.en.vtt |
4.58Кб |
05. Discretization-j2eZyUpy--E.mp4 |
12.55Мб |
05. Discretization-j2eZyUpy--E.pt-BR.vtt |
5.13Кб |
05. Discretization-j2eZyUpy--E.zh-CN.vtt |
4.06Кб |
05. Early Stopping.html |
6.18Кб |
05. Element-wise Operations in NumPy.html |
9.17Кб |
05. Feedforward Neural Network-Reminder.html |
11.01Кб |
05. Forward Propagation Solution.html |
13.17Кб |
05. Framing the Problem.html |
7.00Кб |
05. Framing the Problem-IsTOnkAKaJw.en.vtt |
8.81Кб |
05. Framing the Problem-IsTOnkAKaJw.mp4 |
17.65Мб |
05. Framing the Problem-IsTOnkAKaJw.pt-BR.vtt |
7.85Кб |
05. Framing the Problem-IsTOnkAKaJw.zh-CN.vtt |
8.31Кб |
05. GANs Architecture -gaEs7ccZv_Q.en.vtt |
11.75Кб |
05. GANs Architecture -gaEs7ccZv_Q.mp4 |
15.96Мб |
05. GANs Architecture -gaEs7ccZv_Q.pt-BR.vtt |
12.52Кб |
05. GANs Architecture -gaEs7ccZv_Q.zh-CN.vtt |
10.22Кб |
05. Implementing a Character-wise RNN.html |
6.00Кб |
05. Implementing a Character-wise RNN-KPCMn_jg2oY.en.vtt |
9.94Кб |
05. Implementing a Character-wise RNN-KPCMn_jg2oY.mp4 |
13.63Мб |
05. Implementing a Character-wise RNN-KPCMn_jg2oY.pt-BR.vtt |
10.69Кб |
05. Implementing a Character-wise RNN-KPCMn_jg2oY.zh-CN.vtt |
8.71Кб |
05. Implementing Gradient Descent.html |
40.19Кб |
05. Launch an Instance.html |
12.53Кб |
05. Learn Gate-aVHVI7ovbHY.en.vtt |
2.63Кб |
05. Learn Gate-aVHVI7ovbHY.mp4 |
2.22Мб |
05. Learn Gate-aVHVI7ovbHY.pt-BR.vtt |
2.66Кб |
05. Learn Gate-aVHVI7ovbHY.zh-CN.vtt |
2.51Кб |
05. Linear Boundaries.html |
9.13Кб |
05. Linear Boundaries-X-uMlsBi07k.en.vtt |
3.85Кб |
05. Linear Boundaries-X-uMlsBi07k.mp4 |
3.85Мб |
05. Linear Boundaries-X-uMlsBi07k.pt-BR.vtt |
3.67Кб |
05. Linear Boundaries-X-uMlsBi07k.zh-CN.vtt |
3.36Кб |
05. M2L3 05 V1-eZxxNNIZuwA.en.vtt |
7.33Кб |
05. M2L3 05 V1-eZxxNNIZuwA.mp4 |
16.64Мб |
05. M2L3 05 V1-eZxxNNIZuwA.zh-CN.vtt |
6.27Кб |
05. Managing packages.html |
8.50Кб |
05. Minibatch Size.html |
5.84Кб |
05. Minibatch Size-GrrO1NFxaW8.en.vtt |
5.36Кб |
05. Minibatch Size-GrrO1NFxaW8.mp4 |
4.78Мб |
05. Minibatch Size-GrrO1NFxaW8.pt-BR.vtt |
4.77Кб |
05. Minibatch Size-GrrO1NFxaW8.zh-CN.vtt |
4.77Кб |
05. Mini Project MC (Parts 0 and 1).html |
7.44Кб |
05. Mini Project TD (Parts 0 and 1).html |
6.78Кб |
05. Model Complexity Graph-NnS0FJyVcDQ.en.vtt |
5.32Кб |
05. Model Complexity Graph-NnS0FJyVcDQ.mp4 |
4.90Мб |
05. Model Complexity Graph-NnS0FJyVcDQ.pt-BR.vtt |
5.52Кб |
05. Model Complexity Graph-NnS0FJyVcDQ.zh-CN.vtt |
4.65Кб |
05. Moving a Line.html |
7.05Кб |
05. Moving A Line-8EIHFyL2Log.en.vtt |
1.16Кб |
05. Moving A Line-8EIHFyL2Log.mp4 |
981.31Кб |
05. Moving A Line-8EIHFyL2Log.pt-BR.vtt |
1.05Кб |
05. Normal Distribution.html |
5.21Кб |
05. Notebook interface.html |
9.41Кб |
05. Optimizers in Keras.html |
6.17Кб |
05. Policy Gradients.html |
5.28Кб |
05. Practical tips and tricks for training GANs.html |
6.51Кб |
05. Projects You Will Build.html |
6.05Кб |
05. Projects You will Build-PqpdX7YxTlU.en.vtt |
2.44Кб |
05. Projects You will Build-PqpdX7YxTlU.mp4 |
11.05Мб |
05. Projects You will Build-PqpdX7YxTlU.pt-BR.vtt |
2.81Кб |
05. Projects You will Build-PqpdX7YxTlU.zh-CN.vtt |
2.23Кб |
05. Q-Learning.html |
6.16Кб |
05. Q-Learning-AI5gLgYMSq8.en.vtt |
5.27Кб |
05. Q-Learning-AI5gLgYMSq8.mp4 |
17.31Мб |
05. Q-Learning-AI5gLgYMSq8.pt-BR.vtt |
5.81Кб |
05. Q-Learning-AI5gLgYMSq8.zh-CN.vtt |
4.65Кб |
05. Quiz Episodic or Continuing.html |
9.04Кб |
05. Quiz Max Pooling Layers.html |
7.42Кб |
05. Quiz TensorFlow Softmax.html |
11.46Кб |
05. Resources-_YPqfAnCqtk.en.vtt |
2.07Кб |
05. Resources-_YPqfAnCqtk.mp4 |
6.97Мб |
05. Resources-_YPqfAnCqtk.pt-BR.vtt |
2.39Кб |
05. Resources-_YPqfAnCqtk.zh-CN.vtt |
1.83Кб |
05. Resources.html |
6.14Кб |
05. RL M2L4 05 Advantage Function RENDER V1 V2-vpLmzKqcgfc.en.vtt |
3.90Кб |
05. RL M2L4 05 Advantage Function RENDER V1 V2-vpLmzKqcgfc.mp4 |
10.72Мб |
05. RL M2L4 05 Advantage Function RENDER V1 V2-vpLmzKqcgfc.pt-BR.vtt |
4.27Кб |
05. RL M2L4 05 Advantage Function RENDER V1 V2-vpLmzKqcgfc.zh-CN.vtt |
3.30Кб |
05. State-Value Functions.html |
7.18Кб |
05. State-Value Functions-llakAjwox_8.en.vtt |
4.67Кб |
05. State-Value Functions-llakAjwox_8.mp4 |
5.28Мб |
05. State-Value Functions-llakAjwox_8.pt-BR.vtt |
5.25Кб |
05. State-Value Functions-llakAjwox_8.zh-CN.vtt |
3.86Кб |
05. The data.html |
7.75Кб |
05. The Data-2RLbbV7MQNA.en.vtt |
1.97Кб |
05. The Data-2RLbbV7MQNA.mp4 |
2.85Мб |
05. The Data-2RLbbV7MQNA.pt-BR.vtt |
1.71Кб |
05. The Data-2RLbbV7MQNA.zh-CN.vtt |
1.64Кб |
05. The Learn Gate.html |
6.26Кб |
05. Weight Initialization 4-FM6t7AsodGQ.en.vtt |
8.32Кб |
05. Weight Initialization 4-FM6t7AsodGQ.mp4 |
9.56Мб |
05. Weight Initialization 4-FM6t7AsodGQ.pt-BR.vtt |
7.27Кб |
05. Weight Initialization 4-FM6t7AsodGQ.zh-CN.vtt |
6.79Кб |
06. 06 FeedForward A V7 Final-4rCfnWbx8-0.en.vtt |
5.16Кб |
06. 06 FeedForward A V7 Final-4rCfnWbx8-0.mp4 |
17.74Мб |
06. 06 FeedForward A V7 Final-4rCfnWbx8-0.pt-BR.vtt |
5.69Кб |
06. 06 FeedForward A V7 Final-4rCfnWbx8-0.zh-CN.vtt |
4.52Кб |
06. 06 Image Challenge V3-Efnoj1KNPHw.en.vtt |
1.07Кб |
06. 06 Image Challenge V3-Efnoj1KNPHw.mp4 |
1.46Мб |
06. 06 Image Challenge V3-Efnoj1KNPHw.pt-BR.vtt |
937б |
06. 06 Image Challenge V3-Efnoj1KNPHw.zh-CN.vtt |
920б |
06. 07 FeedForward B V3-kTYbTVh1d0k.en.vtt |
7.55Кб |
06. 07 FeedForward B V3-kTYbTVh1d0k.mp4 |
26.65Мб |
06. 07 FeedForward B V3-kTYbTVh1d0k.pt-BR.vtt |
7.86Кб |
06. 07 FeedForward B V3-kTYbTVh1d0k.zh-CN.vtt |
6.70Кб |
06. 09 Higher Dimensions-eBHunImDmWw.en.vtt |
2.95Кб |
06. 09 Higher Dimensions-eBHunImDmWw.mp4 |
2.59Мб |
06. 09 Higher Dimensions-eBHunImDmWw.pt-BR.vtt |
2.66Кб |
06. 09 Higher Dimensions-eBHunImDmWw.zh-CN.vtt |
2.38Кб |
06. Absolute Trick.html |
7.05Кб |
06. Absolute Trick-DJWjBAqSkZw.en.vtt |
6.58Кб |
06. Absolute Trick-DJWjBAqSkZw.mp4 |
5.17Мб |
06. Absolute Trick-DJWjBAqSkZw.pt-BR.vtt |
6.41Кб |
06. Actor-Critic with Advantage.html |
5.50Кб |
06. Additional Material.html |
5.44Кб |
06. An Iterative Method, Part 2.html |
13.32Кб |
06. Batching Data Solution.html |
5.93Кб |
06. Batching Data Solution-o3nBxHJLQcc.en.vtt |
4.31Кб |
06. Batching Data Solution-o3nBxHJLQcc.mp4 |
5.08Мб |
06. Batching Data Solution-o3nBxHJLQcc.pt-BR.vtt |
4.33Кб |
06. Batching Data Solution-o3nBxHJLQcc.zh-CN.vtt |
3.70Кб |
06. Bellman Equations.html |
10.49Кб |
06. Bellman Equations-UgIaDMvSdUo.en.vtt |
3.78Кб |
06. Bellman Equations-UgIaDMvSdUo.mp4 |
4.14Мб |
06. Bellman Equations-UgIaDMvSdUo.pt-BR.vtt |
3.86Кб |
06. Bellman Equations-UgIaDMvSdUo.zh-CN.vtt |
2.99Кб |
06. Build a GAN.html |
7.21Кб |
06. Building the Network.html |
5.51Кб |
06. Building The Network-fhSb5c6UX6M.en.vtt |
5.14Кб |
06. Building The Network-fhSb5c6UX6M.mp4 |
8.09Мб |
06. Building The Network-fhSb5c6UX6M.pt-BR.vtt |
4.88Кб |
06. Building The Network-fhSb5c6UX6M.zh-CN.vtt |
4.12Кб |
06. Code cells.html |
6.07Кб |
06. Convolutional Autoencoder Solutions-w3iPs6YnqmY.en.vtt |
8.10Кб |
06. Convolutional Autoencoder Solutions-w3iPs6YnqmY.mp4 |
12.68Мб |
06. Convolutional Autoencoder Solutions-w3iPs6YnqmY.pt-BR.vtt |
7.78Кб |
06. Convolutional Autoencoder Solutions-w3iPs6YnqmY.zh-CN.vtt |
7.00Кб |
06. Convolutional Autoencoders Solution.html |
5.36Кб |
06. Data Preparation Solution.html |
5.57Кб |
06. Data Preparation-WEtKkHlhhZA.en.vtt |
3.52Кб |
06. Data Preparation-WEtKkHlhhZA.mp4 |
4.40Мб |
06. Data Preparation-WEtKkHlhhZA.pt-BR.vtt |
3.01Кб |
06. Data Preparation-WEtKkHlhhZA.zh-CN.vtt |
3.30Кб |
06. DDPG Agent.html |
10.55Кб |
06. Deadline Policy.html |
10.59Кб |
06. Deep Q Network.html |
6.21Кб |
06. Deep Q Network-GgtR_d1OB-M.en.vtt |
5.85Кб |
06. Deep Q Network-GgtR_d1OB-M.mp4 |
25.67Мб |
06. Deep Q Network-GgtR_d1OB-M.pt-BR.vtt |
6.34Кб |
06. Deep Q Network-GgtR_d1OB-M.zh-CN.vtt |
5.25Кб |
06. DL 53 Q Regularization-KxROxcRsHL8.en.vtt |
1.15Кб |
06. DL 53 Q Regularization-KxROxcRsHL8.mp4 |
1.01Мб |
06. DL 53 Q Regularization-KxROxcRsHL8.pt-BR.vtt |
1.16Кб |
06. DL 53 Q Regularization-KxROxcRsHL8.zh-CN.vtt |
1.02Кб |
06. Exercise Discretization.html |
6.33Кб |
06. Forget Gate-iWxpfxLUPSU.en.vtt |
1.26Кб |
06. Forget Gate-iWxpfxLUPSU.mp4 |
1.04Мб |
06. Forget Gate-iWxpfxLUPSU.pt-BR.vtt |
1.33Кб |
06. Forget Gate-iWxpfxLUPSU.zh-CN.vtt |
1.12Кб |
06. Generator Solution.html |
5.65Кб |
06. Generator Solution-jyPwUEZg05Q.en.vtt |
3.79Кб |
06. Generator Solution-jyPwUEZg05Q.mp4 |
7.26Мб |
06. Generator Solution-jyPwUEZg05Q.pt-BR.vtt |
3.15Кб |
06. Generator Solution-jyPwUEZg05Q.zh-CN.vtt |
3.30Кб |
06. Higher Dimensions.html |
9.60Кб |
06. Image Challenges.html |
8.34Кб |
06. Keras Lab-a50un22BsLI.en.vtt |
586б |
06. Keras Lab-a50un22BsLI.mp4 |
2.19Мб |
06. Keras Lab-a50un22BsLI.pt-BR.vtt |
574б |
06. Keras Lab-a50un22BsLI.zh-CN.vtt |
540б |
06. Learning and Loss.html |
13.29Кб |
06. Login to the Instance.html |
9.54Кб |
06. M2L3 06 V1-RMjdQkl6CqE.en.vtt |
910б |
06. M2L3 06 V1-RMjdQkl6CqE.mp4 |
3.01Мб |
06. M2L3 06 V1-RMjdQkl6CqE.zh-CN.vtt |
804б |
06. Managing environments.html |
8.77Кб |
06. Matrix Multiplication Part 1.html |
6.06Кб |
06. Matrix Multiplication Part 1-JRoCFQRP4B0.en.vtt |
7.95Кб |
06. Matrix Multiplication Part 1-JRoCFQRP4B0.mp4 |
5.89Мб |
06. Matrix Multiplication Part 1-JRoCFQRP4B0.pt-BR.vtt |
7.91Кб |
06. Matrix Multiplication Part 1-JRoCFQRP4B0.zh-CN.vtt |
7.72Кб |
06. MC Prediction Action Values.html |
7.07Кб |
06. MC Prediction Action Values-08tLtbh0xLs.en.vtt |
6.07Кб |
06. MC Prediction Action Values-08tLtbh0xLs.mp4 |
22.01Мб |
06. MC Prediction Action Values-08tLtbh0xLs.pt-BR.vtt |
7.03Кб |
06. MC Prediction Action Values-08tLtbh0xLs.zh-CN.vtt |
5.17Кб |
06. Mini Project 1.html |
7.57Кб |
06. Mini Project Intro.html |
5.36Кб |
06. Model Loss Exercise.html |
5.97Кб |
06. Model Loss Exercise-W7TawMNxBds.en.vtt |
12.52Кб |
06. Model Loss Exercise-W7TawMNxBds.mp4 |
15.85Мб |
06. Model Loss Exercise-W7TawMNxBds.pt-BR.vtt |
19.80Кб |
06. Model Loss Exercise-W7TawMNxBds.zh-CN.vtt |
10.70Кб |
06. Model Validation in Keras.html |
8.29Кб |
06. Model Validation in Keras-002jNXSM6CU.en.vtt |
5.51Кб |
06. Model Validation in Keras-002jNXSM6CU.mp4 |
5.20Мб |
06. Model Validation in Keras-002jNXSM6CU.pt-BR.vtt |
6.07Кб |
06. Model Validation in Keras-002jNXSM6CU.zh-CN.vtt |
4.74Кб |
06. Monte Carlo Policy Gradients.html |
5.31Кб |
06. Multilayer Perceptrons.html |
20.99Кб |
06. Multilayer perceptrons-Rs9petvTBLk.en-US.vtt |
1.65Кб |
06. Multilayer perceptrons-Rs9petvTBLk.mp4 |
2.85Мб |
06. Multilayer perceptrons-Rs9petvTBLk.pt-BR.vtt |
1.71Кб |
06. Multilayer perceptrons-Rs9petvTBLk.zh-CN.vtt |
1.39Кб |
06. Number Of Iterations-TTdHpSb4DV8.en.vtt |
1.63Кб |
06. Number Of Iterations-TTdHpSb4DV8.mp4 |
1.46Мб |
06. Number Of Iterations-TTdHpSb4DV8.pt-BR.vtt |
1.53Кб |
06. Number Of Iterations-TTdHpSb4DV8.zh-CN.vtt |
1.50Кб |
06. Number of Training Iterations Epochs.html |
8.29Кб |
06. Quiz TensorFlow Cross Entropy.html |
11.95Кб |
06. Reference Guide.html |
5.49Кб |
06. Regularization.html |
7.21Кб |
06. RL M2L4 06 Actor Critic With Advantage RENDER V1 V1-Bwd2OF7hJXQ.en.vtt |
1.00Кб |
06. RL M2L4 06 Actor Critic With Advantage RENDER V1 V1-Bwd2OF7hJXQ.mp4 |
3.09Мб |
06. RL M2L4 06 Actor Critic With Advantage RENDER V1 V1-Bwd2OF7hJXQ.pt-BR.vtt |
1.18Кб |
06. RL M2L4 06 Actor Critic With Advantage RENDER V1 V1-Bwd2OF7hJXQ.zh-CN.vtt |
891б |
06. Solution Max Pooling Layers.html |
6.30Кб |
06. TD Prediction Action Values.html |
6.60Кб |
06. TD Prediction Action Values-1c029-7_9GA.en.vtt |
2.68Кб |
06. TD Prediction Action Values-1c029-7_9GA.mp4 |
9.73Мб |
06. TD Prediction Action Values-1c029-7_9GA.zh-CN.vtt |
2.22Кб |
06. The Feedforward Process.html |
14.78Кб |
06. The Forget Gate.html |
6.18Кб |
06. The Reward Hypothesis.html |
6.58Кб |
06. The Reward Hypothesis-uAqNwgZ49JE.en.vtt |
3.45Кб |
06. The Reward Hypothesis-uAqNwgZ49JE.mp4 |
4.38Мб |
06. The Reward Hypothesis-uAqNwgZ49JE.pt-BR.vtt |
3.68Кб |
06. The Reward Hypothesis-uAqNwgZ49JE.zh-CN.vtt |
3.01Кб |
06. Training the Network.html |
5.25Кб |
06. Training The Network-nknJ3Xu3ld0.en.vtt |
6.38Кб |
06. Training The Network-nknJ3Xu3ld0.mp4 |
8.41Мб |
06. Training The Network-nknJ3Xu3ld0.pt-BR.vtt |
5.70Кб |
06. Training The Network-nknJ3Xu3ld0.zh-CN.vtt |
5.42Кб |
06. When accuracy won't work.html |
5.52Кб |
06. When Accuracy Wont Work-r0-O-gIDXZ0.en.vtt |
2.81Кб |
06. When Accuracy Wont Work-r0-O-gIDXZ0.mp4 |
2.15Мб |
06. When Accuracy Wont Work-r0-O-gIDXZ0.pt-BR.vtt |
2.79Кб |
07. 04 Quiz False Negatives And Positives SC V1-_ytP9zIkziw.en.vtt |
2.88Кб |
07. 04 Quiz False Negatives And Positives SC V1-_ytP9zIkziw.mp4 |
2.22Мб |
07. 04 Quiz False Negatives And Positives SC V1-_ytP9zIkziw.pt-BR.vtt |
2.67Кб |
07. 07 Quiz Data Challenges V1-F8yc7BlV93c.en.vtt |
526б |
07. 07 Quiz Data Challenges V1-F8yc7BlV93c.mp4 |
862.50Кб |
07. 07 Quiz Data Challenges V1-F8yc7BlV93c.pt-BR.vtt |
482б |
07. 07 Quiz Data Challenges V1-F8yc7BlV93c.zh-CN.vtt |
468б |
07. Backpropagation.html |
19.36Кб |
07. Backpropagation-MZL97-2joxQ.en-US.vtt |
2.42Кб |
07. Backpropagation-MZL97-2joxQ.mp4 |
3.44Мб |
07. Backpropagation-MZL97-2joxQ.pt-BR.vtt |
2.41Кб |
07. Backpropagation-MZL97-2joxQ.zh-CN.vtt |
2.14Кб |
07. Building The Classifier-pPHiVddBY0Q.en.vtt |
1.61Кб |
07. Building The Classifier-pPHiVddBY0Q.mp4 |
1.99Мб |
07. Building The Classifier-pPHiVddBY0Q.pt-BR.vtt |
1.41Кб |
07. Building The Classifier-pPHiVddBY0Q.zh-CN.vtt |
1.53Кб |
07. Classifier.html |
5.58Кб |
07. CNNs in TensorFlow.html |
12.71Кб |
07. Constrained Policy Gradients.html |
5.31Кб |
07. Discriminator.html |
5.61Кб |
07. Discriminator-XRqOUbf96eI.en.vtt |
3.08Кб |
07. Discriminator-XRqOUbf96eI.mp4 |
3.25Мб |
07. Discriminator-XRqOUbf96eI.pt-BR.vtt |
2.57Кб |
07. Discriminator-XRqOUbf96eI.zh-CN.vtt |
2.66Кб |
07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.en.vtt |
5.89Кб |
07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.mp4 |
5.13Мб |
07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.pt-BR.vtt |
5.61Кб |
07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.zh-CN.vtt |
4.98Кб |
07. Experience Replay.html |
6.24Кб |
07. Experience Replay-wX_-SZG-YMQ.en.vtt |
9.51Кб |
07. Experience Replay-wX_-SZG-YMQ.mp4 |
48.38Мб |
07. Experience Replay-wX_-SZG-YMQ.pt-BR.vtt |
11.32Кб |
07. Experience Replay-wX_-SZG-YMQ.zh-CN.vtt |
8.25Кб |
07. False Negatives and Positives.html |
7.85Кб |
07. Feedforward Quiz.html |
10.36Кб |
07. Get started with a GAN.html |
6.50Кб |
07. Getting Started with GANs-QA2ntKUha4g.en.vtt |
4.00Кб |
07. Getting Started with GANs-QA2ntKUha4g.mp4 |
5.04Мб |
07. Getting Started with GANs-QA2ntKUha4g.pt-BR.vtt |
3.82Кб |
07. Getting Started with GANs-QA2ntKUha4g.zh-CN.vtt |
3.63Кб |
07. Goals and Rewards, Part 1.html |
6.60Кб |
07. Goals and Rewards, Part 1-XPnj3Ya3EuM.en.vtt |
3.25Кб |
07. Goals and Rewards, Part 1-XPnj3Ya3EuM.mp4 |
6.84Мб |
07. Goals and Rewards, Part 1-XPnj3Ya3EuM.pt-BR.vtt |
3.61Кб |
07. Goals and Rewards, Part 1-XPnj3Ya3EuM.zh-CN.vtt |
2.82Кб |
07. Implementation.html |
8.76Кб |
07. Linear Transform.html |
19.41Кб |
07. LSTM Cell.html |
5.84Кб |
07. LSTM Cell-ajC-5uWB8S4.en.vtt |
6.06Кб |
07. LSTM Cell-ajC-5uWB8S4.mp4 |
7.79Мб |
07. LSTM Cell-ajC-5uWB8S4.pt-BR.vtt |
6.21Кб |
07. LSTM Cell-ajC-5uWB8S4.zh-CN.vtt |
5.30Кб |
07. M2L3 07 V2-ZBLLGIN1EfU.en.vtt |
9.11Кб |
07. M2L3 07 V2-ZBLLGIN1EfU.mp4 |
43.55Мб |
07. M2L3 07 V2-ZBLLGIN1EfU.zh-CN.vtt |
7.88Кб |
07. Markdown cells.html |
9.49Кб |
07. Matrix Multiplication Part 2.html |
7.05Кб |
07. Matrix Multiplication Part 2-8jtk8BzBdj8.en.vtt |
9.88Кб |
07. Matrix Multiplication Part 2-8jtk8BzBdj8.mp4 |
7.34Мб |
07. Matrix Multiplication Part 2-8jtk8BzBdj8.pt-BR.vtt |
9.31Кб |
07. Matrix Multiplication Part 2-8jtk8BzBdj8.zh-CN.vtt |
8.61Кб |
07. Mini Project 1 Solution.html |
7.29Кб |
07. Mini Project 1 Solution-l4r5l0HvHRI.en.vtt |
8.83Кб |
07. Mini Project 1 Solution-l4r5l0HvHRI.mp4 |
24.79Мб |
07. Mini Project 1 Solution-l4r5l0HvHRI.pt-BR.vtt |
7.59Кб |
07. Mini Project 1 Solution-l4r5l0HvHRI.zh-CN.vtt |
8.85Кб |
07. Model Optimization Exercise.html |
6.02Кб |
07. Model Optimization Exercise-wNpI1wUA4Io.en.vtt |
10.68Кб |
07. Model Optimization Exercise-wNpI1wUA4Io.mp4 |
12.64Мб |
07. Model Optimization Exercise-wNpI1wUA4Io.pt-BR.vtt |
17.59Кб |
07. Model Optimization Exercise-wNpI1wUA4Io.zh-CN.vtt |
9.23Кб |
07. More environment actions.html |
7.15Кб |
07. More Resources.html |
6.89Кб |
07. Negative Sampling.html |
5.49Кб |
07. Negative Sampling-gW17AHBKbHY.en.vtt |
2.55Кб |
07. Negative Sampling-gW17AHBKbHY.mp4 |
4.16Мб |
07. Negative Sampling-gW17AHBKbHY.pt-BR.vtt |
2.36Кб |
07. Negative Sampling-gW17AHBKbHY.zh-CN.vtt |
2.19Кб |
07. Number of Hidden Units Layers.html |
6.49Кб |
07. Number Of Hidden Units Layers-IkGAIQH5wH8.en.vtt |
3.23Кб |
07. Number Of Hidden Units Layers-IkGAIQH5wH8.mp4 |
3.40Мб |
07. Number Of Hidden Units Layers-IkGAIQH5wH8.pt-BR.vtt |
3.02Кб |
07. Number Of Hidden Units Layers-IkGAIQH5wH8.zh-CN.vtt |
2.82Кб |
07. Ornstein–Uhlenbeck Noise.html |
7.30Кб |
07. Perceptrons.html |
9.44Кб |
07. Pixels are Features!-qE5YYXtPq9U.en-US.vtt |
72б |
07. Pixels are Features!-qE5YYXtPq9U.mp4 |
1.24Мб |
07. Pixels are Features!-qE5YYXtPq9U.pt-BR.vtt |
91б |
07. Pre-Lab IMDB Data in Keras.html |
9.58Кб |
07. Quiz An Iterative Method.html |
11.56Кб |
07. Quiz Data Challenges.html |
9.05Кб |
07. Quiz Mini-batch.html |
36.77Кб |
07. Quiz State-Value Functions.html |
12.63Кб |
07. Regularization 2.html |
6.15Кб |
07. Regularization-ndYnUrx8xvs.en.vtt |
8.07Кб |
07. Regularization-ndYnUrx8xvs.mp4 |
7.57Мб |
07. Regularization-ndYnUrx8xvs.pt-BR.vtt |
8.78Кб |
07. Regularization-ndYnUrx8xvs.zh-CN.vtt |
6.96Кб |
07. Remember Gate-0qlm86HaXuU.en.vtt |
734б |
07. Remember Gate-0qlm86HaXuU.mp4 |
676.91Кб |
07. Remember Gate-0qlm86HaXuU.pt-BR.vtt |
700б |
07. Remember Gate-0qlm86HaXuU.zh-CN.vtt |
632б |
07. Sentiment RNN 2-V9YGGjmoHS0.en.vtt |
17.68Кб |
07. Sentiment RNN 2-V9YGGjmoHS0.mp4 |
23.11Мб |
07. Sentiment RNN 2-V9YGGjmoHS0.pt-BR.vtt |
15.77Кб |
07. Sentiment RNN 2-V9YGGjmoHS0.zh-CN.vtt |
14.72Кб |
07. Solutions.html |
5.21Кб |
07. Square Trick.html |
7.04Кб |
07. Square Trick-AGZEq-yQgRM.en.vtt |
3.91Кб |
07. Square Trick-AGZEq-yQgRM.mp4 |
3.28Мб |
07. Square Trick-AGZEq-yQgRM.pt-BR.vtt |
3.78Кб |
07. Summary.html |
5.24Кб |
07. Summary-hvYQ_3LgCYs.en.vtt |
2.34Кб |
07. Summary-hvYQ_3LgCYs.mp4 |
16.90Мб |
07. Summary-hvYQ_3LgCYs.pt-BR.vtt |
2.79Кб |
07. Summary-hvYQ_3LgCYs.zh-CN.vtt |
2.09Кб |
07. TD Control Sarsa(0).html |
6.24Кб |
07. TD Control Sarsa(0)-LkFkjfsRpXc.en.vtt |
2.21Кб |
07. TD Control Sarsa(0)-LkFkjfsRpXc.mp4 |
7.63Мб |
07. TD Control Sarsa(0)-LkFkjfsRpXc.zh-CN.vtt |
1.88Кб |
07. The Remember Gate.html |
6.08Кб |
07. Tile Coding.html |
5.99Кб |
07. Tile Coding-BRs7AnTZ_8k.en.vtt |
3.76Кб |
07. Tile Coding-BRs7AnTZ_8k.mp4 |
11.03Мб |
07. Tile Coding-BRs7AnTZ_8k.pt-BR.vtt |
4.20Кб |
07. Tile Coding-BRs7AnTZ_8k.zh-CN.vtt |
3.34Кб |
07. Udacity Support.html |
8.45Кб |
07. When do MLPs (not) work well .html |
7.93Кб |
07. When do MLPs (not) work well-deMeuLdZN3Q.en.vtt |
3.61Кб |
07. When do MLPs (not) work well-deMeuLdZN3Q.mp4 |
5.54Мб |
07. When do MLPs (not) work well-deMeuLdZN3Q.pt-BR.vtt |
3.84Кб |
07. When do MLPs (not) work well-deMeuLdZN3Q.zh-CN.vtt |
3.11Кб |
08. 08 Backpropagation Theory V6 Final-Xlgd8I3TWUg.en.vtt |
8.51Кб |
08. 08 Backpropagation Theory V6 Final-Xlgd8I3TWUg.mp4 |
34.84Мб |
08. 08 Backpropagation Theory V6 Final-Xlgd8I3TWUg.pt-BR.vtt |
8.44Кб |
08. 08 Backpropagation Theory V6 Final-Xlgd8I3TWUg.zh-CN.vtt |
7.18Кб |
08. 13 Overfitting Intro V4 Final-rmBLnVbFfFY.en.vtt |
2.51Кб |
08. 13 Overfitting Intro V4 Final-rmBLnVbFfFY.mp4 |
12.76Мб |
08. 13 Overfitting Intro V4 Final-rmBLnVbFfFY.pt-BR.vtt |
2.69Кб |
08. 13 Overfitting Intro V4 Final-rmBLnVbFfFY.zh-CN.vtt |
2.17Кб |
08. Answer False Negatives And Positives-KOytJL1lvgg.en.vtt |
2.82Кб |
08. Answer False Negatives And Positives-KOytJL1lvgg.mp4 |
2.23Мб |
08. Answer False Negatives And Positives-KOytJL1lvgg.pt-BR.vtt |
2.84Кб |
08. Backpropagation- Theory.html |
11.86Кб |
08. Best practices.html |
7.07Кб |
08. Building The Classifier-6ifxRQ_gL7w.en.vtt |
3.61Кб |
08. Building The Classifier-6ifxRQ_gL7w.mp4 |
3.99Мб |
08. Building The Classifier-6ifxRQ_gL7w.pt-BR.vtt |
3.13Кб |
08. Building The Classifier-6ifxRQ_gL7w.zh-CN.vtt |
2.95Кб |
08. Building the Network Solution.html |
5.57Кб |
08. Building The Network Solution-pkBAhQ2Ki-8.en.vtt |
4.06Кб |
08. Building The Network Solution-pkBAhQ2Ki-8.mp4 |
7.34Мб |
08. Building The Network Solution-pkBAhQ2Ki-8.pt-BR.vtt |
4.03Кб |
08. Building The Network Solution-pkBAhQ2Ki-8.zh-CN.vtt |
3.34Кб |
08. Classifier Solution.html |
5.59Кб |
08. CNNs - Additional Resources.html |
5.96Кб |
08. Community Guidelines.html |
7.95Кб |
08. Discriminator Solution.html |
5.67Кб |
08. Discriminator Solution-ffPWI2yJscw.en.vtt |
3.34Кб |
08. Discriminator Solution-ffPWI2yJscw.mp4 |
3.87Мб |
08. Discriminator Solution-ffPWI2yJscw.pt-BR.vtt |
2.73Кб |
08. Discriminator Solution-ffPWI2yJscw.zh-CN.vtt |
2.98Кб |
08. Dropout.html |
6.09Кб |
08. Dropout-Ty6K6YiGdBs.en.vtt |
4.71Кб |
08. Dropout-Ty6K6YiGdBs.mp4 |
4.22Мб |
08. Dropout-Ty6K6YiGdBs.pt-BR.vtt |
4.66Кб |
08. Dropout-Ty6K6YiGdBs.zh-CN.vtt |
4.06Кб |
08. Epochs.html |
13.42Кб |
08. Exercise Tile Coding.html |
6.31Кб |
08. Fixed Q Targets.html |
6.14Кб |
08. Fixed Q Targets-SWpyiEezfp4.en.vtt |
5.42Кб |
08. Fixed Q Targets-SWpyiEezfp4.mp4 |
20.97Мб |
08. Fixed Q Targets-SWpyiEezfp4.pt-BR.vtt |
5.93Кб |
08. Fixed Q Targets-SWpyiEezfp4.zh-CN.vtt |
4.77Кб |
08. Generator Network.html |
6.45Кб |
08. Generator Network-btHVXnICmzQ.en.vtt |
6.74Кб |
08. Generator Network-btHVXnICmzQ.mp4 |
7.08Мб |
08. Generator Network-btHVXnICmzQ.pt-BR.vtt |
6.01Кб |
08. Generator Network-btHVXnICmzQ.zh-CN.vtt |
6.08Кб |
08. Goals and Rewards, Part 2.html |
7.19Кб |
08. Goals and Rewards, Part 2-pVIFc72VYH8.en.vtt |
5.72Кб |
08. Goals and Rewards, Part 2-pVIFc72VYH8.mp4 |
8.05Мб |
08. Goals and Rewards, Part 2-pVIFc72VYH8.pt-BR.vtt |
6.32Кб |
08. Goals and Rewards, Part 2-pVIFc72VYH8.zh-CN.vtt |
4.99Кб |
08. Gradient Descent.html |
7.74Кб |
08. Gradient Descent-4s4x9h6AN5Y.en.vtt |
5.61Кб |
08. Gradient Descent-4s4x9h6AN5Y.mp4 |
4.25Мб |
08. Gradient Descent-4s4x9h6AN5Y.pt-BR.vtt |
5.23Кб |
08. Implementation.html |
8.61Кб |
08. Implementing Backpropagation.html |
21.42Кб |
08. Iterative Policy Evaluation.html |
7.05Кб |
08. Keyboard shortcuts.html |
5.92Кб |
08. Lab IMDB Data in Keras.html |
5.82Кб |
08. LSTM 7 Use Gate-5Ifolm1jTdY.en.vtt |
1.75Кб |
08. LSTM 7 Use Gate-5Ifolm1jTdY.mp4 |
1.50Мб |
08. LSTM 7 Use Gate-5Ifolm1jTdY.pt-BR.vtt |
1.73Кб |
08. LSTM 7 Use Gate-5Ifolm1jTdY.zh-CN.vtt |
1.50Кб |
08. LSTM Cell Solution.html |
5.90Кб |
08. LSTM Cell Solution-X4uA0dq_4jA.en.vtt |
3.13Кб |
08. LSTM Cell Solution-X4uA0dq_4jA.mp4 |
3.55Мб |
08. LSTM Cell Solution-X4uA0dq_4jA.pt-BR.vtt |
3.06Кб |
08. LSTM Cell Solution-X4uA0dq_4jA.zh-CN.vtt |
2.82Кб |
08. M1 L1 C05 V3 No Slack-OH-fVUpoyZDyGE.mp4 |
8.43Мб |
08. M2L3 08 V1-og3W6CXn1F0.en.vtt |
1.36Кб |
08. M2L3 08 V1-og3W6CXn1F0.mp4 |
7.63Мб |
08. M2L3 08 V1-og3W6CXn1F0.zh-CN.vtt |
1.24Кб |
08. Mini Project MC (Part 2).html |
7.43Кб |
08. Mini Project Training an MLP on MNIST.html |
10.88Кб |
08. NumPy Matrix Multiplication.html |
8.67Кб |
08. Optimality.html |
5.83Кб |
08. Optimality-j231aRV74QM.en.vtt |
4.60Кб |
08. Optimality-j231aRV74QM.mp4 |
5.99Мб |
08. Optimality-j231aRV74QM.pt-BR.vtt |
5.06Кб |
08. Optimality-j231aRV74QM.zh-CN.vtt |
3.85Кб |
08. Precision and Recall.html |
5.94Кб |
08. Recap.html |
5.26Кб |
08. RNN Hyperparameters.html |
11.81Кб |
08. RNN Hyperparameters-yQvnv7l_aUo.en.vtt |
3.87Кб |
08. RNN Hyperparameters-yQvnv7l_aUo.mp4 |
4.12Мб |
08. RNN Hyperparameters-yQvnv7l_aUo.pt-BR.vtt |
3.71Кб |
08. RNN Hyperparameters-yQvnv7l_aUo.zh-CN.vtt |
3.62Кб |
08. Sigmoid Function.html |
17.29Кб |
08. Solution Data Challenges.html |
7.86Кб |
08. Solution Data Challenges-1z3o4niQuNg.en.vtt |
867б |
08. Solution Data Challenges-1z3o4niQuNg.mp4 |
1.49Мб |
08. Solution Data Challenges-1z3o4niQuNg.pt-BR.vtt |
730б |
08. Solution Data Challenges-1z3o4niQuNg.zh-CN.vtt |
810б |
08. The Use Gate.html |
6.30Кб |
08. Training The Network.html |
5.98Кб |
08. Training The Network -P-LXQPVXl4A.en.vtt |
4.69Кб |
08. Training The Network -P-LXQPVXl4A.mp4 |
5.46Мб |
08. Training The Network -P-LXQPVXl4A.pt-BR.vtt |
7.71Кб |
08. Training The Network -P-LXQPVXl4A.zh-CN.vtt |
4.16Кб |
08. Transforming Text into Numbers.html |
7.08Кб |
08. Transforming Text into Numbers-7rHBU5cbePE.en.vtt |
5.04Кб |
08. Transforming Text into Numbers-7rHBU5cbePE.mp4 |
6.64Мб |
08. Transforming Text into Numbers-7rHBU5cbePE.pt-BR.vtt |
4.24Кб |
08. Transforming Text into Numbers-7rHBU5cbePE.zh-CN.vtt |
4.34Кб |
08. Troubleshooting.html |
8.78Кб |
08. Why Neural Networks.html |
8.43Кб |
08. 为何是神经网络-zAkzOZntK6Y.en.vtt |
1.38Кб |
08. 为何是神经网络-zAkzOZntK6Y.mp4 |
982.27Кб |
08. 为何是神经网络-zAkzOZntK6Y.pt-BR.vtt |
1.27Кб |
08. 为何是神经网络-zAkzOZntK6Y.zh-CN.vtt |
1.18Кб |
09. 06 Precision SC V1-q2wVorBfefU.en.vtt |
2.69Кб |
09. 06 Precision SC V1-q2wVorBfefU.mp4 |
2.24Мб |
09. 06 Precision SC V1-q2wVorBfefU.pt-BR.vtt |
2.64Кб |
09. 10 Backpropagation Example A V3 Final-3k72z_WaeXg.en.vtt |
4.35Кб |
09. 10 Backpropagation Example A V3 Final-3k72z_WaeXg.mp4 |
14.77Мб |
09. 10 Backpropagation Example A V3 Final-3k72z_WaeXg.pt-BR.vtt |
4.56Кб |
09. 10 Backpropagation Example A V3 Final-3k72z_WaeXg.zh-CN.vtt |
3.76Кб |
09. Action-Value Functions.html |
6.71Кб |
09. Action-Value Functions-KJLaRfOOPGA.en.vtt |
4.65Кб |
09. Action-Value Functions-KJLaRfOOPGA.mp4 |
6.60Мб |
09. Action-Value Functions-KJLaRfOOPGA.pt-BR.vtt |
5.32Кб |
09. Action-Value Functions-KJLaRfOOPGA.zh-CN.vtt |
3.94Кб |
09. Backpropagation - Example (part a).html |
14.72Кб |
09. Building and Training the Network.html |
5.75Кб |
09. Building And Training The Network-nXKk9GI4X14.en.vtt |
6.14Кб |
09. Building And Training The Network-nXKk9GI4X14.mp4 |
8.08Мб |
09. Building And Training The Network-nXKk9GI4X14.pt-BR.vtt |
4.63Кб |
09. Building And Training The Network-nXKk9GI4X14.zh-CN.vtt |
5.13Кб |
09. Coarse Coding.html |
6.00Кб |
09. Coarse Coding-Uu1J5KLAfTU.en.vtt |
3.07Кб |
09. Coarse Coding-Uu1J5KLAfTU.mp4 |
10.30Мб |
09. Coarse Coding-Uu1J5KLAfTU.pt-BR.vtt |
3.41Кб |
09. Coarse Coding-Uu1J5KLAfTU.zh-CN.vtt |
2.74Кб |
09. Cost.html |
17.73Кб |
09. Deep Q-Learning Algorithm.html |
6.50Кб |
09. Deep Q-Learning Algorithm-MqTXoCxQ_eY.en.vtt |
4.48Кб |
09. Deep Q-Learning Algorithm-MqTXoCxQ_eY.mp4 |
17.45Мб |
09. Deep Q-Learning Algorithm-MqTXoCxQ_eY.pt-BR.vtt |
5.35Кб |
09. Deep Q-Learning Algorithm-MqTXoCxQ_eY.zh-CN.vtt |
3.84Кб |
09. Discriminator Network.html |
6.48Кб |
09. Discriminator Network-nWXxT8OqCfs.en.vtt |
1.09Кб |
09. Discriminator Network-nWXxT8OqCfs.mp4 |
1.04Мб |
09. Discriminator Network-nWXxT8OqCfs.pt-BR.vtt |
939б |
09. Discriminator Network-nWXxT8OqCfs.zh-CN.vtt |
1.06Кб |
09. Discriminator Solution-_X8ssUzu_Bo.en.vtt |
5.08Кб |
09. Discriminator Solution-_X8ssUzu_Bo.mp4 |
7.43Мб |
09. Discriminator Solution-_X8ssUzu_Bo.pt-BR.vtt |
4.84Кб |
09. Discriminator Solution-_X8ssUzu_Bo.zh-CN.vtt |
4.33Кб |
09. Discriminator Solution.html |
5.99Кб |
09. DL 08 AND And OR Perceptrons-Y-ImuxNpS40.mp4 |
2.73Мб |
09. DL 09 XOR Perceptron--z9K49fdE3g.mp4 |
511.79Кб |
09. Further Reading.html |
5.76Кб |
09. Generalized Policy Iteration.html |
7.08Кб |
09. Generalized Policy Iteration-XRmz4nolEsw.en.vtt |
2.29Кб |
09. Generalized Policy Iteration-XRmz4nolEsw.mp4 |
6.92Мб |
09. Generalized Policy Iteration-XRmz4nolEsw.pt-BR.vtt |
2.57Кб |
09. Generalized Policy Iteration-XRmz4nolEsw.zh-CN.vtt |
1.84Кб |
09. Implementation.html |
12.75Кб |
09. Local Connectivity.html |
7.59Кб |
09. Local Connectivity-z9wiDg0w-Dc.en.vtt |
8.95Кб |
09. Local Connectivity-z9wiDg0w-Dc.mp4 |
12.02Мб |
09. Local Connectivity-z9wiDg0w-Dc.pt-BR.vtt |
9.29Кб |
09. Local Connectivity-z9wiDg0w-Dc.zh-CN.vtt |
7.62Кб |
09. Local Minima.html |
6.13Кб |
09. Local Minima-gF_sW_nY-xw.en.vtt |
1.14Кб |
09. Local Minima-gF_sW_nY-xw.mp4 |
819.86Кб |
09. Local Minima-gF_sW_nY-xw.pt-BR.vtt |
1.05Кб |
09. Local Minima-gF_sW_nY-xw.zh-CN.vtt |
1.01Кб |
09. Magic keywords.html |
9.91Кб |
09. Matrix Transposes.html |
5.76Кб |
09. Matrix Transposes-NVK5xCY3CZE.en-US.vtt |
11.81Кб |
09. Matrix Transposes-NVK5xCY3CZE.mp4 |
9.09Мб |
09. Matrix Transposes-NVK5xCY3CZE.pt-BR.vtt |
11.08Кб |
09. Matrix Transposes-NVK5xCY3CZE.zh-CN.vtt |
10.35Кб |
09. Mean Absolute Error.html |
7.08Кб |
09. Mean Absolute Error-vLKiY0Ehors.en.vtt |
3.52Кб |
09. Mean Absolute Error-vLKiY0Ehors.mp4 |
2.57Мб |
09. Mean Absolute Error-vLKiY0Ehors.pt-BR.vtt |
3.30Кб |
09. Mini Project 2.html |
9.47Кб |
09. Mini Project TD (Part 2).html |
6.77Кб |
09. On Python versions at Udacity.html |
7.05Кб |
09. Perceptrons as Logical Operators.html |
23.59Кб |
09. Precision.html |
7.13Кб |
09. Pre-Lab NotMNIST in TensorFlow.html |
8.65Кб |
09. Prerequisites.html |
6.10Кб |
09. Putting it All Together.html |
5.75Кб |
09. Putting It All Together-IF8FlKW-Zo0.en.vtt |
2.42Кб |
09. Putting It All Together-IF8FlKW-Zo0.mp4 |
1.58Мб |
09. Putting It All Together-IF8FlKW-Zo0.pt-BR.vtt |
2.36Кб |
09. Putting It All Together-IF8FlKW-Zo0.zh-CN.vtt |
2.13Кб |
09. Quiz Goals and Rewards.html |
12.98Кб |
09. Regra da cadeia-YAhIBOnbt54.en.vtt |
1.65Кб |
09. Regra da cadeia-YAhIBOnbt54.mp4 |
1.46Мб |
09. Regra da cadeia-YAhIBOnbt54.pt-BR.vtt |
1.73Кб |
09. Regra da cadeia-YAhIBOnbt54.zh-CN.vtt |
1.42Кб |
09. RNN Hyperparameters.html |
6.80Кб |
09. RNN Output.html |
5.85Кб |
09. RNN Output-RkanDkcrTxs.en.vtt |
5.73Кб |
09. RNN Output-RkanDkcrTxs.mp4 |
8.92Мб |
09. RNN Output-RkanDkcrTxs.pt-BR.vtt |
5.64Кб |
09. RNN Output-RkanDkcrTxs.zh-CN.vtt |
5.14Кб |
09. Training.html |
5.57Кб |
09. Training Results.html |
5.48Кб |
09. Training Results-uISA5ns47s8.en.vtt |
4.36Кб |
09. Training Results-uISA5ns47s8.mp4 |
9.78Мб |
09. Training Results-uISA5ns47s8.pt-BR.vtt |
4.38Кб |
09. Training Results-uISA5ns47s8.zh-CN.vtt |
3.83Кб |
09. Training The Classifier-b7Fy3cIoJ1Y.en.vtt |
3.34Кб |
09. Training The Classifier-b7Fy3cIoJ1Y.mp4 |
4.19Мб |
09. Training The Classifier-b7Fy3cIoJ1Y.pt-BR.vtt |
2.63Кб |
09. Training The Classifier-b7Fy3cIoJ1Y.zh-CN.vtt |
2.81Кб |
09. Training the Neural Network.html |
7.88Кб |
09. Training The Neural Network-HwiI-UXUx-M.en.vtt |
1.11Кб |
09. Training The Neural Network-HwiI-UXUx-M.mp4 |
1.24Мб |
09. Training The Neural Network-HwiI-UXUx-M.pt-BR.vtt |
977б |
09. Training The Neural Network-HwiI-UXUx-M.zh-CN.vtt |
995б |
10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.en.vtt |
4.11Кб |
10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.mp4 |
3.66Мб |
10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.pt-BR.vtt |
4.17Кб |
10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.zh-CN.vtt |
3.50Кб |
10. 07 Recall SC V1-0n5wUZiefkQ.en.vtt |
3.05Кб |
10. 07 Recall SC V1-0n5wUZiefkQ.mp4 |
2.15Мб |
10. 07 Recall SC V1-0n5wUZiefkQ.pt-BR.vtt |
2.79Кб |
10. 10 Quiz Random Vs Preinitiliazed Weights V3-DRC1e4XGl2M.en.vtt |
853б |
10. 10 Quiz Random Vs Preinitiliazed Weights V3-DRC1e4XGl2M.mp4 |
1.58Мб |
10. 10 Quiz Random Vs Preinitiliazed Weights V3-DRC1e4XGl2M.pt-BR.vtt |
754б |
10. 10 Quiz Random Vs Preinitiliazed Weights V3-DRC1e4XGl2M.zh-CN.vtt |
734б |
10. 12 Backpropagation Example B V6 Final-yiSwuMP2UIA.en.vtt |
8.33Кб |
10. 12 Backpropagation Example B V6 Final-yiSwuMP2UIA.mp4 |
37.06Мб |
10. 12 Backpropagation Example B V6 Final-yiSwuMP2UIA.pt-BR.vtt |
8.99Кб |
10. 12 Backpropagation Example B V6 Final-yiSwuMP2UIA.zh-CN.vtt |
6.84Кб |
10. Backpropagation- Example (part b).html |
18.81Кб |
10. Converting notebooks.html |
7.04Кб |
10. Convolutional Layers (Part 1).html |
7.62Кб |
10. Convolutional Layers-h5R_JvdUrUI.en.vtt |
7.22Кб |
10. Convolutional Layers-h5R_JvdUrUI.mp4 |
8.04Мб |
10. Convolutional Layers-h5R_JvdUrUI.pt-BR.vtt |
7.57Кб |
10. Convolutional Layers-h5R_JvdUrUI.zh-CN.vtt |
6.10Кб |
10. Cost Solution.html |
7.20Кб |
10. Cumulative Reward.html |
6.55Кб |
10. Cumulative Reward-ysriH65lV9o.en.vtt |
5.36Кб |
10. Cumulative Reward-ysriH65lV9o.mp4 |
9.96Мб |
10. Cumulative Reward-ysriH65lV9o.pt-BR.vtt |
6.00Кб |
10. Cumulative Reward-ysriH65lV9o.zh-CN.vtt |
4.40Кб |
10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.en.vtt |
420б |
10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.mp4 |
260.01Кб |
10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.pt-BR.vtt |
364б |
10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.zh-CN.vtt |
390б |
10. DQN Improvements.html |
6.84Кб |
10. DQN Improvements-Zfdbp93A2GU.en.vtt |
12.13Кб |
10. DQN Improvements-Zfdbp93A2GU.mp4 |
39.40Мб |
10. DQN Improvements-Zfdbp93A2GU.pt-BR.vtt |
14.18Кб |
10. DQN Improvements-Zfdbp93A2GU.zh-CN.vtt |
10.72Кб |
10. Function Approximation.html |
7.34Кб |
10. Function Approximation-UTGWVY6jEdg.en.vtt |
4.11Кб |
10. Function Approximation-UTGWVY6jEdg.mp4 |
20.08Мб |
10. Function Approximation-UTGWVY6jEdg.pt-BR.vtt |
4.59Кб |
10. Function Approximation-UTGWVY6jEdg.zh-CN.vtt |
3.65Кб |
10. Generator and Discriminator Solutions.html |
6.59Кб |
10. Generator and Discriminator Solutions-9By2pAck044.en.vtt |
5.94Кб |
10. Generator and Discriminator Solutions-9By2pAck044.mp4 |
6.29Мб |
10. Generator and Discriminator Solutions-9By2pAck044.pt-BR.vtt |
5.24Кб |
10. Generator and Discriminator Solutions-9By2pAck044.zh-CN.vtt |
5.29Кб |
10. Getting Set Up.html |
5.99Кб |
10. Getting-Setup-1SuxTnuQkeE.en.vtt |
1.34Кб |
10. Getting-Setup-1SuxTnuQkeE.mp4 |
7.76Мб |
10. Getting-Setup-1SuxTnuQkeE.pt-BR.vtt |
1.31Кб |
10. Getting-Setup-1SuxTnuQkeE.zh-CN.vtt |
1.29Кб |
10. Hyperparameter Solutions.html |
5.69Кб |
10. Hyperparameters Solution-Rt8MlVDtpi8.en.vtt |
4.21Кб |
10. Hyperparameters Solution-Rt8MlVDtpi8.mp4 |
7.00Мб |
10. Hyperparameters Solution-Rt8MlVDtpi8.pt-BR.vtt |
3.51Кб |
10. Hyperparameters Solution-Rt8MlVDtpi8.zh-CN.vtt |
3.62Кб |
10. Lab NotMNIST in TensorFlow.html |
6.80Кб |
10. MC Control Incremental Mean.html |
7.07Кб |
10. MC Control Incremental Mean-E2RITH-2NUE.en.vtt |
5.43Кб |
10. MC Control Incremental Mean-E2RITH-2NUE.mp4 |
20.07Мб |
10. MC Control Incremental Mean-E2RITH-2NUE.pt-BR.vtt |
5.84Кб |
10. MC Control Incremental Mean-E2RITH-2NUE.zh-CN.vtt |
4.52Кб |
10. Mean Squared Error.html |
7.08Кб |
10. Mean Squared Error-MRyxmZDngI4.en.vtt |
2.49Кб |
10. Mean Squared Error-MRyxmZDngI4.mp4 |
1.83Мб |
10. Mean Squared Error-MRyxmZDngI4.pt-BR.vtt |
2.26Кб |
10. Mini Project 2 Solution.html |
7.29Кб |
10. Mini Project 2 Solution-45ihpPaeO8E.en.vtt |
5.12Кб |
10. Mini Project 2 Solution-45ihpPaeO8E.mp4 |
9.22Мб |
10. Mini Project 2 Solution-45ihpPaeO8E.pt-BR.vtt |
3.95Кб |
10. Mini Project 2 Solution-45ihpPaeO8E.zh-CN.vtt |
4.56Кб |
10. Mini Project DP (Parts 0 and 1).html |
7.81Кб |
10. Model Loss Solution.html |
5.97Кб |
10. Model Loss Solution-r3DtohmychE.en.vtt |
6.78Кб |
10. Model Loss Solution-r3DtohmychE.mp4 |
8.84Мб |
10. Model Loss Solution-r3DtohmychE.pt-BR.vtt |
6.75Кб |
10. Model Loss Solution-r3DtohmychE.zh-CN.vtt |
5.77Кб |
10. Network Loss.html |
5.86Кб |
10. Network Loss-itu-uNK4brc.en.vtt |
3.08Кб |
10. Network Loss-itu-uNK4brc.mp4 |
4.28Мб |
10. Network Loss-itu-uNK4brc.pt-BR.vtt |
3.16Кб |
10. Network Loss-itu-uNK4brc.zh-CN.vtt |
2.71Кб |
10. Perceptron Algorithm--zhTROHtscQ.en.vtt |
2.64Кб |
10. Perceptron Algorithm--zhTROHtscQ.mp4 |
1.92Мб |
10. Perceptron Algorithm--zhTROHtscQ.pt-BR.vtt |
2.41Кб |
10. Perceptron Algorithm--zhTROHtscQ.zh-CN.vtt |
2.35Кб |
10. Perceptron Trick.html |
12.20Кб |
10. Quiz.html |
7.49Кб |
10. Quiz Action-Value Functions.html |
6.90Кб |
10. Quiz Random vs Pre-initialized Weights.html |
8.94Кб |
10. Random Restart.html |
6.14Кб |
10. Random Restart-idyBBCzXiqg.en.vtt |
466б |
10. Random Restart-idyBBCzXiqg.mp4 |
394.99Кб |
10. Random Restart-idyBBCzXiqg.pt-BR.vtt |
478б |
10. Random Restart-idyBBCzXiqg.zh-CN.vtt |
419б |
10. Recall.html |
7.28Кб |
10. Sources References.html |
6.57Кб |
10. TD Control Sarsamax.html |
6.55Кб |
10. TD Control Sarsamax-4DxoYuR7aZ4.en.vtt |
4.58Кб |
10. TD Control Sarsamax-4DxoYuR7aZ4.mp4 |
16.53Мб |
10. TD Control Sarsamax-4DxoYuR7aZ4.zh-CN.vtt |
3.83Кб |
10. Training And Testing-NLPtmQjGYCA.en.vtt |
5.83Кб |
10. Training And Testing-NLPtmQjGYCA.mp4 |
8.23Мб |
10. Training And Testing-NLPtmQjGYCA.pt-BR.vtt |
5.06Кб |
10. Training And Testing-NLPtmQjGYCA.zh-CN.vtt |
4.73Кб |
10. Training solution.html |
5.58Кб |
10. Transposes in NumPy.html |
9.18Кб |
11. Action Values.html |
12.16Кб |
11. Backpropagation Quiz.html |
11.40Кб |
11. Building a Neural Network.html |
7.04Кб |
11. Building a Neural Network-aM2k7RTjjJI.en.vtt |
3.30Кб |
11. Building a Neural Network-aM2k7RTjjJI.mp4 |
10.17Мб |
11. Building a Neural Network-aM2k7RTjjJI.pt-BR.vtt |
2.88Кб |
11. Building a Neural Network-aM2k7RTjjJI.zh-CN.vtt |
2.88Кб |
11. Building the Network.html |
6.47Кб |
11. Building the Network-5sZkRSHfiAE.en.vtt |
3.83Кб |
11. Building the Network-5sZkRSHfiAE.mp4 |
4.22Мб |
11. Building the Network-5sZkRSHfiAE.pt-BR.vtt |
3.37Кб |
11. Building the Network-5sZkRSHfiAE.zh-CN.vtt |
3.45Кб |
11. Camadas convolucionais-RnM1D-XI--8.en.vtt |
9.99Кб |
11. Camadas convolucionais-RnM1D-XI--8.mp4 |
17.05Мб |
11. Camadas convolucionais-RnM1D-XI--8.pt-BR.vtt |
11.00Кб |
11. Camadas convolucionais-RnM1D-XI--8.zh-CN.vtt |
8.71Кб |
11. Convolutional Layers (Part 2).html |
8.40Кб |
11. Creating a slideshow.html |
7.87Кб |
11. Discounted Return.html |
7.35Кб |
11. Discounted Return-opXGNPwwn7g.en.vtt |
7.16Кб |
11. Discounted Return-opXGNPwwn7g.mp4 |
14.30Мб |
11. Discounted Return-opXGNPwwn7g.pt-BR.vtt |
7.96Кб |
11. Discounted Return-opXGNPwwn7g.zh-CN.vtt |
5.97Кб |
11. Gradient Descent.html |
11.80Кб |
11. Implementation.html |
7.09Кб |
11. Implementing Deep Q-Learning.html |
6.92Кб |
11. Linear Function Approximation.html |
6.11Кб |
11. Linear Function Approximation-OJ5wrB7o-pI.en.vtt |
6.91Кб |
11. Linear Function Approximation-OJ5wrB7o-pI.mp4 |
28.67Мб |
11. Linear Function Approximation-OJ5wrB7o-pI.pt-BR.vtt |
7.81Кб |
11. Linear Function Approximation-OJ5wrB7o-pI.zh-CN.vtt |
5.81Кб |
11. Minimizing Error Functions.html |
9.12Кб |
11. Minimizing Error Functions-RbT2TXN_6tY.en.vtt |
4.50Кб |
11. Minimizing Error Functions-RbT2TXN_6tY.mp4 |
3.85Мб |
11. Minimizing Error Functions-RbT2TXN_6tY.pt-BR.vtt |
4.58Кб |
11. Model Optimizer Solution-_Qhz9SbR7xY.en.vtt |
3.35Кб |
11. Model Optimizer Solution-_Qhz9SbR7xY.mp4 |
4.14Мб |
11. Model Optimizer Solution-_Qhz9SbR7xY.pt-BR.vtt |
3.37Кб |
11. Model Optimizer Solution-_Qhz9SbR7xY.zh-CN.vtt |
3.06Кб |
11. Model Optimizer Solution.html |
6.00Кб |
11. NumPy Quiz.html |
10.47Кб |
11. Optimal Policies.html |
5.87Кб |
11. Optimal Policies-2rguYpVyCto.en.vtt |
3.91Кб |
11. Optimal Policies-2rguYpVyCto.mp4 |
7.11Мб |
11. Optimal Policies-2rguYpVyCto.pt-BR.vtt |
4.20Кб |
11. Optimal Policies-2rguYpVyCto.zh-CN.vtt |
3.32Кб |
11. Other architectures.html |
6.02Кб |
11. Other Architectures-MsxFDuYlTuQ.en.vtt |
2.31Кб |
11. Other Architectures-MsxFDuYlTuQ.mp4 |
1.71Мб |
11. Other Architectures-MsxFDuYlTuQ.pt-BR.vtt |
2.45Кб |
11. Other Architectures-MsxFDuYlTuQ.zh-CN.vtt |
2.04Кб |
11. Output and Loss Solutions.html |
5.95Кб |
11. Output And Loss Solutions-CT8hcU7FmGc.en.vtt |
3.45Кб |
11. Output And Loss Solutions-CT8hcU7FmGc.mp4 |
4.69Мб |
11. Output And Loss Solutions-CT8hcU7FmGc.pt-BR.vtt |
3.21Кб |
11. Output And Loss Solutions-CT8hcU7FmGc.zh-CN.vtt |
3.05Кб |
11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.en.vtt |
3.45Кб |
11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.mp4 |
2.87Мб |
11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.pt-BR.vtt |
3.27Кб |
11. Perceptron Algorithm.html |
21.88Кб |
11. Quiz Incremental Mean.html |
9.56Кб |
11. ROC Curve.html |
5.54Кб |
11. ROC Curve-2Iw5TiGzJI4.en.vtt |
8.66Кб |
11. ROC Curve-2Iw5TiGzJI4.mp4 |
6.66Мб |
11. ROC Curve-2Iw5TiGzJI4.pt-BR.vtt |
8.12Кб |
11. ROC Curve-2Iw5TiGzJI4.zh-CN.vtt |
7.30Кб |
11. Solution Random Vs Preinitialized Thoughts-sOuoRZRKDzs.en.vtt |
1.14Кб |
11. Solution Random Vs Preinitialized Thoughts-sOuoRZRKDzs.mp4 |
2.83Мб |
11. Solution Random Vs Preinitialized Thoughts-sOuoRZRKDzs.pt-BR.vtt |
1.02Кб |
11. Solution Random Vs Preinitialized Thoughts-sOuoRZRKDzs.zh-CN.vtt |
965б |
11. Solution Random vs Pre-initialized Weight.html |
7.99Кб |
11. Two-layer Neural Network.html |
8.12Кб |
11. Vanishing Gradient.html |
6.17Кб |
11. Vanishing Gradient-W_JJm_5syFw.en.vtt |
1.46Кб |
11. Vanishing Gradient-W_JJm_5syFw.mp4 |
1.32Мб |
11. Vanishing Gradient-W_JJm_5syFw.pt-BR.vtt |
1.56Кб |
11. Vanishing Gradient-W_JJm_5syFw.zh-CN.vtt |
1.24Кб |
12. 14 RNN A V4 Final-ofbnDxGSUcg.en.vtt |
5.64Кб |
12. 14 RNN A V4 Final-ofbnDxGSUcg.mp4 |
10.43Мб |
12. 14 RNN A V4 Final-ofbnDxGSUcg.pt-BR.vtt |
5.80Кб |
12. 14 RNN A V4 Final-ofbnDxGSUcg.zh-CN.vtt |
5.05Кб |
12. Backpropagation.html |
36.10Кб |
12. Building the Network Solution.html |
6.54Кб |
12. Building the Network Solution-Ikp3rVzG970.en.vtt |
3.43Кб |
12. Building the Network Solution-Ikp3rVzG970.mp4 |
4.33Мб |
12. Building the Network Solution-Ikp3rVzG970.pt-BR.vtt |
2.89Кб |
12. Building the Network Solution-Ikp3rVzG970.zh-CN.vtt |
3.08Кб |
12. Build the Network.html |
5.89Кб |
12. Build The Network-RVNjDlWTBQU.en.vtt |
4.09Кб |
12. Build The Network-RVNjDlWTBQU.mp4 |
7.10Мб |
12. Build The Network-RVNjDlWTBQU.pt-BR.vtt |
4.00Кб |
12. Build The Network-RVNjDlWTBQU.zh-CN.vtt |
3.45Кб |
12. Finishing up.html |
5.76Кб |
12. Implementation.html |
9.10Кб |
12. Kernel Functions.html |
6.03Кб |
12. Kernel Functions-RdkPVYyVOvU.en.vtt |
2.94Кб |
12. Kernel Functions-RdkPVYyVOvU.mp4 |
8.91Мб |
12. Kernel Functions-RdkPVYyVOvU.pt-BR.vtt |
3.16Кб |
12. Kernel Functions-RdkPVYyVOvU.zh-CN.vtt |
2.49Кб |
12. MC Control Policy Evaluation.html |
7.08Кб |
12. MC Control Policy Evaluation-3_opwMzpEEI.en.vtt |
2.22Кб |
12. MC Control Policy Evaluation-3_opwMzpEEI.mp4 |
9.10Мб |
12. MC Control Policy Evaluation-3_opwMzpEEI.pt-BR.vtt |
2.51Кб |
12. MC Control Policy Evaluation-3_opwMzpEEI.zh-CN.vtt |
1.82Кб |
12. Mean vs Total Error.html |
8.38Кб |
12. Mini Project 3.html |
8.52Кб |
12. Mini Project TD (Part 3).html |
6.77Кб |
12. Non-Linear Regions.html |
8.40Кб |
12. Non-Linear Regions-B8UrWnHh1Wc.en.vtt |
1.77Кб |
12. Non-Linear Regions-B8UrWnHh1Wc.mp4 |
1.33Мб |
12. Non-Linear Regions-B8UrWnHh1Wc.pt-BR.vtt |
1.51Кб |
12. Non-Linear Regions-B8UrWnHh1Wc.zh-CN.vtt |
1.57Кб |
12. Other Activation Functions.html |
6.53Кб |
12. Other Activation Functions-kA-1vUt6cvQ.en.vtt |
2.68Кб |
12. Other Activation Functions-kA-1vUt6cvQ.mp4 |
2.30Мб |
12. Other Activation Functions-kA-1vUt6cvQ.pt-BR.vtt |
2.55Кб |
12. Other Activation Functions-kA-1vUt6cvQ.zh-CN.vtt |
2.34Кб |
12. Outro LSTM.html |
5.64Кб |
12.png |
1.67Кб |
12. Quiz Optimal Policies.html |
12.79Кб |
12. Quiz Pole-Balancing.html |
12.01Кб |
12. Quiz TensorFlow ReLUs.html |
9.81Кб |
12. RNN (part a).html |
9.48Кб |
12. Stride and Padding.html |
7.59Кб |
12. Stride and Padding-0r9o8hprDXQ.en.vtt |
4.41Кб |
12. Stride and Padding-0r9o8hprDXQ.mp4 |
7.98Мб |
12. Stride and Padding-0r9o8hprDXQ.pt-BR.vtt |
4.55Кб |
12. Stride and Padding-0r9o8hprDXQ.zh-CN.vtt |
3.74Кб |
12. TensorFlow Implementation.html |
6.34Кб |
12. Trained Semi-Supervised GAN.html |
6.02Кб |
12. Trained Semi-Supervised GAN-9yWYZDX8-O8.en.vtt |
5.97Кб |
12. Trained Semi-Supervised GAN-9yWYZDX8-O8.mp4 |
7.20Мб |
12. Trained Semi-Supervised GAN-9yWYZDX8-O8.pt-BR.vtt |
5.67Кб |
12. Trained Semi-Supervised GAN-9yWYZDX8-O8.zh-CN.vtt |
5.28Кб |
12. Validating the Training.html |
7.86Кб |
12. Validating The Training-Oxm9ofvov3I.en.vtt |
2.65Кб |
12. Validating The Training-Oxm9ofvov3I.mp4 |
5.51Мб |
12. Validating The Training-Oxm9ofvov3I.pt-BR.vtt |
2.28Кб |
12. Validating The Training-Oxm9ofvov3I.zh-CN.vtt |
2.31Кб |
13. 13 Quiz Sensitivity And Specificty V3-O17MnhWBmKA.en.vtt |
505б |
13. 13 Quiz Sensitivity And Specificty V3-O17MnhWBmKA.mp4 |
888.58Кб |
13. 13 Quiz Sensitivity And Specificty V3-O17MnhWBmKA.pt-BR.vtt |
420б |
13. 13 Quiz Sensitivity And Specificty V3-O17MnhWBmKA.zh-CN.vtt |
487б |
13. 16 RNN B V4 Final-wsif3p5t7CI.en.vtt |
5.30Кб |
13. 16 RNN B V4 Final-wsif3p5t7CI.mp4 |
21.12Мб |
13. 16 RNN B V4 Final-wsif3p5t7CI.pt-BR.vtt |
5.93Кб |
13. 16 RNN B V4 Final-wsif3p5t7CI.zh-CN.vtt |
4.62Кб |
13. Batch vs Stochastic Gradient Descent.html |
6.29Кб |
13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.en.vtt |
4.64Кб |
13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.mp4 |
3.95Мб |
13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.pt-BR.vtt |
4.63Кб |
13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.zh-CN.vtt |
4.10Кб |
13. Build The Network And Results-hu8iMMqajmQ.en.vtt |
7.81Кб |
13. Build The Network And Results-hu8iMMqajmQ.mp4 |
13.27Мб |
13. Build The Network And Results-hu8iMMqajmQ.pt-BR.vtt |
7.64Кб |
13. Build The Network And Results-hu8iMMqajmQ.zh-CN.vtt |
6.85Кб |
13. Build the Network Solution.html |
5.97Кб |
13. Convolutional Layers in Keras.html |
11.95Кб |
13. Deep Neural Network in TensorFlow.html |
11.97Кб |
13. Error Functions.html |
8.38Кб |
13. Error Functions-YfUUunxWIJw.en.vtt |
790б |
13. Error Functions-YfUUunxWIJw.mp4 |
3.54Мб |
13. Error Functions-YfUUunxWIJw.pt-BR.vtt |
804б |
13. Error Functions-YfUUunxWIJw.zh-CN.vtt |
739б |
13. MC Control Policy Improvement.html |
7.09Кб |
13. MC Control Policy Improvement-2RKH-BInX7s.en.vtt |
6.73Кб |
13. MC Control Policy Improvement-2RKH-BInX7s.mp4 |
22.00Мб |
13. MC Control Policy Improvement-2RKH-BInX7s.pt-BR.vtt |
7.10Кб |
13. MC Control Policy Improvement-2RKH-BInX7s.zh-CN.vtt |
5.59Кб |
13. MDPs, Part 1.html |
7.89Кб |
13. MDPs, Part 1-NBWbluSbxPg.en.vtt |
4.00Кб |
13. MDPs, Part 1-NBWbluSbxPg.mp4 |
3.86Мб |
13. MDPs, Part 1-NBWbluSbxPg.pt-BR.vtt |
4.29Кб |
13. MDPs, Part 1-NBWbluSbxPg.zh-CN.vtt |
3.38Кб |
13. Mini-batch Gradient Descent.html |
8.70Кб |
13. Mini Project 3 Solution.html |
7.29Кб |
13. Mini Project 3 Solution-imnxzCev4SI.en.vtt |
18.48Кб |
13. Mini Project 3 Solution-imnxzCev4SI.mp4 |
54.58Мб |
13. Mini Project 3 Solution-imnxzCev4SI.pt-BR.vtt |
15.80Кб |
13. Mini Project 3 Solution-imnxzCev4SI.zh-CN.vtt |
15.84Кб |
13. Mini Project DP (Part 2).html |
7.79Кб |
13. Non-Linear Function Approximation.html |
6.14Кб |
13. Non-Linear Function Approximation-rITnmpD2mN8.en.vtt |
1.56Кб |
13. Non-Linear Function Approximation-rITnmpD2mN8.mp4 |
4.95Мб |
13. Non-Linear Function Approximation-rITnmpD2mN8.pt-BR.vtt |
1.80Кб |
13. Non-Linear Function Approximation-rITnmpD2mN8.zh-CN.vtt |
1.30Кб |
13. Quiz Sensitivity and Specificity.html |
9.49Кб |
13. RNN (part b).html |
12.54Кб |
13. Stochastic Gradient Descent.html |
24.05Кб |
13. Summary.html |
11.02Кб |
13. TD Control Expected Sarsa.html |
6.54Кб |
13. TD Control Expected Sarsa-kEKupCyU0P0.en.vtt |
1.22Кб |
13. TD Control Expected Sarsa-kEKupCyU0P0.mp4 |
4.28Мб |
13. TD Control Expected Sarsa-kEKupCyU0P0.zh-CN.vtt |
1.02Кб |
13. Training Losses.html |
6.44Кб |
13. Training Losses-IaAeDrXMEcU.en.vtt |
3.76Кб |
13. Training Losses-IaAeDrXMEcU.mp4 |
5.83Мб |
13. Training Losses-IaAeDrXMEcU.pt-BR.vtt |
3.60Кб |
13. Training Losses-IaAeDrXMEcU.zh-CN.vtt |
3.33Кб |
13. Wrap Up.html |
5.85Кб |
13. Wrap Up-x6JggcDTcys.en.vtt |
1.22Кб |
13. Wrap Up-x6JggcDTcys.mp4 |
7.20Мб |
13. Wrap Up-x6JggcDTcys.pt-BR.vtt |
1.49Кб |
13. Wrap Up-x6JggcDTcys.zh-CN.vtt |
1.10Кб |
14. 17 RNN Unfolded V3 Final-xLIA_PTWXog.en.vtt |
2.55Кб |
14. 17 RNN Unfolded V3 Final-xLIA_PTWXog.mp4 |
10.50Мб |
14. 17 RNN Unfolded V3 Final-xLIA_PTWXog.pt-BR.vtt |
2.73Кб |
14. 17 RNN Unfolded V3 Final-xLIA_PTWXog.zh-CN.vtt |
2.20Кб |
14. Absolute Error vs Squared Error.html |
10.78Кб |
14. Absolute Vs Squared Error-csvdjaqt1GM.en.vtt |
831б |
14. Absolute Vs Squared Error-csvdjaqt1GM.mp4 |
660.25Кб |
14. Absolute Vs Squared Error-csvdjaqt1GM.pt-BR.vtt |
793б |
14. DLND REG 12 Absolute Vs Squared Error 2 V1 (1)-7El1OH17Oi4.en.vtt |
983б |
14. DLND REG 12 Absolute Vs Squared Error 2 V1 (1)-7El1OH17Oi4.mp4 |
692.80Кб |
14. DLND REG 12 Absolute Vs Squared Error 2 V1 (1)-7El1OH17Oi4.pt-BR.vtt |
956б |
14. DLND REG 13 Absolute Vs Squared Error 3 V1 (1)-bIVGf_dDkrY.en.vtt |
1.00Кб |
14. DLND REG 13 Absolute Vs Squared Error 3 V1 (1)-bIVGf_dDkrY.mp4 |
873.14Кб |
14. DLND REG 13 Absolute Vs Squared Error 3 V1 (1)-bIVGf_dDkrY.pt-BR.vtt |
970б |
14. Error Functions-jfKShxGAbok.en.vtt |
9.45Кб |
14. Error Functions-jfKShxGAbok.mp4 |
7.21Мб |
14. Error Functions-jfKShxGAbok.pt-BR.vtt |
9.14Кб |
14. Error Functions-jfKShxGAbok.zh-CN.vtt |
8.35Кб |
14. Implementation.html |
7.73Кб |
14. Learning Rate Decay.html |
6.15Кб |
14. Learning Rate-TwJ8aSZoh2U.en.vtt |
1.12Кб |
14. Learning Rate-TwJ8aSZoh2U.mp4 |
927.05Кб |
14. Learning Rate-TwJ8aSZoh2U.pt-BR.vtt |
1.26Кб |
14. Learning Rate-TwJ8aSZoh2U.zh-CN.vtt |
1020б |
14. Log-loss Error Function.html |
10.04Кб |
14. MDPs, Part 2.html |
6.51Кб |
14. MDPs, Part 2-CUTtQvxKkNw.en.vtt |
6.81Кб |
14. MDPs, Part 2-CUTtQvxKkNw.mp4 |
6.82Мб |
14. MDPs, Part 2-CUTtQvxKkNw.pt-BR.vtt |
7.27Кб |
14. MDPs, Part 2-CUTtQvxKkNw.zh-CN.vtt |
5.71Кб |
14. Policy Improvement.html |
7.37Кб |
14. Policy Improvement-4_adUEK0IHg.en.vtt |
8.10Кб |
14. Policy Improvement-4_adUEK0IHg.mp4 |
30.38Мб |
14. Policy Improvement-4_adUEK0IHg.pt-BR.vtt |
8.94Кб |
14. Policy Improvement-4_adUEK0IHg.zh-CN.vtt |
6.90Кб |
14. Quiz Dimensionality.html |
16.33Кб |
14. Quiz Epsilon-Greedy Policies.html |
14.61Кб |
14. RNN- Unfolded Model.html |
7.50Кб |
14. Save and Restore TensorFlow Models.html |
15.08Кб |
14. SGD Solution.html |
19.52Кб |
14. Solution Sensitivity and Specificity.html |
7.94Кб |
14. Solution Sensitivty And Specificity-GBZjyeMjKxc.en.vtt |
850б |
14. Solution Sensitivty And Specificity-GBZjyeMjKxc.mp4 |
1.57Мб |
14. Solution Sensitivty And Specificity-GBZjyeMjKxc.pt-BR.vtt |
772б |
14. Solution Sensitivty And Specificity-GBZjyeMjKxc.zh-CN.vtt |
766б |
14. Summary.html |
5.96Кб |
14. Summary-MTEBk43oByU.en.vtt |
1.61Кб |
14. Summary-MTEBk43oByU.mp4 |
9.91Мб |
14. Summary-MTEBk43oByU.pt-BR.vtt |
1.87Кб |
14. Summary-MTEBk43oByU.zh-CN.vtt |
1.37Кб |
14. Training Optimizers.html |
6.47Кб |
14. Training Optimizers-AU5gH7LS57E.en.vtt |
3.04Кб |
14. Training Optimizers-AU5gH7LS57E.mp4 |
3.45Мб |
14. Training Optimizers-AU5gH7LS57E.pt-BR.vtt |
2.70Кб |
14. Training Optimizers-AU5gH7LS57E.zh-CN.vtt |
2.67Кб |
14. Understanding Neural Noise.html |
7.05Кб |
14. Understanding Neural Noise-ubqhh4Iv7O4.en.vtt |
15.63Кб |
14. Understanding Neural Noise-ubqhh4Iv7O4.mp4 |
50.21Мб |
14. Understanding Neural Noise-ubqhh4Iv7O4.pt-BR.vtt |
13.69Кб |
14. Understanding Neural Noise-ubqhh4Iv7O4.zh-CN.vtt |
13.47Кб |
15. Discrete vs. Continuous-Rm2KxFaPiJg.en.vtt |
5.70Кб |
15. Discrete vs. Continuous-Rm2KxFaPiJg.mp4 |
5.35Мб |
15. Discrete vs. Continuous-Rm2KxFaPiJg.pt-BR.vtt |
5.67Кб |
15. Discrete vs. Continuous-Rm2KxFaPiJg.zh-CN.vtt |
4.67Кб |
15. Discrete vs Continuous.html |
10.66Кб |
15. Discrete vs Continuous-rdP-RPDFkl0.en.vtt |
551б |
15. Discrete vs Continuous-rdP-RPDFkl0.mp4 |
2.26Мб |
15. Discrete vs Continuous-rdP-RPDFkl0.pt-BR.vtt |
584б |
15. Discrete vs Continuous-rdP-RPDFkl0.zh-CN.vtt |
481б |
15. Exploration vs. Exploitation.html |
17.42Кб |
15. Finetuning.html |
10.49Кб |
15. Implementation.html |
9.78Кб |
15. Linear Regression in scikit-learn.html |
16.86Кб |
15. Mini Project 4.html |
7.64Кб |
15. Mini Project TD (Part 4).html |
6.77Кб |
15. Momentum.html |
6.10Кб |
15. Momentum-r-rYz_PEWC8.en.vtt |
2.50Кб |
15. Momentum-r-rYz_PEWC8.mp4 |
2.14Мб |
15. Momentum-r-rYz_PEWC8.pt-BR.vtt |
2.70Кб |
15. Momentum-r-rYz_PEWC8.zh-CN.vtt |
2.21Кб |
15. More on Sensitivity and Specificity.html |
10.58Кб |
15. Outro.html |
6.20Кб |
15. Pooling Layers.html |
7.85Кб |
15. Pooling Layers-OkkIZNs7Cyc.en.vtt |
5.40Кб |
15. Pooling Layers-OkkIZNs7Cyc.mp4 |
5.82Мб |
15. Pooling Layers-OkkIZNs7Cyc.pt-BR.vtt |
5.81Кб |
15. Pooling Layers-OkkIZNs7Cyc.zh-CN.vtt |
4.64Кб |
15. Quiz One-Step Dynamics, Part 1.html |
11.10Кб |
15. Training Losses and Optimizers Solution.html |
6.61Кб |
15. Training Losses and Optimizers Solutions-HlABZ9Q7xEo.en.vtt |
5.07Кб |
15. Training Losses and Optimizers Solutions-HlABZ9Q7xEo.mp4 |
6.82Мб |
15. Training Losses and Optimizers Solutions-HlABZ9Q7xEo.pt-BR.vtt |
4.99Кб |
15. Training Losses and Optimizers Solutions-HlABZ9Q7xEo.zh-CN.vtt |
4.59Кб |
15. Unfolded Model Quiz.html |
8.81Кб |
16. 15 Quiz Diagnosing Cancer V3-4UzkwecBJro.en.vtt |
508б |
16. 15 Quiz Diagnosing Cancer V3-4UzkwecBJro.mp4 |
1.14Мб |
16. 15 Quiz Diagnosing Cancer V3-4UzkwecBJro.pt-BR.vtt |
472б |
16. 15 Quiz Diagnosing Cancer V3-4UzkwecBJro.zh-CN.vtt |
456б |
16. 18 RNN Example V5 Final-MDLk3fhpTx0.en.vtt |
5.05Кб |
16. 18 RNN Example V5 Final-MDLk3fhpTx0.mp4 |
22.11Мб |
16. 18 RNN Example V5 Final-MDLk3fhpTx0.pt-BR.vtt |
5.46Кб |
16. 18 RNN Example V5 Final-MDLk3fhpTx0.zh-CN.vtt |
4.63Кб |
16. Analyzing Performance.html |
8.54Кб |
16. A Trained GAN.html |
6.43Кб |
16. A Trained GAN-TR-uEJcjig4.en.vtt |
9.95Кб |
16. A Trained GAN-TR-uEJcjig4.mp4 |
11.67Мб |
16. A Trained GAN-TR-uEJcjig4.pt-BR.vtt |
9.13Кб |
16. A Trained GAN-TR-uEJcjig4.zh-CN.vtt |
8.90Кб |
16. DL 18 Q Softmax V2-RC_A9Tu99y4.en.vtt |
5.37Кб |
16. DL 18 Q Softmax V2-RC_A9Tu99y4.mp4 |
4.01Мб |
16. DL 18 Q Softmax V2-RC_A9Tu99y4.pt-BR.vtt |
5.06Кб |
16. DL 18 Q Softmax V2-RC_A9Tu99y4.zh-CN.vtt |
4.37Кб |
16. DL 18 S Softmax-n8S-v_LCTms.en.vtt |
2.59Кб |
16. DL 18 S Softmax-n8S-v_LCTms.mp4 |
1.95Мб |
16. DL 18 S Softmax-n8S-v_LCTms.pt-BR.vtt |
2.52Кб |
16. DL 18 S Softmax-n8S-v_LCTms.zh-CN.vtt |
2.30Кб |
16. Error Functions Around the World.html |
6.27Кб |
16. Error Functions Around the World-34AAcTECu2A.en.vtt |
1.17Кб |
16. Error Functions Around the World-34AAcTECu2A.mp4 |
1.73Мб |
16. Error Functions Around the World-34AAcTECu2A.pt-BR.vtt |
1.08Кб |
16. Error Functions Around the World-34AAcTECu2A.zh-CN.vtt |
1.13Кб |
16. Higher Dimensions.html |
7.07Кб |
16. Higher Dimensions--UvpQV1qmiE.en.vtt |
2.94Кб |
16. Higher Dimensions--UvpQV1qmiE.mp4 |
2.65Мб |
16. Higher Dimensions--UvpQV1qmiE.pt-BR.vtt |
2.78Кб |
16. Implementation.html |
7.81Кб |
16. Max Pooling Layers in Keras.html |
10.75Кб |
16. Mini Project DP (Part 3).html |
7.79Кб |
16. Quiz Diagnosing Cancer.html |
8.82Кб |
16. Quiz One-Step Dynamics, Part 2.html |
14.77Кб |
16. Quiz - Softmax-NNoezNnAMTY.en.vtt |
495б |
16. Quiz - Softmax-NNoezNnAMTY.mp4 |
1.73Мб |
16. Quiz - Softmax-NNoezNnAMTY.pt-BR.vtt |
501б |
16. Quiz - Softmax-NNoezNnAMTY.zh-CN.vtt |
548б |
16. Quiz TensorFlow Dropout.html |
14.12Кб |
16. RNN- Example.html |
7.78Кб |
16. Softmax.html |
14.70Кб |
16. Understanding Inefficiencies in our Network.html |
7.17Кб |
16. Understanding Inefficiencies in our Network-4MuS-6ATxCU.en.vtt |
9.30Кб |
16. Understanding Inefficiencies in our Network-4MuS-6ATxCU.mp4 |
20.67Мб |
16. Understanding Inefficiencies in our Network-4MuS-6ATxCU.pt-BR.vtt |
7.84Кб |
16. Understanding Inefficiencies in our Network-4MuS-6ATxCU.zh-CN.vtt |
8.20Кб |
17. 16 Solution Diagnosing Cancer V3-IJYvt2ssUFk.en.vtt |
1.47Кб |
17. 16 Solution Diagnosing Cancer V3-IJYvt2ssUFk.mp4 |
2.31Мб |
17. 16 Solution Diagnosing Cancer V3-IJYvt2ssUFk.pt-BR.vtt |
1.34Кб |
17. 16 Solution Diagnosing Cancer V3-IJYvt2ssUFk.zh-CN.vtt |
1.25Кб |
17. 19 RNN BPTT A V6 Final-eE2L3-2wKac.en.vtt |
4.03Кб |
17. 19 RNN BPTT A V6 Final-eE2L3-2wKac.mp4 |
21.57Мб |
17. 19 RNN BPTT A V6 Final-eE2L3-2wKac.pt-BR.vtt |
4.32Кб |
17. 19 RNN BPTT A V6 Final-eE2L3-2wKac.zh-CN.vtt |
3.52Кб |
17. Backpropagation Through Time (part a).html |
12.74Кб |
17. CNNs for Image Classification.html |
10.61Кб |
17. CNNs For Image Classification-l9vg_1YUlzg.en.vtt |
11.37Кб |
17. CNNs For Image Classification-l9vg_1YUlzg.mp4 |
18.16Мб |
17. CNNs For Image Classification-l9vg_1YUlzg.pt-BR.vtt |
12.21Кб |
17. CNNs For Image Classification-l9vg_1YUlzg.zh-CN.vtt |
9.72Кб |
17. Conclusion-wOiUQDgGD9E.en.vtt |
725б |
17. Conclusion-wOiUQDgGD9E.mp4 |
2.58Мб |
17. Conclusion-wOiUQDgGD9E.pt-BR.vtt |
1.02Кб |
17. Conclusion-wOiUQDgGD9E.zh-CN.vtt |
655б |
17. Doing More With Your GAN.html |
8.10Кб |
17. MDPs, Part 3.html |
6.51Кб |
17. MDPs, Part 3-UlXHFbla3QI.en.vtt |
2.97Кб |
17. MDPs, Part 3-UlXHFbla3QI.mp4 |
14.75Мб |
17. MDPs, Part 3-UlXHFbla3QI.pt-BR.vtt |
3.38Кб |
17. MDPs, Part 3-UlXHFbla3QI.zh-CN.vtt |
2.42Кб |
17. Mini Project 5.html |
8.44Кб |
17. Mini Project MC (Part 3).html |
7.43Кб |
17. Multiple Linear Regression.html |
13.40Кб |
17. One-Hot Encoding.html |
8.38Кб |
17. One-Hot Encoding-AePvjhyvsBo.en.vtt |
2.23Кб |
17. One-Hot Encoding-AePvjhyvsBo.mp4 |
1.65Мб |
17. One-Hot Encoding-AePvjhyvsBo.pt-BR.vtt |
2.03Кб |
17. One-Hot Encoding-AePvjhyvsBo.zh-CN.vtt |
2.02Кб |
17. Outro.html |
6.31Кб |
17. Policy Iteration.html |
7.36Кб |
17. Policy Iteration-gqv7o1kBDc0.en.vtt |
2.08Кб |
17. Policy Iteration-gqv7o1kBDc0.mp4 |
8.14Мб |
17. Policy Iteration-gqv7o1kBDc0.pt-BR.vtt |
2.37Кб |
17. Policy Iteration-gqv7o1kBDc0.zh-CN.vtt |
1.75Кб |
17. Solution Diagnosing Cancer.html |
10.31Кб |
17. Summary.html |
10.31Кб |
18. 20 RNN BPTT B V5 Final-bUU9BEQw0IA.en.vtt |
4.40Кб |
18. 20 RNN BPTT B V5 Final-bUU9BEQw0IA.mp4 |
18.10Мб |
18. 20 RNN BPTT B V5 Final-bUU9BEQw0IA.pt-BR.vtt |
4.70Кб |
18. 20 RNN BPTT B V5 Final-bUU9BEQw0IA.zh-CN.vtt |
3.68Кб |
18. Backpropagation Through Time (part b).html |
17.59Кб |
18. Closed Form Solution.html |
7.26Кб |
18. Closed Form Solution-G3fRVgLa5gI.en.vtt |
3.54Кб |
18. Closed Form Solution-G3fRVgLa5gI.mp4 |
2.84Мб |
18. Closed Form Solution-G3fRVgLa5gI.pt-BR.vtt |
3.39Кб |
18. CNNs in Keras Practical Example.html |
9.37Кб |
18. CNNs in Keras Practical Example-faFvmGDwXX0.en.vtt |
5.39Кб |
18. CNNs in Keras Practical Example-faFvmGDwXX0.mp4 |
8.71Мб |
18. CNNs in Keras Practical Example-faFvmGDwXX0.pt-BR.vtt |
6.12Кб |
18. CNNs in Keras Practical Example-faFvmGDwXX0.zh-CN.vtt |
4.78Кб |
18. Finite MDPs.html |
11.29Кб |
18. Images-1GdiN5Wc8LA.mp4 |
395.42Кб |
18. Implementation.html |
8.26Кб |
18. Maximum Likelihood.html |
10.76Кб |
18. Maximum Likelihood 1-1yJx-QtlvNI.en.vtt |
1.64Кб |
18. Maximum Likelihood 1-1yJx-QtlvNI.mp4 |
5.75Мб |
18. Maximum Likelihood 1-1yJx-QtlvNI.pt-BR.vtt |
1.61Кб |
18. Maximum Likelihood 1-1yJx-QtlvNI.zh-CN.vtt |
1.43Кб |
18. Maximum Likelihood 2-6nUUeQ9AeUA.en.vtt |
4.41Кб |
18. Maximum Likelihood 2-6nUUeQ9AeUA.mp4 |
3.85Мб |
18. Maximum Likelihood 2-6nUUeQ9AeUA.pt-BR.vtt |
4.49Кб |
18. Maximum Likelihood 2-6nUUeQ9AeUA.zh-CN.vtt |
3.67Кб |
18. MC Control Constant-alpha, Part 1.html |
7.08Кб |
18. MC Control Constant-alpha-QFV1nI9Zpoo.en.vtt |
3.95Кб |
18. MC Control Constant-alpha-QFV1nI9Zpoo.mp4 |
12.46Мб |
18. MC Control Constant-alpha-QFV1nI9Zpoo.pt-BR.vtt |
4.05Кб |
18. MC Control Constant-alpha-QFV1nI9Zpoo.zh-CN.vtt |
3.23Кб |
18. Mini Project 5 Solution.html |
7.29Кб |
18. Mini Project 5 Solution-Hv86B_jjWTI.en.vtt |
9.55Кб |
18. Mini Project 5 Solution-Hv86B_jjWTI.mp4 |
28.86Мб |
18. Mini Project 5 Solution-Hv86B_jjWTI.pt-BR.vtt |
8.27Кб |
18. Mini Project 5 Solution-Hv86B_jjWTI.zh-CN.vtt |
8.19Кб |
18. Refresh on ROC Curves.html |
11.04Кб |
18. ROC Curve-2Iw5TiGzJI4.en.vtt |
8.66Кб |
18. ROC Curve-2Iw5TiGzJI4.mp4 |
6.66Мб |
18. ROC Curve-2Iw5TiGzJI4.pt-BR.vtt |
8.12Кб |
18. ROC Curve-2Iw5TiGzJI4.zh-CN.vtt |
7.30Кб |
19. (Optional) Closed form Solution Math.html |
14.48Кб |
19. 17 Quiz ROC Curve 1 PT2 V1-Xv3v59_CfEU.en.vtt |
791б |
19. 17 Quiz ROC Curve 1 PT2 V1-Xv3v59_CfEU.mp4 |
1.11Мб |
19. 17 Quiz ROC Curve 1 PT2 V1-Xv3v59_CfEU.pt-BR.vtt |
678б |
19. 17 Quiz ROC Curve 1 PT2 V1-Xv3v59_CfEU.zh-CN.vtt |
729б |
19. 21 RNN BPTT C V7 Final-uBy_eIJDD1M.en.vtt |
3.29Кб |
19. 21 RNN BPTT C V7 Final-uBy_eIJDD1M.mp4 |
17.23Мб |
19. 21 RNN BPTT C V7 Final-uBy_eIJDD1M.pt-BR.vtt |
3.66Кб |
19. 21 RNN BPTT C V7 Final-uBy_eIJDD1M.zh-CN.vtt |
2.79Кб |
19. Backpropagation Through Time (part c).html |
14.06Кб |
19. Further Noise Reduction.html |
7.03Кб |
19. Further Noise Reduction-Kl3hWxizKVg.en.vtt |
10.90Кб |
19. Further Noise Reduction-Kl3hWxizKVg.mp4 |
22.33Мб |
19. Further Noise Reduction-Kl3hWxizKVg.pt-BR.vtt |
10.16Кб |
19. Further Noise Reduction-Kl3hWxizKVg.zh-CN.vtt |
9.97Кб |
19. Maximizing Probabilities.html |
10.23Кб |
19. MC Control Constant-alpha, Part 2.html |
15.38Кб |
19. Mini Project CNNs in Keras.html |
8.39Кб |
19. Mini Project DP (Part 4).html |
7.79Кб |
19.png |
3.32Кб |
19. Quiz - Cross 1--xxrisIvD0E.en.vtt |
918б |
19. Quiz - Cross 1--xxrisIvD0E.mp4 |
3.02Мб |
19. Quiz - Cross 1--xxrisIvD0E.pt-BR.vtt |
947б |
19. Quiz - Cross 1--xxrisIvD0E.zh-CN.vtt |
813б |
19. Quiz Cross Entropy-njq6bYrPqSU.en.vtt |
2.30Кб |
19. Quiz Cross Entropy-njq6bYrPqSU.mp4 |
1.86Мб |
19. Quiz Cross Entropy-njq6bYrPqSU.pt-BR.vtt |
2.28Кб |
19. Quiz Cross Entropy-njq6bYrPqSU.zh-CN.vtt |
2.07Кб |
19. Quiz ROC Curve.html |
9.00Кб |
19. Summary.html |
12.12Кб |
1omsg2-mkguagky1c64uflw.gif |
183.96Кб |
20. BPTT Quiz 1.html |
9.07Кб |
20. Cross-Entropy 1.html |
8.63Кб |
20. Cross Entropy 1-iREoPUrpXvE.en.vtt |
4.81Кб |
20. Cross Entropy 1-iREoPUrpXvE.mp4 |
4.22Мб |
20. Cross Entropy 1-iREoPUrpXvE.pt-BR.vtt |
5.00Кб |
20. Cross Entropy 1-iREoPUrpXvE.zh-CN.vtt |
4.11Кб |
20. Image Augmentation in Keras.html |
9.42Кб |
20. Image Augmentation in Keras-odStujZq3GY.en.vtt |
8.22Кб |
20. Image Augmentation in Keras-odStujZq3GY.mp4 |
10.26Мб |
20. Image Augmentation in Keras-odStujZq3GY.pt-BR.vtt |
8.49Кб |
20. Image Augmentation in Keras-odStujZq3GY.zh-CN.vtt |
7.02Кб |
20. Implementation.html |
7.89Кб |
20. Linear Regression Warnings.html |
8.97Кб |
20. Mini Project 6.html |
8.59Кб |
20. Solution ROC Curve.html |
7.82Кб |
20. Solution ROC Curve-sdUUf6RRmXI.en.vtt |
943б |
20. Solution ROC Curve-sdUUf6RRmXI.mp4 |
1.11Мб |
20. Solution ROC Curve-sdUUf6RRmXI.pt-BR.vtt |
643б |
20. Solution ROC Curve-sdUUf6RRmXI.zh-CN.vtt |
829б |
20. Truncated Policy Iteration.html |
7.43Кб |
20. Truncated Policy Iteration-a-RvCxlPMho.en.vtt |
3.39Кб |
20. Truncated Policy Iteration-a-RvCxlPMho.mp4 |
14.13Мб |
20. Truncated Policy Iteration-a-RvCxlPMho.pt-BR.vtt |
3.74Кб |
20. Truncated Policy Iteration-a-RvCxlPMho.zh-CN.vtt |
2.90Кб |
21. BPTT Quiz 2.html |
8.71Кб |
21. Comparing our Results with Doctors.html |
7.81Кб |
21. Cross-Entropy 2.html |
12.88Кб |
21. CrossEntropy V1-1BnhC6e0TFw.en.vtt |
8.03Кб |
21. CrossEntropy V1-1BnhC6e0TFw.mp4 |
6.61Мб |
21. CrossEntropy V1-1BnhC6e0TFw.pt-BR.vtt |
7.81Кб |
21. CrossEntropy V1-1BnhC6e0TFw.zh-CN.vtt |
6.66Кб |
21. Formula For Cross 1-qvr_ego_d6w.en.vtt |
607б |
21. Formula For Cross 1-qvr_ego_d6w.mp4 |
2.08Мб |
21. Formula For Cross 1-qvr_ego_d6w.pt-BR.vtt |
719б |
21. Formula For Cross 1-qvr_ego_d6w.zh-CN.vtt |
545б |
21. Implementation.html |
9.86Кб |
21. Mini Project 6 Solution.html |
7.41Кб |
21. Mini Project 6 Solution-ji0famK7gOQ.en.vtt |
13.94Кб |
21. Mini Project 6 Solution-ji0famK7gOQ.mp4 |
39.15Мб |
21. Mini Project 6 Solution-ji0famK7gOQ.pt-BR.vtt |
12.17Кб |
21. Mini Project 6 Solution-ji0famK7gOQ.zh-CN.vtt |
12.11Кб |
21. Mini Project Image Augmentation in Keras.html |
8.48Кб |
21. Mini Project MC (Part 4).html |
7.43Кб |
21.png |
2.18Кб |
21. Polynomial Regression.html |
7.10Кб |
21. Polynomial Regression-DBhWG-PagEQ.en.vtt |
1.29Кб |
21. Polynomial Regression-DBhWG-PagEQ.mp4 |
982.28Кб |
21. Polynomial Regression-DBhWG-PagEQ.pt-BR.vtt |
1.18Кб |
21. ROC Curve-fWwe_JlpnlQ.en.vtt |
3.04Кб |
21. ROC Curve-fWwe_JlpnlQ.mp4 |
2.68Мб |
21. ROC Curve-fWwe_JlpnlQ.pt-BR.vtt |
2.64Кб |
21. ROC Curve-fWwe_JlpnlQ.zh-CN.vtt |
2.58Кб |
22. Analysis What's Going on in the Weights.html |
7.40Кб |
22. Analysis What's Going on in the Weights-UHsT35pbpcE.en.vtt |
13.69Кб |
22. Analysis What's Going on in the Weights-UHsT35pbpcE.mp4 |
33.67Мб |
22. Analysis What's Going on in the Weights-UHsT35pbpcE.pt-BR.vtt |
12.59Кб |
22. Analysis What's Going on in the Weights-UHsT35pbpcE.zh-CN.vtt |
12.07Кб |
22. BPTT Quiz 3.html |
12.21Кб |
22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.en.vtt |
4.72Кб |
22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.mp4 |
4.14Мб |
22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.pt-BR.vtt |
4.54Кб |
22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.zh-CN.vtt |
4.01Кб |
22. Groundbreaking CNN Architectures.html |
8.83Кб |
22. Groundbreaking CNN Architectures-ddrB-mhMfkY.en.vtt |
3.94Кб |
22. Groundbreaking CNN Architectures-ddrB-mhMfkY.mp4 |
8.09Мб |
22. Groundbreaking CNN Architectures-ddrB-mhMfkY.pt-BR.vtt |
4.26Кб |
22. Groundbreaking CNN Architectures-ddrB-mhMfkY.zh-CN.vtt |
3.52Кб |
22. Mini Project DP (Part 5).html |
7.79Кб |
22. Multi-Class Cross Entropy.html |
9.59Кб |
22. Regularization.html |
7.05Кб |
22. Regularization-PyFNIcsNma0.en.vtt |
10.87Кб |
22. Regularization-PyFNIcsNma0.mp4 |
8.76Мб |
22. Regularization-PyFNIcsNma0.pt-BR.vtt |
10.38Кб |
22. Summary.html |
15.12Кб |
22. Visualization.html |
7.79Кб |
22. Visualization-aGIGB4Ta3_A.en.vtt |
1.85Кб |
22. Visualization-aGIGB4Ta3_A.mp4 |
2.43Мб |
22. Visualization-aGIGB4Ta3_A.pt-BR.vtt |
1.78Кб |
22. Visualization-aGIGB4Ta3_A.zh-CN.vtt |
1.48Кб |
23. Andrew Trask - Outro-nIF0GLOQglQ.en-US.vtt |
2.73Кб |
23. Andrew Trask - Outro-nIF0GLOQglQ.mp4 |
11.79Мб |
23. Andrew Trask - Outro-nIF0GLOQglQ.pt-BR.vtt |
2.19Кб |
23. Andrew Trask - Outro-nIF0GLOQglQ.zh-CN.vtt |
2.48Кб |
23. Conclusion.html |
7.00Кб |
23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.en.vtt |
1.62Кб |
23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.mp4 |
1.49Мб |
23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.pt-BR.vtt |
1.42Кб |
23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.zh-CN.vtt |
1.46Кб |
23. Error Function-V5kkHldUlVU.en.vtt |
4.87Кб |
23. Error Function-V5kkHldUlVU.mp4 |
4.84Мб |
23. Error Function-V5kkHldUlVU.pt-BR.vtt |
5.19Кб |
23. Error Function-V5kkHldUlVU.zh-CN.vtt |
4.15Кб |
23. Logistic Regression.html |
10.07Кб |
23. Neural Network Regression.html |
7.00Кб |
23. Neural Network Regression-aUJCBqBfEnI.mp4 |
3.46Мб |
23. Neural Network Regression-aUJCBqBfEnI.pt-BR.vtt |
3.55Кб |
23. Some more math.html |
13.62Кб |
23. Value Iteration.html |
7.35Кб |
23. Value Iteration-XNeQn8N36y8.en.vtt |
4.18Кб |
23. Value Iteration-XNeQn8N36y8.mp4 |
15.65Мб |
23. Value Iteration-XNeQn8N36y8.pt-BR.vtt |
4.47Кб |
23. Value Iteration-XNeQn8N36y8.zh-CN.vtt |
3.42Кб |
23. Visualizando CNNs-mnqS_EhEZVg.en.vtt |
3.87Кб |
23. Visualizando CNNs-mnqS_EhEZVg.mp4 |
9.20Мб |
23. Visualizando CNNs-mnqS_EhEZVg.pt-BR.vtt |
3.83Кб |
23. Visualizando CNNs-mnqS_EhEZVg.zh-CN.vtt |
3.33Кб |
23. Visualizing CNNs (Part 1).html |
9.91Кб |
23. What is the network looking at.html |
7.94Кб |
23. What Is The Neural Network Looking At-qN-rvoxPbBw.en.vtt |
2.17Кб |
23. What Is The Neural Network Looking At-qN-rvoxPbBw.mp4 |
3.46Мб |
23. What Is The Neural Network Looking At-qN-rvoxPbBw.pt-BR.vtt |
1.72Кб |
23. What Is The Neural Network Looking At-qN-rvoxPbBw.zh-CN.vtt |
1.87Кб |
24. Confusion Matrix-Question 1-9GLNjmMUB_4.en.vtt |
5.71Кб |
24. Confusion Matrix-Question 1-9GLNjmMUB_4.en-US.vtt |
5.52Кб |
24. Confusion Matrix-Question 1-9GLNjmMUB_4.mp4 |
5.04Мб |
24. Confusion Matrix-Question 1-9GLNjmMUB_4.pt-BR.vtt |
4.76Кб |
24. Confusion Matrix-Question 1-9GLNjmMUB_4.zh-CN.vtt |
4.96Кб |
24. Gradient Descent.html |
16.37Кб |
24. Gradient Descent-rhVIF-nigrY.en.vtt |
3.85Кб |
24. Gradient Descent-rhVIF-nigrY.mp4 |
3.76Мб |
24. Gradient Descent-rhVIF-nigrY.pt-BR.vtt |
3.98Кб |
24. Implementation.html |
10.11Кб |
24. Neural Networks Playground.html |
7.68Кб |
24. Refresh on Confusion Matrices.html |
15.32Кб |
24. RNN Summary.html |
13.56Кб |
24. RNN Summary-nXP0oGGRrO8.en.vtt |
5.61Кб |
24. RNN Summary-nXP0oGGRrO8.mp4 |
7.26Мб |
24. RNN Summary-nXP0oGGRrO8.pt-BR.vtt |
6.19Кб |
24. RNN Summary-nXP0oGGRrO8.zh-CN.vtt |
4.89Кб |
24. Visualizing CNNs (Part 2).html |
14.40Кб |
25. 23 From RNNs To LSTMs V4 Final-MsqybcWmzGY.en.vtt |
5.76Кб |
25. 23 From RNNs To LSTMs V4 Final-MsqybcWmzGY.mp4 |
36.16Мб |
25. 23 From RNNs To LSTMs V4 Final-MsqybcWmzGY.pt-BR.vtt |
6.64Кб |
25. 23 From RNNs To LSTMs V4 Final-MsqybcWmzGY.zh-CN.vtt |
5.32Кб |
25. Conclusion-pyeojf0NniQ.en.vtt |
558б |
25. Conclusion-pyeojf0NniQ.mp4 |
1.57Мб |
25. Conclusion-pyeojf0NniQ.pt-BR.vtt |
590б |
25. Confusion Matrix.html |
7.81Кб |
25. Confusion Matrix-3rpN-YYlfes.en.vtt |
1.66Кб |
25. Confusion Matrix-3rpN-YYlfes.mp4 |
3.07Мб |
25. Confusion Matrix-3rpN-YYlfes.pt-BR.vtt |
1.54Кб |
25. Confusion Matrix-3rpN-YYlfes.zh-CN.vtt |
1.41Кб |
25. From RNN to LSTM.html |
9.83Кб |
25. Gradient Descent Algorithm-snxmBgi_GeU.en.vtt |
2.55Кб |
25. Gradient Descent Algorithm-snxmBgi_GeU.mp4 |
1.98Мб |
25. Gradient Descent Algorithm-snxmBgi_GeU.pt-BR.vtt |
2.64Кб |
25. Gradient Descent Algorithm-snxmBgi_GeU.zh-CN.vtt |
2.21Кб |
25. Logistic Regression Algorithm.html |
8.46Кб |
25. Mini Project DP (Part 6).html |
7.79Кб |
25. Outro.html |
7.02Кб |
25. Transfer Learning.html |
18.80Кб |
25. Transfer Learning-LHG5FltaR6I.en.vtt |
6.00Кб |
25. Transfer Learning-LHG5FltaR6I.mp4 |
13.32Мб |
25. Transfer Learning-LHG5FltaR6I.pt-BR.vtt |
6.51Кб |
25. Transfer Learning-LHG5FltaR6I.zh-CN.vtt |
5.39Кб |
26. Check Your Understanding.html |
10.61Кб |
26. Conclusion.html |
7.77Кб |
26. Conclusion-WhpE_8sTt-0.en.vtt |
3.64Кб |
26. Conclusion-WhpE_8sTt-0.mp4 |
8.20Мб |
26. Conclusion-WhpE_8sTt-0.pt-BR.vtt |
3.28Кб |
26. Conclusion-WhpE_8sTt-0.zh-CN.vtt |
3.26Кб |
26. Pre-Lab Gradient Descent.html |
10.14Кб |
26. Transfer Learning in Keras.html |
9.07Кб |
26. Transfer Learning in Keras-HsIAznMM1LA.en.vtt |
6.11Кб |
26. Transfer Learning in Keras-HsIAznMM1LA.mp4 |
12.92Мб |
26. Transfer Learning in Keras-HsIAznMM1LA.pt-BR.vtt |
6.77Кб |
26. Transfer Learning in Keras-HsIAznMM1LA.zh-CN.vtt |
5.69Кб |
26. Wrap Up.html |
7.50Кб |
27. Notebook Gradient Descent.html |
8.82Кб |
27. Summary.html |
13.88Кб |
27. Useful Resources.html |
8.96Кб |
28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.en.vtt |
4.27Кб |
28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.mp4 |
3.20Мб |
28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.pt-BR.vtt |
4.24Кб |
28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.zh-CN.vtt |
3.60Кб |
28. Mini Project Introduction.html |
7.87Кб |
28. Mini Project Introduction-Rgf3YVFWl-M.en.vtt |
510б |
28. Mini Project Introduction-Rgf3YVFWl-M.mp4 |
1.15Мб |
28. Mini Project Introduction-Rgf3YVFWl-M.pt-BR.vtt |
538б |
28. Mini Project Introduction-Rgf3YVFWl-M.zh-CN.vtt |
475б |
28. Perceptron vs Gradient Descent.html |
8.77Кб |
29. Continuous Perceptrons.html |
8.43Кб |
29. Continuous Perceptrons-07-JJ-aGEfM.en.vtt |
1.33Кб |
29. Continuous Perceptrons-07-JJ-aGEfM.mp4 |
1.13Мб |
29. Continuous Perceptrons-07-JJ-aGEfM.pt-BR.vtt |
1.31Кб |
29. Continuous Perceptrons-07-JJ-aGEfM.zh-CN.vtt |
1.15Кб |
29. Mini Project Dermatologist AI.html |
19.52Кб |
2-card-21.png |
175.83Кб |
30. Non-linear Data.html |
8.38Кб |
30. Non-Linear Data-F7ZiE8PQiSc.en.vtt |
633б |
30. Non-Linear Data-F7ZiE8PQiSc.mp4 |
2.14Мб |
30. Non-Linear Data-F7ZiE8PQiSc.pt-BR.vtt |
600б |
30. Non-Linear Data-F7ZiE8PQiSc.zh-CN.vtt |
624б |
31. Non-Linear Models.html |
8.39Кб |
31. Non-Linear Models-HWuBKCZsCo8.en.vtt |
1.30Кб |
31. Non-Linear Models-HWuBKCZsCo8.mp4 |
1.13Мб |
31. Non-Linear Models-HWuBKCZsCo8.pt-BR.vtt |
1.39Кб |
31. Non-Linear Models-HWuBKCZsCo8.zh-CN.vtt |
1.12Кб |
32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.en.vtt |
3.02Кб |
32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.mp4 |
2.83Мб |
32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.pt-BR.vtt |
3.34Кб |
32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.zh-CN.vtt |
2.76Кб |
32. Combinando modelos-Boy3zHVrWB4.en.vtt |
5.29Кб |
32. Combinando modelos-Boy3zHVrWB4.mp4 |
4.73Мб |
32. Combinando modelos-Boy3zHVrWB4.pt-BR.vtt |
5.29Кб |
32. Combinando modelos-Boy3zHVrWB4.zh-CN.vtt |
4.61Кб |
32. Layers-pg99FkXYK0M.en.vtt |
3.40Кб |
32. Layers-pg99FkXYK0M.mp4 |
3.11Мб |
32. Layers-pg99FkXYK0M.pt-BR.vtt |
3.29Кб |
32. Layers-pg99FkXYK0M.zh-CN.vtt |
3.04Кб |
32. Multiclass Classification-uNTtvxwfox0.en.vtt |
2.08Кб |
32. Multiclass Classification-uNTtvxwfox0.mp4 |
1.88Мб |
32. Multiclass Classification-uNTtvxwfox0.pt-BR.vtt |
2.12Кб |
32. Multiclass Classification-uNTtvxwfox0.zh-CN.vtt |
1.82Кб |
32. Neural Network Architecture.html |
13.05Кб |
33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.en.vtt |
6.17Кб |
33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.mp4 |
5.33Мб |
33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.pt-BR.vtt |
6.76Кб |
33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.zh-CN.vtt |
5.33Кб |
33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.en.vtt |
1.97Кб |
33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.mp4 |
1.72Мб |
33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.pt-BR.vtt |
2.12Кб |
33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.zh-CN.vtt |
1.69Кб |
33. Feedforward.html |
9.67Кб |
34. Backpropagation.html |
12.49Кб |
34. Backpropagation V2-1SmY3TZTyUk.en.vtt |
7.21Кб |
34. Backpropagation V2-1SmY3TZTyUk.mp4 |
6.52Мб |
34. Backpropagation V2-1SmY3TZTyUk.pt-BR.vtt |
7.17Кб |
34. Backpropagation V2-1SmY3TZTyUk.zh-CN.vtt |
6.39Кб |
34. Calculating The Gradient 1 -tVuZDbUrzzI.en.vtt |
3.41Кб |
34. Calculating The Gradient 1 -tVuZDbUrzzI.mp4 |
3.31Мб |
34. Calculating The Gradient 1 -tVuZDbUrzzI.pt-BR.vtt |
3.44Кб |
34. Calculating The Gradient 1 -tVuZDbUrzzI.zh-CN.vtt |
2.88Кб |
34. Chain Rule-YAhIBOnbt54.en.vtt |
1.65Кб |
34. Chain Rule-YAhIBOnbt54.mp4 |
1.46Мб |
34. Chain Rule-YAhIBOnbt54.pt-BR.vtt |
1.73Кб |
34. Chain Rule-YAhIBOnbt54.zh-CN.vtt |
1.42Кб |
34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.en.vtt |
6.16Кб |
34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.mp4 |
5.69Мб |
34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.pt-BR.vtt |
6.50Кб |
34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.zh-CN.vtt |
5.05Кб |
35. Pre-Lab Analyzing Student Data.html |
9.29Кб |
36. Notebook Analyzing Student Data.html |
8.83Кб |
37. Outro.html |
8.37Кб |
accuracy-quiz.png |
105.85Кб |
actionvalue.png |
628.42Кб |
addition-graph.png |
68.97Кб |
admissions-data.png |
118.38Кб |
all-ranks.png |
308.47Кб |
amazon-aws.png |
55.95Кб |
amazonwebservices-logo.svg.png |
107.16Кб |
and-quiz.png |
265.78Кб |
and-to-or.png |
606.14Кб |
arch.png |
1.20Мб |
article-2278590-1792e332000005dc-394-634x615.jpg |
103.03Кб |
atari-network.png |
309.97Кб |
autoencoder-1.png |
24.69Кб |
aws-add-sec-group.png |
41.71Кб |
aws-create-account.png |
13.50Кб |
b-1byk.png |
2.02Кб |
backgammonboard.svg.png |
112.81Кб |
backprop-error.gif |
2.93Кб |
backprop-general.gif |
2.20Кб |
backprop-network.png |
13.07Кб |
backprop-weight-update.gif |
1.68Кб |
batch-stochastic.png |
196.92Кб |
bootstrap.min.css |
137.64Кб |
bootstrap.min.js |
49.85Кб |
boston-back-bay-reflection.jpg |
317.90Кб |
carnd.jpg |
5.35Мб |
cat-1.jpeg |
230.78Кб |
cat-2.jpeg |
231.25Кб |
cat-3.png |
575.91Кб |
chess-game.jpg |
7.54Мб |
chi-waves.png |
823.61Кб |
codecogseqn-2.png |
2.26Кб |
codecogseqn-43.gif |
7.96Кб |
codecogseqn-49.gif |
2.09Кб |
codecogseqn-58.gif |
919б |
codecogseqn-60-2.png |
8.94Кб |
codecogseqn-61.gif |
2.07Кб |
codecogseqn-62.gif |
1.31Кб |
command+palette.mp4 |
169.16Кб |
conda_default_install.mp4 |
595.30Кб |
conda_enter.mp4 |
97.26Кб |
conda_install.mp4 |
201.72Кб |
conda-create-env.png |
70.79Кб |
conda-env-export.png |
64.05Кб |
conda-environments.png |
40.09Кб |
conda-install.png |
81.15Кб |
conda-search.png |
430.84Кб |
conda-tab.png |
109.92Кб |
confusion.png |
188.85Кб |
confusion-matrix.png |
310.94Кб |
constant-alpha.png |
143.69Кб |
conv-dims.png |
28.55Кб |
convolutional-neural-networks-2.jpg |
59.66Кб |
convolution-schematic.gif |
63.63Кб |
convolution-schematic.gif |
63.63Кб |
cost.png |
3.39Кб |
cross-entropy-diagram.png |
62.67Кб |
data.png |
49.54Кб |
dcdl2.png |
1.15Кб |
dcdl2-grad-fixed.gif |
7.79Кб |
dcdw1-chain.png |
3.92Кб |
dcdw1-grad-fixed.gif |
6.03Кб |
dcdw2.png |
1.28Кб |
dcdw2-chain.png |
2.68Кб |
dcdw2-grad-fixed.gif |
3.90Кб |
derivative-example.png |
55.08Кб |
diagonal-line-1.png |
5.76Кб |
diagonal-line-2.png |
6.62Кб |
dl1dw1-grad.png |
3.54Кб |
dl2ds-grad.png |
3.21Кб |
dl2dw2-grad.png |
3.72Кб |
dl-classroom-1200x900.jpg |
875.27Кб |
dropout-node.jpeg |
62.69Кб |
dsdl1.png |
5.34Кб |
e.gif |
1.18Кб |
edit-security-group.png |
12.76Кб |
email.png |
148.53Кб |
enable-gpu.png |
73.47Кб |
est-action.png |
150.55Кб |
example-data.png |
92.11Кб |
example-neural-network.png |
163.05Кб |
examples.jpg |
469.13Кб |
expected-sarsa.png |
254.43Кб |
exploration-vs.-exploitation.png |
204.28Кб |
f1.gif |
2.01Кб |
f2.gif |
1.88Кб |
f3iwvmld-400x400.jpg |
26.43Кб |
f4.gif |
1.13Кб |
f6.gif |
1.60Кб |
faces.png |
42.81Кб |
flappy-bird.jpg |
76.23Кб |
frozen-lake-6.jpg |
1.50Мб |
FTUApps.com website coming soon.txt |
94б |
full-padding-no-strides-transposed.gif |
221.74Кб |
generated-mnist.png |
345.99Кб |
gif-1.gif |
1.03Кб |
go.jpg |
614.80Кб |
gradient-descent.png |
71.96Кб |
gradient-descent-convergence.gif |
26.35Кб |
gradient-descent-divergence.gif |
25.56Кб |
grid-layer-1.png |
35.30Кб |
grokking-deep-learning.jpg |
69.52Кб |
hidden-errors.gif |
2.80Кб |
hidden-layer-weights.gif |
1.75Кб |
house.png |
491.52Кб |
How you can help Team-FTU.txt |
241б |
improve.png |
124.46Кб |
incremental.png |
151.93Кб |
index.html |
4.21Кб |
index.html |
4.06Кб |
index.html |
3.73Кб |
index.html |
4.31Кб |
index.html |
4.33Кб |
index.html |
6.33Кб |
index.html |
4.18Кб |
index.html |
4.61Кб |
index.html |
3.67Кб |
index.html |
3.85Кб |
index.html |
5.26Кб |
index.html |
4.02Кб |
index.html |
4.77Кб |
index.html |
3.92Кб |
index.html |
5.79Кб |
index.html |
4.10Кб |
index.html |
3.86Кб |
index.html |
3.92Кб |
index.html |
4.16Кб |
index.html |
3.79Кб |
index.html |
5.97Кб |
index.html |
5.46Кб |
index.html |
4.26Кб |
index.html |
4.42Кб |
index.html |
4.18Кб |
index.html |
4.11Кб |
index.html |
3.90Кб |
index.html |
3.76Кб |
index.html |
4.88Кб |
index.html |
4.23Кб |
index.html |
3.83Кб |
index.html |
4.50Кб |
index.html |
3.78Кб |
index.html |
4.92Кб |
index.html |
4.40Кб |
index.html |
5.54Кб |
index.html |
5.30Кб |
index.html |
4.77Кб |
index.html |
3.63Кб |
index.html |
4.53Кб |
index.html |
4.43Кб |
index.html |
4.07Кб |
index.html |
3.97Кб |
index.html |
4.24Кб |
index.html |
3.54Кб |
index.html |
4.16Кб |
index.html |
5.41Кб |
index.html |
4.44Кб |
index.html |
141.31Кб |
index.jpg |
11.56Кб |
inputs-matrix.png |
5.61Кб |
input-times-weights.png |
51.82Кб |
input-times-weights.png |
51.82Кб |
input-to-output-2.mp4 |
172.03Кб |
iteration.png |
241.36Кб |
jquery.mCustomScrollbar.concat.min.js |
44.41Кб |
jquery.mCustomScrollbar.min.css |
41.83Кб |
jquery-3.3.1.min.js |
84.89Кб |
jupyter-logo.png |
5.78Кб |
just-a-2d-reg.png |
68.49Кб |
just-a-simple-lin-reg.png |
25.95Кб |
karpathy-network.png |
221.80Кб |
KaTeX_AMS-Regular.ttf |
69.75Кб |
KaTeX_AMS-Regular.woff |
39.26Кб |
KaTeX_AMS-Regular.woff2 |
32.43Кб |
KaTeX_Caligraphic-Bold.ttf |
19.13Кб |
KaTeX_Caligraphic-Bold.woff |
11.85Кб |
KaTeX_Caligraphic-Bold.woff2 |
10.35Кб |
KaTeX_Caligraphic-Regular.ttf |
18.52Кб |
KaTeX_Caligraphic-Regular.woff |
11.59Кб |
KaTeX_Caligraphic-Regular.woff2 |
10.17Кб |
KaTeX_Fraktur-Bold.ttf |
35.13Кб |
KaTeX_Fraktur-Bold.woff |
22.84Кб |
KaTeX_Fraktur-Bold.woff2 |
20.01Кб |
KaTeX_Fraktur-Regular.ttf |
33.84Кб |
KaTeX_Fraktur-Regular.woff |
22.31Кб |
KaTeX_Fraktur-Regular.woff2 |
19.39Кб |
KaTeX_Main-Bold.ttf |
60.27Кб |
KaTeX_Main-Bold.woff |
35.89Кб |
KaTeX_Main-Bold.woff2 |
29.90Кб |
KaTeX_Main-BoldItalic.ttf |
43.77Кб |
KaTeX_Main-BoldItalic.woff |
25.61Кб |
KaTeX_Main-BoldItalic.woff2 |
21.67Кб |
KaTeX_Main-Italic.ttf |
46.83Кб |
KaTeX_Main-Italic.woff |
26.56Кб |
KaTeX_Main-Italic.woff2 |
22.52Кб |
KaTeX_Main-Regular.ttf |
68.43Кб |
KaTeX_Main-Regular.woff |
38.52Кб |
KaTeX_Main-Regular.woff2 |
32.09Кб |
KaTeX_Math-BoldItalic.ttf |
38.81Кб |
KaTeX_Math-BoldItalic.woff |
22.65Кб |
KaTeX_Math-BoldItalic.woff2 |
19.57Кб |
KaTeX_Math-Italic.ttf |
40.48Кб |
KaTeX_Math-Italic.woff |
23.26Кб |
KaTeX_Math-Italic.woff2 |
19.95Кб |
KaTeX_SansSerif-Bold.ttf |
33.23Кб |
KaTeX_SansSerif-Bold.woff |
18.72Кб |
KaTeX_SansSerif-Bold.woff2 |
15.62Кб |
KaTeX_SansSerif-Italic.ttf |
30.57Кб |
KaTeX_SansSerif-Italic.woff |
17.70Кб |
KaTeX_SansSerif-Italic.woff2 |
14.86Кб |
KaTeX_SansSerif-Regular.ttf |
29.45Кб |
KaTeX_SansSerif-Regular.woff |
16.39Кб |
KaTeX_SansSerif-Regular.woff2 |
13.70Кб |
KaTeX_Script-Regular.ttf |
24.28Кб |
KaTeX_Script-Regular.woff |
13.53Кб |
KaTeX_Script-Regular.woff2 |
11.99Кб |
KaTeX_Size1-Regular.ttf |
12.86Кб |
KaTeX_Size1-Regular.woff |
6.82Кб |
KaTeX_Size1-Regular.woff2 |
5.69Кб |
KaTeX_Size2-Regular.ttf |
12.12Кб |
KaTeX_Size2-Regular.woff |
6.53Кб |
KaTeX_Size2-Regular.woff2 |
5.43Кб |
KaTeX_Size3-Regular.ttf |
8.16Кб |
KaTeX_Size3-Regular.woff |
4.66Кб |
KaTeX_Size3-Regular.woff2 |
3.77Кб |
KaTeX_Size4-Regular.ttf |
11.02Кб |
KaTeX_Size4-Regular.woff |
6.30Кб |
KaTeX_Size4-Regular.woff2 |
5.06Кб |
KaTeX_Typewriter-Regular.ttf |
35.46Кб |
KaTeX_Typewriter-Regular.woff |
20.43Кб |
KaTeX_Typewriter-Regular.woff2 |
17.13Кб |
katex.min.css |
21.56Кб |
katex.min.js |
231.26Кб |
l2.png |
1.37Кб |
launch.png |
8.90Кб |
launch-instance.png |
22.52Кб |
layer-1-grid.png |
45.73Кб |
layers.png |
286.10Кб |
lesions.png |
1.57Мб |
linear-equation.gif |
1.23Кб |
linear-relationships.png |
112.35Кб |
lin-reg-no-outliers.png |
28.61Кб |
lin-reg-w-outliers.png |
27.55Кб |
local-minima.png |
38.08Кб |
m.gif |
3.82Кб |
magic-matplotlib.png |
90.72Кб |
magic-pdb.png |
68.61Кб |
magic-timeit.png |
157.29Кб |
magic-timeit2.png |
56.11Кб |
Markdown+cells.mp4 |
330.36Кб |
matengai-of-kuniga-coast-in-oki-island-shimane-pref600.jpg |
247.02Кб |
mat-headshot.png |
179.99Кб |
mat-headshot.png |
179.99Кб |
mat-headshot.png |
179.99Кб |
mat-headshot.png |
179.99Кб |
mat-headshot.png |
179.99Кб |
mat-headshot.png |
179.99Кб |
mat-headshot.png |
179.99Кб |
mat-headshot.png |
179.99Кб |
mat-headshot.png |
179.99Кб |
mat-headshot.png |
179.99Кб |
matrix-mult-3.png |
78.97Кб |
maxpool.jpeg |
37.07Кб |
max-pooling.png |
25.19Кб |
maze.png |
4.20Кб |
mc-control-constant-a.png |
274.97Кб |
mc-control-glie.png |
297.18Кб |
mc-pred-action.png |
363.61Кб |
mc-pred-state.png |
348.13Кб |
medical.png |
186.53Кб |
meme.png |
209.05Кб |
meme.png |
209.05Кб |
meme.png |
209.05Кб |
meme.png |
209.05Кб |
meme.png |
209.05Кб |
minibatch.png |
136.77Кб |
mnist-012.png |
20.21Кб |
monkey-doctor.png |
189.92Кб |
mse.png |
3.21Кб |
multi-layer.png |
214.34Кб |
multilayer-diagram-weights.png |
48.57Кб |
nature.png |
893.03Кб |
nbconvert-example.png |
73.30Кб |
network-with-labeled-nodes.png |
52.00Кб |
network-with-labeled-weights.png |
59.44Кб |
neuron.png |
42.92Кб |
neuron-output.png |
2.12Кб |
new-confusion-matrix.png |
186.16Кб |
new-notebook.png |
101.77Кб |
new-tab.gif |
181.31Кб |
neww.png |
2.56Кб |
neww-nk-fixed.gif |
11.50Кб |
newx.png |
1.18Кб |
newx-1n.png |
2.27Кб |
nmn.png |
9.87Кб |
nn.png |
105.99Кб |
notebook.png |
70.26Кб |
notebook+interface.mp4 |
215.47Кб |
notebook-components.png |
30.25Кб |
notebook-download.png |
79.54Кб |
notebook-json.png |
95.29Кб |
notebook-server.png |
103.33Кб |
notebook-shutdown.png |
62.35Кб |
notmnist.png |
54.15Кб |
open-agent-monitor-main.gif |
2.73Мб |
open-terminal.gif |
819.23Кб |
or-quiz.png |
393.62Кб |
p2-limit-increase.png |
188.22Кб |
p2xlarge-limit-request.png |
129.66Кб |
paper-notes.svg.png |
67.42Кб |
parrot-ar-drone.jpg |
146.51Кб |
pasted-image-at-2016-10-25-01-17-pm.png |
62.75Кб |
perceptronquiz.png |
93.69Кб |
plyr.css |
23.62Кб |
plyr.polyfilled.min.js |
126.16Кб |
points.png |
63.17Кб |
poker-hand-3-of-a-kind.png |
128.64Кб |
policy-eval.png |
259.66Кб |
pooling-dims.png |
29.17Кб |
precision-quiz.png |
250.81Кб |
precision-recall.png |
156.71Кб |
Project Description - Dog Breed Classifier.html |
8.24Кб |
Project Description - Generate Faces.html |
5.96Кб |
Project Description - Generate TV Scripts.html |
6.53Кб |
Project Description - Teach a Quadcopter How to Fly.html |
6.24Кб |
Project Description - Your first neural network.html |
9.84Кб |
Project Rubric - Dog Breed Classifier.html |
13.29Кб |
Project Rubric - Generate Faces.html |
8.15Кб |
Project Rubric - Generate TV Scripts.html |
12.85Кб |
Project Rubric - Teach a Quadcopter How to Fly.html |
8.15Кб |
Project Rubric - Your first neural network.html |
8.60Кб |
pup.jpg |
181.27Кб |
quadcopter.png |
455.67Кб |
quadraticlinearregression.png |
23.56Кб |
quiz.jpg |
174.18Кб |
recall-quiz.png |
228.26Кб |
regularization-quiz.png |
87.90Кб |
relu-network.png |
31.09Кб |
review-and-launch.png |
15.75Кб |
review-example.png |
362.83Кб |
rnn.png |
155.70Кб |
roc.png |
78.96Кб |
roc-curve.png |
31.48Кб |
roc-curves.png |
137.28Кб |
run-main.gif |
1.99Мб |
sample-confusion-matrix.png |
130.52Кб |
sample-roc-curve.png |
46.33Кб |
sarsa.png |
286.80Кб |
sarsamax.png |
264.54Кб |
save-2.png |
10.66Кб |
Screen+Shot+2017-01-27+at+11.38.54+AM.png |
55.10Кб |
screen-shot-2016-10-21-at-15.43.05.png |
481.52Кб |
screen-shot-2016-10-26-at-19.28.34.png |
297.79Кб |
screen-shot-2016-11-24-at-12.08.11-pm.png |
2.90Мб |
screen-shot-2016-11-24-at-12.09.02-pm.png |
3.09Мб |
screen-shot-2016-11-24-at-12.09.24-pm.png |
3.49Мб |
screen-shot-2017-06-13-at-12.58.03-pm.png |
196.32Кб |
screen-shot-2017-08-31-at-3.27.10-pm.png |
463.09Кб |
screen-shot-2017-09-20-at-12.02.06-pm.png |
27.64Кб |
screen-shot-2017-09-21-at-12.20.30-pm.png |
203.11Кб |
screen-shot-2017-09-21-at-12.20.30-pm.png |
203.11Кб |
screen-shot-2017-09-21-at-12.20.50-pm.png |
210.59Кб |
screen-shot-2017-09-21-at-3.08.03-pm.png |
152.93Кб |
screen-shot-2017-09-21-at-3.25.10-pm.png |
55.60Кб |
screen-shot-2017-09-21-at-3.46.12-pm.png |
52.28Кб |
screen-shot-2017-09-21-at-4.34.08-pm.png |
26.85Кб |
screen-shot-2017-09-24-at-4.28.04-pm.png |
622.69Кб |
screen-shot-2017-09-25-at-11.35.38-am.png |
25.22Кб |
screen-shot-2017-09-25-at-5.51.40-pm.png |
64.59Кб |
screen-shot-2017-09-25-at-6.02.37-pm.png |
78.84Кб |
screen-shot-2017-09-25-at-9.18.00-pm.png |
52.48Кб |
screen-shot-2017-09-26-at-11.03.16-pm.png |
259.66Кб |
screen-shot-2017-09-26-at-2.18.38-pm.png |
405.83Кб |
screen-shot-2017-09-26-at-4.22.09-pm.png |
219.33Кб |
screen-shot-2017-10-02-at-10.41.44-am.png |
12.87Кб |
screen-shot-2017-10-04-at-2.46.11-pm.png |
58.97Кб |
screen-shot-2017-10-04-at-4.58.58-pm.png |
716.00Кб |
screen-shot-2017-10-04-at-5.01.26-pm.png |
271.87Кб |
screen-shot-2017-10-05-at-3.55.40-pm.png |
84.70Кб |
screen-shot-2017-10-11-at-2.04.14-pm.png |
1.10Мб |
screen-shot-2017-10-12-at-5.47.45-pm.png |
73.59Кб |
screen-shot-2017-10-17-at-11.02.44-am.png |
56.50Кб |
screen-shot-2017-10-27-at-1.29.13-pm.png |
2.45Мб |
screen-shot-2017-10-27-at-6.29.49-pm.png |
129.29Кб |
screen-shot-2017-10-30-at-10.54.50-am.png |
269.96Кб |
screen-shot-2017-10-30-at-11.56.27-am.png |
9.69Кб |
screen-shot-2017-11-01-at-1.48.59-pm.png |
61.06Кб |
screen-shot-2017-11-01-at-11.43.26-am.png |
22.51Кб |
screen-shot-2017-11-01-at-3.38.43-pm.png |
37.05Кб |
screen-shot-2017-11-01-at-4.47.47-pm.png |
33.26Кб |
screen-shot-2017-11-01-at-5.14.13-pm.png |
23.21Кб |
screen-shot-2017-11-06-at-1.40.14-pm.png |
361.16Кб |
screen-shot-2017-11-06-at-2.04.24-pm.png |
9.71Кб |
screen-shot-2017-11-06-at-2.05.19-pm.png |
7.22Кб |
screen-shot-2017-11-06-at-2.09.07-pm.png |
164.04Кб |
screen-shot-2017-11-06-at-2.38.51-pm.png |
225.33Кб |
screen-shot-2017-11-06-at-2.45.22-pm.png |
8.56Кб |
screen-shot-2017-11-06-at-4.12.59-pm.png |
49.25Кб |
screen-shot-2017-11-08-at-3.43.34-pm.png |
316.84Кб |
screen-shot-2017-11-09-at-3.53.12-pm.png |
35.08Кб |
screen-shot-2017-11-09-at-6.01.16-pm.png |
39.12Кб |
screen-shot-2017-11-16-at-4.26.22-pm.png |
41.24Кб |
screen-shot-2017-11-16-at-4.27.58-pm.png |
27.77Кб |
screen-shot-2017-11-16-at-4.31.41-pm.png |
44.91Кб |
screen-shot-2017-11-16-at-5.54.40-pm.png |
71.35Кб |
screen-shot-2017-11-17-at-5.38.55-pm.png |
108.05Кб |
screen-shot-2017-11-21-at-3.38.11-pm.png |
42.82Кб |
screen-shot-2017-11-21-at-3.42.29-pm.png |
47.82Кб |
screen-shot-2017-11-21-at-3.44.15-pm.png |
54.10Кб |
screen-shot-2017-11-21-at-3.45.50-pm.png |
57.92Кб |
screen-shot-2017-11-21-at-3.49.24-pm.png |
159.51Кб |
screen-shot-2017-11-21-at-4.02.19-pm.png |
24.25Кб |
screen-shot-2017-11-21-at-4.07.21-pm.png |
48.10Кб |
screen-shot-2017-11-21-at-4.08.59-pm.png |
54.16Кб |
screen-shot-2017-11-21-at-4.10.56-pm.png |
58.73Кб |
screen-shot-2017-11-21-at-4.14.45-pm.png |
163.90Кб |
screen-shot-2017-11-21-at-4.17.19-pm.png |
67.13Кб |
screen-shot-2017-11-21-at-4.17.35-pm.png |
66.80Кб |
screen-shot-2017-11-21-at-4.21.41-pm.png |
43.20Кб |
screen-shot-2017-11-26-at-10.30.15-am.png |
145.10Кб |
screen-shot-2017-11-26-at-9.38.24-am.png |
440.90Кб |
screen-shot-2017-11-26-at-9.55.20-am.png |
414.22Кб |
screen-shot-2017-11-27-at-1.43.36-pm.png |
80.86Кб |
screen-shot-2017-11-27-at-1.46.43-pm.png |
94.90Кб |
screen-shot-2017-11-27-at-1.58.01-pm.png |
229.98Кб |
screen-shot-2017-11-27-at-2.00.15-pm.png |
110.26Кб |
screen-shot-2017-11-27-at-2.44.11-pm.png |
56.84Кб |
screen-shot-2017-11-27-at-3.44.20-pm.png |
180.98Кб |
screen-shot-2017-11-27-at-3.46.35-pm.png |
367.04Кб |
screen-shot-2017-11-27-at-3.48.31-pm.png |
51.70Кб |
screen-shot-2017-11-29-at-3.08.28-pm.png |
334.55Кб |
screen-shot-2017-11-29-at-3.49.20-pm.png |
758.55Кб |
screen-shot-2017-11-29-at-3.51.44-pm.png |
518.88Кб |
screen-shot-2017-11-29-at-5.33.53-pm.png |
169.63Кб |
screen-shot-2017-11-30-at-1.34.44-pm.png |
180.65Кб |
screen-shot-2017-11-30-at-4.40.57-pm.png |
69.63Кб |
screen-shot-2017-11-30-at-4.41.08-pm.png |
68.49Кб |
screen-shot-2017-12-02-at-10.29.14-pm.png |
79.28Кб |
screen-shot-2017-12-02-at-10.46.12-pm.png |
43.99Кб |
screen-shot-2017-12-02-at-10.58.26-pm.png |
48.81Кб |
screen-shot-2017-12-02-at-11.03.45-pm.png |
129.43Кб |
screen-shot-2017-12-02-at-11.06.19-pm.png |
53.42Кб |
screen-shot-2017-12-03-at-10.43.49-pm.png |
1.05Мб |
screen-shot-2017-12-03-at-11.34.41-pm.png |
347.44Кб |
screen-shot-2017-12-03-at-11.36.39-pm.png |
109.70Кб |
screen-shot-2017-12-04-at-11.12.31-am.png |
1.03Мб |
screen-shot-2017-12-04-at-11.14.30-am.png |
980.68Кб |
screen-shot-2017-12-04-at-11.16.19-am.png |
1.02Мб |
screen-shot-2017-12-04-at-11.23.49-pm.png |
246.93Кб |
screen-shot-2017-12-04-at-11.37.27-am.png |
59.04Кб |
screen-shot-2017-12-04-at-11.42.56-am.png |
61.24Кб |
screen-shot-2017-12-04-at-11.48.08-pm.png |
16.87Кб |
screen-shot-2017-12-04-at-11.48.22-am.png |
386.52Кб |
screen-shot-2017-12-04-at-11.50.40-am.png |
61.02Кб |
screen-shot-2017-12-04-at-11.51.54-pm.png |
19.83Кб |
screen-shot-2017-12-04-at-11.54.48-pm.png |
26.13Кб |
screen-shot-2017-12-04-at-12.10.02-pm.png |
478.46Кб |
screen-shot-2017-12-04-at-12.31.11-pm.png |
1.12Мб |
screen-shot-2017-12-04-at-12.40.54-pm.png |
11.00Кб |
screen-shot-2017-12-04-at-12.42.42-pm.png |
14.17Кб |
screen-shot-2017-12-04-at-12.42.55-pm.png |
10.57Кб |
screen-shot-2017-12-04-at-12.49.13-pm.png |
871.76Кб |
screen-shot-2017-12-04-at-12.49.52-pm.png |
806.66Кб |
screen-shot-2017-12-04-at-2.04.54-pm.png |
696.35Кб |
screen-shot-2017-12-04-at-3.54.17-pm.png |
41.68Кб |
screen-shot-2017-12-05-at-11.55.58-am.png |
65.27Кб |
screen-shot-2017-12-05-at-12.04.21-am.png |
27.05Кб |
screen-shot-2017-12-05-at-12.09.13-pm.png |
102.60Кб |
screen-shot-2017-12-05-at-12.16.55-pm.png |
32.54Кб |
screen-shot-2017-12-10-at-9.12.16-pm.png |
898.01Кб |
screen-shot-2017-12-17-at-12.49.34-pm.png |
332.55Кб |
screen-shot-2017-12-17-at-9.41.03-am.png |
158.23Кб |
screen-shot-2018-01-02-at-2.27.51-pm.png |
362.57Кб |
screen-shot-2018-01-02-at-2.44.44-pm.png |
3.83Кб |
screen-shot-2018-01-02-at-2.49.43-pm.png |
233.63Кб |
screen-shot-2018-01-08-at-5.37.22-am.png |
33.23Кб |
screen-shot-2018-01-08-at-5.38.03-am.png |
276.13Кб |
screen-shot-2018-01-16-at-2.40.57-pm.png |
62.57Кб |
screen-shot-2018-02-21-at-3.02.16-pm.png |
25.15Кб |
screen-shot-2018-02-21-at-3.05.00-pm.png |
24.29Кб |
screen-shot-2018-02-21-at-3.10.10-pm.png |
30.38Кб |
screen-shot-2018-03-19-at-2.49.57-pm.png |
442.46Кб |
screen-shot-2018-03-19-at-2.49.57-pm.png |
442.46Кб |
screen-shot-2018-03-19-at-3.49.28-pm.png |
471.61Кб |
screen-shot-2018-03-19-at-3.49.28-pm.png |
471.61Кб |
screen-shot-2018-04-14-at-3.13.15-pm.png |
47.10Кб |
screen-shot-2018-06-12-at-5.07.10-pm.png |
257.46Кб |
screen-shot-2018-07-19-at-5.39.37-pm.png |
131.05Кб |
sensitivity-specificity.png |
155.14Кб |
sequence-to-sequence-unrolled-encoder-decoder.png |
22.50Кб |
server-shutdown.png |
155.42Кб |
session.png |
30.85Кб |
sigmoid-derivative.gif |
2.09Кб |
skin-disease-classes.png |
1.64Мб |
slides-cell-toolbar-menu.png |
61.36Кб |
slides-choose-slide-type.png |
53.31Кб |
softmax-input-output.png |
52.45Кб |
statevalue.png |
1000.89Кб |
stop.png |
47.54Кб |
student-acceptance.png |
20.47Кб |
student-quiz.png |
748.98Кб |
study-group.png |
415.28Кб |
styles.css |
3.76Кб |
submit-workspace.png |
546.65Кб |
summary.png |
93.72Кб |
svhn-examples.png |
169.93Кб |
td-prediction.png |
311.15Кб |
tensorflow.png |
85.28Кб |
tensorflow-825x510.png |
24.50Кб |
threshold.png |
468.31Кб |
topological-sort.001.jpeg |
107.27Кб |
truncated-eval.png |
225.19Кб |
truncated-iter.png |
274.00Кб |
two-layer-graph.png |
42.82Кб |
udacimak.png |
461.07Кб |
value-iteration.png |
381.24Кб |
w1-backprop-graph.png |
57.33Кб |
w2-backprop-graph.png |
50.06Кб |
weight-label-reference.gif |
2.83Кб |
weights-0-1-2.png |
24.61Кб |
word-embeddings.jpg |
75.09Кб |
workspaces-gpu.png |
145.50Кб |
workspaces-jupyter.png |
83.54Кб |
workspaces-menu.png |
93.96Кб |
workspaces-new.png |
85.21Кб |
workspaces-notebook.png |
142.90Кб |
workspaces-submit.png |
146.20Кб |
workspaces-terminal.png |
46.91Кб |
x-mn.png |
9.02Кб |
xor.png |
214.95Кб |
xor-quiz.png |
94.14Кб |
y.gif |
1.41Кб |
z.png |
1.49Кб |