Общая информация
Название [FreeCoursesOnline.Me] UDACITY - Deep Learning v4.0.0
Тип
Размер 3.32Гб
Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[FreeCoursesOnline.Me].url 133б
[FreeTutorials.Eu].url 129б
[FTU Forum].url 1.34Кб
01. 00 Luis Introducing Ortal Newtitle121217-oXv7GiC-jrM.en.vtt 1.51Кб
01. 00 Luis Introducing Ortal Newtitle121217-oXv7GiC-jrM.mp4 10.69Мб
01. 00 Luis Introducing Ortal Newtitle121217-oXv7GiC-jrM.pt-BR.vtt 1.61Кб
01. 00 Luis Introducing Ortal Newtitle121217-oXv7GiC-jrM.zh-CN.vtt 1.35Кб
01. 01 Welcome To The Deep Learning Program-3QPEmwq2NaE.mp4 11.28Мб
01. Actor-Critic Methods.html 5.45Кб
01. Apresentando Alexis-38ExGpdyvJI.en.vtt 694б
01. Apresentando Alexis-38ExGpdyvJI.mp4 2.05Мб
01. Apresentando Alexis-38ExGpdyvJI.pt-BR.vtt 599б
01. Apresentando Alexis-38ExGpdyvJI.zh-CN.vtt 615б
01. Autoencoder Lesson Intro.html 6.49Кб
01. CNN Project.html 7.09Кб
01. Convolutional Layers.html 9.48Кб
01. Deep Convolutional GANs.html 6.69Кб
01. Deep Reinforcement Learning.html 6.50Кб
01. Deep Reinforcement Learning-GPjK124RU5g.en.vtt 6.45Кб
01. Deep Reinforcement Learning-GPjK124RU5g.mp4 33.20Мб
01. Deep Reinforcement Learning-GPjK124RU5g.pt-BR.vtt 7.33Кб
01. Deep Reinforcement Learning-GPjK124RU5g.zh-CN.vtt 5.62Кб
01. Embeddings Intro.html 6.91Кб
01. Enroll in your next ND program.html 7.80Кб
01. GANs Intro-F7XgI6TmaGI.en.vtt 1.32Кб
01. GANs Intro-F7XgI6TmaGI.en-US.vtt 1.57Кб
01. GANs Intro-F7XgI6TmaGI.mp4 3.24Мб
01. GANs Intro-F7XgI6TmaGI.pt-BR.vtt 1.29Кб
01. GANs Intro-F7XgI6TmaGI.zh-CN.vtt 1.45Кб
01. Instructor.html 5.70Кб
01. Instructor.html 6.01Кб
01. Instructor.html 8.52Кб
01. Instructor.html 6.18Кб
01. Intro.html 6.05Кб
01. Intro.html 8.36Кб
01. Intro.html 7.77Кб
01. Intro.html 5.99Кб
01. Intro.html 6.34Кб
01. Intro.html 5.79Кб
01. Intro.html 7.09Кб
01. Introducing Alexis.html 7.79Кб
01. Introducing Andrew Trask.html 7.04Кб
01. Introducing Andrew Trask-ltO71Bm8b3M.en.vtt 746б
01. Introducing Andrew Trask-ltO71Bm8b3M.mp4 4.08Мб
01. Introducing Andrew Trask-ltO71Bm8b3M.pt-BR.vtt 1.26Кб
01. Introducing Andrew Trask-ltO71Bm8b3M.zh-CN.vtt 685б
01. Introducing Ian Goodfellow.html 6.55Кб
01. Introducing Jay.html 5.82Кб
01. Introducing Ortal .html 7.37Кб
01. Introduction.html 5.36Кб
01. Introduction.html 5.93Кб
01. Introduction.html 5.13Кб
01. Introduction.html 5.43Кб
01. Introduction.html 6.77Кб
01. Introduction.html 5.80Кб
01. Introduction.html 7.98Кб
01. Introduction.html 7.22Кб
01. Introduction.html 6.45Кб
01. Introduction.html 8.07Кб
01. Introduction-6jSFl5kxIBs.en.vtt 2.41Кб
01. Introduction-6jSFl5kxIBs.mp4 5.15Мб
01. Introduction-6jSFl5kxIBs.pt-BR.vtt 2.43Кб
01. Introduction-6jSFl5kxIBs.zh-CN.vtt 2.11Кб
01. Introduction-ek2PD9RDrWw.en.vtt 1.04Кб
01. Introduction-ek2PD9RDrWw.mp4 6.18Мб
01. Introduction-ek2PD9RDrWw.pt-BR.vtt 1.09Кб
01. Introduction-ek2PD9RDrWw.zh-CN.vtt 883б
01. Introduction to GPU Workspaces.html 15.37Кб
01. Introduction to the Project.html 5.16Кб
01. Introduction to the Project-dOwEDeJp8yw.en.vtt 2.35Кб
01. Introduction to the Project-dOwEDeJp8yw.mp4 6.23Мб
01. Introduction to the Project-dOwEDeJp8yw.pt-BR.vtt 2.02Кб
01. Introduction to the Project-dOwEDeJp8yw.zh-CN.vtt 2.33Кб
01. Introduction-W2EP3riQSus.en.vtt 937б
01. Introduction-W2EP3riQSus.mp4 4.93Мб
01. Introduction-W2EP3riQSus.pt-BR.vtt 1.02Кб
01. Introduction-W2EP3riQSus.zh-CN.vtt 822б
01. Introduction-X_9l_ZqXXBA.en.vtt 830б
01. Introduction-X_9l_ZqXXBA.mp4 2.90Мб
01. Introduction-X_9l_ZqXXBA.pt-BR.vtt 866б
01. Introduction-X_9l_ZqXXBA.zh-CN.vtt 718б
01. Introduction-yXErXQulI_o.en.vtt 2.91Кб
01. Introduction-yXErXQulI_o.mp4 20.67Мб
01. Introduction-yXErXQulI_o.zh-CN.vtt 2.48Кб
01. Introduction-ZCpXvVdIdnY.en.vtt 874б
01. Introduction-ZCpXvVdIdnY.mp4 1.55Мб
01. Introduction-ZCpXvVdIdnY.pt-BR.vtt 857б
01. Introduction-ZCpXvVdIdnY.zh-CN.vtt 822б
01. Intro to Deep Q-Learning.html 5.96Кб
01. Intro to Deep Q-Learning-o3cmuUDhP3I.en.vtt 1.44Кб
01. Intro to Deep Q-Learning-o3cmuUDhP3I.mp4 9.08Мб
01. Intro to Deep Q-Learning-o3cmuUDhP3I.pt-BR.vtt 1.67Кб
01. Intro to Deep Q-Learning-o3cmuUDhP3I.zh-CN.vtt 1.27Кб
01. Intro to LSTM.html 6.44Кб
01. Last Project - Congrats-UUqU8SYBZ9Q.en.vtt 792б
01. Last Project - Congrats-UUqU8SYBZ9Q.mp4 2.20Мб
01. Last Project - Congrats-UUqU8SYBZ9Q.pt-BR.vtt 850б
01. Last Project - Congrats-UUqU8SYBZ9Q.zh-CN.vtt 764б
01. M0 L3 C01 Intro- V3 No Slack-OH-5IlSH-eoPAU.mp4 6.09Мб
01. M2L3 01 V1-YOSREyp04HA.en.vtt 856б
01. M2L3 01 V1-YOSREyp04HA.mp4 4.98Мб
01. M2L3 01 V1-YOSREyp04HA.zh-CN.vtt 787б
01. Mean Squared Error Function.html 6.07Кб
01. Miniflow Introduction-Nqp_UifEwt0.en-US.vtt 1.19Кб
01. Miniflow Introduction-Nqp_UifEwt0.mp4 7.22Мб
01. Miniflow Introduction-Nqp_UifEwt0.pt-BR.vtt 1.23Кб
01. Miniflow Introduction-Nqp_UifEwt0.zh-CN.vtt 1.11Кб
01. One Project Away!.html 5.16Кб
01. Overview.html 7.17Кб
01. Policy-Based Methods.html 5.29Кб
01. Project-3-Intro-qNpv7IjQzo0.en.vtt 667б
01. Project-3-Intro-qNpv7IjQzo0.en-US.vtt 701б
01. Project-3-Intro-qNpv7IjQzo0.mp4 667.23Кб
01. Project-3-Intro-qNpv7IjQzo0.pt-BR.vtt 720б
01. Project-3-Intro-qNpv7IjQzo0.zh-CN.vtt 640б
01. Project Intro.html 9.72Кб
01. RL M2L4 01 Actor Critic Methods RENDER V1 V1-FXhyxJzgt8U.en.vtt 1.54Кб
01. RL M2L4 01 Actor Critic Methods RENDER V1 V1-FXhyxJzgt8U.mp4 10.38Мб
01. RL M2L4 01 Actor Critic Methods RENDER V1 V1-FXhyxJzgt8U.pt-BR.vtt 1.78Кб
01. RL M2L4 01 Actor Critic Methods RENDER V1 V1-FXhyxJzgt8U.zh-CN.vtt 1.36Кб
01. Semi-supervised Learning.html 6.93Кб
01. Transfer Learning Intro.html 7.12Кб
01. Weight Initialization Intro.html 5.65Кб
01. Welcome To Linear Regression-zxZkTkM34BY.en.vtt 1.15Кб
01. Welcome To Linear Regression-zxZkTkM34BY.mp4 3.90Мб
01. Welcome To Linear Regression-zxZkTkM34BY.pt-BR.vtt 1.21Кб
01. Welcome to MiniFlow.html 6.02Кб
01. Welcome to the Deep Learning Nanodegree Program.html 5.36Кб
02. 01 RNN Intro V6 Final-AIQEqg6F38A.en.vtt 4.46Кб
02. 01 RNN Intro V6 Final-AIQEqg6F38A.mp4 20.89Мб
02. 01 RNN Intro V6 Final-AIQEqg6F38A.pt-BR.vtt 4.75Кб
02. 01 RNN Intro V6 Final-AIQEqg6F38A.zh-CN.vtt 4.05Кб
02. 02 Skin Cancer V4-70jGZeiTNgk.en.vtt 1.86Кб
02. 02 Skin Cancer V4-70jGZeiTNgk.mp4 4.73Мб
02. 02 Skin Cancer V4-70jGZeiTNgk.pt-BR.vtt 1.74Кб
02. 02 Skin Cancer V4-70jGZeiTNgk.zh-CN.vtt 1.68Кб
02. A Better Score Function.html 5.42Кб
02. Andrew Trask - Intro-da1I0mea1jQ.en-US.vtt 5.42Кб
02. Andrew Trask - Intro-da1I0mea1jQ.mp4 23.76Мб
02. Andrew Trask - Intro-da1I0mea1jQ.pt-BR.vtt 3.68Кб
02. Andrew Trask - Intro-da1I0mea1jQ.zh-CN.vtt 4.94Кб
02. Aplicações de CNNs-HrYNL_1SV2Y.en.vtt 5.37Кб
02. Aplicações de CNNs-HrYNL_1SV2Y.mp4 17.70Мб
02. Aplicações de CNNs-HrYNL_1SV2Y.pt-BR.vtt 5.66Кб
02. Aplicações de CNNs-HrYNL_1SV2Y.zh-CN.vtt 4.70Кб
02. Applications.html 7.15Кб
02. Applications-CV6B84mKRNM.en.vtt 3.22Кб
02. Applications-CV6B84mKRNM.mp4 8.46Мб
02. Applications-CV6B84mKRNM.pt-BR.vtt 3.42Кб
02. Applications-CV6B84mKRNM.zh-CN.vtt 2.91Кб
02. Applications of CNNs.html 13.00Кб
02. Autoencoders.html 5.20Кб
02. Autoencoders-ar5Iyx68cWc.en.vtt 2.41Кб
02. Autoencoders-ar5Iyx68cWc.mp4 2.22Мб
02. Autoencoders-ar5Iyx68cWc.pt-BR.vtt 2.36Кб
02. Autoencoders-ar5Iyx68cWc.zh-CN.vtt 2.18Кб
02. Character-Wise RNN-dXl3eWCGLdU.en.vtt 3.33Кб
02. Character-Wise RNN-dXl3eWCGLdU.mp4 2.88Мб
02. Character-Wise RNN-dXl3eWCGLdU.pt-BR.vtt 3.66Кб
02. Character-Wise RNN-dXl3eWCGLdU.zh-CN.vtt 3.04Кб
02. Character-wise RNNs.html 5.90Кб
02. Confusion Matrix.html 8.20Кб
02. Confusion Matrix-Question 1-9GLNjmMUB_4.en.vtt 5.71Кб
02. Confusion Matrix-Question 1-9GLNjmMUB_4.en-US.vtt 5.52Кб
02. Confusion Matrix-Question 1-9GLNjmMUB_4.mp4 5.04Мб
02. Confusion Matrix-Question 1-9GLNjmMUB_4.pt-BR.vtt 4.76Кб
02. Confusion Matrix-Question 1-9GLNjmMUB_4.zh-CN.vtt 4.96Кб
02. Cool Things To Do With GANs-bo-ToTdhgew.en.vtt 7.34Кб
02. Cool Things To Do With GANs-bo-ToTdhgew.mp4 11.98Мб
02. Cool Things To Do With GANs-bo-ToTdhgew.pt-BR.vtt 6.86Кб
02. Cool Things To Do With GANs-bo-ToTdhgew.zh-CN.vtt 6.94Кб
02. Create an AWS Account.html 5.89Кб
02. Data Dimensions.html 5.76Кб
02. Data Has Dimensions-F4NSv776X0c.en.vtt 8.66Кб
02. Data Has Dimensions-F4NSv776X0c.mp4 10.61Мб
02. Data Has Dimensions-F4NSv776X0c.pt-BR.vtt 8.80Кб
02. Data Has Dimensions-F4NSv776X0c.zh-CN.vtt 7.59Кб
02. DCGAN Architecture.html 5.62Кб
02. Deconvolution-sX_AxtB6CHI.en.vtt 7.21Кб
02. Deconvolution-sX_AxtB6CHI.mp4 8.27Мб
02. Deconvolution-sX_AxtB6CHI.pt-BR.vtt 7.01Кб
02. Deconvolution-sX_AxtB6CHI.zh-CN.vtt 6.47Кб
02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.en.vtt 1.36Кб
02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.mp4 1.48Мб
02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.pt-BR.vtt 1.46Кб
02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.zh-CN.vtt 1.26Кб
02. Dog Breed Workspace.html 5.46Кб
02. Gradient Descent.html 12.63Кб
02. Gradient Descent-29PmNG7fuuM.en.vtt 1.60Кб
02. Gradient Descent-29PmNG7fuuM.mp4 2.46Мб
02. Gradient Descent-29PmNG7fuuM.pt-BR.vtt 1.52Кб
02. Gradient Descent-29PmNG7fuuM.zh-CN.vtt 1.41Кб
02. Graphs.html 10.19Кб
02. Implementing Word2Vec.html 5.52Кб
02. Implementing Word2Vec-7M431_f9HgE.en.vtt 16.86Кб
02. Implementing Word2Vec-7M431_f9HgE.mp4 23.33Мб
02. Implementing Word2Vec-7M431_f9HgE.pt-BR.vtt 17.23Кб
02. Implementing Word2Vec-7M431_f9HgE.zh-CN.vtt 14.27Кб
02. Installing TensorFlow.html 8.81Кб
02. Instructions.html 11.03Кб
02. Introduction.html 6.11Кб
02. Introduction.html 8.36Кб
02. Introduction.html 5.56Кб
02. Introduction-erwnzFD7AeE.en.vtt 2.34Кб
02. Introduction-erwnzFD7AeE.mp4 2.22Мб
02. Introduction-erwnzFD7AeE.pt-BR.vtt 2.17Кб
02. Introduction-erwnzFD7AeE.zh-CN.vtt 2.01Кб
02. Introduction-tn-CrUTkCUc.en.vtt 3.28Кб
02. Introduction-tn-CrUTkCUc.mp4 7.54Мб
02. Introduction-tn-CrUTkCUc.pt-BR.vtt 3.09Кб
02. Introduction-tn-CrUTkCUc.zh-CN.vtt 2.84Кб
02. Jupyter-qiYDWFLyXvg.ar.vtt 3.41Кб
02. Jupyter-qiYDWFLyXvg.en.vtt 2.70Кб
02. Jupyter-qiYDWFLyXvg.mp4 7.12Мб
02. Jupyter-qiYDWFLyXvg.pt-BR.vtt 2.41Кб
02. Jupyter-qiYDWFLyXvg.zh-CN.vtt 2.64Кб
02. Keras.html 19.58Кб
02. M2L3 02 V2-ToS8vXGdODE.en.vtt 9.07Кб
02. M2L3 02 V2-ToS8vXGdODE.mp4 32.51Мб
02. M2L3 02 V2-ToS8vXGdODE.zh-CN.vtt 8.11Кб
02. Meet Andrew.html 7.31Кб
02. Meet Your Instructors.html 5.64Кб
02. Meet Your Instructors--UOFRxCu414.en.vtt 1.78Кб
02. Meet Your Instructors--UOFRxCu414.mp4 11.25Мб
02. Meet Your Instructors--UOFRxCu414.pt-BR.vtt 1.95Кб
02. Meet Your Instructors--UOFRxCu414.zh-CN.vtt 1.63Кб
02. Neural Nets as Value Functions.html 6.00Кб
02. Neural Nets as Value Functions-cBi7vLrk8QQ.en.vtt 3.73Кб
02. Neural Nets as Value Functions-cBi7vLrk8QQ.mp4 12.65Мб
02. Neural Nets as Value Functions-cBi7vLrk8QQ.pt-BR.vtt 3.93Кб
02. Neural Nets as Value Functions-cBi7vLrk8QQ.zh-CN.vtt 3.22Кб
02. Ones and Zeros.html 5.20Кб
02. OpenAI Gym BlackjackEnv.html 9.33Кб
02. OpenAI Gym CliffWalkingEnv.html 8.28Кб
02. OpenAI Gym FrozenLakeEnv.html 10.42Кб
02. Policies.html 5.81Кб
02. Policies-hc3LrvaC13U.en.vtt 4.79Кб
02. Policies-hc3LrvaC13U.mp4 20.24Мб
02. Policies-hc3LrvaC13U.pt-BR.vtt 5.44Кб
02. Policies-hc3LrvaC13U.zh-CN.vtt 4.03Кб
02. Project Introduction.html 5.11Кб
02. Project Workspace.html 5.51Кб
02. Quadcopter workspace.html 6.05Кб
02. Quiz Convolutional Layers.html 11.02Кб
02. Quiz Housing Prices.html 8.38Кб
02. Resources.html 8.23Кб
02. RL M2L4 02 A Better Score Function V2-_HBJ3l10-OE.en.vtt 2.64Кб
02. RL M2L4 02 A Better Score Function V2-_HBJ3l10-OE.mp4 8.68Мб
02. RL M2L4 02 A Better Score Function V2-_HBJ3l10-OE.pt-BR.vtt 3.09Кб
02. RL M2L4 02 A Better Score Function V2-_HBJ3l10-OE.zh-CN.vtt 2.34Кб
02. RNN Introduction.html 8.05Кб
02. RNN vs LSTM.html 5.66Кб
02. RNN Vs LSTM-70MgF-IwAr8.en.vtt 4.71Кб
02. RNN Vs LSTM-70MgF-IwAr8.mp4 3.58Мб
02. RNN Vs LSTM-70MgF-IwAr8.pt-BR.vtt 4.24Кб
02. RNN Vs LSTM-70MgF-IwAr8.zh-CN.vtt 4.22Кб
02. Semi-Supervised Classification with GANs.html 6.03Кб
02. Semi-Supervised Learning-_LRpHPxZaX0.en.vtt 10.16Кб
02. Semi-Supervised Learning-_LRpHPxZaX0.mp4 10.11Мб
02. Semi-Supervised Learning-_LRpHPxZaX0.pt-BR.vtt 9.52Кб
02. Semi-Supervised Learning-_LRpHPxZaX0.zh-CN.vtt 9.26Кб
02. Sentiment Prediction-uGN3rZJRiMY.en.vtt 8.66Кб
02. Sentiment Prediction-uGN3rZJRiMY.mp4 11.25Мб
02. Sentiment Prediction-uGN3rZJRiMY.pt-BR.vtt 7.33Кб
02. Sentiment Prediction-uGN3rZJRiMY.zh-CN.vtt 8.00Кб
02. Sentiment RNN.html 5.24Кб
02. Skin Cancer.html 9.83Кб
02. Style Transfer.html 11.68Кб
02. The Setting, Revisited.html 6.58Кб
02. The Setting, Revisited-V6Q1uF8a6kA.en.vtt 5.60Кб
02. The Setting, Revisited-V6Q1uF8a6kA.mp4 7.36Мб
02. The Setting, Revisited-V6Q1uF8a6kA.pt-BR.vtt 5.78Кб
02. The Setting, Revisited-V6Q1uF8a6kA.zh-CN.vtt 4.79Кб
02. Training Optimization.html 6.19Кб
02. Training Optimization-UiGKhx9pUYc.en.vtt 824б
02. Training Optimization-UiGKhx9pUYc.mp4 2.96Мб
02. Training Optimization-UiGKhx9pUYc.pt-BR.vtt 874б
02. Training Optimization-UiGKhx9pUYc.zh-CN.vtt 840б
02. Transfer Learning with VGGNet.html 5.59Кб
02. Transfer Learning--WmQwYr0DYjY.en.vtt 6.92Кб
02. Transfer Learning--WmQwYr0DYjY.mp4 8.28Мб
02. Transfer Learning--WmQwYr0DYjY.pt-BR.vtt 6.01Кб
02. Transfer Learning--WmQwYr0DYjY.zh-CN.vtt 6.42Кб
02. TV Script Workspace.html 5.44Кб
02. Weight Initialization 1-6vXMYu_TQIA.en.vtt 9.67Кб
02. Weight Initialization 1-6vXMYu_TQIA.mp4 10.75Мб
02. Weight Initialization 1-6vXMYu_TQIA.pt-BR.vtt 8.17Кб
02. Weight Initialization 1-6vXMYu_TQIA.zh-CN.vtt 8.12Кб
02. What are Jupyter notebooks.html 12.27Кб
02. What can you do with GANs.html 6.52Кб
02. Why Anaconda-VXukXZv7SCQ.ar.vtt 4.95Кб
02. Why Anaconda-VXukXZv7SCQ.en.vtt 3.44Кб
02. Why Anaconda-VXukXZv7SCQ.mp4 10.29Мб
02. Why Anaconda-VXukXZv7SCQ.pt-BR.vtt 3.23Кб
02. Why Anaconda-VXukXZv7SCQ.zh-CN.vtt 3.52Кб
02. Why Policy-Based Methods.html 5.30Кб
02. Workspace Playground.html 5.07Кб
02. 项目简介-jvJtHYBX7sM.en.vtt 1.04Кб
02. 项目简介-jvJtHYBX7sM.mp4 1.61Мб
02. 项目简介-jvJtHYBX7sM.pt-BR.vtt 1.08Кб
02. 项目简介-jvJtHYBX7sM.zh-CN.vtt 1.07Кб
02-guide-how-transfer-learning-v3-01.png 251.26Кб
02-guide-how-transfer-learning-v3-02.png 219.27Кб
02-guide-how-transfer-learning-v3-03.png 228.93Кб
02-guide-how-transfer-learning-v3-04.png 255.16Кб
02-guide-how-transfer-learning-v3-05.png 232.52Кб
02-guide-how-transfer-learning-v3-06.png 259.12Кб
02-guide-how-transfer-learning-v3-07.png 233.30Кб
02-guide-how-transfer-learning-v3-08.png 241.57Кб
02-guide-how-transfer-learning-v3-09.png 228.05Кб
02-guide-how-transfer-learning-v3-10.png 241.76Кб
03. 02 RNN History V4 Final-HbxAnYUfRnc.en.vtt 3.67Кб
03. 02 RNN History V4 Final-HbxAnYUfRnc.mp4 24.26Мб
03. 02 RNN History V4 Final-HbxAnYUfRnc.pt-BR.vtt 4.06Кб
03. 02 RNN History V4 Final-HbxAnYUfRnc.zh-CN.vtt 3.29Кб
03. Apply Credits.html 6.65Кб
03. A Simple Autoencoder.html 5.03Кб
03. A-Simple-Autoencoders 21718-lXGdkCT8E1c.en.vtt 12.95Кб
03. A-Simple-Autoencoders 21718-lXGdkCT8E1c.mp4 15.66Мб
03. Basics of LSTM.html 5.67Кб
03. Batch Normalization.html 6.56Кб
03. Building VGGNet-615SslQiGvo.en.vtt 7.52Кб
03. Building VGGNet-615SslQiGvo.mp4 8.87Мб
03. Building VGGNet-615SslQiGvo.pt-BR.vtt 6.26Кб
03. Building VGGNet-615SslQiGvo.zh-CN.vtt 6.26Кб
03. Classification Problems 1.html 9.61Кб
03. Confusion Matrix 2.html 5.76Кб
03. Confusion-Matrix-Solution-ywwSzyU9rYs.en.vtt 1.05Кб
03. Confusion-Matrix-Solution-ywwSzyU9rYs.en-US.vtt 1.10Кб
03. Confusion-Matrix-Solution-ywwSzyU9rYs.mp4 1.10Мб
03. Confusion-Matrix-Solution-ywwSzyU9rYs.pt-BR.vtt 889б
03. Confusion-Matrix-Solution-ywwSzyU9rYs.zh-CN.vtt 956б
03. Data in NumPy.html 13.36Кб
03. Data Preprocessing.html 5.24Кб
03. Data Preprocessing-h4-LwZU9_k8.en.vtt 5.33Кб
03. Data Preprocessing-h4-LwZU9_k8.mp4 6.86Мб
03. Data Preprocessing-h4-LwZU9_k8.pt-BR.vtt 4.56Кб
03. Data Preprocessing-h4-LwZU9_k8.zh-CN.vtt 4.45Кб
03. DeepTraffic.html 6.33Кб
03. Discrete vs. Continuous Spaces.html 6.12Кб
03. Discrete vs. Continuous Spaces-uHstLeRzaE8.en.vtt 6.54Кб
03. Discrete vs. Continuous Spaces-uHstLeRzaE8.mp4 21.37Мб
03. Discrete vs. Continuous Spaces-uHstLeRzaE8.pt-BR.vtt 7.57Кб
03. Discrete vs. Continuous Spaces-uHstLeRzaE8.zh-CN.vtt 5.73Кб
03. Episodic vs. Continuing Tasks.html 6.63Кб
03. Episodic vs. Continuing Tasks-E1I-BPanSM8.en.vtt 2.82Кб
03. Episodic vs. Continuing Tasks-E1I-BPanSM8.mp4 10.07Мб
03. Episodic vs. Continuing Tasks-E1I-BPanSM8.pt-BR.vtt 3.04Кб
03. Episodic vs. Continuing Tasks-E1I-BPanSM8.zh-CN.vtt 2.46Кб
03. Exemplo de classificação-Dh625piH7Z0.en.vtt 2.70Кб
03. Exemplo de classificação-Dh625piH7Z0.mp4 2.07Мб
03. Exemplo de classificação-Dh625piH7Z0.pt-BR.vtt 2.51Кб
03. Exemplo de classificação-Dh625piH7Z0.zh-CN.vtt 2.37Кб
03. Face Generation Workspace.html 5.56Кб
03. GPU Workspace Playground.html 5.34Кб
03. Gradient Descent-Math-7sxA5Ap8AWM.en.vtt 10.81Кб
03. Gradient Descent-Math-7sxA5Ap8AWM.mp4 11.25Мб
03. Gradient Descent-Math-7sxA5Ap8AWM.pt-BR.vtt 10.84Кб
03. Gradient Descent-Math-7sxA5Ap8AWM.zh-CN.vtt 9.46Кб
03. Gradient Descent The Math.html 5.93Кб
03. Hello, Tensor World!.html 8.95Кб
03. How Computers Interpret Images.html 9.02Кб
03. How Computers Interpret Images-V4f6p6uRhu8.en.vtt 5.52Кб
03. How Computers Interpret Images-V4f6p6uRhu8.mp4 6.18Мб
03. How Computers Interpret Images-V4f6p6uRhu8.pt-BR.vtt 5.95Кб
03. How Computers Interpret Images-V4f6p6uRhu8.zh-CN.vtt 4.91Кб
03. How GANs work.html 6.82Кб
03. Installing Jupyter Notebook.html 5.80Кб
03. Introducing Semi-Supervised Learning.html 6.08Кб
03. Introducing Semi-Supervised Learning-tnCClNy5z5c.en.vtt 4.89Кб
03. Introducing Semi-Supervised Learning-tnCClNy5z5c.mp4 5.88Мб
03. Introducing Semi-Supervised Learning-tnCClNy5z5c.pt-BR.vtt 4.57Кб
03. Introducing Semi-Supervised Learning-tnCClNy5z5c.zh-CN.vtt 4.61Кб
03. Learning Plan.html 8.64Кб
03. Learning Rate.html 6.12Кб
03. Learning Rate-HLMjeDez7ps.en.vtt 11.68Кб
03. Learning Rate-HLMjeDez7ps.mp4 9.62Мб
03. Learning Rate-HLMjeDez7ps.pt-BR.vtt 10.29Кб
03. Learning Rate-HLMjeDez7ps.zh-CN.vtt 10.11Кб
03. LSTM Basics-gjb68a4XsqE.en.vtt 5.21Кб
03. LSTM Basics-gjb68a4XsqE.mp4 4.03Мб
03. LSTM Basics-gjb68a4XsqE.pt-BR.vtt 5.06Кб
03. LSTM Basics-gjb68a4XsqE.zh-CN.vtt 4.59Кб
03. M2L3 03 V2-TePX-0Bs23E.en.vtt 5.99Кб
03. M2L3 03 V2-TePX-0Bs23E.mp4 18.85Мб
03. M2L3 03 V2-TePX-0Bs23E.zh-CN.vtt 5.24Кб
03. Materials.html 9.20Кб
03. MC Prediction State Values.html 7.07Кб
03. MC Prediction State Values-0q2wSWyuBj8.en.vtt 8.51Кб
03. MC Prediction State Values-0q2wSWyuBj8.mp4 33.39Мб
03. MC Prediction State Values-0q2wSWyuBj8.pt-BR.vtt 9.06Кб
03. MC Prediction State Values-0q2wSWyuBj8.zh-CN.vtt 7.20Кб
03. MiniFlow Architecture.html 10.25Кб
03. Mini Project.html 5.39Кб
03. Monte Carlo Learning.html 6.20Кб
03. Monte Carlo Learning-qOviWYwcvsg.en.vtt 2.84Кб
03. Monte Carlo Learning-qOviWYwcvsg.mp4 10.41Мб
03. Monte Carlo Learning-qOviWYwcvsg.pt-BR.vtt 3.13Кб
03. Monte Carlo Learning-qOviWYwcvsg.zh-CN.vtt 2.50Кб
03. Other Generative Models, How GANs Work-MF0QCP1OC9I.en.vtt 7.42Кб
03. Other Generative Models, How GANs Work-MF0QCP1OC9I.mp4 10.28Мб
03. Other Generative Models, How GANs Work-MF0QCP1OC9I.pt-BR.vtt 7.48Кб
03. Other Generative Models, How GANs Work-MF0QCP1OC9I.zh-CN.vtt 6.41Кб
03. Policy Function Approximation.html 5.31Кб
03. Pre-Lab Student Admissions in Keras.html 11.51Кб
03. Quiz Interpret the Policy.html 12.29Кб
03. Replay Buffer.html 6.54Кб
03. RL M2L4 03 Two Function Approximators V1-37KQEgLaLfw.en.vtt 1.68Кб
03. RL M2L4 03 Two Function Approximators V1-37KQEgLaLfw.mp4 6.13Мб
03. RL M2L4 03 Two Function Approximators V1-37KQEgLaLfw.pt-BR.vtt 1.93Кб
03. RL M2L4 03 Two Function Approximators V1-37KQEgLaLfw.zh-CN.vtt 1.45Кб
03. RNN History.html 10.63Кб
03. Sequence Batching.html 5.89Кб
03. Sequence-Batching-Z4OiyU0Cldg.en.vtt 2.09Кб
03. Sequence-Batching-Z4OiyU0Cldg.mp4 2.29Мб
03. Sequence-Batching-Z4OiyU0Cldg.pt-BR.vtt 2.33Кб
03. Sequence-Batching-Z4OiyU0Cldg.zh-CN.vtt 1.92Кб
03. Solution Convolutional Layers.html 6.74Кб
03. Solution Housing Prices.html 7.11Кб
03. Solution Housing Prices-uhdTulw9-Nc.en.vtt 939б
03. Solution Housing Prices-uhdTulw9-Nc.mp4 1001.40Кб
03. Solution Housing Prices-uhdTulw9-Nc.pt-BR.vtt 1.00Кб
03. Subsampling Solution.html 5.51Кб
03. Subsampling Solution-MAUM_mV_lj8.en.vtt 5.99Кб
03. Subsampling Solution-MAUM_mV_lj8.mp4 9.65Мб
03. Subsampling Solution-MAUM_mV_lj8.pt-BR.vtt 6.27Кб
03. Subsampling Solution-MAUM_mV_lj8.zh-CN.vtt 5.04Кб
03. Survival Probability of Skin Cancer.html 7.83Кб
03. Survival Rate-QPlp3NeGuSk.en.vtt 1.19Кб
03. Survival Rate-QPlp3NeGuSk.mp4 1.52Мб
03. Survival Rate-QPlp3NeGuSk.pt-BR.vtt 1.08Кб
03. Survival Rate-QPlp3NeGuSk.zh-CN.vtt 996б
03. TD Prediction TD(0).html 6.24Кб
03. TD Prediction TD(0)-CsD6b0csU7o.en.vtt 8.83Кб
03. TD Prediction TD(0)-CsD6b0csU7o.mp4 30.11Мб
03. TD Prediction TD(0)-CsD6b0csU7o.zh-CN.vtt 7.32Кб
03. Testing.html 6.09Кб
03. Testing-EeBZpb-PSac.en.vtt 2.41Кб
03. Testing-EeBZpb-PSac.mp4 2.00Мб
03. Testing-EeBZpb-PSac.pt-BR.vtt 2.37Кб
03. Testing-EeBZpb-PSac.zh-CN.vtt 1.99Кб
03. The Setting.html 5.06Кб
03. The Setting-nh8Gwdu19nc.en.vtt 7.06Кб
03. The Setting-nh8Gwdu19nc.mp4 7.75Мб
03. The Setting-nh8Gwdu19nc.pt-BR.vtt 7.31Кб
03. The Setting-nh8Gwdu19nc.zh-CN.vtt 6.05Кб
03. Traffic Navigation with Deep Reinforcement Learning-az5ElmV4DhY.en.vtt 7.35Кб
03. Traffic Navigation with Deep Reinforcement Learning-az5ElmV4DhY.en-US.vtt 7.75Кб
03. Traffic Navigation with Deep Reinforcement Learning-az5ElmV4DhY.mp4 38.12Мб
03. Traffic Navigation with Deep Reinforcement Learning-az5ElmV4DhY.pt-BR.vtt 7.59Кб
03. Traffic Navigation with Deep Reinforcement Learning-az5ElmV4DhY.zh-CN.vtt 7.39Кб
03. Two Function Approximators.html 5.44Кб
03. Uniform Distribution.html 5.21Кб
03. VGGNet.html 5.53Кб
03. Weight Initialization 2-BI3f0Cdc_nU.en.vtt 9.47Кб
03. Weight Initialization 2-BI3f0Cdc_nU.mp4 11.10Мб
03. Weight Initialization 2-BI3f0Cdc_nU.pt-BR.vtt 8.37Кб
03. Weight Initialization 2-BI3f0Cdc_nU.zh-CN.vtt 7.97Кб
03. What is Anaconda.html 10.71Кб
03. Your Workspace.html 9.92Кб
04. 03 RNN Applications V3 Final-6JbTNARuKII.en.vtt 2.71Кб
04. 03 RNN Applications V3 Final-6JbTNARuKII.mp4 17.27Мб
04. 03 RNN Applications V3 Final-6JbTNARuKII.pt-BR.vtt 3.02Кб
04. 03 RNN Applications V3 Final-6JbTNARuKII.zh-CN.vtt 2.56Кб
04. Accuracy.html 6.68Кб
04. Accuracy-s6SfhPTNOHA.en.vtt 1.72Кб
04. Accuracy-s6SfhPTNOHA.en-US.vtt 2.08Кб
04. Accuracy-s6SfhPTNOHA.mp4 2.34Мб
04. Accuracy-s6SfhPTNOHA.pt-BR.vtt 1.87Кб
04. Accuracy-s6SfhPTNOHA.zh-CN.vtt 1.63Кб
04. Another Gridworld Example.html 7.91Кб
04. Another Gridworld Example-n9SbomnLb-U.en.vtt 2.04Кб
04. Another Gridworld Example-n9SbomnLb-U.mp4 4.69Мб
04. Another Gridworld Example-n9SbomnLb-U.pt-BR.vtt 2.16Кб
04. Another Gridworld Example-n9SbomnLb-U.zh-CN.vtt 1.65Кб
04. Architecture of LSTM.html 5.71Кб
04. Character-wise RNN Notebook.html 6.20Кб
04. Classification Problems 2.html 8.40Кб
04. Creating Testing Sets.html 5.58Кб
04. Creating Testing Sets-BRBbrNLz1ho.en.vtt 2.02Кб
04. Creating Testing Sets-BRBbrNLz1ho.mp4 2.13Мб
04. Creating Testing Sets-BRBbrNLz1ho.pt-BR.vtt 1.74Кб
04. Creating Testing Sets-BRBbrNLz1ho.zh-CN.vtt 1.68Кб
04. Data Prep.html 5.90Кб
04. Data Prep-P5hOx09mwaM.en.vtt 5.35Кб
04. Data Prep-P5hOx09mwaM.mp4 6.15Мб
04. Data Prep-P5hOx09mwaM.pt-BR.vtt 4.58Кб
04. Data Prep-P5hOx09mwaM.zh-CN.vtt 4.75Кб
04. DCGAN Implementation.html 6.19Кб
04. DDPG Actor.html 9.78Кб
04. Element-wise Matrix Operations.html 5.84Кб
04. Element-wise Matrix Operations-vjUykZyzko4.en.vtt 4.24Кб
04. Element-wise Matrix Operations-vjUykZyzko4.mp4 4.03Мб
04. Element-wise Matrix Operations-vjUykZyzko4.pt-BR.vtt 4.32Кб
04. Element-wise Matrix Operations-vjUykZyzko4.zh-CN.vtt 3.97Кб
04. Fitting A Line-gkdoknEEcaI.en.vtt 1.41Кб
04. Fitting A Line-gkdoknEEcaI.mp4 1.12Мб
04. Fitting A Line-gkdoknEEcaI.pt-BR.vtt 1.42Кб
04. Fitting a Line Through Data.html 7.08Кб
04. Flappy Bird.html 7.07Кб
04. Forward Propagation.html 14.99Кб
04. Games, Equilibrium, GANs Solution Render-2zi8DOWIVas.en.vtt 10.72Кб
04. Games, Equilibrium, GANs Solution Render-2zi8DOWIVas.mp4 13.40Мб
04. Games, Equilibrium, GANs Solution Render-2zi8DOWIVas.pt-BR.vtt 11.23Кб
04. Games, Equilibrium, GANs Solution Render-2zi8DOWIVas.zh-CN.vtt 9.47Кб
04. Games and Equilibria.html 6.57Кб
04. Get Access to GPU Instances.html 8.57Кб
04. Gradient Descent The Code.html 14.99Кб
04. Gridworld Example.html 5.88Кб
04. Gridworld Example-XeHBmPFqTsE.en.vtt 2.56Кб
04. Gridworld Example-XeHBmPFqTsE.mp4 2.38Мб
04. Gridworld Example-XeHBmPFqTsE.pt-BR.vtt 2.82Кб
04. Gridworld Example-XeHBmPFqTsE.zh-CN.vtt 2.06Кб
04. Implementation.html 9.45Кб
04. Implementation.html 8.08Кб
04. Installing Anaconda.html 7.65Кб
04. Lab Student Admissions in Keras.html 5.84Кб
04. Launching the notebook server.html 10.69Кб
04. Learning Rate.html 7.63Кб
04. LSTM Architecture-ycwthhdx8ws.en.vtt 1.49Кб
04. LSTM Architecture-ycwthhdx8ws.mp4 1.07Мб
04. LSTM Architecture-ycwthhdx8ws.pt-BR.vtt 1.46Кб
04. LSTM Architecture-ycwthhdx8ws.zh-CN.vtt 1.34Кб
04. M2L3 04 V1-QicxmyE5vTo.en.vtt 5.35Кб
04. M2L3 04 V1-QicxmyE5vTo.mp4 21.03Мб
04. M2L3 04 V1-QicxmyE5vTo.zh-CN.vtt 4.62Кб
04. Making Batches.html 5.47Кб
04. Making Batches-jx7qwdw-94k.en.vtt 4.50Кб
04. Making Batches-jx7qwdw-94k.mp4 7.73Мб
04. Making Batches-jx7qwdw-94k.pt-BR.vtt 4.51Кб
04. Making Batches-jx7qwdw-94k.zh-CN.vtt 3.77Кб
04. Max Pooling Layers.html 7.80Кб
04. Medical Classification.html 7.85Кб
04. Medical Classification-RCOSP60dV7U.en.vtt 1.37Кб
04. Medical Classification-RCOSP60dV7U.mp4 2.20Мб
04. Medical Classification-RCOSP60dV7U.pt-BR.vtt 1.18Кб
04. Medical Classification-RCOSP60dV7U.zh-CN.vtt 1.17Кб
04. MLPs for Image Classification.html 8.29Кб
04. MLPs For Image Classification-TIFStebu530.en.vtt 3.82Кб
04. MLPs For Image Classification-TIFStebu530.mp4 4.40Мб
04. MLPs For Image Classification-TIFStebu530.pt-BR.vtt 4.06Кб
04. MLPs For Image Classification-TIFStebu530.zh-CN.vtt 3.42Кб
04. OpenAI Gym.html 6.98Кб
04. OpenAI Gym-MktEOWp3QLg.en.vtt 2.21Кб
04. OpenAI Gym-MktEOWp3QLg.mp4 9.47Мб
04. OpenAI Gym-MktEOWp3QLg.pt-BR.vtt 2.48Кб
04. OpenAI Gym-MktEOWp3QLg.zh-CN.vtt 2.01Кб
04. Overfitting and Underfitting.html 6.24Кб
04. Pretrained VGGNet-BpzI6Svmuv8.en.vtt 2.04Кб
04. Pretrained VGGNet-BpzI6Svmuv8.mp4 3.16Мб
04. Pretrained VGGNet-BpzI6Svmuv8.pt-BR.vtt 1.74Кб
04. Pretrained VGGNet-BpzI6Svmuv8.zh-CN.vtt 1.71Кб
04. Program Structure.html 12.80Кб
04. Quiz Space Representations.html 7.29Кб
04. Quiz TensorFlow Linear Function.html 31.43Кб
04. Quiz Test Your Intuition.html 12.64Кб
04. RL M2L4 04 The Actor And The Critic V1-bvbE9F7urd4.en.vtt 2.72Кб
04. RL M2L4 04 The Actor And The Critic V1-bvbE9F7urd4.mp4 10.01Мб
04. RL M2L4 04 The Actor And The Critic V1-bvbE9F7urd4.pt-BR.vtt 3.03Кб
04. RL M2L4 04 The Actor And The Critic V1-bvbE9F7urd4.zh-CN.vtt 2.41Кб
04. RNN Applications.html 8.86Кб
04. Simple Autoencoder Solution.html 5.31Кб
04. Simple Autoencoder Solution-Nv_D6DHfEk8.en.vtt 7.04Кб
04. Simple Autoencoder Solution-Nv_D6DHfEk8.mp4 8.59Мб
04. Simple Autoencoder Solution-Nv_D6DHfEk8.pt-BR.vtt 6.43Кб
04. Simple Autoencoder Solution-Nv_D6DHfEk8.zh-CN.vtt 5.88Кб
04. Stochastic Policy Search.html 5.30Кб
04. Temporal Difference Learning.html 5.99Кб
04. Temporal Difference Learning-lpmDi0QeUm8.en.vtt 4.12Кб
04. Temporal Difference Learning-lpmDi0QeUm8.mp4 16.98Мб
04. Temporal Difference Learning-lpmDi0QeUm8.pt-BR.vtt 4.47Кб
04. Temporal Difference Learning-lpmDi0QeUm8.zh-CN.vtt 3.60Кб
04. The Actor and The Critic.html 5.43Кб
04. The Notebooks.html 7.39Кб
04. Too Small.html 5.19Кб
04. Underfitting And Overfitting-xj4PlXMsN-Y.en.vtt 7.49Кб
04. Underfitting And Overfitting-xj4PlXMsN-Y.mp4 6.42Мб
04. Underfitting And Overfitting-xj4PlXMsN-Y.pt-BR.vtt 8.15Кб
04. Underfitting And Overfitting-xj4PlXMsN-Y.zh-CN.vtt 6.54Кб
04. VGGNet Solution.html 5.56Кб
04. Weight Initialization 3-JIQl0jMpdsI.en.vtt 4.24Кб
04. Weight Initialization 3-JIQl0jMpdsI.mp4 5.43Мб
04. Weight Initialization 3-JIQl0jMpdsI.pt-BR.vtt 3.66Кб
04. Weight Initialization 3-JIQl0jMpdsI.zh-CN.vtt 3.57Кб
04. 分类问题 2 -46PywnGa_cQ.en.vtt 1.76Кб
04. 分类问题 2 -46PywnGa_cQ.mp4 1.62Мб
04. 分类问题 2 -46PywnGa_cQ.pt-BR.vtt 1.60Кб
04. 分类问题 2 -46PywnGa_cQ.zh-CN.vtt 1.65Кб
05. 04 RNN FFNN Reminder A V7 Final-_vrp2lZjXf0.en.vtt 5.62Кб
05. 04 RNN FFNN Reminder A V7 Final-_vrp2lZjXf0.mp4 25.79Мб
05. 04 RNN FFNN Reminder A V7 Final-_vrp2lZjXf0.pt-BR.vtt 6.07Кб
05. 04 RNN FFNN Reminder A V7 Final-_vrp2lZjXf0.zh-CN.vtt 4.96Кб
05. 05 RNN FFNN Reminder B V6 Final-FfPjaGcZODc.en.vtt 4.53Кб
05. 05 RNN FFNN Reminder B V6 Final-FfPjaGcZODc.mp4 19.68Мб
05. 05 RNN FFNN Reminder B V6 Final-FfPjaGcZODc.pt-BR.vtt 4.65Кб
05. 05 RNN FFNN Reminder B V6 Final-FfPjaGcZODc.zh-CN.vtt 4.03Кб
05. Accuracy 2.html 5.76Кб
05. Accuracy 2-ueYCLfd_aNQ.en.vtt 688б
05. Accuracy 2-ueYCLfd_aNQ.en-US.vtt 720б
05. Accuracy 2-ueYCLfd_aNQ.mp4 573.82Кб
05. Accuracy 2-ueYCLfd_aNQ.pt.vtt 656б
05. Accuracy 2-ueYCLfd_aNQ.pt-BR.vtt 618б
05. Accuracy 2-ueYCLfd_aNQ.zh-CN.vtt 528б
05. Advantage Function.html 5.44Кб
05. An Iterative Method, Part 1.html 7.40Кб
05. An Iterative Method-AX-hG3KvwzY.en.vtt 7.50Кб
05. An Iterative Method-AX-hG3KvwzY.mp4 27.57Мб
05. An Iterative Method-AX-hG3KvwzY.pt-BR.vtt 8.24Кб
05. An Iterative Method-AX-hG3KvwzY.zh-CN.vtt 6.27Кб
05. Batches Solution.html 5.48Кб
05. Batches Solution-DdfR0RjSC-Q.en.vtt 2.64Кб
05. Batches Solution-DdfR0RjSC-Q.mp4 3.88Мб
05. Batches Solution-DdfR0RjSC-Q.pt-BR.vtt 2.50Кб
05. Batches Solution-DdfR0RjSC-Q.zh-CN.vtt 2.40Кб
05. Books to Read.html 5.90Кб
05. Building The Generator And Discriminator.html 6.11Кб
05. Building The Generator And Discriminator-OWytckbbeGQ.en.vtt 15.17Кб
05. Building The Generator And Discriminator-OWytckbbeGQ.mp4 17.97Мб
05. Building The Generator And Discriminator-OWytckbbeGQ.pt-BR.vtt 14.51Кб
05. Building The Generator And Discriminator-OWytckbbeGQ.zh-CN.vtt 13.74Кб
05. Building the RNN.html 5.43Кб
05. Building The RNN 1-XTD6slf64fM.en.vtt 13.87Кб
05. Building The RNN 1-XTD6slf64fM.mp4 19.11Мб
05. Building The RNN 1-XTD6slf64fM.pt-BR.vtt 12.30Кб
05. Building The RNN 1-XTD6slf64fM.zh-CN.vtt 12.07Кб
05. Categorical Cross-Entropy.html 9.11Кб
05. Categorical Cross-Entropy-3sDYifgjFck.en.vtt 4.82Кб
05. Categorical Cross-Entropy-3sDYifgjFck.mp4 5.42Мб
05. Categorical Cross-Entropy-3sDYifgjFck.pt-BR.vtt 5.13Кб
05. Categorical Cross-Entropy-3sDYifgjFck.zh-CN.vtt 4.24Кб
05. Convolutional Autoencoders.html 5.30Кб
05. Convolutional Autoencoders-18SZVRaumGs.en.vtt 14.17Кб
05. Convolutional Autoencoders-18SZVRaumGs.mp4 21.51Мб
05. Convolutional Autoencoders-18SZVRaumGs.pt-BR.vtt 13.87Кб
05. Convolutional Autoencoders-18SZVRaumGs.zh-CN.vtt 12.04Кб
05. Data Preparation.html 5.55Кб
05. Data Preparation-WfsDMq-b3y4.en.vtt 7.04Кб
05. Data Preparation-WfsDMq-b3y4.mp4 9.23Мб
05. Data Preparation-WfsDMq-b3y4.pt-BR.vtt 6.15Кб
05. Data Preparation-WfsDMq-b3y4.zh-CN.vtt 6.34Кб
05. DCGAN and the Generator.html 5.68Кб
05. DCGAN And The Generator-CH6BxLTKt7s.en.vtt 11.03Кб
05. DCGAN And The Generator-CH6BxLTKt7s.mp4 16.03Мб
05. DCGAN And The Generator-CH6BxLTKt7s.pt-BR.vtt 9.09Кб
05. DCGAN And The Generator-CH6BxLTKt7s.zh-CN.vtt 9.62Кб
05. DDPG Critic.html 9.15Кб
05. Discretization.html 6.01Кб
05. Discretization-j2eZyUpy--E.en.vtt 4.58Кб
05. Discretization-j2eZyUpy--E.mp4 12.55Мб
05. Discretization-j2eZyUpy--E.pt-BR.vtt 5.13Кб
05. Discretization-j2eZyUpy--E.zh-CN.vtt 4.06Кб
05. Early Stopping.html 6.18Кб
05. Element-wise Operations in NumPy.html 9.17Кб
05. Feedforward Neural Network-Reminder.html 11.01Кб
05. Forward Propagation Solution.html 13.17Кб
05. Framing the Problem.html 7.00Кб
05. Framing the Problem-IsTOnkAKaJw.en.vtt 8.81Кб
05. Framing the Problem-IsTOnkAKaJw.mp4 17.65Мб
05. Framing the Problem-IsTOnkAKaJw.pt-BR.vtt 7.85Кб
05. Framing the Problem-IsTOnkAKaJw.zh-CN.vtt 8.31Кб
05. GANs Architecture -gaEs7ccZv_Q.en.vtt 11.75Кб
05. GANs Architecture -gaEs7ccZv_Q.mp4 15.96Мб
05. GANs Architecture -gaEs7ccZv_Q.pt-BR.vtt 12.52Кб
05. GANs Architecture -gaEs7ccZv_Q.zh-CN.vtt 10.22Кб
05. Implementing a Character-wise RNN.html 6.00Кб
05. Implementing a Character-wise RNN-KPCMn_jg2oY.en.vtt 9.94Кб
05. Implementing a Character-wise RNN-KPCMn_jg2oY.mp4 13.63Мб
05. Implementing a Character-wise RNN-KPCMn_jg2oY.pt-BR.vtt 10.69Кб
05. Implementing a Character-wise RNN-KPCMn_jg2oY.zh-CN.vtt 8.71Кб
05. Implementing Gradient Descent.html 40.19Кб
05. Launch an Instance.html 12.53Кб
05. Learn Gate-aVHVI7ovbHY.en.vtt 2.63Кб
05. Learn Gate-aVHVI7ovbHY.mp4 2.22Мб
05. Learn Gate-aVHVI7ovbHY.pt-BR.vtt 2.66Кб
05. Learn Gate-aVHVI7ovbHY.zh-CN.vtt 2.51Кб
05. Linear Boundaries.html 9.13Кб
05. Linear Boundaries-X-uMlsBi07k.en.vtt 3.85Кб
05. Linear Boundaries-X-uMlsBi07k.mp4 3.85Мб
05. Linear Boundaries-X-uMlsBi07k.pt-BR.vtt 3.67Кб
05. Linear Boundaries-X-uMlsBi07k.zh-CN.vtt 3.36Кб
05. M2L3 05 V1-eZxxNNIZuwA.en.vtt 7.33Кб
05. M2L3 05 V1-eZxxNNIZuwA.mp4 16.64Мб
05. M2L3 05 V1-eZxxNNIZuwA.zh-CN.vtt 6.27Кб
05. Managing packages.html 8.50Кб
05. Minibatch Size.html 5.84Кб
05. Minibatch Size-GrrO1NFxaW8.en.vtt 5.36Кб
05. Minibatch Size-GrrO1NFxaW8.mp4 4.78Мб
05. Minibatch Size-GrrO1NFxaW8.pt-BR.vtt 4.77Кб
05. Minibatch Size-GrrO1NFxaW8.zh-CN.vtt 4.77Кб
05. Mini Project MC (Parts 0 and 1).html 7.44Кб
05. Mini Project TD (Parts 0 and 1).html 6.78Кб
05. Model Complexity Graph-NnS0FJyVcDQ.en.vtt 5.32Кб
05. Model Complexity Graph-NnS0FJyVcDQ.mp4 4.90Мб
05. Model Complexity Graph-NnS0FJyVcDQ.pt-BR.vtt 5.52Кб
05. Model Complexity Graph-NnS0FJyVcDQ.zh-CN.vtt 4.65Кб
05. Moving a Line.html 7.05Кб
05. Moving A Line-8EIHFyL2Log.en.vtt 1.16Кб
05. Moving A Line-8EIHFyL2Log.mp4 981.31Кб
05. Moving A Line-8EIHFyL2Log.pt-BR.vtt 1.05Кб
05. Normal Distribution.html 5.21Кб
05. Notebook interface.html 9.41Кб
05. Optimizers in Keras.html 6.17Кб
05. Policy Gradients.html 5.28Кб
05. Practical tips and tricks for training GANs.html 6.51Кб
05. Projects You Will Build.html 6.05Кб
05. Projects You will Build-PqpdX7YxTlU.en.vtt 2.44Кб
05. Projects You will Build-PqpdX7YxTlU.mp4 11.05Мб
05. Projects You will Build-PqpdX7YxTlU.pt-BR.vtt 2.81Кб
05. Projects You will Build-PqpdX7YxTlU.zh-CN.vtt 2.23Кб
05. Q-Learning.html 6.16Кб
05. Q-Learning-AI5gLgYMSq8.en.vtt 5.27Кб
05. Q-Learning-AI5gLgYMSq8.mp4 17.31Мб
05. Q-Learning-AI5gLgYMSq8.pt-BR.vtt 5.81Кб
05. Q-Learning-AI5gLgYMSq8.zh-CN.vtt 4.65Кб
05. Quiz Episodic or Continuing.html 9.04Кб
05. Quiz Max Pooling Layers.html 7.42Кб
05. Quiz TensorFlow Softmax.html 11.46Кб
05. Resources-_YPqfAnCqtk.en.vtt 2.07Кб
05. Resources-_YPqfAnCqtk.mp4 6.97Мб
05. Resources-_YPqfAnCqtk.pt-BR.vtt 2.39Кб
05. Resources-_YPqfAnCqtk.zh-CN.vtt 1.83Кб
05. Resources.html 6.14Кб
05. RL M2L4 05 Advantage Function RENDER V1 V2-vpLmzKqcgfc.en.vtt 3.90Кб
05. RL M2L4 05 Advantage Function RENDER V1 V2-vpLmzKqcgfc.mp4 10.72Мб
05. RL M2L4 05 Advantage Function RENDER V1 V2-vpLmzKqcgfc.pt-BR.vtt 4.27Кб
05. RL M2L4 05 Advantage Function RENDER V1 V2-vpLmzKqcgfc.zh-CN.vtt 3.30Кб
05. State-Value Functions.html 7.18Кб
05. State-Value Functions-llakAjwox_8.en.vtt 4.67Кб
05. State-Value Functions-llakAjwox_8.mp4 5.28Мб
05. State-Value Functions-llakAjwox_8.pt-BR.vtt 5.25Кб
05. State-Value Functions-llakAjwox_8.zh-CN.vtt 3.86Кб
05. The data.html 7.75Кб
05. The Data-2RLbbV7MQNA.en.vtt 1.97Кб
05. The Data-2RLbbV7MQNA.mp4 2.85Мб
05. The Data-2RLbbV7MQNA.pt-BR.vtt 1.71Кб
05. The Data-2RLbbV7MQNA.zh-CN.vtt 1.64Кб
05. The Learn Gate.html 6.26Кб
05. Weight Initialization 4-FM6t7AsodGQ.en.vtt 8.32Кб
05. Weight Initialization 4-FM6t7AsodGQ.mp4 9.56Мб
05. Weight Initialization 4-FM6t7AsodGQ.pt-BR.vtt 7.27Кб
05. Weight Initialization 4-FM6t7AsodGQ.zh-CN.vtt 6.79Кб
06. 06 FeedForward A V7 Final-4rCfnWbx8-0.en.vtt 5.16Кб
06. 06 FeedForward A V7 Final-4rCfnWbx8-0.mp4 17.74Мб
06. 06 FeedForward A V7 Final-4rCfnWbx8-0.pt-BR.vtt 5.69Кб
06. 06 FeedForward A V7 Final-4rCfnWbx8-0.zh-CN.vtt 4.52Кб
06. 06 Image Challenge V3-Efnoj1KNPHw.en.vtt 1.07Кб
06. 06 Image Challenge V3-Efnoj1KNPHw.mp4 1.46Мб
06. 06 Image Challenge V3-Efnoj1KNPHw.pt-BR.vtt 937б
06. 06 Image Challenge V3-Efnoj1KNPHw.zh-CN.vtt 920б
06. 07 FeedForward B V3-kTYbTVh1d0k.en.vtt 7.55Кб
06. 07 FeedForward B V3-kTYbTVh1d0k.mp4 26.65Мб
06. 07 FeedForward B V3-kTYbTVh1d0k.pt-BR.vtt 7.86Кб
06. 07 FeedForward B V3-kTYbTVh1d0k.zh-CN.vtt 6.70Кб
06. 09 Higher Dimensions-eBHunImDmWw.en.vtt 2.95Кб
06. 09 Higher Dimensions-eBHunImDmWw.mp4 2.59Мб
06. 09 Higher Dimensions-eBHunImDmWw.pt-BR.vtt 2.66Кб
06. 09 Higher Dimensions-eBHunImDmWw.zh-CN.vtt 2.38Кб
06. Absolute Trick.html 7.05Кб
06. Absolute Trick-DJWjBAqSkZw.en.vtt 6.58Кб
06. Absolute Trick-DJWjBAqSkZw.mp4 5.17Мб
06. Absolute Trick-DJWjBAqSkZw.pt-BR.vtt 6.41Кб
06. Actor-Critic with Advantage.html 5.50Кб
06. Additional Material.html 5.44Кб
06. An Iterative Method, Part 2.html 13.32Кб
06. Batching Data Solution.html 5.93Кб
06. Batching Data Solution-o3nBxHJLQcc.en.vtt 4.31Кб
06. Batching Data Solution-o3nBxHJLQcc.mp4 5.08Мб
06. Batching Data Solution-o3nBxHJLQcc.pt-BR.vtt 4.33Кб
06. Batching Data Solution-o3nBxHJLQcc.zh-CN.vtt 3.70Кб
06. Bellman Equations.html 10.49Кб
06. Bellman Equations-UgIaDMvSdUo.en.vtt 3.78Кб
06. Bellman Equations-UgIaDMvSdUo.mp4 4.14Мб
06. Bellman Equations-UgIaDMvSdUo.pt-BR.vtt 3.86Кб
06. Bellman Equations-UgIaDMvSdUo.zh-CN.vtt 2.99Кб
06. Build a GAN.html 7.21Кб
06. Building the Network.html 5.51Кб
06. Building The Network-fhSb5c6UX6M.en.vtt 5.14Кб
06. Building The Network-fhSb5c6UX6M.mp4 8.09Мб
06. Building The Network-fhSb5c6UX6M.pt-BR.vtt 4.88Кб
06. Building The Network-fhSb5c6UX6M.zh-CN.vtt 4.12Кб
06. Code cells.html 6.07Кб
06. Convolutional Autoencoder Solutions-w3iPs6YnqmY.en.vtt 8.10Кб
06. Convolutional Autoencoder Solutions-w3iPs6YnqmY.mp4 12.68Мб
06. Convolutional Autoencoder Solutions-w3iPs6YnqmY.pt-BR.vtt 7.78Кб
06. Convolutional Autoencoder Solutions-w3iPs6YnqmY.zh-CN.vtt 7.00Кб
06. Convolutional Autoencoders Solution.html 5.36Кб
06. Data Preparation Solution.html 5.57Кб
06. Data Preparation-WEtKkHlhhZA.en.vtt 3.52Кб
06. Data Preparation-WEtKkHlhhZA.mp4 4.40Мб
06. Data Preparation-WEtKkHlhhZA.pt-BR.vtt 3.01Кб
06. Data Preparation-WEtKkHlhhZA.zh-CN.vtt 3.30Кб
06. DDPG Agent.html 10.55Кб
06. Deadline Policy.html 10.59Кб
06. Deep Q Network.html 6.21Кб
06. Deep Q Network-GgtR_d1OB-M.en.vtt 5.85Кб
06. Deep Q Network-GgtR_d1OB-M.mp4 25.67Мб
06. Deep Q Network-GgtR_d1OB-M.pt-BR.vtt 6.34Кб
06. Deep Q Network-GgtR_d1OB-M.zh-CN.vtt 5.25Кб
06. DL 53 Q Regularization-KxROxcRsHL8.en.vtt 1.15Кб
06. DL 53 Q Regularization-KxROxcRsHL8.mp4 1.01Мб
06. DL 53 Q Regularization-KxROxcRsHL8.pt-BR.vtt 1.16Кб
06. DL 53 Q Regularization-KxROxcRsHL8.zh-CN.vtt 1.02Кб
06. Exercise Discretization.html 6.33Кб
06. Forget Gate-iWxpfxLUPSU.en.vtt 1.26Кб
06. Forget Gate-iWxpfxLUPSU.mp4 1.04Мб
06. Forget Gate-iWxpfxLUPSU.pt-BR.vtt 1.33Кб
06. Forget Gate-iWxpfxLUPSU.zh-CN.vtt 1.12Кб
06. Generator Solution.html 5.65Кб
06. Generator Solution-jyPwUEZg05Q.en.vtt 3.79Кб
06. Generator Solution-jyPwUEZg05Q.mp4 7.26Мб
06. Generator Solution-jyPwUEZg05Q.pt-BR.vtt 3.15Кб
06. Generator Solution-jyPwUEZg05Q.zh-CN.vtt 3.30Кб
06. Higher Dimensions.html 9.60Кб
06. Image Challenges.html 8.34Кб
06. Keras Lab-a50un22BsLI.en.vtt 586б
06. Keras Lab-a50un22BsLI.mp4 2.19Мб
06. Keras Lab-a50un22BsLI.pt-BR.vtt 574б
06. Keras Lab-a50un22BsLI.zh-CN.vtt 540б
06. Learning and Loss.html 13.29Кб
06. Login to the Instance.html 9.54Кб
06. M2L3 06 V1-RMjdQkl6CqE.en.vtt 910б
06. M2L3 06 V1-RMjdQkl6CqE.mp4 3.01Мб
06. M2L3 06 V1-RMjdQkl6CqE.zh-CN.vtt 804б
06. Managing environments.html 8.77Кб
06. Matrix Multiplication Part 1.html 6.06Кб
06. Matrix Multiplication Part 1-JRoCFQRP4B0.en.vtt 7.95Кб
06. Matrix Multiplication Part 1-JRoCFQRP4B0.mp4 5.89Мб
06. Matrix Multiplication Part 1-JRoCFQRP4B0.pt-BR.vtt 7.91Кб
06. Matrix Multiplication Part 1-JRoCFQRP4B0.zh-CN.vtt 7.72Кб
06. MC Prediction Action Values.html 7.07Кб
06. MC Prediction Action Values-08tLtbh0xLs.en.vtt 6.07Кб
06. MC Prediction Action Values-08tLtbh0xLs.mp4 22.01Мб
06. MC Prediction Action Values-08tLtbh0xLs.pt-BR.vtt 7.03Кб
06. MC Prediction Action Values-08tLtbh0xLs.zh-CN.vtt 5.17Кб
06. Mini Project 1.html 7.57Кб
06. Mini Project Intro.html 5.36Кб
06. Model Loss Exercise.html 5.97Кб
06. Model Loss Exercise-W7TawMNxBds.en.vtt 12.52Кб
06. Model Loss Exercise-W7TawMNxBds.mp4 15.85Мб
06. Model Loss Exercise-W7TawMNxBds.pt-BR.vtt 19.80Кб
06. Model Loss Exercise-W7TawMNxBds.zh-CN.vtt 10.70Кб
06. Model Validation in Keras.html 8.29Кб
06. Model Validation in Keras-002jNXSM6CU.en.vtt 5.51Кб
06. Model Validation in Keras-002jNXSM6CU.mp4 5.20Мб
06. Model Validation in Keras-002jNXSM6CU.pt-BR.vtt 6.07Кб
06. Model Validation in Keras-002jNXSM6CU.zh-CN.vtt 4.74Кб
06. Monte Carlo Policy Gradients.html 5.31Кб
06. Multilayer Perceptrons.html 20.99Кб
06. Multilayer perceptrons-Rs9petvTBLk.en-US.vtt 1.65Кб
06. Multilayer perceptrons-Rs9petvTBLk.mp4 2.85Мб
06. Multilayer perceptrons-Rs9petvTBLk.pt-BR.vtt 1.71Кб
06. Multilayer perceptrons-Rs9petvTBLk.zh-CN.vtt 1.39Кб
06. Number Of Iterations-TTdHpSb4DV8.en.vtt 1.63Кб
06. Number Of Iterations-TTdHpSb4DV8.mp4 1.46Мб
06. Number Of Iterations-TTdHpSb4DV8.pt-BR.vtt 1.53Кб
06. Number Of Iterations-TTdHpSb4DV8.zh-CN.vtt 1.50Кб
06. Number of Training Iterations Epochs.html 8.29Кб
06. Quiz TensorFlow Cross Entropy.html 11.95Кб
06. Reference Guide.html 5.49Кб
06. Regularization.html 7.21Кб
06. RL M2L4 06 Actor Critic With Advantage RENDER V1 V1-Bwd2OF7hJXQ.en.vtt 1.00Кб
06. RL M2L4 06 Actor Critic With Advantage RENDER V1 V1-Bwd2OF7hJXQ.mp4 3.09Мб
06. RL M2L4 06 Actor Critic With Advantage RENDER V1 V1-Bwd2OF7hJXQ.pt-BR.vtt 1.18Кб
06. RL M2L4 06 Actor Critic With Advantage RENDER V1 V1-Bwd2OF7hJXQ.zh-CN.vtt 891б
06. Solution Max Pooling Layers.html 6.30Кб
06. TD Prediction Action Values.html 6.60Кб
06. TD Prediction Action Values-1c029-7_9GA.en.vtt 2.68Кб
06. TD Prediction Action Values-1c029-7_9GA.mp4 9.73Мб
06. TD Prediction Action Values-1c029-7_9GA.zh-CN.vtt 2.22Кб
06. The Feedforward Process.html 14.78Кб
06. The Forget Gate.html 6.18Кб
06. The Reward Hypothesis.html 6.58Кб
06. The Reward Hypothesis-uAqNwgZ49JE.en.vtt 3.45Кб
06. The Reward Hypothesis-uAqNwgZ49JE.mp4 4.38Мб
06. The Reward Hypothesis-uAqNwgZ49JE.pt-BR.vtt 3.68Кб
06. The Reward Hypothesis-uAqNwgZ49JE.zh-CN.vtt 3.01Кб
06. Training the Network.html 5.25Кб
06. Training The Network-nknJ3Xu3ld0.en.vtt 6.38Кб
06. Training The Network-nknJ3Xu3ld0.mp4 8.41Мб
06. Training The Network-nknJ3Xu3ld0.pt-BR.vtt 5.70Кб
06. Training The Network-nknJ3Xu3ld0.zh-CN.vtt 5.42Кб
06. When accuracy won't work.html 5.52Кб
06. When Accuracy Wont Work-r0-O-gIDXZ0.en.vtt 2.81Кб
06. When Accuracy Wont Work-r0-O-gIDXZ0.mp4 2.15Мб
06. When Accuracy Wont Work-r0-O-gIDXZ0.pt-BR.vtt 2.79Кб
07. 04 Quiz False Negatives And Positives SC V1-_ytP9zIkziw.en.vtt 2.88Кб
07. 04 Quiz False Negatives And Positives SC V1-_ytP9zIkziw.mp4 2.22Мб
07. 04 Quiz False Negatives And Positives SC V1-_ytP9zIkziw.pt-BR.vtt 2.67Кб
07. 07 Quiz Data Challenges V1-F8yc7BlV93c.en.vtt 526б
07. 07 Quiz Data Challenges V1-F8yc7BlV93c.mp4 862.50Кб
07. 07 Quiz Data Challenges V1-F8yc7BlV93c.pt-BR.vtt 482б
07. 07 Quiz Data Challenges V1-F8yc7BlV93c.zh-CN.vtt 468б
07. Backpropagation.html 19.36Кб
07. Backpropagation-MZL97-2joxQ.en-US.vtt 2.42Кб
07. Backpropagation-MZL97-2joxQ.mp4 3.44Мб
07. Backpropagation-MZL97-2joxQ.pt-BR.vtt 2.41Кб
07. Backpropagation-MZL97-2joxQ.zh-CN.vtt 2.14Кб
07. Building The Classifier-pPHiVddBY0Q.en.vtt 1.61Кб
07. Building The Classifier-pPHiVddBY0Q.mp4 1.99Мб
07. Building The Classifier-pPHiVddBY0Q.pt-BR.vtt 1.41Кб
07. Building The Classifier-pPHiVddBY0Q.zh-CN.vtt 1.53Кб
07. Classifier.html 5.58Кб
07. CNNs in TensorFlow.html 12.71Кб
07. Constrained Policy Gradients.html 5.31Кб
07. Discriminator.html 5.61Кб
07. Discriminator-XRqOUbf96eI.en.vtt 3.08Кб
07. Discriminator-XRqOUbf96eI.mp4 3.25Мб
07. Discriminator-XRqOUbf96eI.pt-BR.vtt 2.57Кб
07. Discriminator-XRqOUbf96eI.zh-CN.vtt 2.66Кб
07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.en.vtt 5.89Кб
07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.mp4 5.13Мб
07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.pt-BR.vtt 5.61Кб
07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.zh-CN.vtt 4.98Кб
07. Experience Replay.html 6.24Кб
07. Experience Replay-wX_-SZG-YMQ.en.vtt 9.51Кб
07. Experience Replay-wX_-SZG-YMQ.mp4 48.38Мб
07. Experience Replay-wX_-SZG-YMQ.pt-BR.vtt 11.32Кб
07. Experience Replay-wX_-SZG-YMQ.zh-CN.vtt 8.25Кб
07. False Negatives and Positives.html 7.85Кб
07. Feedforward Quiz.html 10.36Кб
07. Get started with a GAN.html 6.50Кб
07. Getting Started with GANs-QA2ntKUha4g.en.vtt 4.00Кб
07. Getting Started with GANs-QA2ntKUha4g.mp4 5.04Мб
07. Getting Started with GANs-QA2ntKUha4g.pt-BR.vtt 3.82Кб
07. Getting Started with GANs-QA2ntKUha4g.zh-CN.vtt 3.63Кб
07. Goals and Rewards, Part 1.html 6.60Кб
07. Goals and Rewards, Part 1-XPnj3Ya3EuM.en.vtt 3.25Кб
07. Goals and Rewards, Part 1-XPnj3Ya3EuM.mp4 6.84Мб
07. Goals and Rewards, Part 1-XPnj3Ya3EuM.pt-BR.vtt 3.61Кб
07. Goals and Rewards, Part 1-XPnj3Ya3EuM.zh-CN.vtt 2.82Кб
07. Implementation.html 8.76Кб
07. Linear Transform.html 19.41Кб
07. LSTM Cell.html 5.84Кб
07. LSTM Cell-ajC-5uWB8S4.en.vtt 6.06Кб
07. LSTM Cell-ajC-5uWB8S4.mp4 7.79Мб
07. LSTM Cell-ajC-5uWB8S4.pt-BR.vtt 6.21Кб
07. LSTM Cell-ajC-5uWB8S4.zh-CN.vtt 5.30Кб
07. M2L3 07 V2-ZBLLGIN1EfU.en.vtt 9.11Кб
07. M2L3 07 V2-ZBLLGIN1EfU.mp4 43.55Мб
07. M2L3 07 V2-ZBLLGIN1EfU.zh-CN.vtt 7.88Кб
07. Markdown cells.html 9.49Кб
07. Matrix Multiplication Part 2.html 7.05Кб
07. Matrix Multiplication Part 2-8jtk8BzBdj8.en.vtt 9.88Кб
07. Matrix Multiplication Part 2-8jtk8BzBdj8.mp4 7.34Мб
07. Matrix Multiplication Part 2-8jtk8BzBdj8.pt-BR.vtt 9.31Кб
07. Matrix Multiplication Part 2-8jtk8BzBdj8.zh-CN.vtt 8.61Кб
07. Mini Project 1 Solution.html 7.29Кб
07. Mini Project 1 Solution-l4r5l0HvHRI.en.vtt 8.83Кб
07. Mini Project 1 Solution-l4r5l0HvHRI.mp4 24.79Мб
07. Mini Project 1 Solution-l4r5l0HvHRI.pt-BR.vtt 7.59Кб
07. Mini Project 1 Solution-l4r5l0HvHRI.zh-CN.vtt 8.85Кб
07. Model Optimization Exercise.html 6.02Кб
07. Model Optimization Exercise-wNpI1wUA4Io.en.vtt 10.68Кб
07. Model Optimization Exercise-wNpI1wUA4Io.mp4 12.64Мб
07. Model Optimization Exercise-wNpI1wUA4Io.pt-BR.vtt 17.59Кб
07. Model Optimization Exercise-wNpI1wUA4Io.zh-CN.vtt 9.23Кб
07. More environment actions.html 7.15Кб
07. More Resources.html 6.89Кб
07. Negative Sampling.html 5.49Кб
07. Negative Sampling-gW17AHBKbHY.en.vtt 2.55Кб
07. Negative Sampling-gW17AHBKbHY.mp4 4.16Мб
07. Negative Sampling-gW17AHBKbHY.pt-BR.vtt 2.36Кб
07. Negative Sampling-gW17AHBKbHY.zh-CN.vtt 2.19Кб
07. Number of Hidden Units Layers.html 6.49Кб
07. Number Of Hidden Units Layers-IkGAIQH5wH8.en.vtt 3.23Кб
07. Number Of Hidden Units Layers-IkGAIQH5wH8.mp4 3.40Мб
07. Number Of Hidden Units Layers-IkGAIQH5wH8.pt-BR.vtt 3.02Кб
07. Number Of Hidden Units Layers-IkGAIQH5wH8.zh-CN.vtt 2.82Кб
07. Ornstein–Uhlenbeck Noise.html 7.30Кб
07. Perceptrons.html 9.44Кб
07. Pixels are Features!-qE5YYXtPq9U.en-US.vtt 72б
07. Pixels are Features!-qE5YYXtPq9U.mp4 1.24Мб
07. Pixels are Features!-qE5YYXtPq9U.pt-BR.vtt 91б
07. Pre-Lab IMDB Data in Keras.html 9.58Кб
07. Quiz An Iterative Method.html 11.56Кб
07. Quiz Data Challenges.html 9.05Кб
07. Quiz Mini-batch.html 36.77Кб
07. Quiz State-Value Functions.html 12.63Кб
07. Regularization 2.html 6.15Кб
07. Regularization-ndYnUrx8xvs.en.vtt 8.07Кб
07. Regularization-ndYnUrx8xvs.mp4 7.57Мб
07. Regularization-ndYnUrx8xvs.pt-BR.vtt 8.78Кб
07. Regularization-ndYnUrx8xvs.zh-CN.vtt 6.96Кб
07. Remember Gate-0qlm86HaXuU.en.vtt 734б
07. Remember Gate-0qlm86HaXuU.mp4 676.91Кб
07. Remember Gate-0qlm86HaXuU.pt-BR.vtt 700б
07. Remember Gate-0qlm86HaXuU.zh-CN.vtt 632б
07. Sentiment RNN 2-V9YGGjmoHS0.en.vtt 17.68Кб
07. Sentiment RNN 2-V9YGGjmoHS0.mp4 23.11Мб
07. Sentiment RNN 2-V9YGGjmoHS0.pt-BR.vtt 15.77Кб
07. Sentiment RNN 2-V9YGGjmoHS0.zh-CN.vtt 14.72Кб
07. Solutions.html 5.21Кб
07. Square Trick.html 7.04Кб
07. Square Trick-AGZEq-yQgRM.en.vtt 3.91Кб
07. Square Trick-AGZEq-yQgRM.mp4 3.28Мб
07. Square Trick-AGZEq-yQgRM.pt-BR.vtt 3.78Кб
07. Summary.html 5.24Кб
07. Summary-hvYQ_3LgCYs.en.vtt 2.34Кб
07. Summary-hvYQ_3LgCYs.mp4 16.90Мб
07. Summary-hvYQ_3LgCYs.pt-BR.vtt 2.79Кб
07. Summary-hvYQ_3LgCYs.zh-CN.vtt 2.09Кб
07. TD Control Sarsa(0).html 6.24Кб
07. TD Control Sarsa(0)-LkFkjfsRpXc.en.vtt 2.21Кб
07. TD Control Sarsa(0)-LkFkjfsRpXc.mp4 7.63Мб
07. TD Control Sarsa(0)-LkFkjfsRpXc.zh-CN.vtt 1.88Кб
07. The Remember Gate.html 6.08Кб
07. Tile Coding.html 5.99Кб
07. Tile Coding-BRs7AnTZ_8k.en.vtt 3.76Кб
07. Tile Coding-BRs7AnTZ_8k.mp4 11.03Мб
07. Tile Coding-BRs7AnTZ_8k.pt-BR.vtt 4.20Кб
07. Tile Coding-BRs7AnTZ_8k.zh-CN.vtt 3.34Кб
07. Udacity Support.html 8.45Кб
07. When do MLPs (not) work well .html 7.93Кб
07. When do MLPs (not) work well-deMeuLdZN3Q.en.vtt 3.61Кб
07. When do MLPs (not) work well-deMeuLdZN3Q.mp4 5.54Мб
07. When do MLPs (not) work well-deMeuLdZN3Q.pt-BR.vtt 3.84Кб
07. When do MLPs (not) work well-deMeuLdZN3Q.zh-CN.vtt 3.11Кб
08. 08 Backpropagation Theory V6 Final-Xlgd8I3TWUg.en.vtt 8.51Кб
08. 08 Backpropagation Theory V6 Final-Xlgd8I3TWUg.mp4 34.84Мб
08. 08 Backpropagation Theory V6 Final-Xlgd8I3TWUg.pt-BR.vtt 8.44Кб
08. 08 Backpropagation Theory V6 Final-Xlgd8I3TWUg.zh-CN.vtt 7.18Кб
08. 13 Overfitting Intro V4 Final-rmBLnVbFfFY.en.vtt 2.51Кб
08. 13 Overfitting Intro V4 Final-rmBLnVbFfFY.mp4 12.76Мб
08. 13 Overfitting Intro V4 Final-rmBLnVbFfFY.pt-BR.vtt 2.69Кб
08. 13 Overfitting Intro V4 Final-rmBLnVbFfFY.zh-CN.vtt 2.17Кб
08. Answer False Negatives And Positives-KOytJL1lvgg.en.vtt 2.82Кб
08. Answer False Negatives And Positives-KOytJL1lvgg.mp4 2.23Мб
08. Answer False Negatives And Positives-KOytJL1lvgg.pt-BR.vtt 2.84Кб
08. Backpropagation- Theory.html 11.86Кб
08. Best practices.html 7.07Кб
08. Building The Classifier-6ifxRQ_gL7w.en.vtt 3.61Кб
08. Building The Classifier-6ifxRQ_gL7w.mp4 3.99Мб
08. Building The Classifier-6ifxRQ_gL7w.pt-BR.vtt 3.13Кб
08. Building The Classifier-6ifxRQ_gL7w.zh-CN.vtt 2.95Кб
08. Building the Network Solution.html 5.57Кб
08. Building The Network Solution-pkBAhQ2Ki-8.en.vtt 4.06Кб
08. Building The Network Solution-pkBAhQ2Ki-8.mp4 7.34Мб
08. Building The Network Solution-pkBAhQ2Ki-8.pt-BR.vtt 4.03Кб
08. Building The Network Solution-pkBAhQ2Ki-8.zh-CN.vtt 3.34Кб
08. Classifier Solution.html 5.59Кб
08. CNNs - Additional Resources.html 5.96Кб
08. Community Guidelines.html 7.95Кб
08. Discriminator Solution.html 5.67Кб
08. Discriminator Solution-ffPWI2yJscw.en.vtt 3.34Кб
08. Discriminator Solution-ffPWI2yJscw.mp4 3.87Мб
08. Discriminator Solution-ffPWI2yJscw.pt-BR.vtt 2.73Кб
08. Discriminator Solution-ffPWI2yJscw.zh-CN.vtt 2.98Кб
08. Dropout.html 6.09Кб
08. Dropout-Ty6K6YiGdBs.en.vtt 4.71Кб
08. Dropout-Ty6K6YiGdBs.mp4 4.22Мб
08. Dropout-Ty6K6YiGdBs.pt-BR.vtt 4.66Кб
08. Dropout-Ty6K6YiGdBs.zh-CN.vtt 4.06Кб
08. Epochs.html 13.42Кб
08. Exercise Tile Coding.html 6.31Кб
08. Fixed Q Targets.html 6.14Кб
08. Fixed Q Targets-SWpyiEezfp4.en.vtt 5.42Кб
08. Fixed Q Targets-SWpyiEezfp4.mp4 20.97Мб
08. Fixed Q Targets-SWpyiEezfp4.pt-BR.vtt 5.93Кб
08. Fixed Q Targets-SWpyiEezfp4.zh-CN.vtt 4.77Кб
08. Generator Network.html 6.45Кб
08. Generator Network-btHVXnICmzQ.en.vtt 6.74Кб
08. Generator Network-btHVXnICmzQ.mp4 7.08Мб
08. Generator Network-btHVXnICmzQ.pt-BR.vtt 6.01Кб
08. Generator Network-btHVXnICmzQ.zh-CN.vtt 6.08Кб
08. Goals and Rewards, Part 2.html 7.19Кб
08. Goals and Rewards, Part 2-pVIFc72VYH8.en.vtt 5.72Кб
08. Goals and Rewards, Part 2-pVIFc72VYH8.mp4 8.05Мб
08. Goals and Rewards, Part 2-pVIFc72VYH8.pt-BR.vtt 6.32Кб
08. Goals and Rewards, Part 2-pVIFc72VYH8.zh-CN.vtt 4.99Кб
08. Gradient Descent.html 7.74Кб
08. Gradient Descent-4s4x9h6AN5Y.en.vtt 5.61Кб
08. Gradient Descent-4s4x9h6AN5Y.mp4 4.25Мб
08. Gradient Descent-4s4x9h6AN5Y.pt-BR.vtt 5.23Кб
08. Implementation.html 8.61Кб
08. Implementing Backpropagation.html 21.42Кб
08. Iterative Policy Evaluation.html 7.05Кб
08. Keyboard shortcuts.html 5.92Кб
08. Lab IMDB Data in Keras.html 5.82Кб
08. LSTM 7 Use Gate-5Ifolm1jTdY.en.vtt 1.75Кб
08. LSTM 7 Use Gate-5Ifolm1jTdY.mp4 1.50Мб
08. LSTM 7 Use Gate-5Ifolm1jTdY.pt-BR.vtt 1.73Кб
08. LSTM 7 Use Gate-5Ifolm1jTdY.zh-CN.vtt 1.50Кб
08. LSTM Cell Solution.html 5.90Кб
08. LSTM Cell Solution-X4uA0dq_4jA.en.vtt 3.13Кб
08. LSTM Cell Solution-X4uA0dq_4jA.mp4 3.55Мб
08. LSTM Cell Solution-X4uA0dq_4jA.pt-BR.vtt 3.06Кб
08. LSTM Cell Solution-X4uA0dq_4jA.zh-CN.vtt 2.82Кб
08. M1 L1 C05 V3 No Slack-OH-fVUpoyZDyGE.mp4 8.43Мб
08. M2L3 08 V1-og3W6CXn1F0.en.vtt 1.36Кб
08. M2L3 08 V1-og3W6CXn1F0.mp4 7.63Мб
08. M2L3 08 V1-og3W6CXn1F0.zh-CN.vtt 1.24Кб
08. Mini Project MC (Part 2).html 7.43Кб
08. Mini Project Training an MLP on MNIST.html 10.88Кб
08. NumPy Matrix Multiplication.html 8.67Кб
08. Optimality.html 5.83Кб
08. Optimality-j231aRV74QM.en.vtt 4.60Кб
08. Optimality-j231aRV74QM.mp4 5.99Мб
08. Optimality-j231aRV74QM.pt-BR.vtt 5.06Кб
08. Optimality-j231aRV74QM.zh-CN.vtt 3.85Кб
08. Precision and Recall.html 5.94Кб
08. Recap.html 5.26Кб
08. RNN Hyperparameters.html 11.81Кб
08. RNN Hyperparameters-yQvnv7l_aUo.en.vtt 3.87Кб
08. RNN Hyperparameters-yQvnv7l_aUo.mp4 4.12Мб
08. RNN Hyperparameters-yQvnv7l_aUo.pt-BR.vtt 3.71Кб
08. RNN Hyperparameters-yQvnv7l_aUo.zh-CN.vtt 3.62Кб
08. Sigmoid Function.html 17.29Кб
08. Solution Data Challenges.html 7.86Кб
08. Solution Data Challenges-1z3o4niQuNg.en.vtt 867б
08. Solution Data Challenges-1z3o4niQuNg.mp4 1.49Мб
08. Solution Data Challenges-1z3o4niQuNg.pt-BR.vtt 730б
08. Solution Data Challenges-1z3o4niQuNg.zh-CN.vtt 810б
08. The Use Gate.html 6.30Кб
08. Training The Network.html 5.98Кб
08. Training The Network -P-LXQPVXl4A.en.vtt 4.69Кб
08. Training The Network -P-LXQPVXl4A.mp4 5.46Мб
08. Training The Network -P-LXQPVXl4A.pt-BR.vtt 7.71Кб
08. Training The Network -P-LXQPVXl4A.zh-CN.vtt 4.16Кб
08. Transforming Text into Numbers.html 7.08Кб
08. Transforming Text into Numbers-7rHBU5cbePE.en.vtt 5.04Кб
08. Transforming Text into Numbers-7rHBU5cbePE.mp4 6.64Мб
08. Transforming Text into Numbers-7rHBU5cbePE.pt-BR.vtt 4.24Кб
08. Transforming Text into Numbers-7rHBU5cbePE.zh-CN.vtt 4.34Кб
08. Troubleshooting.html 8.78Кб
08. Why Neural Networks.html 8.43Кб
08. 为何是神经网络-zAkzOZntK6Y.en.vtt 1.38Кб
08. 为何是神经网络-zAkzOZntK6Y.mp4 982.27Кб
08. 为何是神经网络-zAkzOZntK6Y.pt-BR.vtt 1.27Кб
08. 为何是神经网络-zAkzOZntK6Y.zh-CN.vtt 1.18Кб
09. 06 Precision SC V1-q2wVorBfefU.en.vtt 2.69Кб
09. 06 Precision SC V1-q2wVorBfefU.mp4 2.24Мб
09. 06 Precision SC V1-q2wVorBfefU.pt-BR.vtt 2.64Кб
09. 10 Backpropagation Example A V3 Final-3k72z_WaeXg.en.vtt 4.35Кб
09. 10 Backpropagation Example A V3 Final-3k72z_WaeXg.mp4 14.77Мб
09. 10 Backpropagation Example A V3 Final-3k72z_WaeXg.pt-BR.vtt 4.56Кб
09. 10 Backpropagation Example A V3 Final-3k72z_WaeXg.zh-CN.vtt 3.76Кб
09. Action-Value Functions.html 6.71Кб
09. Action-Value Functions-KJLaRfOOPGA.en.vtt 4.65Кб
09. Action-Value Functions-KJLaRfOOPGA.mp4 6.60Мб
09. Action-Value Functions-KJLaRfOOPGA.pt-BR.vtt 5.32Кб
09. Action-Value Functions-KJLaRfOOPGA.zh-CN.vtt 3.94Кб
09. Backpropagation - Example (part a).html 14.72Кб
09. Building and Training the Network.html 5.75Кб
09. Building And Training The Network-nXKk9GI4X14.en.vtt 6.14Кб
09. Building And Training The Network-nXKk9GI4X14.mp4 8.08Мб
09. Building And Training The Network-nXKk9GI4X14.pt-BR.vtt 4.63Кб
09. Building And Training The Network-nXKk9GI4X14.zh-CN.vtt 5.13Кб
09. Coarse Coding.html 6.00Кб
09. Coarse Coding-Uu1J5KLAfTU.en.vtt 3.07Кб
09. Coarse Coding-Uu1J5KLAfTU.mp4 10.30Мб
09. Coarse Coding-Uu1J5KLAfTU.pt-BR.vtt 3.41Кб
09. Coarse Coding-Uu1J5KLAfTU.zh-CN.vtt 2.74Кб
09. Cost.html 17.73Кб
09. Deep Q-Learning Algorithm.html 6.50Кб
09. Deep Q-Learning Algorithm-MqTXoCxQ_eY.en.vtt 4.48Кб
09. Deep Q-Learning Algorithm-MqTXoCxQ_eY.mp4 17.45Мб
09. Deep Q-Learning Algorithm-MqTXoCxQ_eY.pt-BR.vtt 5.35Кб
09. Deep Q-Learning Algorithm-MqTXoCxQ_eY.zh-CN.vtt 3.84Кб
09. Discriminator Network.html 6.48Кб
09. Discriminator Network-nWXxT8OqCfs.en.vtt 1.09Кб
09. Discriminator Network-nWXxT8OqCfs.mp4 1.04Мб
09. Discriminator Network-nWXxT8OqCfs.pt-BR.vtt 939б
09. Discriminator Network-nWXxT8OqCfs.zh-CN.vtt 1.06Кб
09. Discriminator Solution-_X8ssUzu_Bo.en.vtt 5.08Кб
09. Discriminator Solution-_X8ssUzu_Bo.mp4 7.43Мб
09. Discriminator Solution-_X8ssUzu_Bo.pt-BR.vtt 4.84Кб
09. Discriminator Solution-_X8ssUzu_Bo.zh-CN.vtt 4.33Кб
09. Discriminator Solution.html 5.99Кб
09. DL 08 AND And OR Perceptrons-Y-ImuxNpS40.mp4 2.73Мб
09. DL 09 XOR Perceptron--z9K49fdE3g.mp4 511.79Кб
09. Further Reading.html 5.76Кб
09. Generalized Policy Iteration.html 7.08Кб
09. Generalized Policy Iteration-XRmz4nolEsw.en.vtt 2.29Кб
09. Generalized Policy Iteration-XRmz4nolEsw.mp4 6.92Мб
09. Generalized Policy Iteration-XRmz4nolEsw.pt-BR.vtt 2.57Кб
09. Generalized Policy Iteration-XRmz4nolEsw.zh-CN.vtt 1.84Кб
09. Implementation.html 12.75Кб
09. Local Connectivity.html 7.59Кб
09. Local Connectivity-z9wiDg0w-Dc.en.vtt 8.95Кб
09. Local Connectivity-z9wiDg0w-Dc.mp4 12.02Мб
09. Local Connectivity-z9wiDg0w-Dc.pt-BR.vtt 9.29Кб
09. Local Connectivity-z9wiDg0w-Dc.zh-CN.vtt 7.62Кб
09. Local Minima.html 6.13Кб
09. Local Minima-gF_sW_nY-xw.en.vtt 1.14Кб
09. Local Minima-gF_sW_nY-xw.mp4 819.86Кб
09. Local Minima-gF_sW_nY-xw.pt-BR.vtt 1.05Кб
09. Local Minima-gF_sW_nY-xw.zh-CN.vtt 1.01Кб
09. Magic keywords.html 9.91Кб
09. Matrix Transposes.html 5.76Кб
09. Matrix Transposes-NVK5xCY3CZE.en-US.vtt 11.81Кб
09. Matrix Transposes-NVK5xCY3CZE.mp4 9.09Мб
09. Matrix Transposes-NVK5xCY3CZE.pt-BR.vtt 11.08Кб
09. Matrix Transposes-NVK5xCY3CZE.zh-CN.vtt 10.35Кб
09. Mean Absolute Error.html 7.08Кб
09. Mean Absolute Error-vLKiY0Ehors.en.vtt 3.52Кб
09. Mean Absolute Error-vLKiY0Ehors.mp4 2.57Мб
09. Mean Absolute Error-vLKiY0Ehors.pt-BR.vtt 3.30Кб
09. Mini Project 2.html 9.47Кб
09. Mini Project TD (Part 2).html 6.77Кб
09. On Python versions at Udacity.html 7.05Кб
09. Perceptrons as Logical Operators.html 23.59Кб
09. Precision.html 7.13Кб
09. Pre-Lab NotMNIST in TensorFlow.html 8.65Кб
09. Prerequisites.html 6.10Кб
09. Putting it All Together.html 5.75Кб
09. Putting It All Together-IF8FlKW-Zo0.en.vtt 2.42Кб
09. Putting It All Together-IF8FlKW-Zo0.mp4 1.58Мб
09. Putting It All Together-IF8FlKW-Zo0.pt-BR.vtt 2.36Кб
09. Putting It All Together-IF8FlKW-Zo0.zh-CN.vtt 2.13Кб
09. Quiz Goals and Rewards.html 12.98Кб
09. Regra da cadeia-YAhIBOnbt54.en.vtt 1.65Кб
09. Regra da cadeia-YAhIBOnbt54.mp4 1.46Мб
09. Regra da cadeia-YAhIBOnbt54.pt-BR.vtt 1.73Кб
09. Regra da cadeia-YAhIBOnbt54.zh-CN.vtt 1.42Кб
09. RNN Hyperparameters.html 6.80Кб
09. RNN Output.html 5.85Кб
09. RNN Output-RkanDkcrTxs.en.vtt 5.73Кб
09. RNN Output-RkanDkcrTxs.mp4 8.92Мб
09. RNN Output-RkanDkcrTxs.pt-BR.vtt 5.64Кб
09. RNN Output-RkanDkcrTxs.zh-CN.vtt 5.14Кб
09. Training.html 5.57Кб
09. Training Results.html 5.48Кб
09. Training Results-uISA5ns47s8.en.vtt 4.36Кб
09. Training Results-uISA5ns47s8.mp4 9.78Мб
09. Training Results-uISA5ns47s8.pt-BR.vtt 4.38Кб
09. Training Results-uISA5ns47s8.zh-CN.vtt 3.83Кб
09. Training The Classifier-b7Fy3cIoJ1Y.en.vtt 3.34Кб
09. Training The Classifier-b7Fy3cIoJ1Y.mp4 4.19Мб
09. Training The Classifier-b7Fy3cIoJ1Y.pt-BR.vtt 2.63Кб
09. Training The Classifier-b7Fy3cIoJ1Y.zh-CN.vtt 2.81Кб
09. Training the Neural Network.html 7.88Кб
09. Training The Neural Network-HwiI-UXUx-M.en.vtt 1.11Кб
09. Training The Neural Network-HwiI-UXUx-M.mp4 1.24Мб
09. Training The Neural Network-HwiI-UXUx-M.pt-BR.vtt 977б
09. Training The Neural Network-HwiI-UXUx-M.zh-CN.vtt 995б
10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.en.vtt 4.11Кб
10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.mp4 3.66Мб
10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.pt-BR.vtt 4.17Кб
10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.zh-CN.vtt 3.50Кб
10. 07 Recall SC V1-0n5wUZiefkQ.en.vtt 3.05Кб
10. 07 Recall SC V1-0n5wUZiefkQ.mp4 2.15Мб
10. 07 Recall SC V1-0n5wUZiefkQ.pt-BR.vtt 2.79Кб
10. 10 Quiz Random Vs Preinitiliazed Weights V3-DRC1e4XGl2M.en.vtt 853б
10. 10 Quiz Random Vs Preinitiliazed Weights V3-DRC1e4XGl2M.mp4 1.58Мб
10. 10 Quiz Random Vs Preinitiliazed Weights V3-DRC1e4XGl2M.pt-BR.vtt 754б
10. 10 Quiz Random Vs Preinitiliazed Weights V3-DRC1e4XGl2M.zh-CN.vtt 734б
10. 12 Backpropagation Example B V6 Final-yiSwuMP2UIA.en.vtt 8.33Кб
10. 12 Backpropagation Example B V6 Final-yiSwuMP2UIA.mp4 37.06Мб
10. 12 Backpropagation Example B V6 Final-yiSwuMP2UIA.pt-BR.vtt 8.99Кб
10. 12 Backpropagation Example B V6 Final-yiSwuMP2UIA.zh-CN.vtt 6.84Кб
10. Backpropagation- Example (part b).html 18.81Кб
10. Converting notebooks.html 7.04Кб
10. Convolutional Layers (Part 1).html 7.62Кб
10. Convolutional Layers-h5R_JvdUrUI.en.vtt 7.22Кб
10. Convolutional Layers-h5R_JvdUrUI.mp4 8.04Мб
10. Convolutional Layers-h5R_JvdUrUI.pt-BR.vtt 7.57Кб
10. Convolutional Layers-h5R_JvdUrUI.zh-CN.vtt 6.10Кб
10. Cost Solution.html 7.20Кб
10. Cumulative Reward.html 6.55Кб
10. Cumulative Reward-ysriH65lV9o.en.vtt 5.36Кб
10. Cumulative Reward-ysriH65lV9o.mp4 9.96Мб
10. Cumulative Reward-ysriH65lV9o.pt-BR.vtt 6.00Кб
10. Cumulative Reward-ysriH65lV9o.zh-CN.vtt 4.40Кб
10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.en.vtt 420б
10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.mp4 260.01Кб
10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.pt-BR.vtt 364б
10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.zh-CN.vtt 390б
10. DQN Improvements.html 6.84Кб
10. DQN Improvements-Zfdbp93A2GU.en.vtt 12.13Кб
10. DQN Improvements-Zfdbp93A2GU.mp4 39.40Мб
10. DQN Improvements-Zfdbp93A2GU.pt-BR.vtt 14.18Кб
10. DQN Improvements-Zfdbp93A2GU.zh-CN.vtt 10.72Кб
10. Function Approximation.html 7.34Кб
10. Function Approximation-UTGWVY6jEdg.en.vtt 4.11Кб
10. Function Approximation-UTGWVY6jEdg.mp4 20.08Мб
10. Function Approximation-UTGWVY6jEdg.pt-BR.vtt 4.59Кб
10. Function Approximation-UTGWVY6jEdg.zh-CN.vtt 3.65Кб
10. Generator and Discriminator Solutions.html 6.59Кб
10. Generator and Discriminator Solutions-9By2pAck044.en.vtt 5.94Кб
10. Generator and Discriminator Solutions-9By2pAck044.mp4 6.29Мб
10. Generator and Discriminator Solutions-9By2pAck044.pt-BR.vtt 5.24Кб
10. Generator and Discriminator Solutions-9By2pAck044.zh-CN.vtt 5.29Кб
10. Getting Set Up.html 5.99Кб
10. Getting-Setup-1SuxTnuQkeE.en.vtt 1.34Кб
10. Getting-Setup-1SuxTnuQkeE.mp4 7.76Мб
10. Getting-Setup-1SuxTnuQkeE.pt-BR.vtt 1.31Кб
10. Getting-Setup-1SuxTnuQkeE.zh-CN.vtt 1.29Кб
10. Hyperparameter Solutions.html 5.69Кб
10. Hyperparameters Solution-Rt8MlVDtpi8.en.vtt 4.21Кб
10. Hyperparameters Solution-Rt8MlVDtpi8.mp4 7.00Мб
10. Hyperparameters Solution-Rt8MlVDtpi8.pt-BR.vtt 3.51Кб
10. Hyperparameters Solution-Rt8MlVDtpi8.zh-CN.vtt 3.62Кб
10. Lab NotMNIST in TensorFlow.html 6.80Кб
10. MC Control Incremental Mean.html 7.07Кб
10. MC Control Incremental Mean-E2RITH-2NUE.en.vtt 5.43Кб
10. MC Control Incremental Mean-E2RITH-2NUE.mp4 20.07Мб
10. MC Control Incremental Mean-E2RITH-2NUE.pt-BR.vtt 5.84Кб
10. MC Control Incremental Mean-E2RITH-2NUE.zh-CN.vtt 4.52Кб
10. Mean Squared Error.html 7.08Кб
10. Mean Squared Error-MRyxmZDngI4.en.vtt 2.49Кб
10. Mean Squared Error-MRyxmZDngI4.mp4 1.83Мб
10. Mean Squared Error-MRyxmZDngI4.pt-BR.vtt 2.26Кб
10. Mini Project 2 Solution.html 7.29Кб
10. Mini Project 2 Solution-45ihpPaeO8E.en.vtt 5.12Кб
10. Mini Project 2 Solution-45ihpPaeO8E.mp4 9.22Мб
10. Mini Project 2 Solution-45ihpPaeO8E.pt-BR.vtt 3.95Кб
10. Mini Project 2 Solution-45ihpPaeO8E.zh-CN.vtt 4.56Кб
10. Mini Project DP (Parts 0 and 1).html 7.81Кб
10. Model Loss Solution.html 5.97Кб
10. Model Loss Solution-r3DtohmychE.en.vtt 6.78Кб
10. Model Loss Solution-r3DtohmychE.mp4 8.84Мб
10. Model Loss Solution-r3DtohmychE.pt-BR.vtt 6.75Кб
10. Model Loss Solution-r3DtohmychE.zh-CN.vtt 5.77Кб
10. Network Loss.html 5.86Кб
10. Network Loss-itu-uNK4brc.en.vtt 3.08Кб
10. Network Loss-itu-uNK4brc.mp4 4.28Мб
10. Network Loss-itu-uNK4brc.pt-BR.vtt 3.16Кб
10. Network Loss-itu-uNK4brc.zh-CN.vtt 2.71Кб
10. Perceptron Algorithm--zhTROHtscQ.en.vtt 2.64Кб
10. Perceptron Algorithm--zhTROHtscQ.mp4 1.92Мб
10. Perceptron Algorithm--zhTROHtscQ.pt-BR.vtt 2.41Кб
10. Perceptron Algorithm--zhTROHtscQ.zh-CN.vtt 2.35Кб
10. Perceptron Trick.html 12.20Кб
10. Quiz.html 7.49Кб
10. Quiz Action-Value Functions.html 6.90Кб
10. Quiz Random vs Pre-initialized Weights.html 8.94Кб
10. Random Restart.html 6.14Кб
10. Random Restart-idyBBCzXiqg.en.vtt 466б
10. Random Restart-idyBBCzXiqg.mp4 394.99Кб
10. Random Restart-idyBBCzXiqg.pt-BR.vtt 478б
10. Random Restart-idyBBCzXiqg.zh-CN.vtt 419б
10. Recall.html 7.28Кб
10. Sources References.html 6.57Кб
10. TD Control Sarsamax.html 6.55Кб
10. TD Control Sarsamax-4DxoYuR7aZ4.en.vtt 4.58Кб
10. TD Control Sarsamax-4DxoYuR7aZ4.mp4 16.53Мб
10. TD Control Sarsamax-4DxoYuR7aZ4.zh-CN.vtt 3.83Кб
10. Training And Testing-NLPtmQjGYCA.en.vtt 5.83Кб
10. Training And Testing-NLPtmQjGYCA.mp4 8.23Мб
10. Training And Testing-NLPtmQjGYCA.pt-BR.vtt 5.06Кб
10. Training And Testing-NLPtmQjGYCA.zh-CN.vtt 4.73Кб
10. Training solution.html 5.58Кб
10. Transposes in NumPy.html 9.18Кб
11. Action Values.html 12.16Кб
11. Backpropagation Quiz.html 11.40Кб
11. Building a Neural Network.html 7.04Кб
11. Building a Neural Network-aM2k7RTjjJI.en.vtt 3.30Кб
11. Building a Neural Network-aM2k7RTjjJI.mp4 10.17Мб
11. Building a Neural Network-aM2k7RTjjJI.pt-BR.vtt 2.88Кб
11. Building a Neural Network-aM2k7RTjjJI.zh-CN.vtt 2.88Кб
11. Building the Network.html 6.47Кб
11. Building the Network-5sZkRSHfiAE.en.vtt 3.83Кб
11. Building the Network-5sZkRSHfiAE.mp4 4.22Мб
11. Building the Network-5sZkRSHfiAE.pt-BR.vtt 3.37Кб
11. Building the Network-5sZkRSHfiAE.zh-CN.vtt 3.45Кб
11. Camadas convolucionais-RnM1D-XI--8.en.vtt 9.99Кб
11. Camadas convolucionais-RnM1D-XI--8.mp4 17.05Мб
11. Camadas convolucionais-RnM1D-XI--8.pt-BR.vtt 11.00Кб
11. Camadas convolucionais-RnM1D-XI--8.zh-CN.vtt 8.71Кб
11. Convolutional Layers (Part 2).html 8.40Кб
11. Creating a slideshow.html 7.87Кб
11. Discounted Return.html 7.35Кб
11. Discounted Return-opXGNPwwn7g.en.vtt 7.16Кб
11. Discounted Return-opXGNPwwn7g.mp4 14.30Мб
11. Discounted Return-opXGNPwwn7g.pt-BR.vtt 7.96Кб
11. Discounted Return-opXGNPwwn7g.zh-CN.vtt 5.97Кб
11. Gradient Descent.html 11.80Кб
11. Implementation.html 7.09Кб
11. Implementing Deep Q-Learning.html 6.92Кб
11. Linear Function Approximation.html 6.11Кб
11. Linear Function Approximation-OJ5wrB7o-pI.en.vtt 6.91Кб
11. Linear Function Approximation-OJ5wrB7o-pI.mp4 28.67Мб
11. Linear Function Approximation-OJ5wrB7o-pI.pt-BR.vtt 7.81Кб
11. Linear Function Approximation-OJ5wrB7o-pI.zh-CN.vtt 5.81Кб
11. Minimizing Error Functions.html 9.12Кб
11. Minimizing Error Functions-RbT2TXN_6tY.en.vtt 4.50Кб
11. Minimizing Error Functions-RbT2TXN_6tY.mp4 3.85Мб
11. Minimizing Error Functions-RbT2TXN_6tY.pt-BR.vtt 4.58Кб
11. Model Optimizer Solution-_Qhz9SbR7xY.en.vtt 3.35Кб
11. Model Optimizer Solution-_Qhz9SbR7xY.mp4 4.14Мб
11. Model Optimizer Solution-_Qhz9SbR7xY.pt-BR.vtt 3.37Кб
11. Model Optimizer Solution-_Qhz9SbR7xY.zh-CN.vtt 3.06Кб
11. Model Optimizer Solution.html 6.00Кб
11. NumPy Quiz.html 10.47Кб
11. Optimal Policies.html 5.87Кб
11. Optimal Policies-2rguYpVyCto.en.vtt 3.91Кб
11. Optimal Policies-2rguYpVyCto.mp4 7.11Мб
11. Optimal Policies-2rguYpVyCto.pt-BR.vtt 4.20Кб
11. Optimal Policies-2rguYpVyCto.zh-CN.vtt 3.32Кб
11. Other architectures.html 6.02Кб
11. Other Architectures-MsxFDuYlTuQ.en.vtt 2.31Кб
11. Other Architectures-MsxFDuYlTuQ.mp4 1.71Мб
11. Other Architectures-MsxFDuYlTuQ.pt-BR.vtt 2.45Кб
11. Other Architectures-MsxFDuYlTuQ.zh-CN.vtt 2.04Кб
11. Output and Loss Solutions.html 5.95Кб
11. Output And Loss Solutions-CT8hcU7FmGc.en.vtt 3.45Кб
11. Output And Loss Solutions-CT8hcU7FmGc.mp4 4.69Мб
11. Output And Loss Solutions-CT8hcU7FmGc.pt-BR.vtt 3.21Кб
11. Output And Loss Solutions-CT8hcU7FmGc.zh-CN.vtt 3.05Кб
11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.en.vtt 3.45Кб
11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.mp4 2.87Мб
11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.pt-BR.vtt 3.27Кб
11. Perceptron Algorithm.html 21.88Кб
11. Quiz Incremental Mean.html 9.56Кб
11. ROC Curve.html 5.54Кб
11. ROC Curve-2Iw5TiGzJI4.en.vtt 8.66Кб
11. ROC Curve-2Iw5TiGzJI4.mp4 6.66Мб
11. ROC Curve-2Iw5TiGzJI4.pt-BR.vtt 8.12Кб
11. ROC Curve-2Iw5TiGzJI4.zh-CN.vtt 7.30Кб
11. Solution Random Vs Preinitialized Thoughts-sOuoRZRKDzs.en.vtt 1.14Кб
11. Solution Random Vs Preinitialized Thoughts-sOuoRZRKDzs.mp4 2.83Мб
11. Solution Random Vs Preinitialized Thoughts-sOuoRZRKDzs.pt-BR.vtt 1.02Кб
11. Solution Random Vs Preinitialized Thoughts-sOuoRZRKDzs.zh-CN.vtt 965б
11. Solution Random vs Pre-initialized Weight.html 7.99Кб
11. Two-layer Neural Network.html 8.12Кб
11. Vanishing Gradient.html 6.17Кб
11. Vanishing Gradient-W_JJm_5syFw.en.vtt 1.46Кб
11. Vanishing Gradient-W_JJm_5syFw.mp4 1.32Мб
11. Vanishing Gradient-W_JJm_5syFw.pt-BR.vtt 1.56Кб
11. Vanishing Gradient-W_JJm_5syFw.zh-CN.vtt 1.24Кб
12. 14 RNN A V4 Final-ofbnDxGSUcg.en.vtt 5.64Кб
12. 14 RNN A V4 Final-ofbnDxGSUcg.mp4 10.43Мб
12. 14 RNN A V4 Final-ofbnDxGSUcg.pt-BR.vtt 5.80Кб
12. 14 RNN A V4 Final-ofbnDxGSUcg.zh-CN.vtt 5.05Кб
12. Backpropagation.html 36.10Кб
12. Building the Network Solution.html 6.54Кб
12. Building the Network Solution-Ikp3rVzG970.en.vtt 3.43Кб
12. Building the Network Solution-Ikp3rVzG970.mp4 4.33Мб
12. Building the Network Solution-Ikp3rVzG970.pt-BR.vtt 2.89Кб
12. Building the Network Solution-Ikp3rVzG970.zh-CN.vtt 3.08Кб
12. Build the Network.html 5.89Кб
12. Build The Network-RVNjDlWTBQU.en.vtt 4.09Кб
12. Build The Network-RVNjDlWTBQU.mp4 7.10Мб
12. Build The Network-RVNjDlWTBQU.pt-BR.vtt 4.00Кб
12. Build The Network-RVNjDlWTBQU.zh-CN.vtt 3.45Кб
12. Finishing up.html 5.76Кб
12. Implementation.html 9.10Кб
12. Kernel Functions.html 6.03Кб
12. Kernel Functions-RdkPVYyVOvU.en.vtt 2.94Кб
12. Kernel Functions-RdkPVYyVOvU.mp4 8.91Мб
12. Kernel Functions-RdkPVYyVOvU.pt-BR.vtt 3.16Кб
12. Kernel Functions-RdkPVYyVOvU.zh-CN.vtt 2.49Кб
12. MC Control Policy Evaluation.html 7.08Кб
12. MC Control Policy Evaluation-3_opwMzpEEI.en.vtt 2.22Кб
12. MC Control Policy Evaluation-3_opwMzpEEI.mp4 9.10Мб
12. MC Control Policy Evaluation-3_opwMzpEEI.pt-BR.vtt 2.51Кб
12. MC Control Policy Evaluation-3_opwMzpEEI.zh-CN.vtt 1.82Кб
12. Mean vs Total Error.html 8.38Кб
12. Mini Project 3.html 8.52Кб
12. Mini Project TD (Part 3).html 6.77Кб
12. Non-Linear Regions.html 8.40Кб
12. Non-Linear Regions-B8UrWnHh1Wc.en.vtt 1.77Кб
12. Non-Linear Regions-B8UrWnHh1Wc.mp4 1.33Мб
12. Non-Linear Regions-B8UrWnHh1Wc.pt-BR.vtt 1.51Кб
12. Non-Linear Regions-B8UrWnHh1Wc.zh-CN.vtt 1.57Кб
12. Other Activation Functions.html 6.53Кб
12. Other Activation Functions-kA-1vUt6cvQ.en.vtt 2.68Кб
12. Other Activation Functions-kA-1vUt6cvQ.mp4 2.30Мб
12. Other Activation Functions-kA-1vUt6cvQ.pt-BR.vtt 2.55Кб
12. Other Activation Functions-kA-1vUt6cvQ.zh-CN.vtt 2.34Кб
12. Outro LSTM.html 5.64Кб
12.png 1.67Кб
12. Quiz Optimal Policies.html 12.79Кб
12. Quiz Pole-Balancing.html 12.01Кб
12. Quiz TensorFlow ReLUs.html 9.81Кб
12. RNN (part a).html 9.48Кб
12. Stride and Padding.html 7.59Кб
12. Stride and Padding-0r9o8hprDXQ.en.vtt 4.41Кб
12. Stride and Padding-0r9o8hprDXQ.mp4 7.98Мб
12. Stride and Padding-0r9o8hprDXQ.pt-BR.vtt 4.55Кб
12. Stride and Padding-0r9o8hprDXQ.zh-CN.vtt 3.74Кб
12. TensorFlow Implementation.html 6.34Кб
12. Trained Semi-Supervised GAN.html 6.02Кб
12. Trained Semi-Supervised GAN-9yWYZDX8-O8.en.vtt 5.97Кб
12. Trained Semi-Supervised GAN-9yWYZDX8-O8.mp4 7.20Мб
12. Trained Semi-Supervised GAN-9yWYZDX8-O8.pt-BR.vtt 5.67Кб
12. Trained Semi-Supervised GAN-9yWYZDX8-O8.zh-CN.vtt 5.28Кб
12. Validating the Training.html 7.86Кб
12. Validating The Training-Oxm9ofvov3I.en.vtt 2.65Кб
12. Validating The Training-Oxm9ofvov3I.mp4 5.51Мб
12. Validating The Training-Oxm9ofvov3I.pt-BR.vtt 2.28Кб
12. Validating The Training-Oxm9ofvov3I.zh-CN.vtt 2.31Кб
13. 13 Quiz Sensitivity And Specificty V3-O17MnhWBmKA.en.vtt 505б
13. 13 Quiz Sensitivity And Specificty V3-O17MnhWBmKA.mp4 888.58Кб
13. 13 Quiz Sensitivity And Specificty V3-O17MnhWBmKA.pt-BR.vtt 420б
13. 13 Quiz Sensitivity And Specificty V3-O17MnhWBmKA.zh-CN.vtt 487б
13. 16 RNN B V4 Final-wsif3p5t7CI.en.vtt 5.30Кб
13. 16 RNN B V4 Final-wsif3p5t7CI.mp4 21.12Мб
13. 16 RNN B V4 Final-wsif3p5t7CI.pt-BR.vtt 5.93Кб
13. 16 RNN B V4 Final-wsif3p5t7CI.zh-CN.vtt 4.62Кб
13. Batch vs Stochastic Gradient Descent.html 6.29Кб
13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.en.vtt 4.64Кб
13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.mp4 3.95Мб
13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.pt-BR.vtt 4.63Кб
13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.zh-CN.vtt 4.10Кб
13. Build The Network And Results-hu8iMMqajmQ.en.vtt 7.81Кб
13. Build The Network And Results-hu8iMMqajmQ.mp4 13.27Мб
13. Build The Network And Results-hu8iMMqajmQ.pt-BR.vtt 7.64Кб
13. Build The Network And Results-hu8iMMqajmQ.zh-CN.vtt 6.85Кб
13. Build the Network Solution.html 5.97Кб
13. Convolutional Layers in Keras.html 11.95Кб
13. Deep Neural Network in TensorFlow.html 11.97Кб
13. Error Functions.html 8.38Кб
13. Error Functions-YfUUunxWIJw.en.vtt 790б
13. Error Functions-YfUUunxWIJw.mp4 3.54Мб
13. Error Functions-YfUUunxWIJw.pt-BR.vtt 804б
13. Error Functions-YfUUunxWIJw.zh-CN.vtt 739б
13. MC Control Policy Improvement.html 7.09Кб
13. MC Control Policy Improvement-2RKH-BInX7s.en.vtt 6.73Кб
13. MC Control Policy Improvement-2RKH-BInX7s.mp4 22.00Мб
13. MC Control Policy Improvement-2RKH-BInX7s.pt-BR.vtt 7.10Кб
13. MC Control Policy Improvement-2RKH-BInX7s.zh-CN.vtt 5.59Кб
13. MDPs, Part 1.html 7.89Кб
13. MDPs, Part 1-NBWbluSbxPg.en.vtt 4.00Кб
13. MDPs, Part 1-NBWbluSbxPg.mp4 3.86Мб
13. MDPs, Part 1-NBWbluSbxPg.pt-BR.vtt 4.29Кб
13. MDPs, Part 1-NBWbluSbxPg.zh-CN.vtt 3.38Кб
13. Mini-batch Gradient Descent.html 8.70Кб
13. Mini Project 3 Solution.html 7.29Кб
13. Mini Project 3 Solution-imnxzCev4SI.en.vtt 18.48Кб
13. Mini Project 3 Solution-imnxzCev4SI.mp4 54.58Мб
13. Mini Project 3 Solution-imnxzCev4SI.pt-BR.vtt 15.80Кб
13. Mini Project 3 Solution-imnxzCev4SI.zh-CN.vtt 15.84Кб
13. Mini Project DP (Part 2).html 7.79Кб
13. Non-Linear Function Approximation.html 6.14Кб
13. Non-Linear Function Approximation-rITnmpD2mN8.en.vtt 1.56Кб
13. Non-Linear Function Approximation-rITnmpD2mN8.mp4 4.95Мб
13. Non-Linear Function Approximation-rITnmpD2mN8.pt-BR.vtt 1.80Кб
13. Non-Linear Function Approximation-rITnmpD2mN8.zh-CN.vtt 1.30Кб
13. Quiz Sensitivity and Specificity.html 9.49Кб
13. RNN (part b).html 12.54Кб
13. Stochastic Gradient Descent.html 24.05Кб
13. Summary.html 11.02Кб
13. TD Control Expected Sarsa.html 6.54Кб
13. TD Control Expected Sarsa-kEKupCyU0P0.en.vtt 1.22Кб
13. TD Control Expected Sarsa-kEKupCyU0P0.mp4 4.28Мб
13. TD Control Expected Sarsa-kEKupCyU0P0.zh-CN.vtt 1.02Кб
13. Training Losses.html 6.44Кб
13. Training Losses-IaAeDrXMEcU.en.vtt 3.76Кб
13. Training Losses-IaAeDrXMEcU.mp4 5.83Мб
13. Training Losses-IaAeDrXMEcU.pt-BR.vtt 3.60Кб
13. Training Losses-IaAeDrXMEcU.zh-CN.vtt 3.33Кб
13. Wrap Up.html 5.85Кб
13. Wrap Up-x6JggcDTcys.en.vtt 1.22Кб
13. Wrap Up-x6JggcDTcys.mp4 7.20Мб
13. Wrap Up-x6JggcDTcys.pt-BR.vtt 1.49Кб
13. Wrap Up-x6JggcDTcys.zh-CN.vtt 1.10Кб
14. 17 RNN Unfolded V3 Final-xLIA_PTWXog.en.vtt 2.55Кб
14. 17 RNN Unfolded V3 Final-xLIA_PTWXog.mp4 10.50Мб
14. 17 RNN Unfolded V3 Final-xLIA_PTWXog.pt-BR.vtt 2.73Кб
14. 17 RNN Unfolded V3 Final-xLIA_PTWXog.zh-CN.vtt 2.20Кб
14. Absolute Error vs Squared Error.html 10.78Кб
14. Absolute Vs Squared Error-csvdjaqt1GM.en.vtt 831б
14. Absolute Vs Squared Error-csvdjaqt1GM.mp4 660.25Кб
14. Absolute Vs Squared Error-csvdjaqt1GM.pt-BR.vtt 793б
14. DLND REG 12 Absolute Vs Squared Error 2 V1 (1)-7El1OH17Oi4.en.vtt 983б
14. DLND REG 12 Absolute Vs Squared Error 2 V1 (1)-7El1OH17Oi4.mp4 692.80Кб
14. DLND REG 12 Absolute Vs Squared Error 2 V1 (1)-7El1OH17Oi4.pt-BR.vtt 956б
14. DLND REG 13 Absolute Vs Squared Error 3 V1 (1)-bIVGf_dDkrY.en.vtt 1.00Кб
14. DLND REG 13 Absolute Vs Squared Error 3 V1 (1)-bIVGf_dDkrY.mp4 873.14Кб
14. DLND REG 13 Absolute Vs Squared Error 3 V1 (1)-bIVGf_dDkrY.pt-BR.vtt 970б
14. Error Functions-jfKShxGAbok.en.vtt 9.45Кб
14. Error Functions-jfKShxGAbok.mp4 7.21Мб
14. Error Functions-jfKShxGAbok.pt-BR.vtt 9.14Кб
14. Error Functions-jfKShxGAbok.zh-CN.vtt 8.35Кб
14. Implementation.html 7.73Кб
14. Learning Rate Decay.html 6.15Кб
14. Learning Rate-TwJ8aSZoh2U.en.vtt 1.12Кб
14. Learning Rate-TwJ8aSZoh2U.mp4 927.05Кб
14. Learning Rate-TwJ8aSZoh2U.pt-BR.vtt 1.26Кб
14. Learning Rate-TwJ8aSZoh2U.zh-CN.vtt 1020б
14. Log-loss Error Function.html 10.04Кб
14. MDPs, Part 2.html 6.51Кб
14. MDPs, Part 2-CUTtQvxKkNw.en.vtt 6.81Кб
14. MDPs, Part 2-CUTtQvxKkNw.mp4 6.82Мб
14. MDPs, Part 2-CUTtQvxKkNw.pt-BR.vtt 7.27Кб
14. MDPs, Part 2-CUTtQvxKkNw.zh-CN.vtt 5.71Кб
14. Policy Improvement.html 7.37Кб
14. Policy Improvement-4_adUEK0IHg.en.vtt 8.10Кб
14. Policy Improvement-4_adUEK0IHg.mp4 30.38Мб
14. Policy Improvement-4_adUEK0IHg.pt-BR.vtt 8.94Кб
14. Policy Improvement-4_adUEK0IHg.zh-CN.vtt 6.90Кб
14. Quiz Dimensionality.html 16.33Кб
14. Quiz Epsilon-Greedy Policies.html 14.61Кб
14. RNN- Unfolded Model.html 7.50Кб
14. Save and Restore TensorFlow Models.html 15.08Кб
14. SGD Solution.html 19.52Кб
14. Solution Sensitivity and Specificity.html 7.94Кб
14. Solution Sensitivty And Specificity-GBZjyeMjKxc.en.vtt 850б
14. Solution Sensitivty And Specificity-GBZjyeMjKxc.mp4 1.57Мб
14. Solution Sensitivty And Specificity-GBZjyeMjKxc.pt-BR.vtt 772б
14. Solution Sensitivty And Specificity-GBZjyeMjKxc.zh-CN.vtt 766б
14. Summary.html 5.96Кб
14. Summary-MTEBk43oByU.en.vtt 1.61Кб
14. Summary-MTEBk43oByU.mp4 9.91Мб
14. Summary-MTEBk43oByU.pt-BR.vtt 1.87Кб
14. Summary-MTEBk43oByU.zh-CN.vtt 1.37Кб
14. Training Optimizers.html 6.47Кб
14. Training Optimizers-AU5gH7LS57E.en.vtt 3.04Кб
14. Training Optimizers-AU5gH7LS57E.mp4 3.45Мб
14. Training Optimizers-AU5gH7LS57E.pt-BR.vtt 2.70Кб
14. Training Optimizers-AU5gH7LS57E.zh-CN.vtt 2.67Кб
14. Understanding Neural Noise.html 7.05Кб
14. Understanding Neural Noise-ubqhh4Iv7O4.en.vtt 15.63Кб
14. Understanding Neural Noise-ubqhh4Iv7O4.mp4 50.21Мб
14. Understanding Neural Noise-ubqhh4Iv7O4.pt-BR.vtt 13.69Кб
14. Understanding Neural Noise-ubqhh4Iv7O4.zh-CN.vtt 13.47Кб
15. Discrete vs. Continuous-Rm2KxFaPiJg.en.vtt 5.70Кб
15. Discrete vs. Continuous-Rm2KxFaPiJg.mp4 5.35Мб
15. Discrete vs. Continuous-Rm2KxFaPiJg.pt-BR.vtt 5.67Кб
15. Discrete vs. Continuous-Rm2KxFaPiJg.zh-CN.vtt 4.67Кб
15. Discrete vs Continuous.html 10.66Кб
15. Discrete vs Continuous-rdP-RPDFkl0.en.vtt 551б
15. Discrete vs Continuous-rdP-RPDFkl0.mp4 2.26Мб
15. Discrete vs Continuous-rdP-RPDFkl0.pt-BR.vtt 584б
15. Discrete vs Continuous-rdP-RPDFkl0.zh-CN.vtt 481б
15. Exploration vs. Exploitation.html 17.42Кб
15. Finetuning.html 10.49Кб
15. Implementation.html 9.78Кб
15. Linear Regression in scikit-learn.html 16.86Кб
15. Mini Project 4.html 7.64Кб
15. Mini Project TD (Part 4).html 6.77Кб
15. Momentum.html 6.10Кб
15. Momentum-r-rYz_PEWC8.en.vtt 2.50Кб
15. Momentum-r-rYz_PEWC8.mp4 2.14Мб
15. Momentum-r-rYz_PEWC8.pt-BR.vtt 2.70Кб
15. Momentum-r-rYz_PEWC8.zh-CN.vtt 2.21Кб
15. More on Sensitivity and Specificity.html 10.58Кб
15. Outro.html 6.20Кб
15. Pooling Layers.html 7.85Кб
15. Pooling Layers-OkkIZNs7Cyc.en.vtt 5.40Кб
15. Pooling Layers-OkkIZNs7Cyc.mp4 5.82Мб
15. Pooling Layers-OkkIZNs7Cyc.pt-BR.vtt 5.81Кб
15. Pooling Layers-OkkIZNs7Cyc.zh-CN.vtt 4.64Кб
15. Quiz One-Step Dynamics, Part 1.html 11.10Кб
15. Training Losses and Optimizers Solution.html 6.61Кб
15. Training Losses and Optimizers Solutions-HlABZ9Q7xEo.en.vtt 5.07Кб
15. Training Losses and Optimizers Solutions-HlABZ9Q7xEo.mp4 6.82Мб
15. Training Losses and Optimizers Solutions-HlABZ9Q7xEo.pt-BR.vtt 4.99Кб
15. Training Losses and Optimizers Solutions-HlABZ9Q7xEo.zh-CN.vtt 4.59Кб
15. Unfolded Model Quiz.html 8.81Кб
16. 15 Quiz Diagnosing Cancer V3-4UzkwecBJro.en.vtt 508б
16. 15 Quiz Diagnosing Cancer V3-4UzkwecBJro.mp4 1.14Мб
16. 15 Quiz Diagnosing Cancer V3-4UzkwecBJro.pt-BR.vtt 472б
16. 15 Quiz Diagnosing Cancer V3-4UzkwecBJro.zh-CN.vtt 456б
16. 18 RNN Example V5 Final-MDLk3fhpTx0.en.vtt 5.05Кб
16. 18 RNN Example V5 Final-MDLk3fhpTx0.mp4 22.11Мб
16. 18 RNN Example V5 Final-MDLk3fhpTx0.pt-BR.vtt 5.46Кб
16. 18 RNN Example V5 Final-MDLk3fhpTx0.zh-CN.vtt 4.63Кб
16. Analyzing Performance.html 8.54Кб
16. A Trained GAN.html 6.43Кб
16. A Trained GAN-TR-uEJcjig4.en.vtt 9.95Кб
16. A Trained GAN-TR-uEJcjig4.mp4 11.67Мб
16. A Trained GAN-TR-uEJcjig4.pt-BR.vtt 9.13Кб
16. A Trained GAN-TR-uEJcjig4.zh-CN.vtt 8.90Кб
16. DL 18 Q Softmax V2-RC_A9Tu99y4.en.vtt 5.37Кб
16. DL 18 Q Softmax V2-RC_A9Tu99y4.mp4 4.01Мб
16. DL 18 Q Softmax V2-RC_A9Tu99y4.pt-BR.vtt 5.06Кб
16. DL 18 Q Softmax V2-RC_A9Tu99y4.zh-CN.vtt 4.37Кб
16. DL 18 S Softmax-n8S-v_LCTms.en.vtt 2.59Кб
16. DL 18 S Softmax-n8S-v_LCTms.mp4 1.95Мб
16. DL 18 S Softmax-n8S-v_LCTms.pt-BR.vtt 2.52Кб
16. DL 18 S Softmax-n8S-v_LCTms.zh-CN.vtt 2.30Кб
16. Error Functions Around the World.html 6.27Кб
16. Error Functions Around the World-34AAcTECu2A.en.vtt 1.17Кб
16. Error Functions Around the World-34AAcTECu2A.mp4 1.73Мб
16. Error Functions Around the World-34AAcTECu2A.pt-BR.vtt 1.08Кб
16. Error Functions Around the World-34AAcTECu2A.zh-CN.vtt 1.13Кб
16. Higher Dimensions.html 7.07Кб
16. Higher Dimensions--UvpQV1qmiE.en.vtt 2.94Кб
16. Higher Dimensions--UvpQV1qmiE.mp4 2.65Мб
16. Higher Dimensions--UvpQV1qmiE.pt-BR.vtt 2.78Кб
16. Implementation.html 7.81Кб
16. Max Pooling Layers in Keras.html 10.75Кб
16. Mini Project DP (Part 3).html 7.79Кб
16. Quiz Diagnosing Cancer.html 8.82Кб
16. Quiz One-Step Dynamics, Part 2.html 14.77Кб
16. Quiz - Softmax-NNoezNnAMTY.en.vtt 495б
16. Quiz - Softmax-NNoezNnAMTY.mp4 1.73Мб
16. Quiz - Softmax-NNoezNnAMTY.pt-BR.vtt 501б
16. Quiz - Softmax-NNoezNnAMTY.zh-CN.vtt 548б
16. Quiz TensorFlow Dropout.html 14.12Кб
16. RNN- Example.html 7.78Кб
16. Softmax.html 14.70Кб
16. Understanding Inefficiencies in our Network.html 7.17Кб
16. Understanding Inefficiencies in our Network-4MuS-6ATxCU.en.vtt 9.30Кб
16. Understanding Inefficiencies in our Network-4MuS-6ATxCU.mp4 20.67Мб
16. Understanding Inefficiencies in our Network-4MuS-6ATxCU.pt-BR.vtt 7.84Кб
16. Understanding Inefficiencies in our Network-4MuS-6ATxCU.zh-CN.vtt 8.20Кб
17. 16 Solution Diagnosing Cancer V3-IJYvt2ssUFk.en.vtt 1.47Кб
17. 16 Solution Diagnosing Cancer V3-IJYvt2ssUFk.mp4 2.31Мб
17. 16 Solution Diagnosing Cancer V3-IJYvt2ssUFk.pt-BR.vtt 1.34Кб
17. 16 Solution Diagnosing Cancer V3-IJYvt2ssUFk.zh-CN.vtt 1.25Кб
17. 19 RNN BPTT A V6 Final-eE2L3-2wKac.en.vtt 4.03Кб
17. 19 RNN BPTT A V6 Final-eE2L3-2wKac.mp4 21.57Мб
17. 19 RNN BPTT A V6 Final-eE2L3-2wKac.pt-BR.vtt 4.32Кб
17. 19 RNN BPTT A V6 Final-eE2L3-2wKac.zh-CN.vtt 3.52Кб
17. Backpropagation Through Time (part a).html 12.74Кб
17. CNNs for Image Classification.html 10.61Кб
17. CNNs For Image Classification-l9vg_1YUlzg.en.vtt 11.37Кб
17. CNNs For Image Classification-l9vg_1YUlzg.mp4 18.16Мб
17. CNNs For Image Classification-l9vg_1YUlzg.pt-BR.vtt 12.21Кб
17. CNNs For Image Classification-l9vg_1YUlzg.zh-CN.vtt 9.72Кб
17. Conclusion-wOiUQDgGD9E.en.vtt 725б
17. Conclusion-wOiUQDgGD9E.mp4 2.58Мб
17. Conclusion-wOiUQDgGD9E.pt-BR.vtt 1.02Кб
17. Conclusion-wOiUQDgGD9E.zh-CN.vtt 655б
17. Doing More With Your GAN.html 8.10Кб
17. MDPs, Part 3.html 6.51Кб
17. MDPs, Part 3-UlXHFbla3QI.en.vtt 2.97Кб
17. MDPs, Part 3-UlXHFbla3QI.mp4 14.75Мб
17. MDPs, Part 3-UlXHFbla3QI.pt-BR.vtt 3.38Кб
17. MDPs, Part 3-UlXHFbla3QI.zh-CN.vtt 2.42Кб
17. Mini Project 5.html 8.44Кб
17. Mini Project MC (Part 3).html 7.43Кб
17. Multiple Linear Regression.html 13.40Кб
17. One-Hot Encoding.html 8.38Кб
17. One-Hot Encoding-AePvjhyvsBo.en.vtt 2.23Кб
17. One-Hot Encoding-AePvjhyvsBo.mp4 1.65Мб
17. One-Hot Encoding-AePvjhyvsBo.pt-BR.vtt 2.03Кб
17. One-Hot Encoding-AePvjhyvsBo.zh-CN.vtt 2.02Кб
17. Outro.html 6.31Кб
17. Policy Iteration.html 7.36Кб
17. Policy Iteration-gqv7o1kBDc0.en.vtt 2.08Кб
17. Policy Iteration-gqv7o1kBDc0.mp4 8.14Мб
17. Policy Iteration-gqv7o1kBDc0.pt-BR.vtt 2.37Кб
17. Policy Iteration-gqv7o1kBDc0.zh-CN.vtt 1.75Кб
17. Solution Diagnosing Cancer.html 10.31Кб
17. Summary.html 10.31Кб
18. 20 RNN BPTT B V5 Final-bUU9BEQw0IA.en.vtt 4.40Кб
18. 20 RNN BPTT B V5 Final-bUU9BEQw0IA.mp4 18.10Мб
18. 20 RNN BPTT B V5 Final-bUU9BEQw0IA.pt-BR.vtt 4.70Кб
18. 20 RNN BPTT B V5 Final-bUU9BEQw0IA.zh-CN.vtt 3.68Кб
18. Backpropagation Through Time (part b).html 17.59Кб
18. Closed Form Solution.html 7.26Кб
18. Closed Form Solution-G3fRVgLa5gI.en.vtt 3.54Кб
18. Closed Form Solution-G3fRVgLa5gI.mp4 2.84Мб
18. Closed Form Solution-G3fRVgLa5gI.pt-BR.vtt 3.39Кб
18. CNNs in Keras Practical Example.html 9.37Кб
18. CNNs in Keras Practical Example-faFvmGDwXX0.en.vtt 5.39Кб
18. CNNs in Keras Practical Example-faFvmGDwXX0.mp4 8.71Мб
18. CNNs in Keras Practical Example-faFvmGDwXX0.pt-BR.vtt 6.12Кб
18. CNNs in Keras Practical Example-faFvmGDwXX0.zh-CN.vtt 4.78Кб
18. Finite MDPs.html 11.29Кб
18. Images-1GdiN5Wc8LA.mp4 395.42Кб
18. Implementation.html 8.26Кб
18. Maximum Likelihood.html 10.76Кб
18. Maximum Likelihood 1-1yJx-QtlvNI.en.vtt 1.64Кб
18. Maximum Likelihood 1-1yJx-QtlvNI.mp4 5.75Мб
18. Maximum Likelihood 1-1yJx-QtlvNI.pt-BR.vtt 1.61Кб
18. Maximum Likelihood 1-1yJx-QtlvNI.zh-CN.vtt 1.43Кб
18. Maximum Likelihood 2-6nUUeQ9AeUA.en.vtt 4.41Кб
18. Maximum Likelihood 2-6nUUeQ9AeUA.mp4 3.85Мб
18. Maximum Likelihood 2-6nUUeQ9AeUA.pt-BR.vtt 4.49Кб
18. Maximum Likelihood 2-6nUUeQ9AeUA.zh-CN.vtt 3.67Кб
18. MC Control Constant-alpha, Part 1.html 7.08Кб
18. MC Control Constant-alpha-QFV1nI9Zpoo.en.vtt 3.95Кб
18. MC Control Constant-alpha-QFV1nI9Zpoo.mp4 12.46Мб
18. MC Control Constant-alpha-QFV1nI9Zpoo.pt-BR.vtt 4.05Кб
18. MC Control Constant-alpha-QFV1nI9Zpoo.zh-CN.vtt 3.23Кб
18. Mini Project 5 Solution.html 7.29Кб
18. Mini Project 5 Solution-Hv86B_jjWTI.en.vtt 9.55Кб
18. Mini Project 5 Solution-Hv86B_jjWTI.mp4 28.86Мб
18. Mini Project 5 Solution-Hv86B_jjWTI.pt-BR.vtt 8.27Кб
18. Mini Project 5 Solution-Hv86B_jjWTI.zh-CN.vtt 8.19Кб
18. Refresh on ROC Curves.html 11.04Кб
18. ROC Curve-2Iw5TiGzJI4.en.vtt 8.66Кб
18. ROC Curve-2Iw5TiGzJI4.mp4 6.66Мб
18. ROC Curve-2Iw5TiGzJI4.pt-BR.vtt 8.12Кб
18. ROC Curve-2Iw5TiGzJI4.zh-CN.vtt 7.30Кб
19. (Optional) Closed form Solution Math.html 14.48Кб
19. 17 Quiz ROC Curve 1 PT2 V1-Xv3v59_CfEU.en.vtt 791б
19. 17 Quiz ROC Curve 1 PT2 V1-Xv3v59_CfEU.mp4 1.11Мб
19. 17 Quiz ROC Curve 1 PT2 V1-Xv3v59_CfEU.pt-BR.vtt 678б
19. 17 Quiz ROC Curve 1 PT2 V1-Xv3v59_CfEU.zh-CN.vtt 729б
19. 21 RNN BPTT C V7 Final-uBy_eIJDD1M.en.vtt 3.29Кб
19. 21 RNN BPTT C V7 Final-uBy_eIJDD1M.mp4 17.23Мб
19. 21 RNN BPTT C V7 Final-uBy_eIJDD1M.pt-BR.vtt 3.66Кб
19. 21 RNN BPTT C V7 Final-uBy_eIJDD1M.zh-CN.vtt 2.79Кб
19. Backpropagation Through Time (part c).html 14.06Кб
19. Further Noise Reduction.html 7.03Кб
19. Further Noise Reduction-Kl3hWxizKVg.en.vtt 10.90Кб
19. Further Noise Reduction-Kl3hWxizKVg.mp4 22.33Мб
19. Further Noise Reduction-Kl3hWxizKVg.pt-BR.vtt 10.16Кб
19. Further Noise Reduction-Kl3hWxizKVg.zh-CN.vtt 9.97Кб
19. Maximizing Probabilities.html 10.23Кб
19. MC Control Constant-alpha, Part 2.html 15.38Кб
19. Mini Project CNNs in Keras.html 8.39Кб
19. Mini Project DP (Part 4).html 7.79Кб
19.png 3.32Кб
19. Quiz - Cross 1--xxrisIvD0E.en.vtt 918б
19. Quiz - Cross 1--xxrisIvD0E.mp4 3.02Мб
19. Quiz - Cross 1--xxrisIvD0E.pt-BR.vtt 947б
19. Quiz - Cross 1--xxrisIvD0E.zh-CN.vtt 813б
19. Quiz Cross Entropy-njq6bYrPqSU.en.vtt 2.30Кб
19. Quiz Cross Entropy-njq6bYrPqSU.mp4 1.86Мб
19. Quiz Cross Entropy-njq6bYrPqSU.pt-BR.vtt 2.28Кб
19. Quiz Cross Entropy-njq6bYrPqSU.zh-CN.vtt 2.07Кб
19. Quiz ROC Curve.html 9.00Кб
19. Summary.html 12.12Кб
1omsg2-mkguagky1c64uflw.gif 183.96Кб
20. BPTT Quiz 1.html 9.07Кб
20. Cross-Entropy 1.html 8.63Кб
20. Cross Entropy 1-iREoPUrpXvE.en.vtt 4.81Кб
20. Cross Entropy 1-iREoPUrpXvE.mp4 4.22Мб
20. Cross Entropy 1-iREoPUrpXvE.pt-BR.vtt 5.00Кб
20. Cross Entropy 1-iREoPUrpXvE.zh-CN.vtt 4.11Кб
20. Image Augmentation in Keras.html 9.42Кб
20. Image Augmentation in Keras-odStujZq3GY.en.vtt 8.22Кб
20. Image Augmentation in Keras-odStujZq3GY.mp4 10.26Мб
20. Image Augmentation in Keras-odStujZq3GY.pt-BR.vtt 8.49Кб
20. Image Augmentation in Keras-odStujZq3GY.zh-CN.vtt 7.02Кб
20. Implementation.html 7.89Кб
20. Linear Regression Warnings.html 8.97Кб
20. Mini Project 6.html 8.59Кб
20. Solution ROC Curve.html 7.82Кб
20. Solution ROC Curve-sdUUf6RRmXI.en.vtt 943б
20. Solution ROC Curve-sdUUf6RRmXI.mp4 1.11Мб
20. Solution ROC Curve-sdUUf6RRmXI.pt-BR.vtt 643б
20. Solution ROC Curve-sdUUf6RRmXI.zh-CN.vtt 829б
20. Truncated Policy Iteration.html 7.43Кб
20. Truncated Policy Iteration-a-RvCxlPMho.en.vtt 3.39Кб
20. Truncated Policy Iteration-a-RvCxlPMho.mp4 14.13Мб
20. Truncated Policy Iteration-a-RvCxlPMho.pt-BR.vtt 3.74Кб
20. Truncated Policy Iteration-a-RvCxlPMho.zh-CN.vtt 2.90Кб
21. BPTT Quiz 2.html 8.71Кб
21. Comparing our Results with Doctors.html 7.81Кб
21. Cross-Entropy 2.html 12.88Кб
21. CrossEntropy V1-1BnhC6e0TFw.en.vtt 8.03Кб
21. CrossEntropy V1-1BnhC6e0TFw.mp4 6.61Мб
21. CrossEntropy V1-1BnhC6e0TFw.pt-BR.vtt 7.81Кб
21. CrossEntropy V1-1BnhC6e0TFw.zh-CN.vtt 6.66Кб
21. Formula For Cross 1-qvr_ego_d6w.en.vtt 607б
21. Formula For Cross 1-qvr_ego_d6w.mp4 2.08Мб
21. Formula For Cross 1-qvr_ego_d6w.pt-BR.vtt 719б
21. Formula For Cross 1-qvr_ego_d6w.zh-CN.vtt 545б
21. Implementation.html 9.86Кб
21. Mini Project 6 Solution.html 7.41Кб
21. Mini Project 6 Solution-ji0famK7gOQ.en.vtt 13.94Кб
21. Mini Project 6 Solution-ji0famK7gOQ.mp4 39.15Мб
21. Mini Project 6 Solution-ji0famK7gOQ.pt-BR.vtt 12.17Кб
21. Mini Project 6 Solution-ji0famK7gOQ.zh-CN.vtt 12.11Кб
21. Mini Project Image Augmentation in Keras.html 8.48Кб
21. Mini Project MC (Part 4).html 7.43Кб
21.png 2.18Кб
21. Polynomial Regression.html 7.10Кб
21. Polynomial Regression-DBhWG-PagEQ.en.vtt 1.29Кб
21. Polynomial Regression-DBhWG-PagEQ.mp4 982.28Кб
21. Polynomial Regression-DBhWG-PagEQ.pt-BR.vtt 1.18Кб
21. ROC Curve-fWwe_JlpnlQ.en.vtt 3.04Кб
21. ROC Curve-fWwe_JlpnlQ.mp4 2.68Мб
21. ROC Curve-fWwe_JlpnlQ.pt-BR.vtt 2.64Кб
21. ROC Curve-fWwe_JlpnlQ.zh-CN.vtt 2.58Кб
22. Analysis What's Going on in the Weights.html 7.40Кб
22. Analysis What's Going on in the Weights-UHsT35pbpcE.en.vtt 13.69Кб
22. Analysis What's Going on in the Weights-UHsT35pbpcE.mp4 33.67Мб
22. Analysis What's Going on in the Weights-UHsT35pbpcE.pt-BR.vtt 12.59Кб
22. Analysis What's Going on in the Weights-UHsT35pbpcE.zh-CN.vtt 12.07Кб
22. BPTT Quiz 3.html 12.21Кб
22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.en.vtt 4.72Кб
22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.mp4 4.14Мб
22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.pt-BR.vtt 4.54Кб
22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.zh-CN.vtt 4.01Кб
22. Groundbreaking CNN Architectures.html 8.83Кб
22. Groundbreaking CNN Architectures-ddrB-mhMfkY.en.vtt 3.94Кб
22. Groundbreaking CNN Architectures-ddrB-mhMfkY.mp4 8.09Мб
22. Groundbreaking CNN Architectures-ddrB-mhMfkY.pt-BR.vtt 4.26Кб
22. Groundbreaking CNN Architectures-ddrB-mhMfkY.zh-CN.vtt 3.52Кб
22. Mini Project DP (Part 5).html 7.79Кб
22. Multi-Class Cross Entropy.html 9.59Кб
22. Regularization.html 7.05Кб
22. Regularization-PyFNIcsNma0.en.vtt 10.87Кб
22. Regularization-PyFNIcsNma0.mp4 8.76Мб
22. Regularization-PyFNIcsNma0.pt-BR.vtt 10.38Кб
22. Summary.html 15.12Кб
22. Visualization.html 7.79Кб
22. Visualization-aGIGB4Ta3_A.en.vtt 1.85Кб
22. Visualization-aGIGB4Ta3_A.mp4 2.43Мб
22. Visualization-aGIGB4Ta3_A.pt-BR.vtt 1.78Кб
22. Visualization-aGIGB4Ta3_A.zh-CN.vtt 1.48Кб
23. Andrew Trask - Outro-nIF0GLOQglQ.en-US.vtt 2.73Кб
23. Andrew Trask - Outro-nIF0GLOQglQ.mp4 11.79Мб
23. Andrew Trask - Outro-nIF0GLOQglQ.pt-BR.vtt 2.19Кб
23. Andrew Trask - Outro-nIF0GLOQglQ.zh-CN.vtt 2.48Кб
23. Conclusion.html 7.00Кб
23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.en.vtt 1.62Кб
23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.mp4 1.49Мб
23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.pt-BR.vtt 1.42Кб
23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.zh-CN.vtt 1.46Кб
23. Error Function-V5kkHldUlVU.en.vtt 4.87Кб
23. Error Function-V5kkHldUlVU.mp4 4.84Мб
23. Error Function-V5kkHldUlVU.pt-BR.vtt 5.19Кб
23. Error Function-V5kkHldUlVU.zh-CN.vtt 4.15Кб
23. Logistic Regression.html 10.07Кб
23. Neural Network Regression.html 7.00Кб
23. Neural Network Regression-aUJCBqBfEnI.mp4 3.46Мб
23. Neural Network Regression-aUJCBqBfEnI.pt-BR.vtt 3.55Кб
23. Some more math.html 13.62Кб
23. Value Iteration.html 7.35Кб
23. Value Iteration-XNeQn8N36y8.en.vtt 4.18Кб
23. Value Iteration-XNeQn8N36y8.mp4 15.65Мб
23. Value Iteration-XNeQn8N36y8.pt-BR.vtt 4.47Кб
23. Value Iteration-XNeQn8N36y8.zh-CN.vtt 3.42Кб
23. Visualizando CNNs-mnqS_EhEZVg.en.vtt 3.87Кб
23. Visualizando CNNs-mnqS_EhEZVg.mp4 9.20Мб
23. Visualizando CNNs-mnqS_EhEZVg.pt-BR.vtt 3.83Кб
23. Visualizando CNNs-mnqS_EhEZVg.zh-CN.vtt 3.33Кб
23. Visualizing CNNs (Part 1).html 9.91Кб
23. What is the network looking at.html 7.94Кб
23. What Is The Neural Network Looking At-qN-rvoxPbBw.en.vtt 2.17Кб
23. What Is The Neural Network Looking At-qN-rvoxPbBw.mp4 3.46Мб
23. What Is The Neural Network Looking At-qN-rvoxPbBw.pt-BR.vtt 1.72Кб
23. What Is The Neural Network Looking At-qN-rvoxPbBw.zh-CN.vtt 1.87Кб
24. Confusion Matrix-Question 1-9GLNjmMUB_4.en.vtt 5.71Кб
24. Confusion Matrix-Question 1-9GLNjmMUB_4.en-US.vtt 5.52Кб
24. Confusion Matrix-Question 1-9GLNjmMUB_4.mp4 5.04Мб
24. Confusion Matrix-Question 1-9GLNjmMUB_4.pt-BR.vtt 4.76Кб
24. Confusion Matrix-Question 1-9GLNjmMUB_4.zh-CN.vtt 4.96Кб
24. Gradient Descent.html 16.37Кб
24. Gradient Descent-rhVIF-nigrY.en.vtt 3.85Кб
24. Gradient Descent-rhVIF-nigrY.mp4 3.76Мб
24. Gradient Descent-rhVIF-nigrY.pt-BR.vtt 3.98Кб
24. Implementation.html 10.11Кб
24. Neural Networks Playground.html 7.68Кб
24. Refresh on Confusion Matrices.html 15.32Кб
24. RNN Summary.html 13.56Кб
24. RNN Summary-nXP0oGGRrO8.en.vtt 5.61Кб
24. RNN Summary-nXP0oGGRrO8.mp4 7.26Мб
24. RNN Summary-nXP0oGGRrO8.pt-BR.vtt 6.19Кб
24. RNN Summary-nXP0oGGRrO8.zh-CN.vtt 4.89Кб
24. Visualizing CNNs (Part 2).html 14.40Кб
25. 23 From RNNs To LSTMs V4 Final-MsqybcWmzGY.en.vtt 5.76Кб
25. 23 From RNNs To LSTMs V4 Final-MsqybcWmzGY.mp4 36.16Мб
25. 23 From RNNs To LSTMs V4 Final-MsqybcWmzGY.pt-BR.vtt 6.64Кб
25. 23 From RNNs To LSTMs V4 Final-MsqybcWmzGY.zh-CN.vtt 5.32Кб
25. Conclusion-pyeojf0NniQ.en.vtt 558б
25. Conclusion-pyeojf0NniQ.mp4 1.57Мб
25. Conclusion-pyeojf0NniQ.pt-BR.vtt 590б
25. Confusion Matrix.html 7.81Кб
25. Confusion Matrix-3rpN-YYlfes.en.vtt 1.66Кб
25. Confusion Matrix-3rpN-YYlfes.mp4 3.07Мб
25. Confusion Matrix-3rpN-YYlfes.pt-BR.vtt 1.54Кб
25. Confusion Matrix-3rpN-YYlfes.zh-CN.vtt 1.41Кб
25. From RNN to LSTM.html 9.83Кб
25. Gradient Descent Algorithm-snxmBgi_GeU.en.vtt 2.55Кб
25. Gradient Descent Algorithm-snxmBgi_GeU.mp4 1.98Мб
25. Gradient Descent Algorithm-snxmBgi_GeU.pt-BR.vtt 2.64Кб
25. Gradient Descent Algorithm-snxmBgi_GeU.zh-CN.vtt 2.21Кб
25. Logistic Regression Algorithm.html 8.46Кб
25. Mini Project DP (Part 6).html 7.79Кб
25. Outro.html 7.02Кб
25. Transfer Learning.html 18.80Кб
25. Transfer Learning-LHG5FltaR6I.en.vtt 6.00Кб
25. Transfer Learning-LHG5FltaR6I.mp4 13.32Мб
25. Transfer Learning-LHG5FltaR6I.pt-BR.vtt 6.51Кб
25. Transfer Learning-LHG5FltaR6I.zh-CN.vtt 5.39Кб
26. Check Your Understanding.html 10.61Кб
26. Conclusion.html 7.77Кб
26. Conclusion-WhpE_8sTt-0.en.vtt 3.64Кб
26. Conclusion-WhpE_8sTt-0.mp4 8.20Мб
26. Conclusion-WhpE_8sTt-0.pt-BR.vtt 3.28Кб
26. Conclusion-WhpE_8sTt-0.zh-CN.vtt 3.26Кб
26. Pre-Lab Gradient Descent.html 10.14Кб
26. Transfer Learning in Keras.html 9.07Кб
26. Transfer Learning in Keras-HsIAznMM1LA.en.vtt 6.11Кб
26. Transfer Learning in Keras-HsIAznMM1LA.mp4 12.92Мб
26. Transfer Learning in Keras-HsIAznMM1LA.pt-BR.vtt 6.77Кб
26. Transfer Learning in Keras-HsIAznMM1LA.zh-CN.vtt 5.69Кб
26. Wrap Up.html 7.50Кб
27. Notebook Gradient Descent.html 8.82Кб
27. Summary.html 13.88Кб
27. Useful Resources.html 8.96Кб
28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.en.vtt 4.27Кб
28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.mp4 3.20Мб
28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.pt-BR.vtt 4.24Кб
28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.zh-CN.vtt 3.60Кб
28. Mini Project Introduction.html 7.87Кб
28. Mini Project Introduction-Rgf3YVFWl-M.en.vtt 510б
28. Mini Project Introduction-Rgf3YVFWl-M.mp4 1.15Мб
28. Mini Project Introduction-Rgf3YVFWl-M.pt-BR.vtt 538б
28. Mini Project Introduction-Rgf3YVFWl-M.zh-CN.vtt 475б
28. Perceptron vs Gradient Descent.html 8.77Кб
29. Continuous Perceptrons.html 8.43Кб
29. Continuous Perceptrons-07-JJ-aGEfM.en.vtt 1.33Кб
29. Continuous Perceptrons-07-JJ-aGEfM.mp4 1.13Мб
29. Continuous Perceptrons-07-JJ-aGEfM.pt-BR.vtt 1.31Кб
29. Continuous Perceptrons-07-JJ-aGEfM.zh-CN.vtt 1.15Кб
29. Mini Project Dermatologist AI.html 19.52Кб
2-card-21.png 175.83Кб
30. Non-linear Data.html 8.38Кб
30. Non-Linear Data-F7ZiE8PQiSc.en.vtt 633б
30. Non-Linear Data-F7ZiE8PQiSc.mp4 2.14Мб
30. Non-Linear Data-F7ZiE8PQiSc.pt-BR.vtt 600б
30. Non-Linear Data-F7ZiE8PQiSc.zh-CN.vtt 624б
31. Non-Linear Models.html 8.39Кб
31. Non-Linear Models-HWuBKCZsCo8.en.vtt 1.30Кб
31. Non-Linear Models-HWuBKCZsCo8.mp4 1.13Мб
31. Non-Linear Models-HWuBKCZsCo8.pt-BR.vtt 1.39Кб
31. Non-Linear Models-HWuBKCZsCo8.zh-CN.vtt 1.12Кб
32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.en.vtt 3.02Кб
32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.mp4 2.83Мб
32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.pt-BR.vtt 3.34Кб
32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.zh-CN.vtt 2.76Кб
32. Combinando modelos-Boy3zHVrWB4.en.vtt 5.29Кб
32. Combinando modelos-Boy3zHVrWB4.mp4 4.73Мб
32. Combinando modelos-Boy3zHVrWB4.pt-BR.vtt 5.29Кб
32. Combinando modelos-Boy3zHVrWB4.zh-CN.vtt 4.61Кб
32. Layers-pg99FkXYK0M.en.vtt 3.40Кб
32. Layers-pg99FkXYK0M.mp4 3.11Мб
32. Layers-pg99FkXYK0M.pt-BR.vtt 3.29Кб
32. Layers-pg99FkXYK0M.zh-CN.vtt 3.04Кб
32. Multiclass Classification-uNTtvxwfox0.en.vtt 2.08Кб
32. Multiclass Classification-uNTtvxwfox0.mp4 1.88Мб
32. Multiclass Classification-uNTtvxwfox0.pt-BR.vtt 2.12Кб
32. Multiclass Classification-uNTtvxwfox0.zh-CN.vtt 1.82Кб
32. Neural Network Architecture.html 13.05Кб
33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.en.vtt 6.17Кб
33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.mp4 5.33Мб
33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.pt-BR.vtt 6.76Кб
33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.zh-CN.vtt 5.33Кб
33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.en.vtt 1.97Кб
33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.mp4 1.72Мб
33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.pt-BR.vtt 2.12Кб
33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.zh-CN.vtt 1.69Кб
33. Feedforward.html 9.67Кб
34. Backpropagation.html 12.49Кб
34. Backpropagation V2-1SmY3TZTyUk.en.vtt 7.21Кб
34. Backpropagation V2-1SmY3TZTyUk.mp4 6.52Мб
34. Backpropagation V2-1SmY3TZTyUk.pt-BR.vtt 7.17Кб
34. Backpropagation V2-1SmY3TZTyUk.zh-CN.vtt 6.39Кб
34. Calculating The Gradient 1 -tVuZDbUrzzI.en.vtt 3.41Кб
34. Calculating The Gradient 1 -tVuZDbUrzzI.mp4 3.31Мб
34. Calculating The Gradient 1 -tVuZDbUrzzI.pt-BR.vtt 3.44Кб
34. Calculating The Gradient 1 -tVuZDbUrzzI.zh-CN.vtt 2.88Кб
34. Chain Rule-YAhIBOnbt54.en.vtt 1.65Кб
34. Chain Rule-YAhIBOnbt54.mp4 1.46Мб
34. Chain Rule-YAhIBOnbt54.pt-BR.vtt 1.73Кб
34. Chain Rule-YAhIBOnbt54.zh-CN.vtt 1.42Кб
34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.en.vtt 6.16Кб
34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.mp4 5.69Мб
34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.pt-BR.vtt 6.50Кб
34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.zh-CN.vtt 5.05Кб
35. Pre-Lab Analyzing Student Data.html 9.29Кб
36. Notebook Analyzing Student Data.html 8.83Кб
37. Outro.html 8.37Кб
accuracy-quiz.png 105.85Кб
actionvalue.png 628.42Кб
addition-graph.png 68.97Кб
admissions-data.png 118.38Кб
all-ranks.png 308.47Кб
amazon-aws.png 55.95Кб
amazonwebservices-logo.svg.png 107.16Кб
and-quiz.png 265.78Кб
and-to-or.png 606.14Кб
arch.png 1.20Мб
article-2278590-1792e332000005dc-394-634x615.jpg 103.03Кб
atari-network.png 309.97Кб
autoencoder-1.png 24.69Кб
aws-add-sec-group.png 41.71Кб
aws-create-account.png 13.50Кб
b-1byk.png 2.02Кб
backgammonboard.svg.png 112.81Кб
backprop-error.gif 2.93Кб
backprop-general.gif 2.20Кб
backprop-network.png 13.07Кб
backprop-weight-update.gif 1.68Кб
batch-stochastic.png 196.92Кб
bootstrap.min.css 137.64Кб
bootstrap.min.js 49.85Кб
boston-back-bay-reflection.jpg 317.90Кб
carnd.jpg 5.35Мб
cat-1.jpeg 230.78Кб
cat-2.jpeg 231.25Кб
cat-3.png 575.91Кб
chess-game.jpg 7.54Мб
chi-waves.png 823.61Кб
codecogseqn-2.png 2.26Кб
codecogseqn-43.gif 7.96Кб
codecogseqn-49.gif 2.09Кб
codecogseqn-58.gif 919б
codecogseqn-60-2.png 8.94Кб
codecogseqn-61.gif 2.07Кб
codecogseqn-62.gif 1.31Кб
command+palette.mp4 169.16Кб
conda_default_install.mp4 595.30Кб
conda_enter.mp4 97.26Кб
conda_install.mp4 201.72Кб
conda-create-env.png 70.79Кб
conda-env-export.png 64.05Кб
conda-environments.png 40.09Кб
conda-install.png 81.15Кб
conda-search.png 430.84Кб
conda-tab.png 109.92Кб
confusion.png 188.85Кб
confusion-matrix.png 310.94Кб
constant-alpha.png 143.69Кб
conv-dims.png 28.55Кб
convolutional-neural-networks-2.jpg 59.66Кб
convolution-schematic.gif 63.63Кб
convolution-schematic.gif 63.63Кб
cost.png 3.39Кб
cross-entropy-diagram.png 62.67Кб
data.png 49.54Кб
dcdl2.png 1.15Кб
dcdl2-grad-fixed.gif 7.79Кб
dcdw1-chain.png 3.92Кб
dcdw1-grad-fixed.gif 6.03Кб
dcdw2.png 1.28Кб
dcdw2-chain.png 2.68Кб
dcdw2-grad-fixed.gif 3.90Кб
derivative-example.png 55.08Кб
diagonal-line-1.png 5.76Кб
diagonal-line-2.png 6.62Кб
dl1dw1-grad.png 3.54Кб
dl2ds-grad.png 3.21Кб
dl2dw2-grad.png 3.72Кб
dl-classroom-1200x900.jpg 875.27Кб
dropout-node.jpeg 62.69Кб
dsdl1.png 5.34Кб
e.gif 1.18Кб
edit-security-group.png 12.76Кб
email.png 148.53Кб
enable-gpu.png 73.47Кб
est-action.png 150.55Кб
example-data.png 92.11Кб
example-neural-network.png 163.05Кб
examples.jpg 469.13Кб
expected-sarsa.png 254.43Кб
exploration-vs.-exploitation.png 204.28Кб
f1.gif 2.01Кб
f2.gif 1.88Кб
f3iwvmld-400x400.jpg 26.43Кб
f4.gif 1.13Кб
f6.gif 1.60Кб
faces.png 42.81Кб
flappy-bird.jpg 76.23Кб
frozen-lake-6.jpg 1.50Мб
FTUApps.com website coming soon.txt 94б
full-padding-no-strides-transposed.gif 221.74Кб
generated-mnist.png 345.99Кб
gif-1.gif 1.03Кб
go.jpg 614.80Кб
gradient-descent.png 71.96Кб
gradient-descent-convergence.gif 26.35Кб
gradient-descent-divergence.gif 25.56Кб
grid-layer-1.png 35.30Кб
grokking-deep-learning.jpg 69.52Кб
hidden-errors.gif 2.80Кб
hidden-layer-weights.gif 1.75Кб
house.png 491.52Кб
How you can help Team-FTU.txt 241б
improve.png 124.46Кб
incremental.png 151.93Кб
index.html 4.21Кб
index.html 4.06Кб
index.html 3.73Кб
index.html 4.31Кб
index.html 4.33Кб
index.html 6.33Кб
index.html 4.18Кб
index.html 4.61Кб
index.html 3.67Кб
index.html 3.85Кб
index.html 5.26Кб
index.html 4.02Кб
index.html 4.77Кб
index.html 3.92Кб
index.html 5.79Кб
index.html 4.10Кб
index.html 3.86Кб
index.html 3.92Кб
index.html 4.16Кб
index.html 3.79Кб
index.html 5.97Кб
index.html 5.46Кб
index.html 4.26Кб
index.html 4.42Кб
index.html 4.18Кб
index.html 4.11Кб
index.html 3.90Кб
index.html 3.76Кб
index.html 4.88Кб
index.html 4.23Кб
index.html 3.83Кб
index.html 4.50Кб
index.html 3.78Кб
index.html 4.92Кб
index.html 4.40Кб
index.html 5.54Кб
index.html 5.30Кб
index.html 4.77Кб
index.html 3.63Кб
index.html 4.53Кб
index.html 4.43Кб
index.html 4.07Кб
index.html 3.97Кб
index.html 4.24Кб
index.html 3.54Кб
index.html 4.16Кб
index.html 5.41Кб
index.html 4.44Кб
index.html 141.31Кб
index.jpg 11.56Кб
inputs-matrix.png 5.61Кб
input-times-weights.png 51.82Кб
input-times-weights.png 51.82Кб
input-to-output-2.mp4 172.03Кб
iteration.png 241.36Кб
jquery.mCustomScrollbar.concat.min.js 44.41Кб
jquery.mCustomScrollbar.min.css 41.83Кб
jquery-3.3.1.min.js 84.89Кб
jupyter-logo.png 5.78Кб
just-a-2d-reg.png 68.49Кб
just-a-simple-lin-reg.png 25.95Кб
karpathy-network.png 221.80Кб
KaTeX_AMS-Regular.ttf 69.75Кб
KaTeX_AMS-Regular.woff 39.26Кб
KaTeX_AMS-Regular.woff2 32.43Кб
KaTeX_Caligraphic-Bold.ttf 19.13Кб
KaTeX_Caligraphic-Bold.woff 11.85Кб
KaTeX_Caligraphic-Bold.woff2 10.35Кб
KaTeX_Caligraphic-Regular.ttf 18.52Кб
KaTeX_Caligraphic-Regular.woff 11.59Кб
KaTeX_Caligraphic-Regular.woff2 10.17Кб
KaTeX_Fraktur-Bold.ttf 35.13Кб
KaTeX_Fraktur-Bold.woff 22.84Кб
KaTeX_Fraktur-Bold.woff2 20.01Кб
KaTeX_Fraktur-Regular.ttf 33.84Кб
KaTeX_Fraktur-Regular.woff 22.31Кб
KaTeX_Fraktur-Regular.woff2 19.39Кб
KaTeX_Main-Bold.ttf 60.27Кб
KaTeX_Main-Bold.woff 35.89Кб
KaTeX_Main-Bold.woff2 29.90Кб
KaTeX_Main-BoldItalic.ttf 43.77Кб
KaTeX_Main-BoldItalic.woff 25.61Кб
KaTeX_Main-BoldItalic.woff2 21.67Кб
KaTeX_Main-Italic.ttf 46.83Кб
KaTeX_Main-Italic.woff 26.56Кб
KaTeX_Main-Italic.woff2 22.52Кб
KaTeX_Main-Regular.ttf 68.43Кб
KaTeX_Main-Regular.woff 38.52Кб
KaTeX_Main-Regular.woff2 32.09Кб
KaTeX_Math-BoldItalic.ttf 38.81Кб
KaTeX_Math-BoldItalic.woff 22.65Кб
KaTeX_Math-BoldItalic.woff2 19.57Кб
KaTeX_Math-Italic.ttf 40.48Кб
KaTeX_Math-Italic.woff 23.26Кб
KaTeX_Math-Italic.woff2 19.95Кб
KaTeX_SansSerif-Bold.ttf 33.23Кб
KaTeX_SansSerif-Bold.woff 18.72Кб
KaTeX_SansSerif-Bold.woff2 15.62Кб
KaTeX_SansSerif-Italic.ttf 30.57Кб
KaTeX_SansSerif-Italic.woff 17.70Кб
KaTeX_SansSerif-Italic.woff2 14.86Кб
KaTeX_SansSerif-Regular.ttf 29.45Кб
KaTeX_SansSerif-Regular.woff 16.39Кб
KaTeX_SansSerif-Regular.woff2 13.70Кб
KaTeX_Script-Regular.ttf 24.28Кб
KaTeX_Script-Regular.woff 13.53Кб
KaTeX_Script-Regular.woff2 11.99Кб
KaTeX_Size1-Regular.ttf 12.86Кб
KaTeX_Size1-Regular.woff 6.82Кб
KaTeX_Size1-Regular.woff2 5.69Кб
KaTeX_Size2-Regular.ttf 12.12Кб
KaTeX_Size2-Regular.woff 6.53Кб
KaTeX_Size2-Regular.woff2 5.43Кб
KaTeX_Size3-Regular.ttf 8.16Кб
KaTeX_Size3-Regular.woff 4.66Кб
KaTeX_Size3-Regular.woff2 3.77Кб
KaTeX_Size4-Regular.ttf 11.02Кб
KaTeX_Size4-Regular.woff 6.30Кб
KaTeX_Size4-Regular.woff2 5.06Кб
KaTeX_Typewriter-Regular.ttf 35.46Кб
KaTeX_Typewriter-Regular.woff 20.43Кб
KaTeX_Typewriter-Regular.woff2 17.13Кб
katex.min.css 21.56Кб
katex.min.js 231.26Кб
l2.png 1.37Кб
launch.png 8.90Кб
launch-instance.png 22.52Кб
layer-1-grid.png 45.73Кб
layers.png 286.10Кб
lesions.png 1.57Мб
linear-equation.gif 1.23Кб
linear-relationships.png 112.35Кб
lin-reg-no-outliers.png 28.61Кб
lin-reg-w-outliers.png 27.55Кб
local-minima.png 38.08Кб
m.gif 3.82Кб
magic-matplotlib.png 90.72Кб
magic-pdb.png 68.61Кб
magic-timeit.png 157.29Кб
magic-timeit2.png 56.11Кб
Markdown+cells.mp4 330.36Кб
matengai-of-kuniga-coast-in-oki-island-shimane-pref600.jpg 247.02Кб
mat-headshot.png 179.99Кб
mat-headshot.png 179.99Кб
mat-headshot.png 179.99Кб
mat-headshot.png 179.99Кб
mat-headshot.png 179.99Кб
mat-headshot.png 179.99Кб
mat-headshot.png 179.99Кб
mat-headshot.png 179.99Кб
mat-headshot.png 179.99Кб
mat-headshot.png 179.99Кб
matrix-mult-3.png 78.97Кб
maxpool.jpeg 37.07Кб
max-pooling.png 25.19Кб
maze.png 4.20Кб
mc-control-constant-a.png 274.97Кб
mc-control-glie.png 297.18Кб
mc-pred-action.png 363.61Кб
mc-pred-state.png 348.13Кб
medical.png 186.53Кб
meme.png 209.05Кб
meme.png 209.05Кб
meme.png 209.05Кб
meme.png 209.05Кб
meme.png 209.05Кб
minibatch.png 136.77Кб
mnist-012.png 20.21Кб
monkey-doctor.png 189.92Кб
mse.png 3.21Кб
multi-layer.png 214.34Кб
multilayer-diagram-weights.png 48.57Кб
nature.png 893.03Кб
nbconvert-example.png 73.30Кб
network-with-labeled-nodes.png 52.00Кб
network-with-labeled-weights.png 59.44Кб
neuron.png 42.92Кб
neuron-output.png 2.12Кб
new-confusion-matrix.png 186.16Кб
new-notebook.png 101.77Кб
new-tab.gif 181.31Кб
neww.png 2.56Кб
neww-nk-fixed.gif 11.50Кб
newx.png 1.18Кб
newx-1n.png 2.27Кб
nmn.png 9.87Кб
nn.png 105.99Кб
notebook.png 70.26Кб
notebook+interface.mp4 215.47Кб
notebook-components.png 30.25Кб
notebook-download.png 79.54Кб
notebook-json.png 95.29Кб
notebook-server.png 103.33Кб
notebook-shutdown.png 62.35Кб
notmnist.png 54.15Кб
open-agent-monitor-main.gif 2.73Мб
open-terminal.gif 819.23Кб
or-quiz.png 393.62Кб
p2-limit-increase.png 188.22Кб
p2xlarge-limit-request.png 129.66Кб
paper-notes.svg.png 67.42Кб
parrot-ar-drone.jpg 146.51Кб
pasted-image-at-2016-10-25-01-17-pm.png 62.75Кб
perceptronquiz.png 93.69Кб
plyr.css 23.62Кб
plyr.polyfilled.min.js 126.16Кб
points.png 63.17Кб
poker-hand-3-of-a-kind.png 128.64Кб
policy-eval.png 259.66Кб
pooling-dims.png 29.17Кб
precision-quiz.png 250.81Кб
precision-recall.png 156.71Кб
Project Description - Dog Breed Classifier.html 8.24Кб
Project Description - Generate Faces.html 5.96Кб
Project Description - Generate TV Scripts.html 6.53Кб
Project Description - Teach a Quadcopter How to Fly.html 6.24Кб
Project Description - Your first neural network.html 9.84Кб
Project Rubric - Dog Breed Classifier.html 13.29Кб
Project Rubric - Generate Faces.html 8.15Кб
Project Rubric - Generate TV Scripts.html 12.85Кб
Project Rubric - Teach a Quadcopter How to Fly.html 8.15Кб
Project Rubric - Your first neural network.html 8.60Кб
pup.jpg 181.27Кб
quadcopter.png 455.67Кб
quadraticlinearregression.png 23.56Кб
quiz.jpg 174.18Кб
recall-quiz.png 228.26Кб
regularization-quiz.png 87.90Кб
relu-network.png 31.09Кб
review-and-launch.png 15.75Кб
review-example.png 362.83Кб
rnn.png 155.70Кб
roc.png 78.96Кб
roc-curve.png 31.48Кб
roc-curves.png 137.28Кб
run-main.gif 1.99Мб
sample-confusion-matrix.png 130.52Кб
sample-roc-curve.png 46.33Кб
sarsa.png 286.80Кб
sarsamax.png 264.54Кб
save-2.png 10.66Кб
Screen+Shot+2017-01-27+at+11.38.54+AM.png 55.10Кб
screen-shot-2016-10-21-at-15.43.05.png 481.52Кб
screen-shot-2016-10-26-at-19.28.34.png 297.79Кб
screen-shot-2016-11-24-at-12.08.11-pm.png 2.90Мб
screen-shot-2016-11-24-at-12.09.02-pm.png 3.09Мб
screen-shot-2016-11-24-at-12.09.24-pm.png 3.49Мб
screen-shot-2017-06-13-at-12.58.03-pm.png 196.32Кб
screen-shot-2017-08-31-at-3.27.10-pm.png 463.09Кб
screen-shot-2017-09-20-at-12.02.06-pm.png 27.64Кб
screen-shot-2017-09-21-at-12.20.30-pm.png 203.11Кб
screen-shot-2017-09-21-at-12.20.30-pm.png 203.11Кб
screen-shot-2017-09-21-at-12.20.50-pm.png 210.59Кб
screen-shot-2017-09-21-at-3.08.03-pm.png 152.93Кб
screen-shot-2017-09-21-at-3.25.10-pm.png 55.60Кб
screen-shot-2017-09-21-at-3.46.12-pm.png 52.28Кб
screen-shot-2017-09-21-at-4.34.08-pm.png 26.85Кб
screen-shot-2017-09-24-at-4.28.04-pm.png 622.69Кб
screen-shot-2017-09-25-at-11.35.38-am.png 25.22Кб
screen-shot-2017-09-25-at-5.51.40-pm.png 64.59Кб
screen-shot-2017-09-25-at-6.02.37-pm.png 78.84Кб
screen-shot-2017-09-25-at-9.18.00-pm.png 52.48Кб
screen-shot-2017-09-26-at-11.03.16-pm.png 259.66Кб
screen-shot-2017-09-26-at-2.18.38-pm.png 405.83Кб
screen-shot-2017-09-26-at-4.22.09-pm.png 219.33Кб
screen-shot-2017-10-02-at-10.41.44-am.png 12.87Кб
screen-shot-2017-10-04-at-2.46.11-pm.png 58.97Кб
screen-shot-2017-10-04-at-4.58.58-pm.png 716.00Кб
screen-shot-2017-10-04-at-5.01.26-pm.png 271.87Кб
screen-shot-2017-10-05-at-3.55.40-pm.png 84.70Кб
screen-shot-2017-10-11-at-2.04.14-pm.png 1.10Мб
screen-shot-2017-10-12-at-5.47.45-pm.png 73.59Кб
screen-shot-2017-10-17-at-11.02.44-am.png 56.50Кб
screen-shot-2017-10-27-at-1.29.13-pm.png 2.45Мб
screen-shot-2017-10-27-at-6.29.49-pm.png 129.29Кб
screen-shot-2017-10-30-at-10.54.50-am.png 269.96Кб
screen-shot-2017-10-30-at-11.56.27-am.png 9.69Кб
screen-shot-2017-11-01-at-1.48.59-pm.png 61.06Кб
screen-shot-2017-11-01-at-11.43.26-am.png 22.51Кб
screen-shot-2017-11-01-at-3.38.43-pm.png 37.05Кб
screen-shot-2017-11-01-at-4.47.47-pm.png 33.26Кб
screen-shot-2017-11-01-at-5.14.13-pm.png 23.21Кб
screen-shot-2017-11-06-at-1.40.14-pm.png 361.16Кб
screen-shot-2017-11-06-at-2.04.24-pm.png 9.71Кб
screen-shot-2017-11-06-at-2.05.19-pm.png 7.22Кб
screen-shot-2017-11-06-at-2.09.07-pm.png 164.04Кб
screen-shot-2017-11-06-at-2.38.51-pm.png 225.33Кб
screen-shot-2017-11-06-at-2.45.22-pm.png 8.56Кб
screen-shot-2017-11-06-at-4.12.59-pm.png 49.25Кб
screen-shot-2017-11-08-at-3.43.34-pm.png 316.84Кб
screen-shot-2017-11-09-at-3.53.12-pm.png 35.08Кб
screen-shot-2017-11-09-at-6.01.16-pm.png 39.12Кб
screen-shot-2017-11-16-at-4.26.22-pm.png 41.24Кб
screen-shot-2017-11-16-at-4.27.58-pm.png 27.77Кб
screen-shot-2017-11-16-at-4.31.41-pm.png 44.91Кб
screen-shot-2017-11-16-at-5.54.40-pm.png 71.35Кб
screen-shot-2017-11-17-at-5.38.55-pm.png 108.05Кб
screen-shot-2017-11-21-at-3.38.11-pm.png 42.82Кб
screen-shot-2017-11-21-at-3.42.29-pm.png 47.82Кб
screen-shot-2017-11-21-at-3.44.15-pm.png 54.10Кб
screen-shot-2017-11-21-at-3.45.50-pm.png 57.92Кб
screen-shot-2017-11-21-at-3.49.24-pm.png 159.51Кб
screen-shot-2017-11-21-at-4.02.19-pm.png 24.25Кб
screen-shot-2017-11-21-at-4.07.21-pm.png 48.10Кб
screen-shot-2017-11-21-at-4.08.59-pm.png 54.16Кб
screen-shot-2017-11-21-at-4.10.56-pm.png 58.73Кб
screen-shot-2017-11-21-at-4.14.45-pm.png 163.90Кб
screen-shot-2017-11-21-at-4.17.19-pm.png 67.13Кб
screen-shot-2017-11-21-at-4.17.35-pm.png 66.80Кб
screen-shot-2017-11-21-at-4.21.41-pm.png 43.20Кб
screen-shot-2017-11-26-at-10.30.15-am.png 145.10Кб
screen-shot-2017-11-26-at-9.38.24-am.png 440.90Кб
screen-shot-2017-11-26-at-9.55.20-am.png 414.22Кб
screen-shot-2017-11-27-at-1.43.36-pm.png 80.86Кб
screen-shot-2017-11-27-at-1.46.43-pm.png 94.90Кб
screen-shot-2017-11-27-at-1.58.01-pm.png 229.98Кб
screen-shot-2017-11-27-at-2.00.15-pm.png 110.26Кб
screen-shot-2017-11-27-at-2.44.11-pm.png 56.84Кб
screen-shot-2017-11-27-at-3.44.20-pm.png 180.98Кб
screen-shot-2017-11-27-at-3.46.35-pm.png 367.04Кб
screen-shot-2017-11-27-at-3.48.31-pm.png 51.70Кб
screen-shot-2017-11-29-at-3.08.28-pm.png 334.55Кб
screen-shot-2017-11-29-at-3.49.20-pm.png 758.55Кб
screen-shot-2017-11-29-at-3.51.44-pm.png 518.88Кб
screen-shot-2017-11-29-at-5.33.53-pm.png 169.63Кб
screen-shot-2017-11-30-at-1.34.44-pm.png 180.65Кб
screen-shot-2017-11-30-at-4.40.57-pm.png 69.63Кб
screen-shot-2017-11-30-at-4.41.08-pm.png 68.49Кб
screen-shot-2017-12-02-at-10.29.14-pm.png 79.28Кб
screen-shot-2017-12-02-at-10.46.12-pm.png 43.99Кб
screen-shot-2017-12-02-at-10.58.26-pm.png 48.81Кб
screen-shot-2017-12-02-at-11.03.45-pm.png 129.43Кб
screen-shot-2017-12-02-at-11.06.19-pm.png 53.42Кб
screen-shot-2017-12-03-at-10.43.49-pm.png 1.05Мб
screen-shot-2017-12-03-at-11.34.41-pm.png 347.44Кб
screen-shot-2017-12-03-at-11.36.39-pm.png 109.70Кб
screen-shot-2017-12-04-at-11.12.31-am.png 1.03Мб
screen-shot-2017-12-04-at-11.14.30-am.png 980.68Кб
screen-shot-2017-12-04-at-11.16.19-am.png 1.02Мб
screen-shot-2017-12-04-at-11.23.49-pm.png 246.93Кб
screen-shot-2017-12-04-at-11.37.27-am.png 59.04Кб
screen-shot-2017-12-04-at-11.42.56-am.png 61.24Кб
screen-shot-2017-12-04-at-11.48.08-pm.png 16.87Кб
screen-shot-2017-12-04-at-11.48.22-am.png 386.52Кб
screen-shot-2017-12-04-at-11.50.40-am.png 61.02Кб
screen-shot-2017-12-04-at-11.51.54-pm.png 19.83Кб
screen-shot-2017-12-04-at-11.54.48-pm.png 26.13Кб
screen-shot-2017-12-04-at-12.10.02-pm.png 478.46Кб
screen-shot-2017-12-04-at-12.31.11-pm.png 1.12Мб
screen-shot-2017-12-04-at-12.40.54-pm.png 11.00Кб
screen-shot-2017-12-04-at-12.42.42-pm.png 14.17Кб
screen-shot-2017-12-04-at-12.42.55-pm.png 10.57Кб
screen-shot-2017-12-04-at-12.49.13-pm.png 871.76Кб
screen-shot-2017-12-04-at-12.49.52-pm.png 806.66Кб
screen-shot-2017-12-04-at-2.04.54-pm.png 696.35Кб
screen-shot-2017-12-04-at-3.54.17-pm.png 41.68Кб
screen-shot-2017-12-05-at-11.55.58-am.png 65.27Кб
screen-shot-2017-12-05-at-12.04.21-am.png 27.05Кб
screen-shot-2017-12-05-at-12.09.13-pm.png 102.60Кб
screen-shot-2017-12-05-at-12.16.55-pm.png 32.54Кб
screen-shot-2017-12-10-at-9.12.16-pm.png 898.01Кб
screen-shot-2017-12-17-at-12.49.34-pm.png 332.55Кб
screen-shot-2017-12-17-at-9.41.03-am.png 158.23Кб
screen-shot-2018-01-02-at-2.27.51-pm.png 362.57Кб
screen-shot-2018-01-02-at-2.44.44-pm.png 3.83Кб
screen-shot-2018-01-02-at-2.49.43-pm.png 233.63Кб
screen-shot-2018-01-08-at-5.37.22-am.png 33.23Кб
screen-shot-2018-01-08-at-5.38.03-am.png 276.13Кб
screen-shot-2018-01-16-at-2.40.57-pm.png 62.57Кб
screen-shot-2018-02-21-at-3.02.16-pm.png 25.15Кб
screen-shot-2018-02-21-at-3.05.00-pm.png 24.29Кб
screen-shot-2018-02-21-at-3.10.10-pm.png 30.38Кб
screen-shot-2018-03-19-at-2.49.57-pm.png 442.46Кб
screen-shot-2018-03-19-at-2.49.57-pm.png 442.46Кб
screen-shot-2018-03-19-at-3.49.28-pm.png 471.61Кб
screen-shot-2018-03-19-at-3.49.28-pm.png 471.61Кб
screen-shot-2018-04-14-at-3.13.15-pm.png 47.10Кб
screen-shot-2018-06-12-at-5.07.10-pm.png 257.46Кб
screen-shot-2018-07-19-at-5.39.37-pm.png 131.05Кб
sensitivity-specificity.png 155.14Кб
sequence-to-sequence-unrolled-encoder-decoder.png 22.50Кб
server-shutdown.png 155.42Кб
session.png 30.85Кб
sigmoid-derivative.gif 2.09Кб
skin-disease-classes.png 1.64Мб
slides-cell-toolbar-menu.png 61.36Кб
slides-choose-slide-type.png 53.31Кб
softmax-input-output.png 52.45Кб
statevalue.png 1000.89Кб
stop.png 47.54Кб
student-acceptance.png 20.47Кб
student-quiz.png 748.98Кб
study-group.png 415.28Кб
styles.css 3.76Кб
submit-workspace.png 546.65Кб
summary.png 93.72Кб
svhn-examples.png 169.93Кб
td-prediction.png 311.15Кб
tensorflow.png 85.28Кб
tensorflow-825x510.png 24.50Кб
threshold.png 468.31Кб
topological-sort.001.jpeg 107.27Кб
truncated-eval.png 225.19Кб
truncated-iter.png 274.00Кб
two-layer-graph.png 42.82Кб
udacimak.png 461.07Кб
value-iteration.png 381.24Кб
w1-backprop-graph.png 57.33Кб
w2-backprop-graph.png 50.06Кб
weight-label-reference.gif 2.83Кб
weights-0-1-2.png 24.61Кб
word-embeddings.jpg 75.09Кб
workspaces-gpu.png 145.50Кб
workspaces-jupyter.png 83.54Кб
workspaces-menu.png 93.96Кб
workspaces-new.png 85.21Кб
workspaces-notebook.png 142.90Кб
workspaces-submit.png 146.20Кб
workspaces-terminal.png 46.91Кб
x-mn.png 9.02Кб
xor.png 214.95Кб
xor-quiz.png 94.14Кб
y.gif 1.41Кб
z.png 1.49Кб
Статистика распространения по странам
Египет (EG) 1
Россия (RU) 1
Всего 2
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент