Общая информация
Название Machine Learning A-Z AI, Python & R + ChatGPT Prize
Тип
Размер 8.09Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
001 Apriori Algorithm Uncovering Hidden Patterns in Data Mining Association Rules.mp4 56.06Мб
001 Apriori Algorithm Uncovering Hidden Patterns in Data Mining Association Rules.srt 30.40Кб
001 Data Preprocessing for Beginners Preparing Your Dataset for Machine Learning.mp4 4.92Мб
001 Data Preprocessing for Beginners Preparing Your Dataset for Machine Learning.srt 2.78Кб
001 dataset.zip 221.28Мб
001 From Linear to Non-Linear SVM Exploring Higher Dimensional Spaces.mp4 10.12Мб
001 From Linear to Non-Linear SVM Exploring Higher Dimensional Spaces.srt 5.16Кб
001 How Decision Tree Algorithms Work Step-by-Step Guide with Examples.mp4 25.06Мб
001 How Decision Tree Algorithms Work Step-by-Step Guide with Examples.srt 14.82Кб
001 How Does Support Vector Regression --(SVR--) Differ from Linear Regression.mp4 25.13Мб
001 How Does Support Vector Regression --(SVR--) Differ from Linear Regression.srt 13.64Кб
001 How to Build a Regression Tree Step-by-Step Guide for Machine Learning.mp4 34.07Мб
001 How to Build a Regression Tree Step-by-Step Guide for Machine Learning.srt 18.67Кб
001 How to Perform Hierarchical Clustering Step-by-Step Guide for Machine Learning.mp4 24.19Мб
001 How to Perform Hierarchical Clustering Step-by-Step Guide for Machine Learning.srt 16.02Кб
001 How to Use XGBoost in Python for Cancer Prediction with High Accuracy.mp4 45.56Мб
001 How to Use XGBoost in Python for Cancer Prediction with High Accuracy.srt 29.98Кб
001 Huge Congrats for completing the challenge!.html 6.93Кб
001 Kernel PCA in Python Improving Classification Accuracy with Feature Extraction.mp4 34.06Мб
001 Kernel PCA in Python Improving Classification Accuracy with Feature Extraction.srt 21.63Кб
001 K-Nearest Neighbors --(KNN--) Explained A Beginner--'s Guide to Classification.mp4 15.00Мб
001 K-Nearest Neighbors --(KNN--) Explained A Beginner--'s Guide to Classification.srt 9.14Кб
001 LDA Intuition Maximizing Class Separation in Machine Learning Algorithms.mp4 11.80Мб
001 LDA Intuition Maximizing Class Separation in Machine Learning Algorithms.srt 5.95Кб
001 Logistic Regression Interpreting Predictions and Errors in Data Science.mp4 24.58Мб
001 Logistic Regression Interpreting Predictions and Errors in Data Science.srt 12.59Кб
001 Logistic Regression Intuition.mp4 52.69Мб
001 Logistic Regression Intuition.srt 28.27Кб
001 Machine-Learning-A-Z-Model-Selection.zip 161.91Кб
001 Machine-Learning-A-Z-Model-Selection.zip 160.01Кб
001 Make sure you have this Model Selection folder ready.html 3.19Кб
001 Make sure you have this Model Selection folder ready.html 3.21Кб
001 Mastering ECLAT Support-Based Approach to Market Basket Optimization.mp4 16.03Мб
001 Mastering ECLAT Support-Based Approach to Market Basket Optimization.srt 9.34Кб
001 Mastering Model Evaluation K-Fold Cross-Validation Techniques Explained.mp4 29.69Мб
001 Mastering Model Evaluation K-Fold Cross-Validation Techniques Explained.srt 16.38Кб
001 Multi-Armed Bandit Exploration vs Exploitation in Reinforcement Learning.mp4 48.33Мб
001 Multi-Armed Bandit Exploration vs Exploitation in Reinforcement Learning.srt 26.09Кб
001 Optimizing Regression Models R-Squared vs Adjusted R-Squared Explained.mp4 27.47Мб
001 Optimizing Regression Models R-Squared vs Adjusted R-Squared Explained.srt 14.31Кб
001 PCA Algorithm Intuition Reducing Dimensions in Unsupervised Learning.mp4 11.05Мб
001 PCA Algorithm Intuition Reducing Dimensions in Unsupervised Learning.srt 5.69Кб
001 Simple Linear Regression Understanding the Equation and Potato Yield Prediction.mp4 7.34Мб
001 Simple Linear Regression Understanding the Equation and Potato Yield Prediction.srt 3.60Кб
001 Startup Success Prediction Regression Model for VC Fund Decision-Making.mp4 11.59Мб
001 Startup Success Prediction Regression Model for VC Fund Decision-Making.srt 6.26Кб
001 Step 1 - Data Preprocessing in Python Preparing Your Dataset for ML Models.mp4 16.49Мб
001 Step 1 - Data Preprocessing in Python Preparing Your Dataset for ML Models.srt 8.98Кб
001 Support Vector Machines Explained Hyperplanes and Support Vectors in ML.mp4 31.64Мб
001 Support Vector Machines Explained Hyperplanes and Support Vectors in ML.srt 17.33Кб
001 Understanding Bayes--' Theorem Intuitively From Probability to Machine Learning.mp4 62.58Мб
001 Understanding Bayes--' Theorem Intuitively From Probability to Machine Learning.srt 36.92Кб
001 Understanding CNN Layers Convolution, ReLU, Pooling, and Flattening Explained.mp4 7.94Мб
001 Understanding CNN Layers Convolution, ReLU, Pooling, and Flattening Explained.mp4 10.49Мб
001 Understanding CNN Layers Convolution, ReLU, Pooling, and Flattening Explained.srt 4.51Кб
001 Understanding CNN Layers Convolution, ReLU, Pooling, and Flattening Explained.srt 6.03Кб
001 Understanding Logistic Regression Predicting Categorical Outcomes.mp4 11.08Мб
001 Understanding Logistic Regression Predicting Categorical Outcomes.srt 8.22Кб
001 Understanding Polynomial Linear Regression Applications and Examples.mp4 15.82Мб
001 Understanding Polynomial Linear Regression Applications and Examples.srt 8.73Кб
001 Understanding Random Forest Algorithm Intuition and Application in ML.mp4 22.70Мб
001 Understanding Random Forest Algorithm Intuition and Application in ML.srt 11.52Кб
001 Understanding Random Forest Decision Trees and Majority Voting Explained.mp4 15.69Мб
001 Understanding Random Forest Decision Trees and Majority Voting Explained.srt 8.04Кб
001 Understanding R-squared Evaluating Goodness of Fit in Regression Models.mp4 7.96Мб
001 Understanding R-squared Evaluating Goodness of Fit in Regression Models.srt 7.56Кб
001 Understanding Thompson Sampling Algorithm Intuition and Implementation.mp4 58.45Мб
001 Understanding Thompson Sampling Algorithm Intuition and Implementation.srt 33.41Кб
001 Welcome Challenge!.html 7.62Кб
001 Welcome to Part 10 - Model Selection & Boosting.html 3.14Кб
001 Welcome to Part 1 - Data Preprocessing.html 2.74Кб
001 Welcome to Part 2 - Regression.html 3.01Кб
001 Welcome to Part 3 - Classification.html 3.08Кб
001 Welcome to Part 4 - Clustering.html 2.97Кб
001 Welcome to Part 5 - Association Rule Learning.html 2.70Кб
001 Welcome to Part 6 - Reinforcement Learning.html 3.74Кб
001 Welcome to Part 7 - Natural Language Processing.html 3.97Кб
001 Welcome to Part 8 - Deep Learning.html 3.08Кб
001 Welcome to Part 9 - Dimensionality Reduction.html 3.44Кб
001 What is Clustering in Machine Learning Introduction to Unsupervised Learning.mp4 6.94Мб
001 What is Clustering in Machine Learning Introduction to Unsupervised Learning.srt 5.88Кб
002 Bonus How To UNLOCK Top Salaries (Live Training).html 4.00Кб
002 Data Preprocessing Tutorial Understanding Independent vs Dependent Variables.mp4 6.04Мб
002 Data Preprocessing Tutorial Understanding Independent vs Dependent Variables.srt 3.30Кб
002 Deep Learning Basics Exploring Neurons, Synapses, and Activation Functions.mp4 49.82Мб
002 Deep Learning Basics Exploring Neurons, Synapses, and Activation Functions.srt 31.40Кб
002 Deterministic vs Probabilistic UCB and Thompson Sampling in Machine Learning.mp4 25.23Мб
002 Deterministic vs Probabilistic UCB and Thompson Sampling in Machine Learning.srt 13.59Кб
002 Get Excited about ML Predict Car Purchases with Python --& Scikit-learn in 5 mins.mp4 14.39Мб
002 Get Excited about ML Predict Car Purchases with Python --& Scikit-learn in 5 mins.srt 8.34Кб
002 How to Find the Best Fit Line Understanding Ordinary Least Squares Regression.mp4 5.99Мб
002 How to Find the Best Fit Line Understanding Ordinary Least Squares Regression.srt 5.25Кб
002 How to Master the Bias-Variance Tradeoff in Machine Learning Models.mp4 15.05Мб
002 How to Master the Bias-Variance Tradeoff in Machine Learning Models.srt 8.36Кб
002 Implementing Kernel PCA for Non-Linear Data Step-by-Step Guide.mp4 68.90Мб
002 Implementing Kernel PCA for Non-Linear Data Step-by-Step Guide.srt 36.37Кб
002 Introduction to CNNs Understanding Deep Learning for Computer Vision.mp4 48.76Мб
002 Introduction to CNNs Understanding Deep Learning for Computer Vision.srt 26.28Кб
002 Introduction to Deep Learning From Historical Context to Modern Applications.mp4 42.89Мб
002 Introduction to Deep Learning From Historical Context to Modern Applications.srt 21.07Кб
002 K-Means Clustering Tutorial Visualizing the Machine Learning Algorithm.mp4 5.66Мб
002 K-Means Clustering Tutorial Visualizing the Machine Learning Algorithm.srt 4.82Кб
002 Linear Regression Analysis Interpreting Coefficients for Business Decisions.mp4 29.03Мб
002 Linear Regression Analysis Interpreting Coefficients for Business Decisions.srt 15.01Кб
002 Logistic Regression Finding the Best Fit Curve Using Maximum Likelihood.mp4 9.62Мб
002 Logistic Regression Finding the Best Fit Curve Using Maximum Likelihood.srt 6.03Кб
002 Machine Learning Model Evaluation Accuracy Paradox and Better Metrics.mp4 6.87Мб
002 Machine Learning Model Evaluation Accuracy Paradox and Better Metrics.srt 3.52Кб
002 Machine Learning Workflow Importing, Modeling, and Evaluating Your ML Model.mp4 3.67Мб
002 Machine Learning Workflow Importing, Modeling, and Evaluating Your ML Model.srt 2.74Кб
002 Mastering Linear Discriminant Analysis Step-by-Step Python Implementation.mp4 45.78Мб
002 Mastering Linear Discriminant Analysis Step-by-Step Python Implementation.srt 29.53Кб
002 Mastering the Confusion Matrix True Positives, Negatives, and Errors.mp4 12.29Мб
002 Mastering the Confusion Matrix True Positives, Negatives, and Errors.srt 7.71Кб
002 Model Selection and Boosting Additional Content.html 3.37Кб
002 Multiple Linear Regression Independent Variables --& Prediction Models.mp4 7.54Мб
002 Multiple Linear Regression Independent Variables --& Prediction Models.srt 4.06Кб
002 NLP Basics Understanding Bag of Words and Its Applications in Machine Learning.mp4 9.24Мб
002 NLP Basics Understanding Bag of Words and Its Applications in Machine Learning.srt 4.99Кб
002 Python Tutorial Adapting Apriori to Eclat for Efficient Frequent Itemset Mining.mp4 36.95Мб
002 Python Tutorial Adapting Apriori to Eclat for Efficient Frequent Itemset Mining.srt 24.86Кб
002 RBF Kernel SVR From Linear to Non-Linear Support Vector Regression.mp4 10.67Мб
002 RBF Kernel SVR From Linear to Non-Linear Support Vector Regression.srt 6.87Кб
002 Step 1a - Building a Polynomial Regression Model for Salary Prediction in Python.mp4 11.88Мб
002 Step 1a - Building a Polynomial Regression Model for Salary Prediction in Python.srt 7.28Кб
002 Step 1a - Decision Tree Regression Building a Model without Feature Scaling.mp4 14.42Мб
002 Step 1a - Decision Tree Regression Building a Model without Feature Scaling.srt 8.00Кб
002 Step 1 - Association Rule Learning Boost Sales with Python Data Mining.mp4 30.60Мб
002 Step 1 - Association Rule Learning Boost Sales with Python Data Mining.srt 15.77Кб
002 Step 1 - Building a Random Forest Regression Model with Python and Scikit-Learn.mp4 18.14Мб
002 Step 1 - Building a Random Forest Regression Model with Python and Scikit-Learn.srt 10.29Кб
002 Step 1 - Building a Support Vector Machine Model with Scikit-learn in Python.mp4 19.07Мб
002 Step 1 - Building a Support Vector Machine Model with Scikit-learn in Python.srt 10.12Кб
002 Step 1 - Implementing Decision Tree Classification in Python with Scikit-learn.mp4 18.45Мб
002 Step 1 - Implementing Decision Tree Classification in Python with Scikit-learn.srt 10.39Кб
002 Step 1 - Implementing Random Forest Classification in Python with Scikit-Learn.mp4 18.35Мб
002 Step 1 - Implementing Random Forest Classification in Python with Scikit-Learn.srt 10.10Кб
002 Step 1 - Mastering Regression Toolkit Comparing Models for Optimal Performance.mp4 14.64Мб
002 Step 1 - Mastering Regression Toolkit Comparing Models for Optimal Performance.srt 7.67Кб
002 Step 1 PCA in Python Reducing Wine Dataset Features with Scikit-learn.mp4 51.93Мб
002 Step 1 PCA in Python Reducing Wine Dataset Features with Scikit-learn.srt 34.57Кб
002 Step 1 - Python KNN Tutorial Classifying Customer Data for Targeted Marketing.mp4 18.92Мб
002 Step 1 - Python KNN Tutorial Classifying Customer Data for Targeted Marketing.srt 9.81Кб
002 Step 2 - Data Preprocessing Techniques From Raw Data to ML-Ready Datasets.mp4 16.52Мб
002 Step 2 - Data Preprocessing Techniques From Raw Data to ML-Ready Datasets.srt 11.38Кб
002 Support Vector Machines Transforming Non-Linear Data for Linear Separation.mp4 18.53Мб
002 Support Vector Machines Transforming Non-Linear Data for Linear Separation.srt 12.61Кб
002 Understanding Adjusted R-Squared Key Differences from R-Squared Explained.mp4 16.90Мб
002 Understanding Adjusted R-Squared Key Differences from R-Squared Explained.srt 8.43Кб
002 Understanding Naive Bayes Algorithm Probabilistic Classification Explained.mp4 42.30Мб
002 Understanding Naive Bayes Algorithm Probabilistic Classification Explained.srt 27.22Кб
002 Upper Confidence Bound Algorithm Solving Multi-Armed Bandit Problems in ML.mp4 43.75Мб
002 Upper Confidence Bound Algorithm Solving Multi-Armed Bandit Problems in ML.srt 26.55Кб
002 Visualizing Cluster Dissimilarity Dendrograms in Hierarchical Clustering.mp4 27.08Мб
002 Visualizing Cluster Dissimilarity Dendrograms in Hierarchical Clustering.srt 15.84Кб
002 What is Classification in Machine Learning Fundamentals and Applications.mp4 7.77Мб
002 What is Classification in Machine Learning Fundamentals and Applications.srt 4.14Кб
003 Bayes Theorem in Machine Learning Step-by-Step Probability Calculation.mp4 18.61Мб
003 Bayes Theorem in Machine Learning Step-by-Step Probability Calculation.srt 10.68Кб
003 Conclusion of Part 2 - Regression.html 3.92Кб
003 Data Preprocessing Importance of Training-Test Split in ML Model Evaluation.mp4 6.30Мб
003 Data Preprocessing Importance of Training-Test Split in ML Model Evaluation.srt 3.30Кб
003 Deep Learning Quiz.html 20.20Кб
003 Deep NLP --& Sequence-to-Sequence Models Exploring Natural Language Processing.mp4 12.89Мб
003 Deep NLP --& Sequence-to-Sequence Models Exploring Natural Language Processing.srt 6.36Кб
003 Download-the-PDF.url 68б
003 Eclat.zip 48.54Кб
003 Eclat vs Apriori Simplified Association Rule Learning in Data Mining.mp4 31.71Мб
003 Eclat vs Apriori Simplified Association Rule Learning in Data Mining.srt 17.19Кб
003 Evaluating Regression Models Performance Quiz.html 20.32Кб
003 Get all the Datasets, Codes and Slides here.html 2.66Кб
003 How to Use the Elbow Method in K-Means Clustering A Step-by-Step Guide.mp4 11.47Мб
003 How to Use the Elbow Method in K-Means Clustering A Step-by-Step Guide.srt 6.90Кб
003 Kernel Trick SVM Machine Learning for Non-Linear Classification.mp4 37.99Мб
003 Kernel Trick SVM Machine Learning for Non-Linear Classification.srt 19.30Кб
003 K-Fold Cross-Validation in Python Improve Machine Learning Model Performance.mp4 44.73Мб
003 K-Fold Cross-Validation in Python Improve Machine Learning Model Performance.srt 27.12Кб
003 Machine Learning Toolkit Importing NumPy, Matplotlib, and Pandas Libraries.mp4 10.98Мб
003 Machine Learning Toolkit Importing NumPy, Matplotlib, and Pandas Libraries.srt 6.20Кб
003 Mastering Hierarchical Clustering Dendrogram Analysis and Threshold Setting.mp4 34.97Мб
003 Mastering Hierarchical Clustering Dendrogram Analysis and Threshold Setting.srt 19.36Кб
003 Neural Network Basics Understanding Activation Functions in Deep Learning.mp4 26.12Мб
003 Neural Network Basics Understanding Activation Functions in Deep Learning.srt 14.20Кб
003 Regression-Bonus.zip 364.49Кб
003 R Tutorial Importing and Viewing Datasets for Data Preprocessing.mp4 8.45Мб
003 R Tutorial Importing and Viewing Datasets for Data Preprocessing.srt 4.73Кб
003 Step 1a - Building a Logistic Regression Model for Customer Behavior Prediction.mp4 17.62Мб
003 Step 1a - Building a Logistic Regression Model for Customer Behavior Prediction.srt 9.28Кб
003 Step 1a - Mastering Simple Linear Regression Key Concepts and Implementation.mp4 15.56Мб
003 Step 1a - Mastering Simple Linear Regression Key Concepts and Implementation.srt 9.86Кб
003 Step 1a - SVR Model Training Feature Scaling and Dataset Preparation in Python.mp4 17.81Мб
003 Step 1a - SVR Model Training Feature Scaling and Dataset Preparation in Python.srt 9.60Кб
003 Step 1b - Setting Up Data for Linear vs Polynomial Regression Comparison.mp4 18.29Мб
003 Step 1b - Setting Up Data for Linear vs Polynomial Regression Comparison.srt 10.64Кб
003 Step 1b Uploading --& Preprocessing Data for Decision Tree Regression in Python.mp4 12.25Мб
003 Step 1b Uploading --& Preprocessing Data for Decision Tree Regression in Python.srt 7.00Кб
003 Step 1 - How to Choose the Right Classification Algorithm for Your Dataset.mp4 18.04Мб
003 Step 1 - How to Choose the Right Classification Algorithm for Your Dataset.srt 10.04Кб
003 Step 1 - Python Implementation of Thompson Sampling for Bandit Problems.mp4 17.91Мб
003 Step 1 - Python Implementation of Thompson Sampling for Bandit Problems.srt 10.69Кб
003 Step 1 - Understanding Convolution in CNNs Feature Detection and Feature Maps.mp4 50.59Мб
003 Step 1 - Understanding Convolution in CNNs Feature Detection and Feature Maps.srt 28.71Кб
003 Step 1 - Upper Confidence Bound Solving Multi-Armed Bandit Problem in Python.mp4 39.09Мб
003 Step 1 - Upper Confidence Bound Solving Multi-Armed Bandit Problem in Python.srt 27.75Кб
003 Step 2 - Building a K-Nearest Neighbors Model Scikit-Learn KNeighborsClassifier.mp4 18.08Мб
003 Step 2 - Building a K-Nearest Neighbors Model Scikit-Learn KNeighborsClassifier.srt 10.05Кб
003 Step 2 - Building a Support Vector Machine Model with Sklearn--'s SVC in Python.mp4 18.19Мб
003 Step 2 - Building a Support Vector Machine Model with Sklearn--'s SVC in Python.srt 10.00Кб
003 Step 2 - Creating a List of Transactions for Market Basket Analysis in Python.mp4 52.69Мб
003 Step 2 - Creating a List of Transactions for Market Basket Analysis in Python.srt 35.36Кб
003 Step 2 - Creating a Random Forest Regressor Key Parameters and Model Fitting.mp4 18.31Мб
003 Step 2 - Creating a Random Forest Regressor Key Parameters and Model Fitting.srt 9.78Кб
003 Step 2 - Creating Generic Code Templates for Various Regression Models in Python.mp4 18.45Мб
003 Step 2 - Creating Generic Code Templates for Various Regression Models in Python.srt 10.36Кб
003 Step 2 - PCA in Action Reducing Dimensions and Predicting Customer Segments.mp4 17.04Мб
003 Step 2 - PCA in Action Reducing Dimensions and Predicting Customer Segments.srt 9.47Кб
003 Step 2 Random Forest Evaluation - Confusion Matrix --& Accuracy Metrics.mp4 18.94Мб
003 Step 2 Random Forest Evaluation - Confusion Matrix --& Accuracy Metrics.srt 10.77Кб
003 Step 2 - Training a Decision Tree Classifier Optimizing Performance in Python.mp4 18.45Мб
003 Step 2 - Training a Decision Tree Classifier Optimizing Performance in Python.srt 10.44Кб
003 Step-by-Step Guide Applying LDA for Feature Extraction in Machine Learning.mp4 64.93Мб
003 Step-by-Step Guide Applying LDA for Feature Extraction in Machine Learning.srt 33.56Кб
003 Understanding CAP Curves Assessing Model Performance in Data Science 2024.mp4 32.55Мб
003 Understanding CAP Curves Assessing Model Performance in Data Science 2024.srt 18.25Кб
003 Understanding Linear Regression Assumptions Linearity, Homoscedasticity --& More.mp4 13.09Мб
003 Understanding Linear Regression Assumptions Linearity, Homoscedasticity --& More.srt 7.75Кб
003 XGBoost Tutorial Implementing Gradient Boosting for Classification Problems.mp4 57.54Мб
003 XGBoost Tutorial Implementing Gradient Boosting for Classification Problems.srt 29.92Кб
004 Eclat Quiz.html 20.15Кб
004 Feature Scaling in Machine Learning Normalization vs Standardization Explained.mp4 16.33Мб
004 Feature Scaling in Machine Learning Normalization vs Standardization Explained.srt 10.73Кб
004 From IfElse Rules to CNNs Evolution of Natural Language Processing.mp4 35.00Мб
004 From IfElse Rules to CNNs Evolution of Natural Language Processing.srt 17.79Кб
004 How Do Neural Networks Work Step-by-Step Guide to Deep Learning Algorithms.mp4 39.41Мб
004 How Do Neural Networks Work Step-by-Step Guide to Deep Learning Algorithms.srt 22.91Кб
004 How to Handle Categorical Variables in Linear Regression Models.mp4 22.67Мб
004 How to Handle Categorical Variables in Linear Regression Models.srt 12.12Кб
004 How to Handle Missing Values in R Data Preprocessing for Machine Learning.mp4 18.29Мб
004 How to Handle Missing Values in R Data Preprocessing for Machine Learning.srt 9.61Кб
004 How to Use Google Colab --& Machine Learning Course Folder.mp4 17.42Мб
004 How to Use Google Colab --& Machine Learning Course Folder.srt 10.60Кб
004 K-Means++ Algorithm Solving the Random Initialization Trap in Clustering.mp4 13.19Мб
004 K-Means++ Algorithm Solving the Random Initialization Trap in Clustering.srt 8.08Кб
004 LDA Quiz.html 20.21Кб
004 Mastering CAP Analysis Assessing Classification Models with Accuracy Ratio.mp4 19.46Мб
004 Mastering CAP Analysis Assessing Classification Models with Accuracy Ratio.srt 10.06Кб
004 Optimizing SVM Models with GridSearchCV A Step-by-Step Python Tutorial.mp4 67.80Мб
004 Optimizing SVM Models with GridSearchCV A Step-by-Step Python Tutorial.srt 43.60Кб
004 Step 1b - Applying ReLU to Convolutional Layers Breaking Up Image Linearity.mp4 20.58Мб
004 Step 1b - Applying ReLU to Convolutional Layers Breaking Up Image Linearity.srt 10.99Кб
004 Step 1b Data Preprocessing for Linear Regression Import --& Split Data in Python.mp4 18.39Мб
004 Step 1b Data Preprocessing for Linear Regression Import --& Split Data in Python.srt 10.43Кб
004 Step 1b - Implementing Logistic Regression in Python Data Preprocessing Guide.mp4 12.29Мб
004 Step 1b - Implementing Logistic Regression in Python Data Preprocessing Guide.srt 7.11Кб
004 Step 1b - SVR in Python Importing Libraries and Dataset for Machine Learning.mp4 10.77Мб
004 Step 1b - SVR in Python Importing Libraries and Dataset for Machine Learning.srt 5.94Кб
004 Step 1 - Building a Random Forest Model in R Regression Tutorial.mp4 18.29Мб
004 Step 1 - Building a Random Forest Model in R Regression Tutorial.srt 9.94Кб
004 Step 1 - Getting Started with Hierarchical Clustering Data Setup in Python.mp4 18.38Мб
004 Step 1 - Getting Started with Hierarchical Clustering Data Setup in Python.srt 9.92Кб
004 Step 1 in R - Understanding Principal Component Analysis for Feature Extraction.mp4 37.47Мб
004 Step 1 in R - Understanding Principal Component Analysis for Feature Extraction.srt 21.58Кб
004 Step 1 - Machine Learning Basics Importing Datasets Using Pandas read_csv--(--).mp4 16.09Мб
004 Step 1 - Machine Learning Basics Importing Datasets Using Pandas read_csv--(--).srt 8.81Кб
004 Step 1 Random Forest Classifier - From Template to Implementation in R.mp4 18.29Мб
004 Step 1 Random Forest Classifier - From Template to Implementation in R.srt 10.56Кб
004 Step 1 - R Tutorial Creating a Decision Tree Classifier with rpart Library.mp4 18.30Мб
004 Step 1 - R Tutorial Creating a Decision Tree Classifier with rpart Library.srt 9.93Кб
004 Step 2a Linear to Polynomial Regression - Preparing Data for Advanced Models.mp4 18.20Мб
004 Step 2a Linear to Polynomial Regression - Preparing Data for Advanced Models.srt 10.02Кб
004 Step 2 - Implementing DecisionTreeRegressor A Step-by-Step Guide in Python.mp4 15.37Мб
004 Step 2 - Implementing DecisionTreeRegressor A Step-by-Step Guide in Python.srt 8.62Кб
004 Step 2 Implementing UCB Algorithm in Python - Data Preparation.mp4 11.93Мб
004 Step 2 Implementing UCB Algorithm in Python - Data Preparation.srt 6.56Кб
004 Step 2 - Optimizing Ad Selection with Thompson Sampling Algorithm in Python.mp4 38.03Мб
004 Step 2 - Optimizing Ad Selection with Thompson Sampling Algorithm in Python.srt 20.12Кб
004 Step 2 - Optimizing Model Selection Streamlined Classification Code in Python.mp4 18.45Мб
004 Step 2 - Optimizing Model Selection Streamlined Classification Code in Python.srt 10.72Кб
004 Step 3 - Configuring Apriori Function Support, Confidence, and Lift in Python.mp4 39.49Мб
004 Step 3 - Configuring Apriori Function Support, Confidence, and Lift in Python.srt 25.91Кб
004 Step 3 Evaluating Regression Models - R-Squared --& Performance Metrics Explained.mp4 12.28Мб
004 Step 3 Evaluating Regression Models - R-Squared --& Performance Metrics Explained.srt 7.25Кб
004 Step 3 - Understanding Linear SVM Limitations Why It Didn--'t Beat kNN Classifier.mp4 8.28Мб
004 Step 3 - Understanding Linear SVM Limitations Why It Didn--'t Beat kNN Classifier.srt 4.81Кб
004 Step 3 - Visualizing KNN Decision Boundaries Python Tutorial for Beginners.mp4 18.45Мб
004 Step 3 - Visualizing KNN Decision Boundaries Python Tutorial for Beginners.srt 10.29Кб
004 Understanding Different Types of Kernel Functions for Machine Learning.mp4 7.45Мб
004 Understanding Different Types of Kernel Functions for Machine Learning.srt 3.71Кб
004 Why is Naive Bayes Called Naive Understanding the Algorithm--'s Assumptions.mp4 29.33Мб
004 Why is Naive Bayes Called Naive Understanding the Algorithm--'s Assumptions.srt 17.38Кб
005 Classification-Pros-Cons.pdf 29.25Кб
005 Conclusion of Part 3 - Classification.html 5.56Кб
005 Evaluating ML Model Accuracy K-Fold Cross-Validation Implementation in R.mp4 62.87Мб
005 Evaluating ML Model Accuracy K-Fold Cross-Validation Implementation in R.srt 31.99Кб
005 Getting Started with R Programming Install R and RStudio on Windows --& Mac.mp4 17.21Мб
005 Getting Started with R Programming Install R and RStudio on Windows --& Mac.srt 9.95Кб
005 How Do Neural Networks Learn Deep Learning Fundamentals Explained.mp4 39.96Мб
005 How Do Neural Networks Learn Deep Learning Fundamentals Explained.srt 21.74Кб
005 Implementing Bag of Words in NLP A Step-by-Step Tutorial.mp4 52.65Мб
005 Implementing Bag of Words in NLP A Step-by-Step Tutorial.srt 28.52Кб
005 Mastering Support Vector Regression Non-Linear SVR with RBF Kernel Explained.mp4 34.13Мб
005 Mastering Support Vector Regression Non-Linear SVR with RBF Kernel Explained.srt 18.49Кб
005 Multicollinearity in Regression Understanding the Dummy Variable Trap.mp4 6.78Мб
005 Multicollinearity in Regression Understanding the Dummy Variable Trap.srt 3.73Кб
005 Step 1a - Python K-Means Tutorial Identifying Customer Patterns in Mall Data.mp4 11.92Мб
005 Step 1a - Python K-Means Tutorial Identifying Customer Patterns in Mall Data.srt 8.19Кб
005 Step 1 - Building a Linear SVM Classifier in R Data Import and Initial Setup.mp4 19.30Мб
005 Step 1 - Building a Linear SVM Classifier in R Data Import and Initial Setup.srt 9.00Кб
005 Step 1 - Implementing KNN Classification in R Setup --& Data Preparation.mp4 19.43Мб
005 Step 1 - Implementing KNN Classification in R Setup --& Data Preparation.srt 9.27Кб
005 Step 1 - Naive Bayes in Python Applying ML to Social Network Ads Optimisation.mp4 18.41Мб
005 Step 1 - Naive Bayes in Python Applying ML to Social Network Ads Optimisation.srt 9.92Кб
005 Step 2a - Building a Simple Linear Regression Model with Scikit-learn in Python.mp4 11.99Мб
005 Step 2a - Building a Simple Linear Regression Model with Scikit-learn in Python.srt 6.54Кб
005 Step 2a - Implementing Hierarchical Clustering Building a Dendrogram with SciPy.mp4 15.01Мб
005 Step 2a - Implementing Hierarchical Clustering Building a Dendrogram with SciPy.srt 8.10Кб
005 Step 2a - Mastering Feature Scaling for Support Vector Regression in Python.mp4 17.17Мб
005 Step 2a - Mastering Feature Scaling for Support Vector Regression in Python.srt 11.11Кб
005 Step 2a Python Data Preprocessing for Logistic Regression Dataset Prep.mp4 18.01Мб
005 Step 2a Python Data Preprocessing for Logistic Regression Dataset Prep.srt 11.89Кб
005 Step 2b - Transforming Linear to Polynomial Regression A Step-by-Step Guide.mp4 17.64Мб
005 Step 2b - Transforming Linear to Polynomial Regression A Step-by-Step Guide.srt 10.00Кб
005 Step 2 - Decision Tree Classifier Optimizing Prediction Boundaries in R.mp4 19.50Мб
005 Step 2 - Decision Tree Classifier Optimizing Prediction Boundaries in R.srt 9.77Кб
005 Step 2 - Max Pooling in CNNs Enhancing Spatial Invariance for Image Recognition.mp4 45.43Мб
005 Step 2 - Max Pooling in CNNs Enhancing Spatial Invariance for Image Recognition.srt 25.27Кб
005 Step 2 Random Forest Classification - Visualizing Predictions --& Results.mp4 18.91Мб
005 Step 2 Random Forest Classification - Visualizing Predictions --& Results.srt 10.42Кб
005 Step 2 - Using Pandas iloc for Feature Selection in ML Data Preprocessing.mp4 14.50Мб
005 Step 2 - Using Pandas iloc for Feature Selection in ML Data Preprocessing.srt 8.01Кб
005 Step 2 - Using preProcess Function in R for PCA Extracting Principal Components.mp4 35.04Мб
005 Step 2 - Using preProcess Function in R for PCA Extracting Principal Components.srt 19.38Кб
005 Step 2 - Visualizing Random Forest Regression Interpreting Stairs and Splits.mp4 16.78Мб
005 Step 2 - Visualizing Random Forest Regression Interpreting Stairs and Splits.srt 10.49Кб
005 Step 3 - Evaluating Classification Algorithms Accuracy Metrics in Python.mp4 18.08Мб
005 Step 3 - Evaluating Classification Algorithms Accuracy Metrics in Python.srt 10.64Кб
005 Step 3 - Implementing Decision Tree Regression in Python Making Predictions.mp4 10.08Мб
005 Step 3 - Implementing Decision Tree Regression in Python Making Predictions.srt 5.37Кб
005 Step 3 - Python Code for Thompson Sampling Maximizing Random Beta Distributions.mp4 43.28Мб
005 Step 3 - Python Code for Thompson Sampling Maximizing Random Beta Distributions.srt 28.71Кб
005 Step 3 - Python Code for Upper Confidence Bound Setting Up Key Variables.mp4 22.40Мб
005 Step 3 - Python Code for Upper Confidence Bound Setting Up Key Variables.srt 13.93Кб
005 Step 4 - Implementing R-Squared Score in Python with Scikit-Learn--'s Metrics.mp4 12.19Мб
005 Step 4 - Implementing R-Squared Score in Python with Scikit-Learn--'s Metrics.srt 6.74Кб
005 Step 4 Visualizing Apriori Algorithm Results for Product Deals in Python.mp4 60.69Мб
005 Step 4 Visualizing Apriori Algorithm Results for Product Deals in Python.srt 34.27Кб
005 SVM.zip 8.27Кб
005 Using R--'s Factor Function to Handle Categorical Variables in Data Analysis.mp4 18.73Мб
005 Using R--'s Factor Function to Handle Categorical Variables in Data Analysis.srt 9.65Кб
006 Deep Learning Fundamentals Gradient Descent vs Brute Force Optimization.mp4 31.49Мб
006 Deep Learning Fundamentals Gradient Descent vs Brute Force Optimization.srt 17.55Кб
006 Evaluating Classiification Model Performance Quiz.html 20.55Кб
006 EXTRA Use ChatGPT to Boost your ML Skills.html 3.24Кб
006 Optimizing SVM Models with Grid Search A Step-by-Step R Tutorial.mp4 45.24Мб
006 Optimizing SVM Models with Grid Search A Step-by-Step R Tutorial.srt 23.78Кб
006 Step 1b K-Means Clustering - Data Preparation in Google ColabJupyter.mp4 9.16Мб
006 Step 1b K-Means Clustering - Data Preparation in Google ColabJupyter.srt 4.95Кб
006 Step 1 - Creating a Sparse Matrix for Association Rule Mining in R.mp4 61.23Мб
006 Step 1 - Creating a Sparse Matrix for Association Rule Mining in R.srt 32.84Кб
006 Step 1 - Getting Started with Natural Language Processing Sentiment Analysis.mp4 22.21Мб
006 Step 1 - Getting Started with Natural Language Processing Sentiment Analysis.srt 12.49Кб
006 Step 1 - How to Prepare Data for Machine Learning Training vs Test Sets.mp4 14.28Мб
006 Step 1 - How to Prepare Data for Machine Learning Training vs Test Sets.srt 8.02Кб
006 Step 1 - Python Kernel SVM Applying RBF to Solve Non-Linear Classification.mp4 18.42Мб
006 Step 1 - Python Kernel SVM Applying RBF to Solve Non-Linear Classification.srt 9.96Кб
006 Step 1 - Selecting the Best Regression Model R-squared Evaluation in Python.mp4 14.82Мб
006 Step 1 - Selecting the Best Regression Model R-squared Evaluation in Python.srt 8.27Кб
006 Step 2b - Data Preprocessing Feature Scaling Techniques for Logistic Regression.mp4 18.32Мб
006 Step 2b - Data Preprocessing Feature Scaling Techniques for Logistic Regression.srt 10.08Кб
006 Step 2b - Machine Learning Basics Training a Linear Regression Model in Python.mp4 12.25Мб
006 Step 2b - Machine Learning Basics Training a Linear Regression Model in Python.srt 7.17Кб
006 Step 2b Reshaping Data for SVR - Preparing Y Vector for Feature Scaling --(Python.mp4 15.24Мб
006 Step 2b Reshaping Data for SVR - Preparing Y Vector for Feature Scaling --(Python.srt 8.04Кб
006 Step 2 - Building a KNN Classifier Preparing Training and Test Sets in R.mp4 14.22Мб
006 Step 2 - Building a KNN Classifier Preparing Training and Test Sets in R.srt 7.74Кб
006 Step 2b - Visualizing Hierarchical Clustering Dendrogram Basics in Python.mp4 18.35Мб
006 Step 2b - Visualizing Hierarchical Clustering Dendrogram Basics in Python.srt 9.61Кб
006 Step 2 Creating --& Evaluating Linear SVM Classifier in R - Predictions --& Results.mp4 17.71Мб
006 Step 2 Creating --& Evaluating Linear SVM Classifier in R - Predictions --& Results.srt 9.26Кб
006 Step 2 - Python Naive Bayes Training and Evaluating a Classifier on Real Data.mp4 18.69Мб
006 Step 2 - Python Naive Bayes Training and Evaluating a Classifier on Real Data.srt 9.88Кб
006 Step 3a - Plotting Real vs Predicted Salaries Linear Regression Visualization.mp4 18.34Мб
006 Step 3a - Plotting Real vs Predicted Salaries Linear Regression Visualization.srt 9.98Кб
006 Step 3 - Decision Tree Visualization Exploring Splits and Conditions in R.mp4 17.56Мб
006 Step 3 - Decision Tree Visualization Exploring Splits and Conditions in R.srt 8.74Кб
006 Step 3 - Evaluating Random Forest Performance Test Set Results --& Overfitting.mp4 16.89Мб
006 Step 3 - Evaluating Random Forest Performance Test Set Results --& Overfitting.srt 9.52Кб
006 Step 3 - Fine-Tuning Random Forest From 10 to 500 Trees for Accurate Prediction.mp4 16.80Мб
006 Step 3 - Fine-Tuning Random Forest From 10 to 500 Trees for Accurate Prediction.srt 9.30Кб
006 Step 3 - Implementing PCA and SVM for Customer Segmentation Practical Guide.mp4 43.65Мб
006 Step 3 - Implementing PCA and SVM for Customer Segmentation Practical Guide.srt 22.69Кб
006 Step 3 - Preprocessing Data Building X and Y Vectors for ML Model Training.mp4 17.79Мб
006 Step 3 - Preprocessing Data Building X and Y Vectors for ML Model Training.srt 10.01Кб
006 Step 3 - Understanding Flattening in Convolutional Neural Network Architecture.mp4 5.80Мб
006 Step 3 - Understanding Flattening in Convolutional Neural Network Architecture.srt 3.23Кб
006 Step 4 - Beating UCB with Thompson Sampling Python Multi-Armed Bandit Tutorial.mp4 23.88Мб
006 Step 4 - Beating UCB with Thompson Sampling Python Multi-Armed Bandit Tutorial.srt 12.31Кб
006 Step 4 - Model Selection Process Evaluating Classification Algorithms.mp4 8.18Мб
006 Step 4 - Model Selection Process Evaluating Classification Algorithms.srt 5.01Кб
006 Step 4 - Python for RL Coding the UCB Algorithm Step-by-Step.mp4 48.54Мб
006 Step 4 - Python for RL Coding the UCB Algorithm Step-by-Step.srt 33.03Кб
006 Step 4 - Visualizing Decision Tree Regression High-Resolution Results.mp4 15.39Мб
006 Step 4 - Visualizing Decision Tree Regression High-Resolution Results.srt 8.54Кб
006 Understanding P-Values and Statistical Significance in Hypothesis Testing.mp4 36.18Мб
006 Understanding P-Values and Statistical Significance in Hypothesis Testing.srt 20.34Кб
007 Additional Resource for this Section.html 4.45Кб
007 Backward Elimination Building Robust Multiple Linear Regression Models.mp4 48.29Мб
007 Backward Elimination Building Robust Multiple Linear Regression Models.srt 29.79Кб
007 Decision Tree Classification Quiz.html 20.40Кб
007 For Python learners, summary of Object-oriented programming classes & objects.html 3.79Кб
007 PCA Quiz.html 20.20Кб
007 Random Forest Classification Quiz.html 20.59Кб
007 Random Forest Regression Quiz.html 20.37Кб
007 Step 1 - Creating a Decision Tree Regressor Using rpart Function in R.mp4 15.24Мб
007 Step 1 - Creating a Decision Tree Regressor Using rpart Function in R.srt 8.72Кб
007 Step 2a - K-Means Clustering in Python Selecting Relevant Features for Analysis.mp4 15.15Мб
007 Step 2a - K-Means Clustering in Python Selecting Relevant Features for Analysis.srt 7.92Кб
007 Step 2c - Interpreting Dendrograms Optimal Clusters in Hierarchical Clustering.mp4 18.89Мб
007 Step 2c - Interpreting Dendrograms Optimal Clusters in Hierarchical Clustering.srt 10.42Кб
007 Step 2c SVR Data Prep - Scaling X --& Y Independently with StandardScaler.mp4 10.87Мб
007 Step 2c SVR Data Prep - Scaling X --& Y Independently with StandardScaler.srt 5.53Кб
007 Step 2 - Importing TSV Data for Sentiment Analysis Python NLP Data Processing.mp4 20.80Мб
007 Step 2 - Importing TSV Data for Sentiment Analysis Python NLP Data Processing.srt 13.43Кб
007 Step 2 - Mastering Kernel SVM Improving Accuracy with Non-Linear Classifiers.mp4 18.74Мб
007 Step 2 - Mastering Kernel SVM Improving Accuracy with Non-Linear Classifiers.srt 10.71Кб
007 Step 2 - Optimizing Apriori Model Choosing Minimum Support and Confidence.mp4 45.09Мб
007 Step 2 - Optimizing Apriori Model Choosing Minimum Support and Confidence.srt 24.88Кб
007 Step 2 - Preparing Data Creating Training and Test Sets in R for ML Models.mp4 15.16Мб
007 Step 2 - Preparing Data Creating Training and Test Sets in R for ML Models.srt 8.65Кб
007 Step 2 - Selecting the Best Regression Model Random Forest vs. SVR Performance.mp4 12.93Мб
007 Step 2 - Selecting the Best Regression Model Random Forest vs. SVR Performance.srt 7.00Кб
007 Step 3a - How to Import and Use LogisticRegression Class from Scikit-learn.mp4 12.22Мб
007 Step 3a - How to Import and Use LogisticRegression Class from Scikit-learn.srt 6.63Кб
007 Step 3 - Analyzing Naive Bayes Algorithm Results Accuracy and Predictions.mp4 4.93Мб
007 Step 3 - Analyzing Naive Bayes Algorithm Results Accuracy and Predictions.srt 2.92Кб
007 Step 3b - Polynomial vs Linear Regression Better Fit with Higher Degrees.mp4 17.41Мб
007 Step 3b - Polynomial vs Linear Regression Better Fit with Higher Degrees.srt 9.54Кб
007 Step 3 - Implementing KNN Classification in R Adapting the Classifier Template.mp4 15.02Мб
007 Step 3 - Implementing KNN Classification in R Adapting the Classifier Template.srt 8.19Кб
007 Step 3 - Using Scikit-Learn--'s Predict Method for Linear Regression in Python.mp4 14.10Мб
007 Step 3 - Using Scikit-Learn--'s Predict Method for Linear Regression in Python.srt 8.14Кб
007 Step 4 - Fully Connected Layers in CNNs Optimizing Feature Combination.mp4 59.73Мб
007 Step 4 - Fully Connected Layers in CNNs Optimizing Feature Combination.srt 33.96Кб
007 Step 5 - Coding Upper Confidence Bound Optimizing Ad Selection in Python.mp4 19.12Мб
007 Step 5 - Coding Upper Confidence Bound Optimizing Ad Selection in Python.srt 12.38Кб
007 Stochastic vs Batch Gradient Descent Deep Learning Fundamentals.mp4 27.41Мб
007 Stochastic vs Batch Gradient Descent Deep Learning Fundamentals.srt 14.87Кб
007 SVM Quiz.html 20.60Кб
008 Coding Exercise 1 Importing and Preprocessing a Dataset for Machine Learning.html 10.52Кб
008 Conclusion of Part 2 - Regression.html 3.92Кб
008 Deep Learning Basics How Convolutional Neural Networks --(CNNs--) Process Images.mp4 13.31Мб
008 Deep Learning Basics How Convolutional Neural Networks --(CNNs--) Process Images.srt 6.83Кб
008 Deep Learning Fundamentals Training Neural Networks Step-by-Step.mp4 16.54Мб
008 Deep Learning Fundamentals Training Neural Networks Step-by-Step.srt 8.60Кб
008 Feature Scaling in ML Step 1 Why It--'s Crucial for Data Preprocessing.mp4 13.62Мб
008 Feature Scaling in ML Step 1 Why It--'s Crucial for Data Preprocessing.srt 7.17Кб
008 K-Nearest Neighbor Quiz.html 20.10Кб
008 Regression-Bonus.zip 364.49Кб
008 Step 1a - Hands-On Data Preprocessing for Multiple Linear Regression in Python.mp4 18.19Мб
008 Step 1a - Hands-On Data Preprocessing for Multiple Linear Regression in Python.srt 10.29Кб
008 Step 1 - Getting Started with Naive Bayes Algorithm in R for Classification.mp4 15.09Мб
008 Step 1 - Getting Started with Naive Bayes Algorithm in R for Classification.srt 7.81Кб
008 Step 1 - Kernel SVM vs Linear SVM Overcoming Non-Linear Separability in R.mp4 19.35Мб
008 Step 1 - Kernel SVM vs Linear SVM Overcoming Non-Linear Separability in R.srt 9.66Кб
008 Step 1 - Thompson Sampling vs UCB Optimizing Ad Click-Through Rates in R.mp4 58.61Мб
008 Step 1 - Thompson Sampling vs UCB Optimizing Ad Click-Through Rates in R.srt 31.73Кб
008 Step 2b K-Means Clustering - Optimizing Features for 2D Visualization.mp4 16.71Мб
008 Step 2b K-Means Clustering - Optimizing Features for 2D Visualization.srt 9.05Кб
008 Step 2 - Decision Tree Regression Fixing Splits with rpart Control Parameter.mp4 19.20Мб
008 Step 2 - Decision Tree Regression Fixing Splits with rpart Control Parameter.srt 10.17Кб
008 Step 3a - Building a Hierarchical Clustering Model with Scikit-learn in Python.mp4 17.77Мб
008 Step 3a - Building a Hierarchical Clustering Model with Scikit-learn in Python.srt 9.30Кб
008 Step 3b - Training Logistic Regression Model Fit Method for Classification.mp4 10.79Мб
008 Step 3b - Training Logistic Regression Model Fit Method for Classification.srt 5.54Кб
008 Step 3 Optimizing Product Placement - Apriori Algorithm, Lift --& Confidence.mp4 62.21Мб
008 Step 3 Optimizing Product Placement - Apriori Algorithm, Lift --& Confidence.srt 33.20Кб
008 Step 3 SVM Regression Creating --& Training SVR Model with RBF Kernel in Python.mp4 18.35Мб
008 Step 3 SVM Regression Creating --& Training SVR Model with RBF Kernel in Python.srt 9.77Кб
008 Step 3 - Text Cleaning for NLP Remove Punctuation and Convert to Lowercase.mp4 39.73Мб
008 Step 3 - Text Cleaning for NLP Remove Punctuation and Convert to Lowercase.srt 26.45Кб
008 Step 4a - Linear Regression Plotting Real vs Predicted Salaries Visualization.mp4 17.99Мб
008 Step 4a - Linear Regression Plotting Real vs Predicted Salaries Visualization.srt 9.90Кб
008 Step 4a Predicting Salaries - Linear Regression in Python --(Array Input Guide--).mp4 12.28Мб
008 Step 4a Predicting Salaries - Linear Regression in Python --(Array Input Guide--).srt 6.43Кб
008 Step 6 - Reinforcement Learning Finalizing UCB Algorithm in Python.mp4 23.00Мб
008 Step 6 - Reinforcement Learning Finalizing UCB Algorithm in Python.srt 14.75Кб
009 Apriori Quiz.html 20.28Кб
009 Bank Customer Churn Prediction Machine Learning Model with TensorFlow.mp4 17.84Мб
009 Bank Customer Churn Prediction Machine Learning Model with TensorFlow.srt 8.85Кб
009 Deep Learning Essentials Understanding Softmax and Cross-Entropy in CNNs.mp4 56.42Мб
009 Deep Learning Essentials Understanding Softmax and Cross-Entropy in CNNs.srt 32.01Кб
009 How to Scale Numeric Features in R for Machine Learning Preprocessing - Step 2.mp4 15.49Мб
009 How to Scale Numeric Features in R for Machine Learning Preprocessing - Step 2.srt 7.99Кб
009 Step 1b - Hands-On Guide Implementing Multiple Linear Regression in Python.mp4 8.01Мб
009 Step 1b - Hands-On Guide Implementing Multiple Linear Regression in Python.srt 4.50Кб
009 Step 1 - Using Scikit-Learn to Replace Missing Values in Machine Learning.mp4 18.26Мб
009 Step 1 - Using Scikit-Learn to Replace Missing Values in Machine Learning.srt 9.80Кб
009 Step 2 - Building a Gaussian Kernel SVM Classifier for Advanced Machine Learning.mp4 17.49Мб
009 Step 2 - Building a Gaussian Kernel SVM Classifier for Advanced Machine Learning.srt 9.30Кб
009 Step 2 - Reinforcement Learning Thompson Sampling Outperforms UCB Algorithm.mp4 9.41Мб
009 Step 2 - Reinforcement Learning Thompson Sampling Outperforms UCB Algorithm.srt 5.57Кб
009 Step 2 - Troubleshooting Naive Bayes Classification Empty Prediction Vectors.mp4 14.87Мб
009 Step 2 - Troubleshooting Naive Bayes Classification Empty Prediction Vectors.srt 7.72Кб
009 Step 3a - Implementing the Elbow Method for K-Means Clustering in Python.mp4 17.99Мб
009 Step 3a - Implementing the Elbow Method for K-Means Clustering in Python.srt 9.30Кб
009 Step 3b - Comparing 3 vs 5 Clusters in Hierarchical Clustering Python Example.mp4 17.62Мб
009 Step 3b - Comparing 3 vs 5 Clusters in Hierarchical Clustering Python Example.srt 9.44Кб
009 Step 3 Non-Continuous Regression - Decision Tree Visualization Challenges.mp4 13.84Мб
009 Step 3 Non-Continuous Regression - Decision Tree Visualization Challenges.srt 8.69Кб
009 Step 4a - Formatting Single Observation Input for Logistic Regression Predict.mp4 18.42Мб
009 Step 4a - Formatting Single Observation Input for Logistic Regression Predict.srt 9.30Кб
009 Step 4b - Evaluating Linear Regression Model Performance on Test Data.mp4 18.17Мб
009 Step 4b - Evaluating Linear Regression Model Performance on Test Data.srt 12.33Кб
009 Step 4b Python Polynomial Regression - Predicting Salaries Accurately.mp4 11.27Мб
009 Step 4b Python Polynomial Regression - Predicting Salaries Accurately.srt 6.45Кб
009 Step 4 - SVR Model Prediction Handling Scaled Data and Inverse Transformation.mp4 11.70Мб
009 Step 4 - SVR Model Prediction Handling Scaled Data and Inverse Transformation.srt 6.33Кб
009 Step 4 - Text Preprocessing Stemming and Stop Word Removal for NLP in Python.mp4 33.90Мб
009 Step 4 - Text Preprocessing Stemming and Stop Word Removal for NLP in Python.srt 22.84Кб
009 Step 7 - Visualizing UCB Algorithm Results Histogram Analysis in Python.mp4 25.16Мб
009 Step 7 - Visualizing UCB Algorithm Results Histogram Analysis in Python.srt 12.90Кб
010 dataset.zip 221.65Мб
010 Essential Steps in Data Preprocessing Preparing Your Dataset for ML Models.mp4 16.77Мб
010 Essential Steps in Data Preprocessing Preparing Your Dataset for ML Models.srt 9.61Кб
010 Make sure you have your dataset ready.html 3.00Кб
010 Simple Linear Regression in Python - Additional Lecture.html 3.37Кб
010 Step 1a - Implementing Polynomial Regression in R HR Salary Analysis Case Study.mp4 11.54Мб
010 Step 1a - Implementing Polynomial Regression in R HR Salary Analysis Case Study.srt 6.43Кб
010 Step 1 ANN in Python Predicting Customer Churn with TensorFlow.mp4 31.85Мб
010 Step 1 ANN in Python Predicting Customer Churn with TensorFlow.srt 17.85Кб
010 Step 1 - Exploring Upper Confidence Bound in R Multi-Armed Bandit Problems.mp4 42.04Мб
010 Step 1 - Exploring Upper Confidence Bound in R Multi-Armed Bandit Problems.srt 27.35Кб
010 Step 1 - R Data Import for Clustering Annual Income --& Spending Score Analysis.mp4 11.73Мб
010 Step 1 - R Data Import for Clustering Annual Income --& Spending Score Analysis.srt 6.71Кб
010 Step 2a - Hands-on Multiple Linear Regression Preparing Data in Python.mp4 13.78Мб
010 Step 2a - Hands-on Multiple Linear Regression Preparing Data in Python.srt 7.70Кб
010 Step 2 - Imputing Missing Data in Python SimpleImputer and Numerical Columns.mp4 18.41Мб
010 Step 2 - Imputing Missing Data in Python SimpleImputer and Numerical Columns.srt 9.50Кб
010 Step 3b - Optimizing K-means Clustering WCSS and Elbow Method Implementation.mp4 17.60Мб
010 Step 3b - Optimizing K-means Clustering WCSS and Elbow Method Implementation.srt 9.63Кб
010 Step 3 Visualizing Kernel SVM - Non-Linear Classification in Machine Learning.mp4 15.94Мб
010 Step 3 Visualizing Kernel SVM - Non-Linear Classification in Machine Learning.srt 8.77Кб
010 Step 3 - Visualizing Naive Bayes Results Creating Confusion Matrix and Graphs.mp4 11.34Мб
010 Step 3 - Visualizing Naive Bayes Results Creating Confusion Matrix and Graphs.srt 5.94Кб
010 Step 4b Predicted vs. Real Purchase Decisions in Logistic Regression.mp4 5.62Мб
010 Step 4b Predicted vs. Real Purchase Decisions in Logistic Regression.srt 3.05Кб
010 Step 4 - Visualizing Decision Tree Understanding Intervals and Predictions.mp4 12.05Мб
010 Step 4 - Visualizing Decision Tree Understanding Intervals and Predictions.srt 6.53Кб
010 Step 5a - How to Plot Support Vector Regression --(SVR--) Models Step-by-Step Guide.mp4 11.43Мб
010 Step 5a - How to Plot Support Vector Regression --(SVR--) Models Step-by-Step Guide.srt 6.33Кб
010 Step 5 - Tokenization and Feature Extraction for Naive Bayes Sentiment Analysis.mp4 53.58Мб
010 Step 5 - Tokenization and Feature Extraction for Naive Bayes Sentiment Analysis.srt 29.58Кб
010 Thompson Sampling Quiz.html 20.25Кб
011 Coding Exercise 2 Handling Missing Data in a Dataset for Machine Learning.html 32.76Кб
011 Data Preprocessing Quiz.html 20.93Кб
011 Decision Tree Regression Quiz.html 20.18Кб
011 Kernel SVM Quiz.html 20.90Кб
011 Naive Bayes Quiz.html 21.29Кб
011 Step 1b - ML Fundamentals Preparing Data for Polynomial Regression.mp4 11.49Мб
011 Step 1b - ML Fundamentals Preparing Data for Polynomial Regression.srt 6.08Кб
011 Step 1 - Data Preprocessing in R Preparing for Linear Regression Modeling.mp4 14.47Мб
011 Step 1 - Data Preprocessing in R Preparing for Linear Regression Modeling.srt 8.28Кб
011 Step 1 Intro to CNNs for Image Classification.mp4 35.66Мб
011 Step 1 Intro to CNNs for Image Classification.srt 19.19Кб
011 Step 2b - Multiple Linear Regression in Python Preparing Your Dataset.mp4 14.54Мб
011 Step 2b - Multiple Linear Regression in Python Preparing Your Dataset.srt 8.38Кб
011 Step 2 - TensorFlow 2.0 Tutorial Preprocessing Data for Customer Churn Model.mp4 57.33Мб
011 Step 2 - TensorFlow 2.0 Tutorial Preprocessing Data for Customer Churn Model.srt 31.49Кб
011 Step 2 - UCB Algorithm in R Calculating Average Reward --& Confidence Interval.mp4 49.32Мб
011 Step 2 - UCB Algorithm in R Calculating Average Reward --& Confidence Interval.srt 30.38Кб
011 Step 2 Using H.clust in R - Building --& Interpreting Dendrograms for Clustering.mp4 16.21Мб
011 Step 2 Using H.clust in R - Building --& Interpreting Dendrograms for Clustering.srt 9.13Кб
011 Step 3c - Plotting the Elbow Method Graph for K-Means Clustering in Python.mp4 12.25Мб
011 Step 3c - Plotting the Elbow Method Graph for K-Means Clustering in Python.srt 6.34Кб
011 Step 5b - SVR Scaling --& Inverse Transformation in Python.mp4 11.33Мб
011 Step 5b - SVR Scaling --& Inverse Transformation in Python.srt 6.32Кб
011 Step 5 - Comparing Predicted vs Real Results Python Logistic Regression Guide.mp4 17.25Мб
011 Step 5 - Comparing Predicted vs Real Results Python Logistic Regression Guide.srt 11.88Кб
011 Step 6 - Training and Evaluating a Naive Bayes Classifier for Sentiment Analysis.mp4 30.40Мб
011 Step 6 - Training and Evaluating a Naive Bayes Classifier for Sentiment Analysis.srt 17.32Кб
012 Natural Language Processing in Python - EXTRA.html 3.33Кб
012 Step 1 - One-Hot Encoding Transforming Categorical Features for ML Algorithms.mp4 13.59Мб
012 Step 1 - One-Hot Encoding Transforming Categorical Features for ML Algorithms.srt 6.97Кб
012 Step 1 - SVR Tutorial Creating a Support Vector Machine Regressor in R.mp4 18.47Мб
012 Step 1 - SVR Tutorial Creating a Support Vector Machine Regressor in R.srt 10.06Кб
012 Step 2a - Building Linear --& Polynomial Regression Models in R A Comparison.mp4 14.97Мб
012 Step 2a - Building Linear --& Polynomial Regression Models in R A Comparison.srt 7.96Кб
012 Step 2 - Fitting Simple Linear Regression in R LM Function and Model Summary.mp4 19.22Мб
012 Step 2 - Fitting Simple Linear Regression in R LM Function and Model Summary.srt 9.84Кб
012 Step 2 - Keras ImageDataGenerator Prevent Overfitting in CNN Models.mp4 54.71Мб
012 Step 2 - Keras ImageDataGenerator Prevent Overfitting in CNN Models.srt 30.55Кб
012 Step 3a - Scikit-learn for Multiple Linear Regression Efficient Model Building.mp4 18.09Мб
012 Step 3a - Scikit-learn for Multiple Linear Regression Efficient Model Building.srt 10.46Кб
012 Step 3 - Designing ANN Sequential Model --& Dense Layers for Deep Learning.mp4 44.50Мб
012 Step 3 - Designing ANN Sequential Model --& Dense Layers for Deep Learning.srt 24.56Кб
012 Step 3 - Implementing Hierarchical Clustering Using Cat Tree Method in R.mp4 10.33Мб
012 Step 3 - Implementing Hierarchical Clustering Using Cat Tree Method in R.srt 5.29Кб
012 Step 3 Optimizing Ad Selection - UCB --& Multi-Armed Bandit Algorithm Explained.mp4 55.68Мб
012 Step 3 Optimizing Ad Selection - UCB --& Multi-Armed Bandit Algorithm Explained.srt 28.74Кб
012 Step 4 - Creating a Dependent Variable from K-Means Clustering Results in Python.mp4 18.45Мб
012 Step 4 - Creating a Dependent Variable from K-Means Clustering Results in Python.srt 9.58Кб
012 Step 6a - Implementing Confusion Matrix and Accuracy Score in Scikit-Learn.mp4 18.10Мб
012 Step 6a - Implementing Confusion Matrix and Accuracy Score in Scikit-Learn.srt 9.91Кб
013 Homework Challenge.html 3.54Кб
013 Step 2b - Building a Polynomial Regression Model Adding Squared --& Cubed Terms.mp4 15.39Мб
013 Step 2b - Building a Polynomial Regression Model Adding Squared --& Cubed Terms.srt 8.05Кб
013 Step 2 - Handling Categorical Data One-Hot Encoding with ColumnTransformer.mp4 18.16Мб
013 Step 2 - Handling Categorical Data One-Hot Encoding with ColumnTransformer.srt 10.06Кб
013 Step 2 - Support Vector Regression Building a Predictive Model in Python.mp4 12.16Мб
013 Step 2 - Support Vector Regression Building a Predictive Model in Python.srt 8.62Кб
013 Step 3b - Scikit-Learn Building --& Training Multiple Linear Regression Models.mp4 14.20Мб
013 Step 3b - Scikit-Learn Building --& Training Multiple Linear Regression Models.srt 7.94Кб
013 Step 3 - How to Use predict--(--) Function in R for Linear Regression Analysis.mp4 11.52Мб
013 Step 3 - How to Use predict--(--) Function in R for Linear Regression Analysis.srt 5.89Кб
013 Step 3 - TensorFlow CNN Convolution to Output Layer for Vision Tasks.mp4 55.19Мб
013 Step 3 - TensorFlow CNN Convolution to Output Layer for Vision Tasks.srt 36.66Кб
013 Step 4 - Cluster Plot Method Visualizing Hierarchical Clustering Results in R.mp4 9.67Мб
013 Step 4 - Cluster Plot Method Visualizing Hierarchical Clustering Results in R.srt 4.42Кб
013 Step 4 - Train Neural Network Compile --& Fit for Customer Churn Prediction.mp4 36.86Мб
013 Step 4 - Train Neural Network Compile --& Fit for Customer Churn Prediction.srt 20.31Кб
013 Step 4 - UCB Algorithm Performance Analyzing Ad Selection with Histograms.mp4 9.34Мб
013 Step 4 - UCB Algorithm Performance Analyzing Ad Selection with Histograms.srt 5.09Кб
013 Step 5a Visualizing K-Means Clusters of Customer Data with Python Scatter.mp4 18.39Мб
013 Step 5a Visualizing K-Means Clusters of Customer Data with Python Scatter.srt 9.74Кб
013 Step 6b Evaluating Classification Models - Confusion Matrix --& Accuracy Metrics.mp4 10.61Мб
013 Step 6b Evaluating Classification Models - Confusion Matrix --& Accuracy Metrics.srt 5.64Кб
014 Step 1 - Text Classification Using Bag-of-Words and Random Forest in R.mp4 51.09Мб
014 Step 1 - Text Classification Using Bag-of-Words and Random Forest in R.srt 27.59Кб
014 Step 3a Visualizing Regression Results - Creating Scatter Plots with ggplot2 in.mp4 15.42Мб
014 Step 3a Visualizing Regression Results - Creating Scatter Plots with ggplot2 in.srt 8.09Кб
014 Step 3 - Preprocessing Categorical Data One-Hot and Label Encoding Techniques.mp4 14.36Мб
014 Step 3 - Preprocessing Categorical Data One-Hot and Label Encoding Techniques.srt 7.70Кб
014 Step 4a Comparing Real vs Predicted Profits in Linear Regression - Hands-on Gui.mp4 17.40Мб
014 Step 4a Comparing Real vs Predicted Profits in Linear Regression - Hands-on Gui.srt 9.85Кб
014 Step 4a - Plotting Linear Regression Data in R ggplot2 Step-by-Step Guide.mp4 18.18Мб
014 Step 4a - Plotting Linear Regression Data in R ggplot2 Step-by-Step Guide.srt 9.50Кб
014 Step 4 CNN Training - Epochs, Loss Function --& Metrics in TensorFlow.mp4 22.76Мб
014 Step 4 CNN Training - Epochs, Loss Function --& Metrics in TensorFlow.srt 12.28Кб
014 Step 5b - Visualizing K-Means Clusters Plotting Customer Segments in Python.mp4 15.22Мб
014 Step 5b - Visualizing K-Means Clusters Plotting Customer Segments in Python.srt 8.14Кб
014 Step 5 - Hierarchical Clustering in R Understanding Customer Spending Patterns.mp4 8.09Мб
014 Step 5 - Hierarchical Clustering in R Understanding Customer Spending Patterns.srt 4.40Кб
014 Step 5 - Implementing ANN for Churn Prediction From Model to Confusion Matrix.mp4 50.54Мб
014 Step 5 - Implementing ANN for Churn Prediction From Model to Confusion Matrix.srt 26.60Кб
014 Step 7a - Visualizing Logistic Regression Decision Boundaries in Python 2D Plot.mp4 18.16Мб
014 Step 7a - Visualizing Logistic Regression Decision Boundaries in Python 2D Plot.srt 9.14Кб
014 SVR Quiz.html 20.42Кб
014 Upper Confidence Bound Quiz.html 20.23Кб
015 Coding Exercise 3 Encoding Categorical Data for Machine Learning.html 22.73Кб
015 Hierarchical Clustering Quiz.html 20.24Кб
015 Step 1 - How to Preprocess Data for Artificial Neural Networks in R.mp4 53.27Мб
015 Step 1 - How to Preprocess Data for Artificial Neural Networks in R.srt 29.91Кб
015 Step 3b Visualizing Linear Regression - Plotting Predictions vs Observations.mp4 16.22Мб
015 Step 3b Visualizing Linear Regression - Plotting Predictions vs Observations.srt 9.03Кб
015 Step 4b - Creating a Scatter Plot with Regression Line in R Using ggplot2.mp4 17.02Мб
015 Step 4b - Creating a Scatter Plot with Regression Line in R Using ggplot2.srt 8.51Кб
015 Step 4b - ML in Python Evaluating Multiple Linear Regression Accuracy.mp4 17.17Мб
015 Step 4b - ML in Python Evaluating Multiple Linear Regression Accuracy.srt 9.18Кб
015 Step 5c - Analyzing Customer Segments Insights from K-means Clustering.mp4 21.62Мб
015 Step 5c - Analyzing Customer Segments Insights from K-means Clustering.srt 11.52Кб
015 Step 5 - Making Single Predictions with Convolutional Neural Networks in Python.mp4 45.99Мб
015 Step 5 - Making Single Predictions with Convolutional Neural Networks in Python.srt 29.46Кб
015 Step 7b - Interpreting Logistic Regression Results Prediction Regions Explained.mp4 11.51Мб
015 Step 7b - Interpreting Logistic Regression Results Prediction Regions Explained.srt 6.05Кб
015 Warning - Update.html 2.92Кб
016 Clustering-Pros-Cons.pdf 25.76Кб
016 Conclusion of Part 4 - Clustering.html 2.60Кб
016 Hands-on CNN Training Using Jupyter Notebook for Image Classification.mp4 72.81Мб
016 Hands-on CNN Training Using Jupyter Notebook for Image Classification.srt 37.53Кб
016 Multiple Linear Regression in Python - Backward Elimination.html 5.79Кб
016 Step 1 - How to Prepare Data for Machine Learning Training vs Test Sets.mp4 12.06Мб
016 Step 1 - How to Prepare Data for Machine Learning Training vs Test Sets.srt 6.32Кб
016 Step 1 - K-Means Clustering in R Importing --& Exploring Segmentation Data.mp4 18.44Мб
016 Step 1 - K-Means Clustering in R Importing --& Exploring Segmentation Data.srt 10.45Кб
016 Step 2 - How to Install and Initialize H2O for Efficient Deep Learning in R.mp4 20.14Мб
016 Step 2 - How to Install and Initialize H2O for Efficient Deep Learning in R.srt 11.39Кб
016 Step 2 - NLP Data Preprocessing in R Importing TSV Files for Sentiment Analysis.mp4 26.70Мб
016 Step 2 - NLP Data Preprocessing in R Importing TSV Files for Sentiment Analysis.srt 14.83Кб
016 Step 3c - Polynomial Regression Curve Fitting for Better Predictions.mp4 16.50Мб
016 Step 3c - Polynomial Regression Curve Fitting for Better Predictions.srt 9.59Кб
016 Step 4c - Comparing Training vs Test Set Predictions in Linear Regression.mp4 13.33Мб
016 Step 4c - Comparing Training vs Test Set Predictions in Linear Regression.srt 8.04Кб
016 Step 7c - Visualizing Logistic Regression Performance on New Data in Python.mp4 10.29Мб
016 Step 7c - Visualizing Logistic Regression Performance on New Data in Python.srt 5.46Кб
017 Deep Learning Additional Content #2.html 3.11Кб
017 Logistic Regression in Python - Step 7 (Colour-blind friendly image).html 2.96Кб
017 Multiple Linear Regression in Python - EXTRA CONTENT.html 3.44Кб
017 Simple Linear Regression Quiz.html 20.53Кб
017 Step 2 - K-Means Algorithm Implementation in R Fitting and Analyzing Mall Data.mp4 17.82Мб
017 Step 2 - K-Means Algorithm Implementation in R Fitting and Analyzing Mall Data.srt 10.07Кб
017 Step 2 - Preparing Data Creating Training and Test Sets in Python for ML Models.mp4 18.45Мб
017 Step 2 - Preparing Data Creating Training and Test Sets in Python for ML Models.srt 9.89Кб
017 Step 3 Building Deep Learning Model - H2O Neural Network Layer Config.mp4 39.85Мб
017 Step 3 Building Deep Learning Model - H2O Neural Network Layer Config.srt 23.62Кб
017 Step 3 - NLP in R Initialising a Corpus for Sentiment Analysis.mp4 20.54Мб
017 Step 3 - NLP in R Initialising a Corpus for Sentiment Analysis.srt 11.37Кб
017 Step 4a - How to Make Single Predictions Using Polynomial Regression in R.mp4 12.29Мб
017 Step 4a - How to Make Single Predictions Using Polynomial Regression in R.srt 6.67Кб
018 CNN Quiz.html 20.13Кб
018 K-Means Clustering Quiz.html 20.19Кб
018 Step 1a - Data Preprocessing for MLR Handling Categorical Data.mp4 12.01Мб
018 Step 1a - Data Preprocessing for MLR Handling Categorical Data.srt 6.36Кб
018 Step 1 - Data Preprocessing for Logistic Regression in R Preparing Your Dataset.mp4 18.59Мб
018 Step 1 - Data Preprocessing for Logistic Regression in R Preparing Your Dataset.srt 9.91Кб
018 Step 3 - Splitting Data into Training and Test Sets Best Practices in Python.mp4 11.95Мб
018 Step 3 - Splitting Data into Training and Test Sets Best Practices in Python.srt 6.04Кб
018 Step 4b - Predicting Salaries with Polynomial Regression A Practical Example.mp4 11.68Мб
018 Step 4b - Predicting Salaries with Polynomial Regression A Practical Example.srt 6.74Кб
018 Step 4 - H2O Deep Learning Making Predictions and Evaluating Model Accuracy.mp4 45.35Мб
018 Step 4 - H2O Deep Learning Making Predictions and Evaluating Model Accuracy.srt 27.85Кб
018 Step 4 - NLP Data Cleaning Lowercase Transformation in R for Text Analysis.mp4 9.42Мб
018 Step 4 - NLP Data Cleaning Lowercase Transformation in R for Text Analysis.srt 5.14Кб
019 Coding Exercise 4 Dataset Splitting and Feature Scaling.html 10.38Кб
019 Deep Learning Additional Content.html 3.19Кб
019 Step 1b - Preparing Datasets for Multiple Linear Regression in R.mp4 12.31Мб
019 Step 1b - Preparing Datasets for Multiple Linear Regression in R.srt 6.43Кб
019 Step 1 - Building a Reusable Framework for Nonlinear Regression Analysis in R.mp4 18.35Мб
019 Step 1 - Building a Reusable Framework for Nonlinear Regression Analysis in R.srt 10.06Кб
019 Step 2 - How to Create a Logistic Regression Classifier Using R--'s GLM Function.mp4 10.02Мб
019 Step 2 - How to Create a Logistic Regression Classifier Using R--'s GLM Function.srt 5.03Кб
019 Step 5 - Sentiment Analysis Data Cleaning Removing Numbers with TM Map.mp4 6.47Мб
019 Step 5 - Sentiment Analysis Data Cleaning Removing Numbers with TM Map.srt 3.64Кб
020 EXTRA CONTENT ANN Case Study.html 2.73Кб
020 Step 1 - Feature Scaling in ML Why It--'s Crucial for Data Preprocessing.mp4 18.34Мб
020 Step 1 - Feature Scaling in ML Why It--'s Crucial for Data Preprocessing.srt 10.06Кб
020 Step 2a - Multiple Linear Regression in R Building --& Interpreting the Regressor.mp4 16.92Мб
020 Step 2a - Multiple Linear Regression in R Building --& Interpreting the Regressor.srt 8.91Кб
020 Step 2 - Mastering Regression Model Visualization Increasing Data Resolution.mp4 16.77Мб
020 Step 2 - Mastering Regression Model Visualization Increasing Data Resolution.srt 9.21Кб
020 Step 3 - How to Use R for Logistic Regression Prediction Step-by-Step Guide.mp4 17.46Мб
020 Step 3 - How to Use R for Logistic Regression Prediction Step-by-Step Guide.srt 8.37Кб
020 Step 6 - Cleaning Text Data Removing Punctuation for NLP and Classification.mp4 18.05Мб
020 Step 6 - Cleaning Text Data Removing Punctuation for NLP and Classification.srt 9.81Кб
021 ANN QUIZ.html 20.16Кб
021 Polynomial Regression Quiz.html 20.48Кб
021 Step 2b Statistical Significance - P-values --& Stars in Regression.mp4 13.42Мб
021 Step 2b Statistical Significance - P-values --& Stars in Regression.srt 6.82Кб
021 Step 2 - How to Scale Numeric Features in Python for ML Preprocessing.mp4 14.64Мб
021 Step 2 - How to Scale Numeric Features in Python for ML Preprocessing.srt 7.90Кб
021 Step 4 - How to Assess Model Accuracy Using a Confusion Matrix in R.mp4 8.70Мб
021 Step 4 - How to Assess Model Accuracy Using a Confusion Matrix in R.srt 4.34Кб
021 Step 7 - Simplifying Corpus Using SnowballC Package to Remove Stop Words in R.mp4 10.63Мб
021 Step 7 - Simplifying Corpus Using SnowballC Package to Remove Stop Words in R.srt 5.83Кб
022 Step 3 - How to Use predict--(--) Function in R for Multiple Linear Regression.mp4 13.97Мб
022 Step 3 - How to Use predict--(--) Function in R for Multiple Linear Regression.srt 7.19Кб
022 Step 3 - Implementing Feature Scaling Fit and Transform Methods Explained.mp4 11.73Мб
022 Step 3 - Implementing Feature Scaling Fit and Transform Methods Explained.srt 6.30Кб
022 Step 8 - Enhancing Text Classification Stemming for Efficient Feature Matrices.mp4 16.51Мб
022 Step 8 - Enhancing Text Classification Stemming for Efficient Feature Matrices.srt 9.21Кб
022 Warning - Update.html 4.02Кб
023 Optimizing Multiple Regression Models Backward Elimination Technique in R.mp4 54.96Мб
023 Optimizing Multiple Regression Models Backward Elimination Technique in R.srt 29.83Кб
023 Step 4 - Applying the Same Scaler to Training and Test Sets in Python.mp4 18.26Мб
023 Step 4 - Applying the Same Scaler to Training and Test Sets in Python.srt 10.03Кб
023 Step 5a - Interpreting Logistic Regression Plots Prediction Regions Explained.mp4 18.28Мб
023 Step 5a - Interpreting Logistic Regression Plots Prediction Regions Explained.srt 9.52Кб
023 Step 9 Removing Extra Spaces for NLP Sentiment Analysis Text Cleaning.mp4 40.39Мб
023 Step 9 Removing Extra Spaces for NLP Sentiment Analysis Text Cleaning.srt 22.44Кб
024 Coding exercise 5 Feature scaling for Machine Learning.html 91.81Кб
024 Mastering Feature Selection Backward Elimination in R for Linear Regression.mp4 23.39Мб
024 Mastering Feature Selection Backward Elimination in R for Linear Regression.srt 14.55Кб
024 Step 10 - Building a Document-Term Matrix for NLP Text Classification.mp4 54.87Мб
024 Step 10 - Building a Document-Term Matrix for NLP Text Classification.srt 30.43Кб
024 Step 5b Logistic Regression - Linear Classifiers --& Prediction Boundaries.mp4 18.76Мб
024 Step 5b Logistic Regression - Linear Classifiers --& Prediction Boundaries.srt 9.88Кб
025 Homework Challenge.html 3.65Кб
025 Multiple Linear Regression in R - Automatic Backward Elimination.html 3.00Кб
025 Step 5c - Data Viz in R Colorizing Pixels for Logistic Regression.mp4 16.28Мб
025 Step 5c - Data Viz in R Colorizing Pixels for Logistic Regression.srt 8.18Кб
026 Logistic Regression in R - Step 5 (Colour-blind friendly image).html 2.96Кб
026 Multiple Linear Regression Quiz.html 20.64Кб
026 Natural Language Processing Quiz.html 20.15Кб
027 Optimizing R Scripts for Machine Learning Building a Classification Template.mp4 16.55Мб
027 Optimizing R Scripts for Machine Learning Building a Classification Template.srt 9.26Кб
028 Machine Learning Regression and Classification EXTRA.html 3.04Кб
029 Logistic Regression Quiz.html 20.51Кб
030 EXTRA CONTENT Logistic Regression Practical Case Study.html 2.85Кб
external-links.txt 70б