Общая информация
Название [FreeCourseSite.com] Udemy - Machine Learning and Data Science Hands-on with Python and R
Тип
Размер 30.85Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[CourseClub.NET].url 123б
[FCS Forum].url 133б
[FreeCourseSite.com].url 127б
1. BI Intro,definition.mp4 51.19Мб
1. BI Intro,definition.vtt 10.41Кб
1. Intoroduction to NLP.mp4 32.70Мб
1. Intoroduction to NLP.vtt 7.20Кб
1. Introduction to Amazon Machine Learning (AML).mp4 38.18Мб
1. Introduction to Amazon Machine Learning (AML).vtt 8.32Кб
1. Introduction to Banking System.mp4 17.11Мб
1. Introduction to Banking System.vtt 6.44Кб
1. Introduction to Bayesian Machine Learning.mp4 36.82Мб
1. Introduction to Bayesian Machine Learning.vtt 9.88Кб
1. Introduction to BIP.mp4 21.00Мб
1. Introduction to BIP.vtt 4.89Кб
1. Introduction to Deep Learning.mp4 28.08Мб
1. Introduction to Deep Learning.vtt 4.96Кб
1. Introduction to Fraud Detection in Credit Payments.mp4 17.35Мб
1. Introduction to Fraud Detection in Credit Payments.vtt 6.40Кб
1. Introduction to Machine Learning with Python.mp4 58.25Мб
1. Introduction to Machine Learning with Python.vtt 9.18Кб
1. Introduction to Machine Learning with Tensorflow.mp4 17.82Мб
1. Introduction to Machine Learning with Tensorflow.vtt 5.38Кб
1. Introduction to Predicting Prices Using Regression.mp4 58.91Мб
1. Introduction to Predicting Prices Using Regression.vtt 10.76Кб
1. Introduction to Shipping and pricing.mp4 25.71Мб
1. Introduction to Shipping and pricing.vtt 3.80Кб
1. Introduction to Supply Chain.mp4 100.34Мб
1. Introduction to Supply Chain.vtt 6.43Кб
1. Machine Learning Introduction.mp4 20.06Мб
1. Machine Learning Introduction.vtt 4.36Кб
10. 2.10 Problem and Solution.mp4 79.67Мб
10. 2.10 Problem and Solution.vtt 7.61Кб
10. Data for Classifier.mp4 49.77Мб
10. Data for Classifier.vtt 5.24Кб
10. Demand Forecasting.mp4 85.19Мб
10. Demand Forecasting.vtt 8.67Кб
10. Example of Data Insight In AML.mp4 66.85Мб
10. Example of Data Insight In AML.vtt 11.22Кб
10. planning deliverables,stage 3.mp4 34.10Мб
10. planning deliverables,stage 3.vtt 6.73Кб
10. Replacing Features with Values.mp4 83.71Мб
10. Replacing Features with Values.vtt 8.82Кб
10. Siebel Applets ‚ Business Obejct and Business Components Part 2.mp4 90.35Мб
10. Siebel Applets ‚ Business Obejct and Business Components Part 2.vtt 9.86Кб
10. Stemming and Lemmatization Continues.mp4 61.22Мб
10. Stemming and Lemmatization Continues.vtt 7.30Кб
10. Technical Terminology.mp4 54.82Мб
10. Technical Terminology.vtt 11.05Кб
10. Understanding what Anaconda cloud is.mp4 80.82Мб
10. Understanding what Anaconda cloud is.vtt 8.47Кб
10. VRS.mp4 107.46Мб
10. VRS.vtt 6.87Кб
100. Diagnostic Checking.mp4 60.55Мб
100. Diagnostic Checking.vtt 8.71Кб
100. Regression Model(Continues).mp4 44.73Мб
100. Regression Model(Continues).vtt 10.40Кб
100. Run Optimizer.mp4 13.63Мб
100. Run Optimizer.vtt 1.85Кб
101. Create a Range.mp4 51.40Мб
101. Create a Range.vtt 6.30Кб
101. Forecasting Using Stock Price.mp4 108.90Мб
101. Forecasting Using Stock Price.vtt 9.65Кб
101. Market Basket Analysis Applications.mp4 46.71Мб
101. Market Basket Analysis Applications.vtt 11.40Кб
102. Introduction to Neural Networks.mp4 5.61Мб
102. Introduction to Neural Networks.vtt 1.31Кб
102. Market Basket Analysis Applications(Continues).mp4 35.93Мб
102. Market Basket Analysis Applications(Continues).vtt 10.40Кб
102. Stock Price Index.mp4 99.87Мб
102. Stock Price Index.vtt 8.75Кб
103. Basic-Concepts.mp4 101.53Мб
103. Basic-Concepts.vtt 12.84Кб
103. Stock Price Index Continues.mp4 95.16Мб
103. Stock Price Index Continues.vtt 7.10Кб
104. Activative Functions.mp4 99.94Мб
104. Activative Functions.vtt 10.80Кб
104. Prophet Stock.mp4 50.06Мб
104. Prophet Stock.vtt 3.61Кб
105. Activative Functions Input to Output.mp4 57.72Мб
105. Activative Functions Input to Output.vtt 57.73Мб
105. Run Prophet Stock.mp4 78.21Мб
105. Run Prophet Stock.vtt 6.71Кб
106. Classification Functions.mp4 61.74Мб
106. Classification Functions.vtt 8.37Кб
106. Time Series Data Denationalization.mp4 101.32Мб
106. Time Series Data Denationalization.vtt 9.37Кб
107. Tensorflow-Playground.mp4 136.67Мб
107. Tensorflow-Playground.vtt 14.16Кб
107. Time Series Data Denationalization Continues.mp4 78.48Мб
107. Time Series Data Denationalization Continues.vtt 6.69Кб
108. Average of Quarter Denationalization.mp4 126.96Мб
108. Average of Quarter Denationalization.vtt 9.37Кб
108. Mnist-Dataset.mp4 54.38Мб
108. Mnist-Dataset.vtt 10.71Кб
109. Mnist-Dataset Continue.mp4 93.75Мб
109. Mnist-Dataset Continue.vtt 12.10Кб
109. Regression of Denationalization.mp4 103.77Мб
109. Regression of Denationalization.vtt 7.74Кб
11. Assigning Quantatative Variables.mp4 45.85Мб
11. Assigning Quantatative Variables.vtt 5.32Кб
11. Convert Token No Stopwords.mp4 62.67Мб
11. Convert Token No Stopwords.vtt 5.77Кб
11. CRS Efficiency and Efficiency.mp4 53.09Мб
11. CRS Efficiency and Efficiency.vtt 5.71Кб
11. Distribution of Attributes.mp4 63.71Мб
11. Distribution of Attributes.vtt 6.42Кб
11. Error of Observation and Non Observation.mp4 31.16Мб
11. Error of Observation and Non Observation.vtt 31.17Мб
11. Exponentiation Right to Left.mp4 53.17Мб
11. Exponentiation Right to Left.vtt 6.49Кб
11. Implementing with Keras.mp4 45.54Мб
11. Implementing with Keras.vtt 3.73Кб
11. Installation of Anaconda for Windows.mp4 50.24Мб
11. Installation of Anaconda for Windows.vtt 7.37Кб
11. IntegrationObjectsANDIntegrationObjectComponents.mp4 101.06Мб
11. IntegrationObjectsANDIntegrationObjectComponents.vtt 10.88Кб
11. More on Data Insight In AML.mp4 54.57Мб
11. More on Data Insight In AML.vtt 8.15Кб
11. Project Requirement,Data Analysis,Application part 1.mp4 52.97Мб
11. Project Requirement,Data Analysis,Application part 1.vtt 10.71Кб
110. Gradient Boosting Machines.mp4 67.00Мб
110. Gradient Boosting Machines.vtt 9.04Кб
110. More on Mnist-Dataset.mp4 81.92Мб
110. More on Mnist-Dataset.vtt 7.68Кб
111. Errors in Gradient Boosting Machines.mp4 57.60Мб
111. Errors in Gradient Boosting Machines.vtt 10.28Кб
112. What is Error Rate in Gradient Boosting Machines.mp4 57.55Мб
112. What is Error Rate in Gradient Boosting Machines.vtt 6.83Кб
113. Optimization Gradient Boosting Machines.mp4 51.82Мб
113. Optimization Gradient Boosting Machines.vtt 6.67Кб
114. Gradient Boosting Trees (GBT).mp4 38.39Мб
114. Gradient Boosting Trees (GBT).vtt 5.43Кб
115. Dataset Boosting in Gradient.mp4 96.43Мб
115. Dataset Boosting in Gradient.vtt 10.50Кб
116. Example of Dataset Boosting in Gradient.mp4 95.79Мб
116. Example of Dataset Boosting in Gradient.vtt 10.83Кб
117. Example of Dataset Boosting in Gradient Continues.mp4 113.25Мб
117. Example of Dataset Boosting in Gradient Continues.vtt 12.62Кб
118. Market Basket Analysis Association Rules.mp4 98.38Мб
118. Market Basket Analysis Association Rules.vtt 10.69Кб
119. Market Basket Analysis Association Rules Continues.mp4 78.30Мб
119. Market Basket Analysis Association Rules Continues.vtt 9.61Кб
12. 2.13 Avoiding Some Common Mistakes.mp4 69.82Мб
12. 2.13 Avoiding Some Common Mistakes.vtt 7.15Кб
12. Converting Columns to Cordinal Forms.mp4 48.87Мб
12. Converting Columns to Cordinal Forms.vtt 4.56Кб
12. Installation of Anaconda in Linux.mp4 29.15Мб
12. Installation of Anaconda in Linux.vtt 3.93Кб
12. Machine Learning Algorithms.mp4 60.01Мб
12. Machine Learning Algorithms.vtt 6.33Кб
12. ML Model Example in Data Sources.mp4 90.66Мб
12. ML Model Example in Data Sources.vtt 12.46Кб
12. Project Requirement,Data Analysis,Application part 2.mp4 65.11Мб
12. Project Requirement,Data Analysis,Application part 2.vtt 8.66Кб
12. Siebel Views and View Associations to Reports.mp4 82.77Мб
12. Siebel Views and View Associations to Reports.vtt 7.44Кб
12. Spending Distribution.mp4 82.72Мб
12. Spending Distribution.vtt 5.33Кб
12. Systematic Sampling.mp4 54.93Мб
12. Systematic Sampling.vtt 7.93Кб
12. Values in Data Set.mp4 72.42Мб
12. Values in Data Set.vtt 6.11Кб
120. Market Basket Analysis Interpretation.mp4 50.28Мб
120. Market Basket Analysis Interpretation.vtt 6.75Кб
121. Implementation of Market Basket Analysis.mp4 30.32Мб
121. Implementation of Market Basket Analysis.vtt 4.57Кб
122. Example of Market Basket Analysis.mp4 84.78Мб
122. Example of Market Basket Analysis.vtt 9.12Кб
123. Datamining in Market Basket Analysis.mp4 85.97Мб
123. Datamining in Market Basket Analysis.vtt 10.72Кб
124. Market Basket Analysis Using Rstudio.mp4 78.53Мб
124. Market Basket Analysis Using Rstudio.vtt 9.39Кб
125. Market Basket Analysis Using Rstudio Continues.mp4 94.13Мб
125. Market Basket Analysis Using Rstudio Continues.vtt 94.13Мб
126. More on Rstudio in Market Analysis.mp4 122.52Мб
126. More on Rstudio in Market Analysis.vtt 11.22Кб
127. New Development in Machine Learning.mp4 93.23Мб
127. New Development in Machine Learning.vtt 93.24Мб
128. Data Scientist in Machine Learnirng.mp4 74.05Мб
128. Data Scientist in Machine Learnirng.vtt 10.06Кб
129. Types of Detection in Machine Learning.mp4 102.86Мб
129. Types of Detection in Machine Learning.vtt 9.45Кб
13. Cluster Sampling.mp4 58.79Мб
13. Cluster Sampling.vtt 9.99Кб
13. Components in Data Set.mp4 79.14Мб
13. Components in Data Set.vtt 6.74Кб
13. Creating ML Model Evaluating.mp4 84.60Мб
13. Creating ML Model Evaluating.vtt 8.44Кб
13. Evaluating the Garage Finish Colummn.mp4 66.18Мб
13. Evaluating the Garage Finish Colummn.vtt 7.01Кб
13. Normalization and Discretization.mp4 119.50Мб
13. Normalization and Discretization.vtt 5.63Кб
13. Project Requirement,Data Analysis,Application part 3.mp4 46.98Мб
13. Project Requirement,Data Analysis,Application part 3.vtt 7.77Кб
13. Siebel HI-OpenUI framworks for BIP Reports and demo of AddIn.mp4 42.71Мб
13. Siebel HI-OpenUI framworks for BIP Reports and demo of AddIn.vtt 6.16Кб
13. Simple Linear Regression.mp4 68.16Мб
13. Simple Linear Regression.vtt 10.45Кб
13. Using the Jupyter notebook.mp4 26.08Мб
13. Using the Jupyter notebook.vtt 3.33Кб
130. Example of New Development in Machine Learning.mp4 79.23Мб
130. Example of New Development in Machine Learning.vtt 9.17Кб
131. Example of New Development in Machine Learning Continues.mp4 53.15Мб
131. Example of New Development in Machine Learning Continues.vtt 4.45Кб
14. Advanced Setting In ML Model.mp4 38.46Мб
14. Advanced Setting In ML Model.vtt 4.75Кб
14. Checking Shape of Data Frame.mp4 14.86Мб
14. Checking Shape of Data Frame.vtt 2.11Кб
14. Getting started with Anaconda.mp4 136.15Мб
14. Getting started with Anaconda.vtt 11.07Кб
14. Meta Data.mp4 11.09Мб
14. Meta Data.vtt 2.01Кб
14. Models in Data Set.mp4 62.07Мб
14. Models in Data Set.vtt 5.72Кб
14. Process_Flow_Overview.mp4 51.80Мб
14. Process_Flow_Overview.vtt 8.32Кб
14. Simple Linear Regression Continues.mp4 39.71Мб
14. Simple Linear Regression Continues.vtt 6.04Кб
14. Statistics Data Types.mp4 25.59Мб
14. Statistics Data Types.vtt 25.59Мб
15. Creating ML Model for Batch Prediction.mp4 84.89Мб
15. Creating ML Model for Batch Prediction.vtt 9.69Кб
15. data standardisation,meta data,etl,business analysis part 1.mp4 61.46Мб
15. data standardisation,meta data,etl,business analysis part 1.vtt 10.73Кб
15. Determining options for Cloudberry.mp4 39.51Мб
15. Determining options for Cloudberry.vtt
15. Process_Flow_ConnectedMode.mp4 42.29Мб
15. Process_Flow_ConnectedMode.vtt 6.12Кб
15. Qualitative Data and Visualization.mp4 37.69Мб
15. Qualitative Data and Visualization.vtt 8.11Кб
15. Spliting Data to Train and Test.mp4 68.83Мб
15. Spliting Data to Train and Test.vtt 8.58Кб
15. What is Rsquare.mp4 77.58Мб
15. What is Rsquare.vtt 7.69Кб
16. Algorithm for Predicting Test Values.mp4 28.00Мб
16. Algorithm for Predicting Test Values.vtt 4.08Кб
16. Batch Prediction Result.mp4 47.61Мб
16. Batch Prediction Result.vtt 5.56Кб
16. data standardisation,meta data,etl,business analysis part 2.mp4 51.14Мб
16. data standardisation,meta data,etl,business analysis part 2.vtt 9.46Кб
16. Introduction to Third Party Libraries.mp4 8.19Мб
16. Introduction to Third Party Libraries.vtt 3.55Кб
16. Machine Learning.mp4 56.07Мб
16. Machine Learning.vtt 8.45Кб
16. Process_Flow_DisconnectedMode.mp4 42.12Мб
16. Process_Flow_DisconnectedMode.vtt 6.94Кб
16. Standard Error.mp4 54.56Мб
16. Standard Error.vtt 7.37Кб
17. data standardisation,meta data,etl,business analysis part 3.mp4 20.52Мб
17. data standardisation,meta data,etl,business analysis part 3.vtt 3.28Кб
17. General Statistics.mp4 52.34Мб
17. General Statistics.vtt 3.96Кб
17. Numpy-Array.mp4.mtd 351б
17. Numpy-Array.vtt 13.27Кб
17. Overvies of ML Model Handson.mp4 65.33Мб
17. Overvies of ML Model Handson.vtt 7.23Кб
17. Relative Frequency Probability.mp4 62.98Мб
17. Relative Frequency Probability.vtt 9.13Кб
17. Siebel Report Business Service.mp4 77.34Мб
17. Siebel Report Business Service.vtt 8.01Кб
18. ETL Design,Meta DATA ,STAGE 5 CONSTRUCTION DEVELOPMENT RECONCILATION Part 1.mp4 47.14Мб
18. ETL Design,Meta DATA ,STAGE 5 CONSTRUCTION DEVELOPMENT RECONCILATION Part 1.vtt 9.91Кб
18. General Statistics Continues.mp4 50.23Мб
18. General Statistics Continues.vtt 5.74Кб
18. Joint Probability.mp4 85.96Мб
18. Joint Probability.vtt 9.81Кб
18. ML objects Handson in ML.mp4 45.63Мб
18. ML objects Handson in ML.vtt 4.12Кб
18. Numpy-Array Continue.mp4 84.07Мб
18. Numpy-Array Continue.vtt 9.18Кб
19. Arrays.mp4 110.36Мб
19. Arrays.vtt 13.52Кб
19. Conditional Probability.mp4 42.78Мб
19. Conditional Probability.vtt 8.09Кб
19. ETL Design,Meta DATA ,STAGE 5 CONSTRUCTION DEVELOPMENT RECONCILATION Part 2.mp4 65.35Мб
19. ETL Design,Meta DATA ,STAGE 5 CONSTRUCTION DEVELOPMENT RECONCILATION Part 2.vtt 11.67Кб
19. Simple Linear Regression and More of Statistics.mp4 69.26Мб
19. Simple Linear Regression and More of Statistics.vtt 10.70Кб
2. Example of Bayesian Machine Learning.mp4 31.87Мб
2. Example of Bayesian Machine Learning.vtt 6.67Кб
2. G Plot of Heatmap.mp4 78.74Мб
2. G Plot of Heatmap.vtt 4.73Кб
2. How do Machine Learn.mp4 51.66Мб
2. How do Machine Learn.vtt 8.12Кб
2. Installation of Packages.mp4 72.81Мб
2. Installation of Packages.vtt 7.24Кб
2. Introduction to Machine Learning with Python.mp4 6.52Мб
2. Introduction to Machine Learning with Python.vtt 3.33Кб
2. Inventory Status.mp4 104.65Мб
2. Inventory Status.vtt 7.97Кб
2. Laon Status Grade.mp4 93.48Мб
2. Laon Status Grade.vtt 7.89Кб
2. Lifecycle of AML.mp4 43.45Мб
2. Lifecycle of AML.vtt 11.58Кб
2. multidimensional db part 1.mp4 50.11Мб
2. multidimensional db part 1.vtt 8.76Кб
2. Proximity to Various Conditions.mp4 64.34Мб
2. Proximity to Various Conditions.vtt 10.80Кб
2. Structure of Neural Network.mp4 35.22Мб
2. Structure of Neural Network.vtt 4.94Кб
2. Text Preprocessing.mp4 39.41Мб
2. Text Preprocessing.vtt 6.29Кб
2. Understanding Machine Learning.mp4 15.54Мб
2. Understanding Machine Learning.vtt 8.54Кб
2. User Types.mp4 10.38Мб
2. User Types.vtt 3.85Кб
20. Arrays Continue.mp4 55.40Мб
20. Arrays Continue.vtt 6.12Кб
20. Concept of Independence.mp4 40.30Мб
20. Concept of Independence.vtt 5.78Кб
20. ETL,APPLICATION dEVELOPMENT,DATA gaps,meta data repository,deployment Part 1.mp4 46.66Мб
20. ETL,APPLICATION dEVELOPMENT,DATA gaps,meta data repository,deployment Part 1.vtt 9.66Кб
20. Open the Studio.mp4 40.40Мб
20. Open the Studio.vtt 5.82Кб
21. ETL,APPLICATION dEVELOPMENT,DATA gaps,meta data repository,deployment Part 2.mp4 17.37Мб
21. ETL,APPLICATION dEVELOPMENT,DATA gaps,meta data repository,deployment Part 2.vtt 4.25Кб
21. Indexing.mp4 63.28Мб
21. Indexing.vtt 7.40Кб
21. Total Probability.mp4 57.65Мб
21. Total Probability.vtt 9.28Кб
21. What is R Square.mp4 79.51Мб
21. What is R Square.vtt 8.01Кб
22. ETL,APPLICATION dEVELOPMENT,DATA gaps,meta data repository,deployment Part 3.mp4 60.84Мб
22. ETL,APPLICATION dEVELOPMENT,DATA gaps,meta data repository,deployment Part 3.vtt 11.04Кб
22. Indexing Continue.mp4 85.08Мб
22. Indexing Continue.vtt 9.14Кб
22. Random Variable.mp4 46.71Мб
22. Random Variable.vtt 8.26Кб
22. What is STD Error.mp4 55.37Мб
22. What is STD Error.vtt 6.71Кб
23. database & recovery,release evaluation.mp4 30.53Мб
23. database & recovery,release evaluation.vtt 30.54Мб
23. Probability Distribution.mp4 68.80Мб
23. Probability Distribution.vtt 10.40Кб
23. Reject Null Hypothesis.mp4 84.23Мб
23. Reject Null Hypothesis.vtt 8.24Кб
23. Universal Functions.mp4 109.59Мб
23. Universal Functions.vtt 10.75Кб
24. Cumulative Probability Distribution.mp4 37.58Мб
24. Cumulative Probability Distribution.vtt 8.67Кб
24. Introoduction to Pandas.mp4 26.06Мб
24. Introoduction to Pandas.vtt 4.64Кб
24. post implementation review,toyota case.mp4 44.88Мб
24. post implementation review,toyota case.vtt 8.03Кб
24. Variance Covariance and Correlation.mp4 81.89Мб
24. Variance Covariance and Correlation.vtt 11.48Кб
25. Bernoulli Distribution.mp4 38.71Мб
25. Bernoulli Distribution.vtt 8.21Кб
25. frame work for BI Part 1.mp4 58.71Мб
25. frame work for BI Part 1.vtt 11.63Кб
25. Pandas Series.mp4 33.47Мб
25. Pandas Series.vtt 4.65Кб
25. Root names and Types of Distribution Function.mp4 71.71Мб
25. Root names and Types of Distribution Function.vtt 10.59Кб
26. frame work for BI Part 2.mp4 56.09Мб
26. frame work for BI Part 2.vtt 9.26Кб
26. Gaussian Distribution.mp4 33.68Мб
26. Gaussian Distribution.vtt 8.05Кб
26. Generating Random Numbers and Combination Function.mp4 63.10Мб
26. Generating Random Numbers and Combination Function.vtt 6.98Кб
26. Pandas Series Continue.mp4 38.07Мб
26. Pandas Series Continue.vtt 5.57Кб
27. frame work for BI Part 3.mp4 33.11Мб
27. frame work for BI Part 3.vtt 5.20Кб
27. Geometric Distribution.mp4 33.20Мб
27. Geometric Distribution.vtt 7.25Кб
27. Import Randin.mp4 64.96Мб
27. Import Randin.vtt 9.40Кб
27. Probabilities for Discrete Distribution Function.mp4 83.57Мб
27. Probabilities for Discrete Distribution Function.vtt 8.91Кб
28. Continuous and Normal Distribution.mp4 49.07Мб
28. Continuous and Normal Distribution.vtt 9.60Кб
28. frame work for BI Part 4.mp4 38.18Мб
28. frame work for BI Part 4.vtt 4.96Кб
28. Import Randin Continue.mp4 72.37Мб
28. Import Randin Continue.vtt 10.25Кб
28. Quantile Function and Poison Distribution.mp4 77.31Мб
28. Quantile Function and Poison Distribution.vtt 8.40Кб
29. Mathematical Expression and Computation.mp4 33.82Мб
29. Mathematical Expression and Computation.vtt 8.70Кб
29. Paratmeters.mp4 87.75Мб
29. Paratmeters.vtt 10.35Кб
29. strategic imperitive of BI Part 1.mp4 49.28Мб
29. strategic imperitive of BI Part 1.vtt 7.85Кб
29. Students T Distribution, Hypothesis and Example.mp4 63.21Мб
29. Students T Distribution, Hypothesis and Example.vtt 7.18Кб
3. Analytics in Machine Learning.mp4 47.03Мб
3. Analytics in Machine Learning.vtt 8.46Кб
3. Checking the Function Argument.mp4 121.19Мб
3. Checking the Function Argument.vtt 3.93Кб
3. Connecting to Data Source in AML.mp4 18.80Мб
3. Connecting to Data Source in AML.vtt 3.66Кб
3. Defining Data Type.mp4 95.45Мб
3. Defining Data Type.vtt 6.70Кб
3. Example of Bayesian Machine Learning Continues.mp4 36.13Мб
3. Example of Bayesian Machine Learning Continues.vtt 4.39Кб
3. Feature Extraction.mp4 4.48Мб
3. Feature Extraction.vtt 1.57Кб
3. How do Machines Learns.mp4 51.90Мб
3. How do Machines Learns.vtt 14.34Кб
3. Logistic Regression and Logistic Question.mp4 64.52Мб
3. Logistic Regression and Logistic Question.vtt 5.54Кб
3. Moving Through Neural Network.mp4 38.04Мб
3. Moving Through Neural Network.vtt 5.88Кб
3. multidimensional db part 2.mp4 61.19Мб
3. multidimensional db part 2.vtt 10.75Кб
3. Number of Fire Places.mp4 30.23Мб
3. Number of Fire Places.vtt 5.08Кб
3. Risk Analytics.mp4 82.51Мб
3. Risk Analytics.vtt 10.26Кб
3. Running Modes.mp4 33.52Мб
3. Running Modes.vtt 6.58Кб
3. Steps to Apply Machine Learning.mp4 45.69Мб
3. Steps to Apply Machine Learning.vtt 7.24Кб
30. Chai-Square Distribution.mp4 41.33Мб
30. Chai-Square Distribution.vtt 4.88Кб
30. Indexing and Database.mp4 37.90Мб
30. Indexing and Database.vtt 4.55Кб
30. strategic imperitive of BI Part 2.mp4 41.76Мб
30. strategic imperitive of BI Part 2.vtt 6.50Кб
30. Transpose of Matrix.mp4 46.05Мб
30. Transpose of Matrix.vtt 8.39Кб
31. Data Visualization.mp4 77.80Мб
31. Data Visualization.vtt 7.15Кб
31. Missing Data.mp4 30.30Мб
31. Missing Data.vtt 5.19Кб
31. Properties of Matrix.mp4 47.72Мб
31. Properties of Matrix.vtt 11.58Кб
31. Target System.mp4 47.82Мб
31. Target System.vtt 7.70Кб
32. Data warehouse and ETL.mp4 33.03Мб
32. Data warehouse and ETL.vtt 6.29Кб
32. Determinants.mp4 47.64Мб
32. Determinants.vtt 8.57Кб
32. Missing Data-Groupby.mp4 20.18Мб
32. Missing Data-Groupby.vtt 3.24Кб
32. More on Data Visualization.mp4 70.53Мб
32. More on Data Visualization.vtt 6.73Кб
33. Error Types.mp4 53.25Мб
33. Error Types.vtt 8.34Кб
33. Facebook dataspace management with open source tools.mp4 38.35Мб
33. Facebook dataspace management with open source tools.vtt 6.06Кб
33. Missing Data-Groupby Continue.mp4 26.92Мб
33. Missing Data-Groupby Continue.vtt 4.10Кб
33. Multiple Linear Regression.mp4 90.37Мб
33. Multiple Linear Regression.vtt 7.84Кб
34. Agile Development Process.mp4 34.55Мб
34. Agile Development Process.vtt 5.81Кб
34. Concat-Merge-Join.mp4 79.93Мб
34. Concat-Merge-Join.vtt 11.05Кб
34. Critical Value Approach.mp4 57.08Мб
34. Critical Value Approach.vtt 7.59Кб
34. Multiple Linear Regression Continues.mp4 69.98Мб
34. Multiple Linear Regression Continues.vtt 6.33Кб
35. Agile Development Process Continues.mp4 44.66Мб
35. Agile Development Process Continues.vtt 7.37Кб
35. Operations.mp4 48.08Мб
35. Operations.vtt 6.13Кб
35. Regression Variables.mp4 101.45Мб
35. Regression Variables.vtt 6.16Кб
35. Right and Left Sided Critical Approach.mp4 59.27Мб
35. Right and Left Sided Critical Approach.vtt 9.42Кб
36. Challenges on dash board.mp4 32.28Мб
36. Challenges on dash board.vtt 4.48Кб
36. Generalized Linear Model.mp4 93.70Мб
36. Generalized Linear Model.vtt 10.56Кб
36. Import-Export.mp4 104.66Мб
36. Import-Export.vtt 11.54Кб
36. P-Value Approach.mp4 79.84Мб
36. P-Value Approach.vtt 8.82Кб
37. Building Users Expert Profile.mp4 62.77Мб
37. Building Users Expert Profile.vtt 8.14Кб
37. Generalized Least Square.mp4 88.79Мб
37. Generalized Least Square.vtt 7.40Кб
37. P-Value Approach Continues.mp4 55.80Мб
37. P-Value Approach Continues.vtt 7.84Кб
37. Python Visualisation.mp4 49.04Мб
37. Python Visualisation.vtt 4.75Кб
38. Hypothesis Testing.mp4 43.49Мб
38. Hypothesis Testing.vtt 9.28Кб
38. KNN- Various Methods of Distance Measurements.mp4 52.96Мб
38. KNN- Various Methods of Distance Measurements.vtt 9.00Кб
38. Mat Plotting.mp4 63.42Мб
38. Mat Plotting.vtt 11.43Кб
38. Semantic Technologies.mp4 53.11Мб
38. Semantic Technologies.vtt 7.05Кб
39. Left Tail Test.mp4 22.90Мб
39. Left Tail Test.vtt 4.66Кб
39. Multiple Plot Subsections.mp4 62.39Мб
39. Multiple Plot Subsections.vtt 7.59Кб
39. Overview of KNN- (Steps involved).mp4 71.10Мб
39. Overview of KNN- (Steps involved).vtt 10.01Кб
39. Semantic Tools.mp4 53.66Мб
39. Semantic Tools.vtt 6.75Кб
4. Adding the Test Value.mp4 82.62Мб
4. Adding the Test Value.vtt 82.63Мб
4. Beta Value.mp4 48.28Мб
4. Beta Value.vtt 2.87Кб
4. Big Data Machine Learning.mp4 50.99Мб
4. Big Data Machine Learning.vtt 7.27Кб
4. Creating Data Scheme in AML.mp4 26.88Мб
4. Creating Data Scheme in AML.vtt 6.13Кб
4. Data for Validation.mp4 103.30Мб
4. Data for Validation.vtt 6.67Кб
4. Heatmap for Discretized Dataset.mp4 88.57Мб
4. Heatmap for Discretized Dataset.vtt 7.93Кб
4. Learning about BIP Add-Ins.mp4 59.81Мб
4. Learning about BIP Add-Ins.vtt 6.88Кб
4. MCMC Module of PYMC Implementation.mp4 43.41Мб
4. MCMC Module of PYMC Implementation.vtt 4.11Кб
4. multidimensional db part 3.mp4 56.10Мб
4. multidimensional db part 3.vtt 10.26Кб
4. NLP Installation.mp4 59.69Мб
4. NLP Installation.vtt 9.86Кб
4. Regression and Classification Problems.mp4 62.38Мб
4. Regression and Classification Problems.vtt 8.03Кб
4. Trading Companies and Stocks.mp4 97.65Мб
4. Trading Companies and Stocks.vtt 9.16Кб
4. Types of Activation Functions.mp4 20.42Мб
4. Types of Activation Functions.vtt 3.25Кб
4. Uses of Machine Learning.mp4 30.21Мб
4. Uses of Machine Learning.vtt 9.97Кб
40. API Functionality.mp4 64.75Мб
40. API Functionality.vtt 7.99Кб
40. BI Algorithm By Example.mp4 42.01Мб
40. BI Algorithm By Example.vtt 8.51Кб
40. Data normalization and prediction on Test Data.mp4 86.41Мб
40. Data normalization and prediction on Test Data.vtt 8.00Кб
40. Two Tail Test.mp4 41.64Мб
40. Two Tail Test.vtt 8.80Кб
41. Benefits of BI.mp4 27.67Мб
41. Benefits of BI.vtt 8.13Кб
41. Confidence Interval.mp4 52.67Мб
41. Confidence Interval.vtt 8.07Кб
41. Improvement of Model Performance and ROC.mp4 85.09Мб
41. Improvement of Model Performance and ROC.vtt 10.68Кб
41. Title of the Plot.mp4 91.75Мб
41. Title of the Plot.vtt 172.50Мб
42. Benefits of BI Continues.mp4 43.66Мб
42. Benefits of BI Continues.vtt 8.10Кб
42. Change Size of Articles.mp4 59.75Мб
42. Change Size of Articles.vtt 7.88Кб
42. Decision Tree Classifier.mp4 57.80Мб
42. Decision Tree Classifier.vtt 7.48Кб
42. Example of Confidence Interval.mp4 62.96Мб
42. Example of Confidence Interval.vtt 10.37Кб
43. Amazon.com and Net Flix.mp4 38.96Мб
43. Amazon.com and Net Flix.vtt 7.26Кб
43. More on Decision Tree Classifier.mp4 81.50Мб
43. More on Decision Tree Classifier.vtt 6.64Кб
43. Normal and Non Normal Distribution.mp4 32.45Мб
43. Normal and Non Normal Distribution.vtt 9.04Кб
43. Two Different Crops.mp4 54.92Мб
43. Two Different Crops.vtt 7.53Кб
44. Mat Plotting Label.mp4 49.35Мб
44. Mat Plotting Label.vtt 6.41Кб
44. Normality Test.mp4 45.72Мб
44. Normality Test.vtt 8.69Кб
44. Pruning of Decision Trees.mp4 83.84Мб
44. Pruning of Decision Trees.vtt 6.78Кб
44. What is Information Governance.mp4 49.97Мб
44. What is Information Governance.vtt 7.76Кб
45. Decision Tree Remaining.mp4 61.11Мб
45. Decision Tree Remaining.vtt 5.52Кб
45. Marker Color.mp4 72.66Мб
45. Marker Color.vtt 9.17Кб
45. Normality Test Continues.mp4 40.97Мб
45. Normality Test Continues.vtt 9.01Кб
45. Other BI Applications are used to store.mp4 45.27Мб
45. Other BI Applications are used to store.vtt 6.95Кб
46. Create a New Dataframe.mp4 40.21Мб
46. Create a New Dataframe.vtt 4.83Кб
46. Decision Tree Remaining Continues.mp4 46.70Мб
46. Decision Tree Remaining Continues.vtt 5.25Кб
46. Designing and Implementing BI Program.mp4 46.72Мб
46. Designing and Implementing BI Program.vtt 5.84Кб
46. Determining the Transformation.mp4 22.14Мб
46. Determining the Transformation.vtt 5.70Кб
47. Change the Style.mp4 44.45Мб
47. Change the Style.vtt 5.92Кб
47. ETL.mp4 37.37Мб
47. ETL.vtt 7.52Кб
47. General concept of Random Forest.mp4 64.30Мб
47. General concept of Random Forest.vtt 10.90Кб
47. T-Test.mp4 45.20Мб
47. T-Test.vtt 9.71Кб
48. Ada Boosting and Ensemble Learning.mp4 95.21Мб
48. Ada Boosting and Ensemble Learning.vtt 10.89Кб
48. ETL Continues.mp4 30.78Мб
48. ETL Continues.vtt 6.17Кб
48. Index and Value.mp4 41.35Мб
48. Index and Value.vtt 5.21Кб
48. T-Test Continue.mp4 47.22Мб
48. T-Test Continue.vtt 7.11Кб
49. Data Visualization and Preparation.mp4 89.28Мб
49. Data Visualization and Preparation.vtt 9.94Кб
49. Loading.mp4 35.06Мб
49. Loading.vtt 7.04Кб
49. More on T-Test.mp4 55.52Мб
49. More on T-Test.vtt 8.59Кб
49. Seaborn-Statistical Data Visualization.mp4 59.06Мб
49. Seaborn-Statistical Data Visualization.vtt 7.44Кб
5. Basic Data Manipulation in R.mp4 71.68Мб
5. Basic Data Manipulation in R.vtt 8.08Кб
5. BIP_Into_5_BIP_AddIn2 and BIP_Into_6.mp4 64.35Мб
5. BIP_Into_5_BIP_AddIn2 and BIP_Into_6.vtt 7.05Кб
5. dbms platform.mp4 11.80Мб
5. dbms platform.vtt 2.86Кб
5. DEA with Input or Profit and Loss.mp4 87.78Мб
5. DEA with Input or Profit and Loss.vtt 7.36Кб
5. Distinguished Methods with Single.mp4 43.58Мб
5. Distinguished Methods with Single.vtt 4.05Кб
5. Emerging Trends Machine Learning.mp4 72.39Мб
5. Emerging Trends Machine Learning.vtt 7.85Кб
5. Examples with tensorflow by Google.mp4 57.34Мб
5. Examples with tensorflow by Google.vtt 8.97Кб
5. Finding the Corelation.mp4 72.68Мб
5. Finding the Corelation.vtt 7.68Кб
5. Index to the ID Column.mp4 68.20Мб
5. Index to the ID Column.vtt 8.34Кб
5. Invaild Value and Varible Target in AML.mp4 4.41Мб
5. Invaild Value and Varible Target in AML.vtt 1.04Кб
5. NLP - Demo.mp4 89.44Мб
5. NLP - Demo.vtt 10.50Кб
5. Optimizing Back Propagation.mp4 44.98Мб
5. Optimizing Back Propagation.vtt 6.86Кб
5. Predict Value.mp4 77.82Мб
5. Predict Value.vtt 5.60Кб
5. Running the MCMC Module.mp4 42.54Мб
5. Running the MCMC Module.vtt 4.76Кб
50. seaborn library.mp4 95.97Мб
50. seaborn library.vtt 12.55Кб
50. Test of Independence.mp4 53.96Мб
50. Test of Independence.vtt 10.35Кб
50. Tuning Random Forest Model.mp4 63.40Мб
50. Tuning Random Forest Model.vtt 7.11Кб
50. Type 2 Dimension.mp4 51.92Мб
50. Type 2 Dimension.vtt 8.55Кб
51. Evaluation of Random Forest Model Performance.mp4 65.88Мб
51. Evaluation of Random Forest Model Performance.vtt 6.70Кб
51. Example of Test of Independence.mp4 51.13Мб
51. Example of Test of Independence.vtt 9.14Кб
51. Jointplot.mp4 81.97Мб
51. Jointplot.vtt 9.91Кб
51. Loading Fact Tables.mp4 47.39Мб
51. Loading Fact Tables.vtt 7.37Кб
52. Genearl Idea.mp4 41.40Мб
52. Genearl Idea.vtt 7.26Кб
52. Goodness of Fit Test.mp4 40.22Мб
52. Goodness of Fit Test.vtt 6.49Кб
52. Introduction to Kmeans Clustering.mp4 75.07Мб
52. Introduction to Kmeans Clustering.vtt 11.19Кб
52. Pairplot.mp4 109.81Мб
52. Pairplot.vtt 11.65Кб
53. Barplot.mp4 97.54Мб
53. Barplot.vtt 10.46Кб
53. Conceptual Model.mp4 36.90Мб
53. Conceptual Model.vtt 7.77Кб
53. Example of Goodness of Fit Test.mp4 37.93Мб
53. Example of Goodness of Fit Test.vtt 6.77Кб
53. Kmeans Elbow Point and Dataset.mp4 90.51Мб
53. Kmeans Elbow Point and Dataset.vtt 10.16Кб
54. Boxplot.mp4 49.36Мб
54. Boxplot.vtt 5.75Кб
54. Conceptual Model Continues.mp4 49.97Мб
54. Conceptual Model Continues.vtt 8.36Кб
54. Co-Variance.mp4 17.99Мб
54. Co-Variance.vtt 5.02Кб
54. Example of Kmeans Dataset.mp4 122.65Мб
54. Example of Kmeans Dataset.vtt 10.86Кб
55. Co-Variance Continues.mp4 24.04Мб
55. Co-Variance Continues.vtt 7.33Кб
55. Creating a Graph for Kmeans Clustering.mp4 126.69Мб
55. Creating a Graph for Kmeans Clustering.vtt 10.47Кб
55. On Going Or Future Works.mp4 51.43Мб
55. On Going Or Future Works.vtt 11.29Кб
55. Stripplot.mp4 78.06Мб
55. Stripplot.vtt 7.15Кб
56. Creating a Graph for Kmeans Clustering Continues.mp4 90.64Мб
56. Creating a Graph for Kmeans Clustering Continues.vtt 7.07Кб
56. Matrix.mp4 92.83Мб
56. Matrix.vtt
56. Why Meta Data.mp4 42.77Мб
56. Why Meta Data.vtt 12.39Кб
57. Aggregation Function of Clustering.mp4 78.46Мб
57. Aggregation Function of Clustering.vtt 8.33Кб
57. Essentials Capabilities.mp4 27.42Мб
57. Essentials Capabilities.vtt 7.38Кб
57. Matrix Continue.mp4 33.32Мб
57. Matrix Continue.vtt 3.18Кб
58. Common Warehouse Metamodels.mp4 30.76Мб
58. Common Warehouse Metamodels.vtt 6.82Кб
58. Conditional Probability with Bayes Algorithm.mp4 82.98Мб
58. Conditional Probability with Bayes Algorithm.vtt 9.51Кб
58. Grid.mp4 110.79Мб
58. Grid.vtt 8.67Кб
59. Data Advantage Group.mp4 54.00Мб
59. Data Advantage Group.vtt 10.12Кб
59. Grid Continue.mp4 56.60Мб
59. Grid Continue.vtt 5.77Кб
59. Venn Diagram Naive Bayes Classification.mp4 61.65Мб
59. Venn Diagram Naive Bayes Classification.vtt 8.74Кб
6. Analyzing both the Plots.mp4 72.83Мб
6. Analyzing both the Plots.vtt 5.84Кб
6. BIP_Into_7_Customized Reports Overview.mp4 59.34Мб
6. BIP_Into_7_Customized Reports Overview.vtt 6.62Кб
6. Briefing on Tensor Flow.mp4 35.78Мб
6. Briefing on Tensor Flow.vtt 5.06Кб
6. Data Mining.mp4 43.82Мб
6. Data Mining.vtt 7.88Кб
6. Density for Numeric Attribute.mp4 87.96Мб
6. Density for Numeric Attribute.vtt 6.64Кб
6. Efficiency Profit and Loss.mp4 64.71Мб
6. Efficiency Profit and Loss.vtt 5.28Кб
6. ML Models in AML.mp4 58.71Мб
6. ML Models in AML.vtt 12.42Кб
6. Model on Data Set.mp4 82.18Мб
6. Model on Data Set.vtt 8.68Кб
6. More on Data Manipulation in R.mp4 62.14Мб
6. More on Data Manipulation in R.vtt 6.55Кб
6. Multiple Variant Testing Using Hierarchial Model.mp4 45.95Мб
6. Multiple Variant Testing Using Hierarchial Model.vtt 7.45Кб
6. Performance Value.mp4 63.65Мб
6. Performance Value.vtt 4.33Кб
6. Replacing Contractions.mp4 135.03Мб
6. Replacing Contractions.vtt 10.34Кб
6. Setting up the Workstation.mp4 7.06Мб
6. Setting up the Workstation.vtt 3.34Кб
6. technical non technical infrastructre part 1.mp4 43.12Мб
6. technical non technical infrastructre part 1.vtt 12.10Кб
60. Component OF Bayes Theorem using Frequency Table.mp4 86.98Мб
60. Component OF Bayes Theorem using Frequency Table.vtt 10.58Кб
60. DBMS Meta Data Tips.mp4 64.31Мб
60. DBMS Meta Data Tips.vtt 10.42Кб
60. Style.mp4 14.89Мб
60. Style.vtt 1.42Кб
61. For Building The Dataware house(Extraction Team).mp4 51.68Мб
61. For Building The Dataware house(Extraction Team).vtt 8.14Кб
61. Naive Bayes Classification Algorithm and Laplace Estimator.mp4 70.40Мб
61. Naive Bayes Classification Algorithm and Laplace Estimator.vtt 8.71Кб
61. Python Libraries Conclusion.mp4 13.05Мб
61. Python Libraries Conclusion.vtt 1.72Кб
62. Example of Naive Bayes Classification.mp4 81.66Мб
62. Example of Naive Bayes Classification.vtt 9.74Кб
62. Introduction To Conda Envirement.mp4 20.66Мб
62. Introduction To Conda Envirement.vtt 3.70Кб
62. Meta Data Essentials For IT.mp4 48.65Мб
62. Meta Data Essentials For IT.vtt 7.93Кб
63. Business Metadata.mp4 41.09Мб
63. Business Metadata.vtt 9.45Кб
63. Example of Naive Bayes Classification Continues.mp4 100.12Мб
63. Example of Naive Bayes Classification Continues.vtt 11.08Кб
63. Scikit Learn.mp4 17.29Мб
63. Scikit Learn.vtt 6.11Кб
64. Business Meta Data (Continues).mp4 24.21Мб
64. Business Meta Data (Continues).vtt 5.18Кб
64. Scikit Learn Continue.mp4 41.75Мб
64. Scikit Learn Continue.vtt 8.28Кб
64. Spam and Ham Messages in Word Cloud.mp4 90.21Мб
64. Spam and Ham Messages in Word Cloud.vtt 8.95Кб
65. Datasets.mp4 30.21Мб
65. Datasets.vtt 9.97Кб
65. Implementation of Dictionary and Document Term Matrix.mp4 81.48Мб
65. Implementation of Dictionary and Document Term Matrix.vtt 6.89Кб
65. Project Planning.mp4 56.86Мб
65. Project Planning.vtt 9.11Кб
66. California Dataset.mp4 60.44Мб
66. California Dataset.vtt 8.88Кб
66. Executes the Function Naive Bayes.mp4 89.85Мб
66. Executes the Function Naive Bayes.vtt 8.98Кб
66. Project Planning (Continues).mp4 31.20Мб
66. Project Planning (Continues).vtt 5.67Кб
67. Data Visualization.mp4 88.53Мб
67. Data Visualization.vtt 9.62Кб
67. Deployment Process.mp4 74.44Мб
67. Deployment Process.vtt 13.49Кб
67. Support Vector Machine with Black Box Method.mp4 59.63Мб
67. Support Vector Machine with Black Box Method.vtt 9.27Кб
68. Chapter Outline.mp4 39.34Мб
68. Chapter Outline.vtt 9.02Кб
68. Datavisualization Continue.mp4 55.48Мб
68. Datavisualization Continue.vtt 8.32Кб
68. Linearly and Non- Linearly Support Vector Machine.mp4 52.99Мб
68. Linearly and Non- Linearly Support Vector Machine.vtt 9.56Кб
69. Break-Even Analysis.mp4 37.84Мб
69. Break-Even Analysis.vtt 8.84Кб
69. Downloading a Test Data.mp4 90.58Мб
69. Downloading a Test Data.vtt 10.87Кб
69. Kernal Trick.mp4 57.19Мб
69. Kernal Trick.vtt 9.63Кб
7. Basic Data Manipulation in R - Practical.mp4 71.74Мб
7. Basic Data Manipulation in R - Practical.vtt 8.08Кб
7. BIP_Into_8_Developing Reports Overview.mp4 19.14Мб
7. BIP_Into_8_Developing Reports Overview.vtt 4.71Кб
7. Data Mining Continues.mp4 67.73Мб
7. Data Mining Continues.vtt 6.83Кб
7. Defining the Lengths.mp4 101.48Мб
7. Defining the Lengths.vtt 6.51Кб
7. Example of Multiple Variant Testing.mp4 29.38Мб
7. Example of Multiple Variant Testing.vtt 2.32Кб
7. Fals Positive Rate.mp4 43.37Мб
7. Fals Positive Rate.vtt 3.54Кб
7. Installation of Tensor Flow.mp4 23.24Мб
7. Installation of Tensor Flow.vtt 2.70Кб
7. Manging ML Object in AML.mp4 12.02Мб
7. Manging ML Object in AML.vtt 2.57Кб
7. Method for Train Control.mp4 50.50Мб
7. Method for Train Control.vtt 2.77Кб
7. Missing Value Imputation.mp4 56.37Мб
7. Missing Value Imputation.vtt 6.10Кб
7. Rank Functions.mp4 76.44Мб
7. Rank Functions.vtt 6.72Кб
7. technical non technical infrastructre part 2.mp4 51.18Мб
7. technical non technical infrastructre part 2.vtt 10.18Кб
7. Tokenize Dataset.mp4 69.46Мб
7. Tokenize Dataset.vtt 5.31Кб
7. Understanding program languages.mp4 6.48Мб
7. Understanding program languages.vtt 3.71Кб
70. Examples Of Break-Even Analysis.mp4 43.71Мб
70. Examples Of Break-Even Analysis.vtt 9.63Кб
70. Gaussian RBF Kernal and OCR with SVMs.mp4 81.18Мб
70. Gaussian RBF Kernal and OCR with SVMs.vtt 9.12Кб
70. Population Parameter.mp4 78.79Мб
70. Population Parameter.vtt 7.70Кб
71. Examples of Gaussian RBF Kernal and OCR with SVMs.mp4 76.93Мб
71. Examples of Gaussian RBF Kernal and OCR with SVMs.vtt 6.85Кб
71. Multivirate Analysis.mp4 49.96Мб
71. Multivirate Analysis.vtt 8.33Кб
71. Processing.mp4 103.57Мб
71. Processing.vtt 46.30Мб
72. Multivirate Analysis (Continues).mp4 30.93Мб
72. Multivirate Analysis (Continues).vtt 7.55Кб
72. Null Values with Median Value.mp4 80.14Мб
72. Null Values with Median Value.vtt 9.30Кб
72. Summary of Support Vector Machine.mp4 78.27Мб
72. Summary of Support Vector Machine.vtt 8.02Кб
73. Feature Selection Dimension Reduction Technique.mp4 86.70Мб
73. Feature Selection Dimension Reduction Technique.vtt 9.77Кб
73. Graphs.mp4 41.52Мб
73. Graphs.vtt 10.45Кб
73. Replace Missing Values.mp4 32.48Мб
73. Replace Missing Values.vtt 3.47Кб
74. Feature Extraction Dimension Reduction Technique.mp4 82.53Мб
74. Feature Extraction Dimension Reduction Technique.vtt 9.88Кб
74. Label Enconder.mp4 26.02Мб
74. Label Enconder.vtt 4.12Кб
74. Why Meta Data Is Important.mp4 39.52Мб
74. Why Meta Data Is Important.vtt 7.43Кб
75. Dimension Reduction Technique Example.mp4 88.10Мб
75. Dimension Reduction Technique Example.vtt 8.82Кб
75. Import Labelencoder.mp4 90.69Мб
75. Import Labelencoder.vtt 9.94Кб
75. System Development.mp4 29.91Мб
75. System Development.vtt 8.55Кб
76. Custom Transformation.mp4 28.24Мб
76. Custom Transformation.vtt 3.05Кб
76. Dimension Reduction Technique Example Continues.mp4 84.19Мб
76. Dimension Reduction Technique Example Continues.vtt 7.72Кб
76. Project Risk Assesment Factors.mp4 46.31Мб
76. Project Risk Assesment Factors.vtt 10.82Кб
77. Introduction Principal Component Analysis.mp4 66.74Мб
77. Introduction Principal Component Analysis.vtt 11.04Кб
77. Managing Project Time.mp4 36.94Мб
77. Managing Project Time.vtt 8.78Кб
77. Transformer Custom Transformer.mp4 56.00Мб
77. Transformer Custom Transformer.vtt 5.70Кб
78. Housing with Custom Colums.mp4 57.03Мб
78. Housing with Custom Colums.vtt 4.52Кб
78. Prototyping Benefits.mp4 61.45Мб
78. Prototyping Benefits.vtt 12.05Кб
78. Steps of PCA.mp4 61.43Мб
78. Steps of PCA.vtt 9.95Кб
79. Incremental Development.mp4 57.96Мб
79. Incremental Development.vtt 11.86Кб
79. Numeric Hosing Data.mp4 120.21Мб
79. Numeric Hosing Data.vtt 9.57Кб
79. Steps of PCA Continues.mp4 59.88Мб
79. Steps of PCA Continues.vtt 9.17Кб
8. Assigning a Training Set.mp4 125.20Мб
8. Assigning a Training Set.vtt 5.88Кб
8. change control board part 1.mp4 57.25Мб
8. change control board part 1.vtt 9.46Кб
8. Create a Vector.mp4 63.58Мб
8. Create a Vector.vtt 6.69Кб
8. Creating DataSource Handson.mp4 104.10Мб
8. Creating DataSource Handson.vtt 11.22Кб
8. Example of Multiple Variant Testing Continues.mp4 52.25Мб
8. Example of Multiple Variant Testing Continues.vtt 7.92Кб
8. Implementatiion on Neural Package.mp4 81.87Мб
8. Implementatiion on Neural Package.vtt 6.80Кб
8. Remove Stopwords.mp4 68.24Мб
8. Remove Stopwords.vtt 5.70Кб
8. RHS Constaints.mp4 89.36Мб
8. RHS Constaints.vtt 8.27Кб
8. Showing Report Views on Application.mp4 110.09Мб
8. Showing Report Views on Application.vtt 11.35Кб
8. Substituting Features with Value.mp4 91.78Мб
8. Substituting Features with Value.vtt 8.88Кб
8. Supervised and Unsupervised.mp4 45.40Мб
8. Supervised and Unsupervised.vtt 7.43Кб
8. Understanding and Functions of Jupyter.mp4 65.23Мб
8. Understanding and Functions of Jupyter.vtt 8.51Кб
8. Using Different Clusters.mp4 54.16Мб
8. Using Different Clusters.vtt 3.86Кб
80. Eigen Values.mp4 37.75Мб
80. Eigen Values.vtt 6.92Кб
80. Incremental Development(Continues).mp4 47.90Мб
80. Incremental Development(Continues).vtt 10.10Кб
80. Liner Regression.mp4 49.63Мб
80. Liner Regression.vtt 7.45Кб
81. Eigen Vectors.mp4 39.57Мб
81. Eigen Vectors.vtt 6.98Кб
81. Fine Tuning Model.mp4 41.43Мб
81. Fine Tuning Model.vtt 5.22Кб
81. What is Cluster Analysis.mp4 48.92Мб
81. What is Cluster Analysis.vtt 10.00Кб
82. Fine Tuning Model Continue.mp4 57.98Мб
82. Fine Tuning Model Continue.vtt 7.09Кб
82. Principal Component Analysis using Pr-Comp.mp4 104.06Мб
82. Principal Component Analysis using Pr-Comp.vtt 9.75Кб
82. Types Of Clusters.mp4 49.30Мб
82. Types Of Clusters.vtt 7.26Кб
83. Cluster Benefits.mp4 35.65Мб
83. Cluster Benefits.vtt 6.64Кб
83. Principal Component Analysis using Pr-Comp Continues.mp4 76.54Мб
83. Principal Component Analysis using Pr-Comp Continues.vtt 8.12Кб
83. Quick-Recap.mp4 5.35Мб
83. Quick-Recap.vtt 1.94Кб
84. C Bind Type in PCA.mp4 89.65Мб
84. C Bind Type in PCA.vtt 7.62Кб
84. Kmeans Clustering Method.mp4 85.92Мб
84. Kmeans Clustering Method.vtt 13.64Кб
84. Tensorflow.mp4 57.75Мб
84. Tensorflow.vtt 9.49Кб
85. R Type Model.mp4 121.30Мб
85. R Type Model.vtt 10.54Кб
85. Tensorflow-Hello-World.mp4 54.60Мб
85. Tensorflow-Hello-World.vtt 11.13Кб
85. What Is The Problem With PAM.mp4 61.58Мб
85. What Is The Problem With PAM.vtt 12.20Кб
86. Basic Ops.mp4 78.34Мб
86. Basic Ops.vtt 12.28Кб
86. BIRCH (1996).mp4 56.65Мб
86. BIRCH (1996).vtt 8.63Кб
86. Black Box Method in Neural Network.mp4 87.36Мб
86. Black Box Method in Neural Network.vtt 8.40Кб
87. Basic Ops Continue.mp4 70.26Мб
87. Basic Ops Continue.vtt 63.30Мб
87. Characteristics of a Neural Networks.mp4 72.69Мб
87. Characteristics of a Neural Networks.vtt 8.83Кб
87. Density Rechable And Density Conected.mp4 52.84Мб
87. Density Rechable And Density Conected.vtt 8.93Кб
88. Denclue Technical Issues.mp4 65.83Мб
88. Denclue Technical Issues.vtt 11.28Кб
88. More on Basic Ops.mp4 67.83Мб
88. More on Basic Ops.vtt 8.79Кб
88. Network Topology of a Neural Networks.mp4 70.49Мб
88. Network Topology of a Neural Networks.vtt 10.38Кб
89. Eager-Mode.mp4 48.81Мб
89. Eager-Mode.vtt 6.03Кб
89. The Wave Cluster Algorithm.mp4 48.29Мб
89. The Wave Cluster Algorithm.vtt 7.79Кб
89. Weight Adjustment and Case Update.mp4 80.93Мб
89. Weight Adjustment and Case Update.vtt 10.96Кб
9. 2.7 Problem and Solution.mp4 69.89Мб
9. 2.7 Problem and Solution.vtt 6.46Кб
9. change control board part 2.mp4 48.58Мб
9. change control board part 2.vtt 10.01Кб
9. Creating DataSource Handson Continues.mp4 69.95Мб
9. Creating DataSource Handson Continues.vtt 7.87Кб
9. Implementatiion on Neural Package Continues.mp4 69.05Мб
9. Implementatiion on Neural Package Continues.vtt 7.41Кб
9. Imputing a Row using at Command.mp4 71.67Мб
9. Imputing a Row using at Command.vtt 7.19Кб
9. Learning of Jupyter installation.mp4 5.03Мб
9. Learning of Jupyter installation.vtt 2.80Кб
9. Mean Absolute Error.mp4 71.41Мб
9. Mean Absolute Error.vtt 6.52Кб
9. Profit and Loss Report.mp4 73.11Мб
9. Profit and Loss Report.vtt 5.98Кб
9. Sampling Method in Machine Learning.mp4 31.14Мб
9. Sampling Method in Machine Learning.vtt 7.44Кб
9. Siebel Applets ‚ Business Obejct and Business Components Part 1.mp4 87.33Мб
9. Siebel Applets ‚ Business Obejct and Business Components Part 1.vtt 10.26Кб
9. Stemming and Lemmatization.mp4 96.03Мб
9. Stemming and Lemmatization.vtt 9.08Кб
90. Concept.mp4 37.51Мб
90. Concept.vtt 9.34Кб
90. Introduction Model Building in R.mp4 100.93Мб
90. Introduction Model Building in R.vtt 9.70Кб
90. More On Conceptual Clustering.mp4 60.84Мб
90. More On Conceptual Clustering.vtt 9.06Кб
91. Clustering in Quest.mp4 58.39Мб
91. Clustering in Quest.vtt 11.50Кб
91. Installing the Package of Model Building in R.mp4 88.49Мб
91. Installing the Package of Model Building in R.vtt 9.95Кб
91. Linear-Regression.mp4 25.28Мб
91. Linear-Regression.vtt 4.70Кб
92. Linear-Model.mp4 45.39Мб
92. Linear-Model.vtt 8.13Кб
92. Nodes in Model Building in R.mp4 70.80Мб
92. Nodes in Model Building in R.vtt 7.74Кб
92. Why Constraints Based Cluster Analysis.mp4 51.78Мб
92. Why Constraints Based Cluster Analysis.vtt 8.22Кб
93. Example of Model Building in R.mp4 81.60Мб
93. Example of Model Building in R.vtt 8.07Кб
93. Matrix Multiplication Function.mp4 75.50Мб
93. Matrix Multiplication Function.vtt 11.81Кб
93. What Is Outlier Discovery.mp4 41.92Мб
93. What Is Outlier Discovery.vtt 7.18Кб
94. Practice for a Simple Linear Model.mp4 24.42Мб
94. Practice for a Simple Linear Model.vtt 4.02Кб
94. Segmentation In Data Mining.mp4 46.47Мб
94. Segmentation In Data Mining.vtt 10.40Кб
94. Time Series Analysis.mp4 68.49Мб
94. Time Series Analysis.vtt 7.44Кб
95. Bottle Neck Of GSP & Spade.mp4 51.55Мб
95. Bottle Neck Of GSP & Spade.vtt 51.56Мб
95. Cost Function.mp4 23.00Мб
95. Cost Function.vtt 4.01Кб
95. Pattern in Time Series Data.mp4 51.02Мб
95. Pattern in Time Series Data.vtt 7.34Кб
96. Creative Optimizer.mp4 36.16Мб
96. Creative Optimizer.vtt 5.23Кб
96. Time Series Modelling.mp4 55.94Мб
96. Time Series Modelling.vtt 8.29Кб
96. Why Deal with Sequential Data.mp4 41.58Мб
96. Why Deal with Sequential Data.vtt 11.44Кб
97. Algorithm Definition.mp4 41.85Мб
97. Algorithm Definition.vtt 10.02Кб
97. Moving Average Model.mp4 67.21Мб
97. Moving Average Model.vtt 9.39Кб
97. RR Input and Output Value.mp4 27.46Мб
97. RR Input and Output Value.vtt 4.47Кб
98. Auto Correlation Function.mp4 43.08Мб
98. Auto Correlation Function.vtt 8.24Кб
98. Introduction To Regression Analysis.mp4 35.34Мб
98. Introduction To Regression Analysis.vtt 7.44Кб
98. Logistic-Regression.mp4 51.55Мб
98. Logistic-Regression.vtt 6.88Кб
99. Global Variabales Initializer.mp4 36.50Мб
99. Global Variabales Initializer.vtt 4.48Кб
99. Inference of ACF and PFCF.mp4 45.22Мб
99. Inference of ACF and PFCF.vtt 7.09Кб
99. Regression Model.mp4 53.02Мб
99. Regression Model.vtt 10.94Кб
Статистика распространения по странам
Великобритания (GB) 1
США (US) 1
Всего 2
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент