Общая информация
Название [GigaCourse.Com] Udemy - The Data Analyst Course Complete Data Analyst Bootcamp 2022
Тип Порно
Размер 5.13Гб
Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[CourseClub.Me].url 122б
[CourseClub.Me].url 122б
[CourseClub.Me].url 122б
[CourseClub.Me].url 122б
[CourseClub.Me].url 122б
[CourseClub.Me].url 122б
[CourseClub.Me].url 122б
[CourseClub.Me].url 122б
[GigaCourse.Com].url 49б
[GigaCourse.Com].url 49б
[GigaCourse.Com].url 49б
[GigaCourse.Com].url 49б
[GigaCourse.Com].url 49б
[GigaCourse.Com].url 49б
[GigaCourse.Com].url 49б
[GigaCourse.Com].url 49б
001 .unique(), .nunique()_en.vtt 4.80Кб
001 .unique(), .nunique().mp4 26.29Мб
001 An Introduction to the Absenteeism Exercise_en.vtt 1.65Кб
001 An Introduction to the Absenteeism Exercise.mp4 3.65Мб
001 A Practical Example - What Will You Learn in This Course_en.vtt 6.30Кб
001 A Practical Example - What Will You Learn in This Course.mp4 58.11Мб
001 A Revision to pandas DataFrames_en.vtt 6.62Кб
001 A Revision to pandas DataFrames.mp4 17.82Мб
001 Arrays of 0s and 1s_en.vtt 6.83Кб
001 Arrays of 0s and 1s.mp4 16.16Мб
001 Basic Slicing in NumPy_en.vtt 12.04Кб
001 Basic Slicing in NumPy.mp4 26.56Мб
001 Checking for Missing Values in Ndarrays_en.vtt 10.97Кб
001 Checking for Missing Values in Ndarrays.mp4 47.88Мб
001 Conclusion_en.vtt 3.03Кб
001 Conclusion.mp4 16.19Мб
001 Data Cleaning and Data Preprocessing_en.vtt 7.66Кб
001 Data Cleaning and Data Preprocessing.mp4 16.47Мб
001 How to Complete the Absenteeism Exercise_en.vtt 2.67Кб
001 How to Complete the Absenteeism Exercise.mp4 6.23Мб
001 Indexing in NumPy_en.vtt 7.20Кб
001 Indexing in NumPy.mp4 14.87Мб
001 Introduction_en.vtt 1.93Кб
001 Introduction.mp4 13.81Мб
001 Introduction to the pandas Library_en.vtt 7.28Кб
001 Introduction to the pandas Library.mp4 14.22Мб
001 Introduction to the World of Business and Data_en.vtt 3.24Кб
001 Introduction to the World of Business and Data.mp4 10.40Мб
001 Iterating Over Range Objects_en.vtt 5.30Кб
001 Iterating Over Range Objects.mp4 11.06Мб
001 ndarrays_en.vtt 10.67Кб
001 ndarrays.mp4 29.33Мб
001 Object-Oriented Programming (OOP)_en.vtt 5.35Кб
001 Object-Oriented Programming (OOP).mp4 8.43Мб
001 Overview of APIs_en.vtt 4.10Кб
001 Overview of APIs.mp4 10.40Мб
001 Python Variables_en.vtt 3.98Кб
001 Python Variables.mp4 14.08Мб
001 Setting Up Introduction to the Practical Example_en.vtt 6.14Кб
001 Setting Up Introduction to the Practical Example.mp4 20.53Мб
001 The NumPy Package and Why We Use It_en.vtt 5.01Кб
001 The NumPy Package and Why We Use It.mp4 13.03Мб
001 Using Statistical Functions in NumPy_en.vtt 10.11Кб
001 Using Statistical Functions in NumPy.mp4 21.25Мб
001 What is data gatheringdata collection_en.vtt 9.49Кб
001 What is data gatheringdata collection.mp4 19.17Мб
001 What Is Data Visualization and Why Is It Important_en.vtt 5.92Кб
001 What Is Data Visualization and Why Is It Important.mp4 13.97Мб
001 What Is а Matrix_en.vtt 3.88Кб
001 Working with Files in Python - An Introduction_en.vtt 5.07Кб
001 Working with Files in Python - An Introduction.mp4 11.73Мб
001 Working with Text Data and Argument Specifiers_en.vtt 11.45Кб
001 Working with Text Data and Argument Specifiers.mp4 21.35Мб
002 _like functions in NumPy_en.vtt 4.10Кб
002 _like functions in NumPy.mp4 8.74Мб
002 Arrays vs Lists_en.vtt 7.45Кб
002 Arrays vs Lists.mp4 16.58Мб
002 Assigning Values in NumPy_en.vtt 4.94Кб
002 Assigning Values in NumPy.mp4 10.14Мб
002 Common Attributes for Working with DataFrames_en.vtt 5.59Кб
002 Common Attributes for Working with DataFrames.mp4 29.78Мб
002 Converting Series into Arrays_en.vtt 7.02Кб
002 Converting Series into Arrays.mp4 19.86Мб
002 Eyeball Your Data First_en.vtt 6.22Кб
002 Eyeball Your Data First.mp4 54.25Мб
002 File vs File Object, Read vs Parse_en.vtt 3.67Кб
002 File vs File Object, Read vs Parse.mp4 9.23Мб
002 GET and POST Requests_en.vtt 3.50Кб
002 GET and POST Requests.mp4 6.27Мб
002 Installing and Running pandas_en.vtt 6.87Кб
002 Installing and Running pandas.mp4 37.73Мб
002 InstallingUpgrading NumPy_en.vtt 2.41Кб
002 InstallingUpgrading NumPy.mp4 3.92Мб
002 Manipulating Python Strings_en.vtt 5.27Кб
002 Manipulating Python Strings.mp4 12.29Мб
002 Minimal and Maximal Values in NumPy_en.vtt 7.59Кб
002 Minimal and Maximal Values in NumPy.mp4 19.95Мб
002 Modules, Packages, and the Python Standard Library_en.vtt 5.80Кб
002 Modules, Packages, and the Python Standard Library.mp4 13.61Мб
002 Nested For Loops - Introduction_en.vtt 7.30Кб
002 Nested For Loops - Introduction.mp4 12.21Мб
002 Programming Explained in a Few Minutes_en.vtt 6.11Кб
002 Programming Explained in a Few Minutes.mp4 14.34Мб
002 Relevant Terms Explained_en.vtt 7.32Кб
002 Relevant Terms Explained.mp4 17.13Мб
002 Scalars and Vectors_en.vtt 3.36Кб
002 Scalars and Vectors.mp4 8.39Мб
002 Setting Up Importing the Data Set_en.vtt 4.65Кб
002 Setting Up Importing the Data Set.mp4 36.90Мб
002 Stepwise Slicing in NumPy_en.vtt 5.97Кб
002 Stepwise Slicing in NumPy.mp4 13.98Мб
002 Substituting Missing Values in Ndarrays_en.vtt 10.63Кб
002 Substituting Missing Values in Ndarrays.mp4 34.32Мб
002 The Absenteeism Exercise from a Business Perspective_en.vtt 3.09Кб
002 The Absenteeism Exercise from a Business Perspective.mp4 7.19Мб
002 Types of Data - Numbers and Boolean Values_en.vtt 3.12Кб
002 Types of Data - Numbers and Boolean Values.mp4 13.70Мб
002 What Does the Course Cover_en.vtt 7.60Кб
002 What Does the Course Cover.mp4 60.77Мб
002 Why Learn Data Visualization_en.vtt 7.14Кб
002 Why Learn Data Visualization.mp4 26.44Мб
003 .sort_values()_en.vtt 4.85Кб
003 .sort_values().mp4 13.19Мб
003 A Non-Random Sequence of Numbers_en.vtt 6.28Кб
003 A Non-Random Sequence of Numbers.mp4 19.98Мб
003 Choosing the Right Visualization – What Are Some Popular Approaches and Framewor_en.vtt 7.95Кб
003 Choosing the Right Visualization – What Are Some Popular Approaches and Framewor.mp4 43.80Мб
003 Conditional Slicing in NumPy_en.vtt 5.84Кб
003 Conditional Slicing in NumPy.mp4 16.14Мб
003 Data Analyst Compared to Other Data Jobs_en.vtt 3.10Кб
003 Data Analyst Compared to Other Data Jobs.mp4 8.21Мб
003 Data Exchange Format for APIs JSON_en.vtt 3.24Кб
003 Data Exchange Format for APIs JSON.mp4 5.70Мб
003 Data Selection in pandas DataFrames_en.vtt 8.75Кб
003 Data Selection in pandas DataFrames.mp4 37.28Мб
003 Download All Resources.html 693б
003 Elementwise Properties of Arrays_en.vtt 5.49Кб
003 Elementwise Properties of Arrays.mp4 14.92Мб
003 Importing Modules_en.vtt 4.07Кб
003 Importing Modules.mp4 7.41Мб
003 Introduction to pandas Series_en.vtt 9.31Кб
003 Introduction to pandas Series.mp4 24.62Мб
003 Jupyter - Introduction_en.vtt 4.10Кб
003 Jupyter - Introduction.mp4 8.20Мб
003 Linear Algebra and Geometry_en.vtt 3.52Кб
003 Linear Algebra and Geometry.mp4 13.56Мб
003 Ndarray_en.vtt 3.67Кб
003 Ndarray.mp4 7.64Мб
003 Note Programming vs the Rest of the World_en.vtt 3.63Кб
003 Note Programming vs the Rest of the World.mp4 18.03Мб
003 Reshaping Ndarrays_en.vtt 7.35Кб
003 Reshaping Ndarrays.mp4 24.59Мб
003 Setting Up Checking for Incomplete Data_en.vtt 5.00Кб
003 Setting Up Checking for Incomplete Data.mp4 17.14Мб
003 Statistical Order Functions in NumPy_en.vtt 7.93Кб
003 Statistical Order Functions in NumPy.mp4 27.37Мб
003 Strings vs Object vs Number_en.vtt 8.11Кб
003 Strings vs Object vs Number.mp4 24.78Мб
003 Structured vs Semi-Structured and Unstructured Data_en.vtt 4.35Кб
003 Structured vs Semi-Structured and Unstructured Data.mp4 10.85Мб
003 The Dataset_en.vtt 2.10Кб
003 The Dataset.mp4 5.66Мб
003 Triple Nested For Loops_en.vtt 7.05Кб
003 Triple Nested For Loops.mp4 19.41Мб
003 Types of Data - Strings_en.vtt 6.24Кб
003 Types of Data - Strings.mp4 19.73Мб
003 Using Various Python String Methods - Part I_en.vtt 8.60Кб
003 Using Various Python String Methods - Part I.mp4 23.59Мб
004 Arrays in Python_en.vtt 5.14Кб
004 Arrays in Python.mp4 19.00Мб
004 Attribute and Method Chaining_en.vtt 5.50Кб
004 Attribute and Method Chaining.mp4 14.76Мб
004 Averages and Variance in NumPy_en.vtt 5.54Кб
004 Averages and Variance in NumPy.mp4 14.57Мб
004 Basic Python Syntax - Arithmetic Operators_en.vtt 3.77Кб
004 Basic Python Syntax - Arithmetic Operators.mp4 7.29Мб
004 Data Analyst Job Description_en.vtt 7.35Кб
004 Data Analyst Job Description.mp4 19.93Мб
004 Data Connectivity through Text Files_en.vtt 4.07Кб
004 Data Connectivity through Text Files.mp4 10.57Мб
004 Data Selection - Indexing with .iloc[]_en.vtt 6.97Кб
004 Data Selection - Indexing with .iloc[].mp4 23.53Мб
004 Dimensions and the Squeeze Function_en.vtt 7.58Кб
004 Dimensions and the Squeeze Function.mp4 18.26Мб
004 FAQ.html 18.18Кб
004 Introducing the Exchange Rates API_en.vtt 5.39Кб
004 Introducing the Exchange Rates API.mp4 25.19Мб
004 Introduction into Colors and Color Theory_en.vtt 10.31Кб
004 Introduction into Colors and Color Theory.mp4 56.19Мб
004 Introduction to Using NumPy and pandas_en.vtt 12.09Кб
004 Introduction to Using NumPy and pandas.mp4 31.90Мб
004 Jupyter - Installing Anaconda_en.vtt 4.99Кб
004 Jupyter - Installing Anaconda.mp4 21.46Мб
004 List Comprehensions_en.vtt 10.85Кб
004 List Comprehensions.mp4 43.20Мб
004 NumPy DataTypes - Exercise.html 1.09Кб
004 Random Generators and Seeds_en.vtt 6.76Кб
004 Random Generators and Seeds.mp4 19.32Мб
004 Removing Values from Ndarrays_en.vtt 5.00Кб
004 Removing Values from Ndarrays.mp4 19.93Мб
004 Setting Up Splitting the Dataset_en.vtt 5.81Кб
004 Setting Up Splitting the Dataset.mp4 19.76Мб
004 The NumPy Documentation_en.vtt 6.04Кб
004 The NumPy Documentation.mp4 15.82Мб
004 Types of Data Supported by NumPy_en.vtt 7.30Кб
004 Types of Data Supported by NumPy.mp4 18.13Мб
004 Using a Statistical Approach to Solve Our Exercise_en.vtt 2.55Кб
004 Using a Statistical Approach to Solve Our Exercise.mp4 9.90Мб
004 Using Various Python String Methods - Part II_en.vtt 8.78Кб
004 Using Various Python String Methods - Part II.mp4 20.37Мб
004 Working with Attributes in Python_en.vtt 6.71Кб
004 Working with Attributes in Python.mp4 26.84Мб
005 .sort_index()_en.vtt 5.15Кб
005 .sort_index().mp4 15.69Мб
005 Anonymous (Lambda) Functions_en.vtt 8.75Кб
005 Anonymous (Lambda) Functions.mp4 33.70Мб
005 Bar Chart - Introduction - General Theory and Getting to Know the Dataset_en.vtt 1.88Кб
005 Bar Chart - Introduction - General Theory and Getting to Know the Dataset.mp4 10.81Мб
005 Basic Python Syntax - The Double Equality Sign_en.vtt 1.55Кб
005 Basic Python Syntax - The Double Equality Sign.mp4 2.72Мб
005 Basic Random Functions in NumPy_en.vtt 5.02Кб
005 Basic Random Functions in NumPy.mp4 14.84Мб
005 Characteristics of NumPy Functions Part 1_en.vtt 5.62Кб
005 Characteristics of NumPy Functions Part 1.mp4 23.18Мб
005 Covariance and Correlation in NumPy_en.vtt 3.79Кб
005 Covariance and Correlation in NumPy.mp4 8.74Мб
005 Data Selection - Indexing with .loc[]_en.vtt 4.87Кб
005 Data Selection - Indexing with .loc[].mp4 21.62Мб
005 Dropping the 'ID' Column_en.vtt 6.79Кб
005 Dropping the 'ID' Column.mp4 41.33Мб
005 Including Parameters in a GET Request_en.vtt 3.80Кб
005 Including Parameters in a GET Request.mp4 10.80Мб
005 Jupyter - Intro to Using Jupyter_en.vtt 3.19Кб
005 Jupyter - Intro to Using Jupyter.mp4 5.88Мб
005 NumPy Basics - Exercise.html 841б
005 Principles of Importing Data in Python_en.vtt 6.54Кб
005 Principles of Importing Data in Python.mp4 16.45Мб
005 Setting Up Creating Checkpoints_en.vtt 3.20Кб
005 Setting Up Creating Checkpoints.mp4 11.01Мб
005 Sorting Ndarrays_en.vtt 11.46Кб
005 Sorting Ndarrays.mp4 55.27Мб
005 String Accessors_en.vtt 6.09Кб
005 String Accessors.mp4 30.62Мб
005 Using an Index in pandas_en.vtt 5.04Кб
005 Using an Index in pandas.mp4 15.73Мб
005 What Is a Tensor_en.vtt 3.24Кб
005 What Is a Tensor.mp4 11.62Мб
005 What is Software Documentation_en.vtt 5.64Кб
005 What is Software Documentation.mp4 13.40Мб
005 Why Python_en.vtt 6.58Кб
005 Why Python.mp4 15.10Мб
005 Working with Arrays - Exercise.html 1.10Кб
006 Adding and Subtracting Matrices_en.vtt 3.49Кб
006 Adding and Subtracting Matrices.mp4 22.10Мб
006 A Few Comments on Using .loc[] and .iloc[]_en.vtt 14.68Кб
006 A Few Comments on Using .loc[] and .iloc[].mp4 76.91Мб
006 Analysis of the 'Reason for Absence' Column_en.vtt 5.39Кб
006 Analysis of the 'Reason for Absence' Column.mp4 17.18Мб
006 Argument Sort in NumPy_en.vtt 6.52Кб
006 Argument Sort in NumPy.mp4 29.52Мб
006 Bar Chart - How to Create a Bar Chart Using Python_en.vtt 11.48Кб
006 Bar Chart - How to Create a Bar Chart Using Python.mp4 31.86Мб
006 Basic Python Syntax - Reassign Values_en.vtt 1.21Кб
006 Basic Python Syntax - Reassign Values.mp4 1.87Мб
006 Characteristics of NumPy Functions Part 2_en.vtt 4.35Кб
006 Characteristics of NumPy Functions Part 2.mp4 10.14Мб
006 Histograms in NumPy (Part 1)_en.vtt 9.80Кб
006 Histograms in NumPy (Part 1).mp4 22.10Мб
006 Jupyter - Working with Notebook Files_en.vtt 6.72Кб
006 Jupyter - Working with Notebook Files.mp4 18.63Мб
006 Label-based vs Position-based Indexing_en.vtt 5.94Кб
006 Label-based vs Position-based Indexing.mp4 24.52Мб
006 Manipulating Text Data Issue Date_en.vtt 6.37Кб
006 Manipulating Text Data Issue Date.mp4 14.92Мб
006 More Functionalities of the Exchange Rates API_en.vtt 5.17Кб
006 More Functionalities of the Exchange Rates API.mp4 16.60Мб
006 More on Text Files (.txt vs .csv)_en.vtt 5.87Кб
006 More on Text Files (.txt vs .csv).mp4 12.82Мб
006 Probability Distributions in NumPy_en.vtt 6.76Кб
006 Probability Distributions in NumPy.mp4 31.54Мб
006 The Python Documentation_en.vtt 8.40Кб
006 The Python Documentation.mp4 43.94Мб
006 Using the .format() Method_en.vtt 10.80Кб
006 Using the .format() Method.mp4 21.66Мб
007 Applications of Random Data in NumPy_en.vtt 4.99Кб
007 Applications of Random Data in NumPy.mp4 29.41Мб
007 Argument Where in NumPy_en.vtt 13.35Кб
007 Argument Where in NumPy.mp4 51.52Мб
007 Bar Chart – Interpreting the Bar Graph. How to Make a Good Bar Graph_en.vtt 3.23Кб
007 Bar Chart – Interpreting the Bar Graph. How to Make a Good Bar Graph.mp4 8.20Мб
007 Basic Python Syntax - Add Comments_en.vtt 1.57Кб
007 Basic Python Syntax - Add Comments.mp4 2.41Мб
007 Coding a Simple Currency Conversion Calculator_en.vtt 5.37Кб
007 Coding a Simple Currency Conversion Calculator.mp4 22.44Мб
007 Errors When Adding Matrices_en.vtt 2.30Кб
007 Errors When Adding Matrices.mp4 5.76Мб
007 Fixed-width Files_en.vtt 2.00Кб
007 Fixed-width Files.mp4 4.73Мб
007 Histograms in NumPy (Part 2)_en.vtt 5.41Кб
007 Histograms in NumPy (Part 2).mp4 11.52Мб
007 Jupyter - Using Shortcuts_en.vtt 4.11Кб
007 Jupyter - Using Shortcuts.mp4 6.67Мб
007 Manipulating Text Data Loan Status and Term_en.vtt 8.17Кб
007 Manipulating Text Data Loan Status and Term.mp4 25.16Мб
007 More on Working with Indices in Python_en.vtt 6.81Кб
007 More on Working with Indices in Python.mp4 33.21Мб
007 NumPy Fundamentals - Exercise.html 1.10Кб
007 Splitting the Reasons for Absence into Multiple Dummy Variables_en.vtt 9.05Кб
007 Splitting the Reasons for Absence into Multiple Dummy Variables.mp4 63.76Мб
008 Basic Python Syntax - Line Continuation_en.vtt 1.01Кб
008 Basic Python Syntax - Line Continuation.mp4 1.20Мб
008 Common Naming Conventions Used in Programming_en.vtt 5.26Кб
008 Common Naming Conventions Used in Programming.mp4 8.22Мб
008 Generating Data with NumPy - Exercise.html 1.12Кб
008 iTunes API_en.vtt 5.23Кб
008 iTunes API.mp4 39.61Мб
008 Jupyter - Handling Error Messages_en.vtt 7.82Кб
008 Jupyter - Handling Error Messages.mp4 13.26Мб
008 Manipulating Text Data Grade and Sub Grade_en.vtt 10.41Кб
008 Manipulating Text Data Grade and Sub Grade.mp4 41.20Мб
008 NAN Equivalent Functions in NumPy_en.vtt 3.79Кб
008 NAN Equivalent Functions in NumPy.mp4 16.77Мб
008 Pie Chart - Introduction - General Theory and Dataset_en.vtt 4.83Кб
008 Pie Chart - Introduction - General Theory and Dataset.mp4 22.69Мб
008 Shuffling Ndarrays_en.vtt 8.42Кб
008 Shuffling Ndarrays.mp4 32.96Мб
008 Transpose_en.vtt 4.98Кб
008 Transpose.mp4 20.50Мб
008 Using Methods in Python - Part I_en.vtt 6.15Кб
008 Using Methods in Python - Part I.mp4 17.04Мб
008 Working with Dummy Variables - A Statistical Perspective_en.vtt 1.53Кб
008 Working with Dummy Variables - A Statistical Perspective.mp4 5.82Мб
009 Basic Python Syntax - Indexing Elements_en.vtt 1.43Кб
009 Basic Python Syntax - Indexing Elements.mp4 2.37Мб
009 Casting Ndarrays_en.vtt 6.79Кб
009 Casting Ndarrays.mp4 40.24Мб
009 Dot Product of Vectors_en.vtt 3.75Кб
009 Dot Product of Vectors.mp4 11.36Мб
009 Grouping the Reason for Absence Columns_en.vtt 8.84Кб
009 Grouping the Reason for Absence Columns.mp4 51.32Мб
009 Importing Text Files in Python ( open() )_en.vtt 11.77Кб
009 Importing Text Files in Python ( open() ).mp4 24.83Мб
009 iTunes API Homework.html 256б
009 Jupyter - Restarting the Kernel_en.vtt 2.34Кб
009 Jupyter - Restarting the Kernel.mp4 4.71Мб
009 Manipulating Text Data Verification Status & URL_en.vtt 5.65Кб
009 Manipulating Text Data Verification Status & URL.mp4 26.67Мб
009 Pie Chart - How to Create a Pie Chart Using Python_en.vtt 6.06Кб
009 Pie Chart - How to Create a Pie Chart Using Python.mp4 16.29Мб
009 Statistics with NumPy - Exercise.html 1.11Кб
009 Using Methods in Python - Part II_en.vtt 3.31Кб
009 Using Methods in Python - Part II.mp4 9.18Мб
010 Basic Python Syntax - Indentation_en.vtt 1.92Кб
010 Basic Python Syntax - Indentation.mp4 2.80Мб
010 Concatenating Columns in a pandas DataFrame_en.vtt 4.55Кб
010 Concatenating Columns in a pandas DataFrame.mp4 19.77Мб
010 Dot Product of Matrices_en.vtt 8.27Кб
010 Dot Product of Matrices.mp4 26.42Мб
010 Importing Text Files in Python ( with open() )_en.vtt 6.58Кб
010 Importing Text Files in Python ( with open() ).mp4 26.29Мб
010 iTunes API Structuring and Exporting the Data_en.vtt 2.55Кб
010 iTunes API Structuring and Exporting the Data.mp4 12.86Мб
010 Manipulating Text Data State Address_en.vtt 7.11Кб
010 Manipulating Text Data State Address.mp4 26.23Мб
010 Parameters vs Arguments_en.vtt 5.38Кб
010 Parameters vs Arguments.mp4 16.78Мб
010 Pie Chart – Interpreting the Pie Chart_en.vtt 1.79Кб
010 Pie Chart – Interpreting the Pie Chart.mp4 9.74Мб
010 Striping Values from Ndarrays_en.vtt 5.12Кб
010 Striping Values from Ndarrays.mp4 18.41Мб
011 Importing .csv Files with pandas - Part I_en.vtt 7.51Кб
011 Importing .csv Files with pandas - Part I.mp4 49.84Мб
011 Manipulating Text Data Converting Strings and Creating a Checkpoint_en.vtt 4.05Кб
011 Manipulating Text Data Converting Strings and Creating a Checkpoint.mp4 8.66Мб
011 Operators - Comparison Operators_en.vtt 2.17Кб
011 Operators - Comparison Operators.mp4 4.16Мб
011 Pagination GitHub API_en.vtt 4.79Кб
011 Pagination GitHub API.mp4 28.21Мб
011 Pie Chart - Why You Should Never Create a Pie Graph_en.vtt 8.35Кб
011 Pie Chart - Why You Should Never Create a Pie Graph.mp4 46.37Мб
011 Reordering Columns in a DataFrame_en.vtt 1.65Кб
011 Reordering Columns in a DataFrame.mp4 7.20Мб
011 Stacking Ndarrays_en.vtt 11.52Кб
011 Stacking Ndarrays.mp4 65.14Мб
011 the pandas Documentation_en.vtt 11.90Кб
011 the pandas Documentation.mp4 52.02Мб
011 Why is Linear Algebra Useful_en.vtt 10.91Кб
011 Why is Linear Algebra Useful.mp4 86.22Мб
012 APIs Exercise.html 616б
012 Concatenating Ndarrays_en.vtt 7.33Кб
012 Concatenating Ndarrays.mp4 35.68Мб
012 Importing .csv Files with pandas - Part II_en.vtt 3.17Кб
012 Importing .csv Files with pandas - Part II.mp4 10.91Мб
012 Introduction to pandas DataFrames_en.vtt 7.18Кб
012 Introduction to pandas DataFrames.mp4 11.71Мб
012 Manipulating Numeric Data Substitute Filler Values_en.vtt 9.21Кб
012 Manipulating Numeric Data Substitute Filler Values.mp4 27.86Мб
012 Operators - Logical and Identity Operators_en.vtt 5.09Кб
012 Operators - Logical and Identity Operators.mp4 15.05Мб
012 Stacked Area Chart - Introduction - General Theory. Getting to Know the Dataset_en.vtt 3.76Кб
012 Stacked Area Chart - Introduction - General Theory. Getting to Know the Dataset.mp4 7.61Мб
012 Working on the 'Date' Column_en.vtt 7.55Кб
012 Working on the 'Date' Column.mp4 26.06Мб
013 Conditional Statements - The IF Statement_en.vtt 3.09Кб
013 Conditional Statements - The IF Statement.mp4 5.33Мб
013 Creating DataFrames from Scratch - Part I_en.vtt 7.40Кб
013 Creating DataFrames from Scratch - Part I.mp4 26.06Мб
013 Extracting the Month Value from the 'Date' Column_en.vtt 6.93Кб
013 Extracting the Month Value from the 'Date' Column.mp4 37.05Мб
013 Finding Unique Values in Ndarrays_en.vtt 6.27Кб
013 Finding Unique Values in Ndarrays.mp4 27.75Мб
013 Importing .csv Files with pandas - Part III_en.vtt 8.10Кб
013 Importing .csv Files with pandas - Part III.mp4 75.11Мб
013 Manipulating Numeric Data Currency Change – The Exchange Rate_en.vtt 7.73Кб
013 Manipulating Numeric Data Currency Change – The Exchange Rate.mp4 18.99Мб
013 Stacked Area Chart - How to Create a Stacked Area Chart Using Python_en.vtt 6.80Кб
013 Stacked Area Chart - How to Create a Stacked Area Chart Using Python.mp4 25.04Мб
014 Conditional Statements - The ELSE Statement_en.vtt 2.73Кб
014 Conditional Statements - The ELSE Statement.mp4 5.25Мб
014 Creating DataFrames from Scratch - Part II_en.vtt 6.31Кб
014 Creating DataFrames from Scratch - Part II.mp4 29.79Мб
014 Creating the 'Day of the Week' Column_en.vtt 3.83Кб
014 Creating the 'Day of the Week' Column.mp4 23.33Мб
014 Importing Data with the index_col Parameter_en.vtt 3.39Кб
014 Importing Data with the index_col Parameter.mp4 11.65Мб
014 Manipulating Numeric Data Currency Change - From USD to EUR_en.vtt 9.67Кб
014 Manipulating Numeric Data Currency Change - From USD to EUR.mp4 31.45Мб
014 Stacked Area Chart - Interpreting the Stacked Area Graph_en.vtt 2.99Кб
014 Stacked Area Chart - Interpreting the Stacked Area Graph.mp4 9.60Мб
015 Additional Notes on Using DataFrames_en.vtt 2.58Кб
015 Additional Notes on Using DataFrames.mp4 12.41Мб
015 Completing the Dataset_en.vtt 7.78Кб
015 Completing the Dataset.mp4 44.04Мб
015 Conditional Statements - The ELIF Statement_en.vtt 5.75Кб
015 Conditional Statements - The ELIF Statement.mp4 14.25Мб
015 Importing Data with NumPy - .loadtxt() vs genfromtxt()_en.vtt 12.25Кб
015 Importing Data with NumPy - .loadtxt() vs genfromtxt().mp4 56.48Мб
015 Stacked Area Chart - How to Make a Good Stacked Area Chart_en.vtt 4.58Кб
015 Stacked Area Chart - How to Make a Good Stacked Area Chart.mp4 12.62Мб
015 Understanding the Meaning of 5 More Columns_en.vtt 3.89Кб
015 Understanding the Meaning of 5 More Columns.mp4 12.25Мб
016 Conditional Statements - A Note on Boolean Values_en.vtt 2.56Кб
016 Conditional Statements - A Note on Boolean Values.mp4 4.25Мб
016 Importing Data with NumPy - Partial Cleaning While Importing_en.vtt 8.22Кб
016 Importing Data with NumPy - Partial Cleaning While Importing.mp4 30.51Мб
016 Line Chart - Introduction - General Theory. Getting to Know the Dataset_en.vtt 2.36Кб
016 Line Chart - Introduction - General Theory. Getting to Know the Dataset.mp4 5.05Мб
016 Modifying the 'Education' Column_en.vtt 4.98Кб
016 Modifying the 'Education' Column.mp4 19.66Мб
016 pandas Basics - Conclusion.html 1.03Кб
017 Final Remarks on the Absenteeism Exercise_en.vtt 2.32Кб
017 Final Remarks on the Absenteeism Exercise.mp4 14.91Мб
017 Functions - Defining a Function in Python_en.vtt 2.14Кб
017 Functions - Defining a Function in Python.mp4 3.23Мб
017 Importing Data with NumPy - Exercise.html 1.11Кб
017 Line Chart - How to Create a Line Chart in Python_en.vtt 7.05Кб
017 Line Chart - How to Create a Line Chart in Python.mp4 40.29Мб
018 Functions - Creating a Function with a Parameter_en.vtt 3.76Кб
018 Functions - Creating a Function with a Parameter.mp4 10.00Мб
018 Importing .json Files_en.vtt 6.50Кб
018 Importing .json Files.mp4 48.53Мб
018 Line Chart - Interpretation_en.vtt 3.58Кб
018 Line Chart - Interpretation.mp4 32.70Мб
019 Functions - Another Way to Define a Function_en.vtt 2.54Кб
019 Functions - Another Way to Define a Function.mp4 6.46Мб
019 Line Chart - How to Make a Good Line Chart_en.vtt 7.82Кб
019 Line Chart - How to Make a Good Line Chart.mp4 27.18Мб
019 Prelude to Working with Excel Files in Python_en.vtt 4.64Кб
019 Prelude to Working with Excel Files in Python.mp4 43.03Мб
020 Functions - Using a Function in Another Function_en.vtt 1.82Кб
020 Functions - Using a Function in Another Function.mp4 3.24Мб
020 Histogram - Introduction - General Theory. Getting to Know the Dataset_en.vtt 5.29Кб
020 Histogram - Introduction - General Theory. Getting to Know the Dataset.mp4 14.34Мб
020 Working with Excel Data (the .xlsx Format)_en.vtt 2.42Кб
020 Working with Excel Data (the .xlsx Format).mp4 11.55Мб
021 An Important Exercise on Importing Data in Python_en.vtt 7.42Кб
021 An Important Exercise on Importing Data in Python.mp4 42.97Мб
021 Functions - Combining Conditional Statements and Functions_en.vtt 3.13Кб
021 Functions - Combining Conditional Statements and Functions.mp4 6.10Мб
021 Histogram - How to Create a Histogram Using Python_en.vtt 5.15Кб
021 Histogram - How to Create a Histogram Using Python.mp4 14.59Мб
022 Functions - Creating Functions That Contain a Few Arguments_en.vtt 1.16Кб
022 Functions - Creating Functions That Contain a Few Arguments.mp4 2.82Мб
022 Histogram – Interpreting the Histogram_en.vtt 2.33Кб
022 Histogram – Interpreting the Histogram.mp4 4.88Мб
022 Importing Data with the pandas' Squeeze Parameter_en.vtt 3.04Кб
022 Importing Data with the pandas' Squeeze Parameter.mp4 11.58Мб
023 A Note on Importing Files in Jupyter_en.vtt 4.00Кб
023 A Note on Importing Files in Jupyter.mp4 19.68Мб
023 Functions - Notable Built-in Functions in Python_en.vtt 3.75Кб
023 Functions - Notable Built-in Functions in Python.mp4 8.50Мб
023 Histogram – Choosing the Number of Bins in a Histogram_en.vtt 6.18Кб
023 Histogram – Choosing the Number of Bins in a Histogram.mp4 21.10Мб
024 Histogram - How to Make a Good Histogram_en.vtt 5.71Кб
024 Histogram - How to Make a Good Histogram.mp4 21.69Мб
024 Saving Your Data with pandas_en.vtt 3.89Кб
024 Saving Your Data with pandas.mp4 27.68Мб
024 Sequences - Lists_en.vtt 4.25Кб
024 Sequences - Lists.mp4 9.53Мб
025 Saving Your Data with NumPy - np.save()_en.vtt 6.48Кб
025 Saving Your Data with NumPy - np.save().mp4 18.93Мб
025 Scatter Plot - Introduction - General Theory. Getting to Know the Dataset_en.vtt 3.07Кб
025 Scatter Plot - Introduction - General Theory. Getting to Know the Dataset.mp4 8.74Мб
025 Sequences - Using Methods_en.vtt 3.54Кб
025 Sequences - Using Methods.mp4 7.93Мб
026 Saving Your Data with NumPy - np.savez()_en.vtt 5.76Кб
026 Saving Your Data with NumPy - np.savez().mp4 15.41Мб
026 Scatter Plot - How to Create a Scatter Plot Using Python_en.vtt 8.09Кб
026 Scatter Plot - How to Create a Scatter Plot Using Python.mp4 29.78Мб
026 Sequences - List Slicing_en.vtt 4.63Кб
026 Sequences - List Slicing.mp4 19.19Мб
027 Saving Your Data with NumPy - np.savetxt()_en.vtt 4.30Кб
027 Saving Your Data with NumPy - np.savetxt().mp4 20.84Мб
027 Scatter Plot – Interpreting the Scatter Plot_en.vtt 3.44Кб
027 Scatter Plot – Interpreting the Scatter Plot.mp4 10.21Мб
027 Sequences - Tuples_en.vtt 2.96Кб
027 Sequences - Tuples.mp4 7.41Мб
028 Saving Your Data with NumPy - Exercise.html 1.24Кб
028 Scatter Plot - How to Make a Good Scatter Plot_en.vtt 3.76Кб
028 Scatter Plot - How to Make a Good Scatter Plot.mp4 18.63Мб
028 Sequences - Dictionaries_en.vtt 3.68Кб
028 Sequences - Dictionaries.mp4 10.14Мб
029 Iteration - For Loops_en.vtt 3.07Кб
029 Iteration - For Loops.mp4 5.51Мб
029 Regression Plot - Introduction - General Theory. Getting to Know the Dataset_en.vtt 3.38Кб
029 Regression Plot - Introduction - General Theory. Getting to Know the Dataset.mp4 9.38Мб
029 Working with Text Files - Conclusion_en.vtt 985б
029 Working with Text Files - Conclusion.mp4 2.06Мб
030 Iteration - While Loops and Incrementing_en.vtt 2.48Кб
030 Iteration - While Loops and Incrementing.mp4 9.15Мб
030 Regression Plot - How to Create a Regression Scatter Plot Using Python_en.vtt 6.71Кб
030 Regression Plot - How to Create a Regression Scatter Plot Using Python.mp4 21.75Мб
031 Iteration - Create Lists with the range() Function_en.vtt 4.37Кб
031 Iteration - Create Lists with the range() Function.mp4 7.25Мб
031 Regression Plot – Interpreting the Regression Scatter Plot_en.vtt 5.17Кб
031 Regression Plot – Interpreting the Regression Scatter Plot.mp4 17.43Мб
032 Iteration - Use Conditional Statements and Loops Together_en.vtt 3.31Кб
032 Iteration - Use Conditional Statements and Loops Together.mp4 7.13Мб
032 Regression Plot - How to Make a Good Regression Plot_en.vtt 3.86Кб
032 Regression Plot - How to Make a Good Regression Plot.mp4 12.35Мб
033 Bar and Line Chart - Introduction - General Theory. Getting to Know the Dataset_en.vtt 3.74Кб
033 Bar and Line Chart - Introduction - General Theory. Getting to Know the Dataset.mp4 9.35Мб
033 Iteration - Conditional Statements, Functions, and Loops_en.vtt 2.05Кб
033 Iteration - Conditional Statements, Functions, and Loops.mp4 4.27Мб
034 Bar and Line Chart - How to Create a Combination Bar and Line Graph Using Python_en.vtt 7.30Кб
034 Bar and Line Chart - How to Create a Combination Bar and Line Graph Using Python.mp4 26.31Мб
034 Iteration - Iterating over Dictionaries_en.vtt 3.22Кб
034 Iteration - Iterating over Dictionaries.mp4 6.54Мб
035 Bar and Line Chart – Interpreting the Combination Bar and Line Graph_en.vtt 2.93Кб
035 Bar and Line Chart – Interpreting the Combination Bar and Line Graph.mp4 7.74Мб
036 Bar and Line Chart – How to Make a Good Bar and Line Graph_en.vtt 4.59Кб
036 Bar and Line Chart – How to Make a Good Bar and Line Graph.mp4 16.13Мб
037 Data Visualization - Exercise.html 927б
28764174-Data-Analyst-Common-Naming-Conventions.pdf 643.80Кб
31655162-Working-with-Text-Data-Lectures.ipynb 15.89Кб
31655170-Working-with-Text-Data-Exercises.ipynb 17.32Кб
31655194-Working-with-Text-Data-Solutions.ipynb 26.21Кб
31655208-Working-with-Text-Data-Lectures.ipynb 15.89Кб
31655214-Working-with-Text-Data-Exercises.ipynb 17.32Кб
31655222-Working-with-Text-Data-Solutions.ipynb 26.21Кб
32894054-Setting-Up-the-Environment-Jupyter-Lectures.ipynb 4.40Кб
32894066-Jupyter-Shortcuts.pdf 589.59Кб
32894068-Setting-Up-the-Environment-Jupyter-Lectures.ipynb 4.40Кб
32894082-Python-Basics-Lectures.ipynb 74.90Кб
32894084-Python-Basics-Exercises.ipynb 42.12Кб
32894100-Python-Basics-Solutions.ipynb 73.52Кб
32894124-Python-Basics-Lectures.ipynb 74.90Кб
32894132-Python-Basics-Exercises.ipynb 42.12Кб
32894142-Python-Basics-Solutions.ipynb 73.52Кб
32894314-Importing-Modules-Lecture.ipynb 12.61Кб
32894342-Importing-Modules-Lecture.ipynb 12.61Кб
32896320-Mathematics-for-Python-Lectures.ipynb 34.80Кб
32896326-Mathematics-for-Python-Lectures.ipynb 34.80Кб
32896332-Intro-to-NumPy-Exercise.ipynb 3.79Кб
32896336-Intro-to-NumPy-Solution.ipynb 7.25Кб
32896340-Intro-to-NumPy-Template.ipynb 1.90Кб
32896342-Intro-to-NumPy-Complete.ipynb 3.18Кб
32896346-Introduction-to-pandas-DataFrames.pdf 1.49Мб
32896360-pandas-Basics-Lectures.ipynb 28.39Кб
32896372-pandas-Basics-Exercises.ipynb 20.83Кб
32896374-pandas-Basics-Solutions.ipynb 42.49Кб
32896382-Data-Analyst-pandas-Basics-Conclusion.pdf 51.32Кб
32896384-pandas-Basics-Lectures.ipynb 28.39Кб
32896388-pandas-Basics-Exercises.ipynb 20.83Кб
32896390-pandas-Basics-Solutions.ipynb 42.49Кб
32896402-Common-Naming-Conventions.pdf 643.80Кб
32896406-Importing-Text-Files-in-Python-open.ipynb 2.15Кб
32896416-source.txt 39б
32896436-Importing-Text-Files-in-Python-with-open.ipynb 2.47Кб
32896438-source.txt 39б
32896496-Importing.csv-Files-with-pandas-Part-I.ipynb 1.56Кб
32896534-Lending-company.xlsx 92.60Кб
32896536-Lending-company-single-column-data.csv 109.32Кб
32896550-Importing-Text-Data-Template.ipynb 2.60Кб
32896554-Importing-Text-Data-Complete.ipynb 13.13Кб
32896560-Lending-Company-Numeric-Data.csv 29.54Кб
32896568-Lending-Company-Numeric-Data-NAN.csv 28.64Кб
32896596-Lending-company.json 213.54Кб
32896612-Customer-Gender.csv 7.45Кб
32896668-Saving-Data-NP-Template.ipynb 3.17Кб
32896670-Saving-Data-NP-Complete.ipynb 9.82Кб
32896676-Lending-Company-Saving.csv 58.40Кб
32896694-Importing-Text-Files-in-Python-open.ipynb 2.15Кб
32896708-source.txt 39б
32896718-Must-Know-Python-Tools-Lectures.ipynb 10.58Кб
32896720-Must-Know-Python-Tools-Exercises.ipynb 8.60Кб
32896722-Must-Know-Python-Tools-Solutions.ipynb 10.63Кб
32896724-Must-Know-Python-Tools-Lectures.ipynb 10.58Кб
32896728-Must-Know-Python-Tools-Exercises.ipynb 8.60Кб
32896730-Must-Know-Python-Tools-Solutions.ipynb 10.63Кб
32896806-pandas-Series-Lectures.ipynb 22.68Кб
32896812-pandas-Series-Exercises.ipynb 7.66Кб
32896814-pandas-Series-Solutions.ipynb 15.87Кб
32896816-Location.csv 13.49Кб
32896818-Region.csv 10.22Кб
32896820-pandas-Series-Lectures.ipynb 22.68Кб
32896824-pandas-Series-Exercises.ipynb 7.66Кб
32896828-pandas-Series-Solutions.ipynb 15.87Кб
32896830-Location.csv 13.49Кб
32896832-Region.csv 10.22Кб
32896844-pandas-DataFrames.pdf 438.21Кб
32896848-pandas-DataFrames-Lectures.ipynb 16.61Кб
32896852-pandas-DataFrames-Exercises.ipynb 23.21Кб
32896856-pandas-DataFrames-Solutions.ipynb 103.81Кб
32896864-Lending-company.csv 112.43Кб
32896874-pandas-DataFrames.pdf 438.21Кб
32896876-pandas-DataFrames-Lectures.ipynb 16.61Кб
32896878-pandas-DataFrames-Exercises.ipynb 23.21Кб
32896882-pandas-DataFrames-Solutions.ipynb 103.81Кб
32896886-Lending-company.csv 112.43Кб
32896890-Sales-products.csv 152.28Кб
32904758-NumPy-Fundamentals-Template.ipynb 6.46Кб
32904760-NumPy-Fundamentals-Complete.ipynb 17.75Кб
32905064-NumPy-Fundamentals-Exercise.ipynb 11.13Кб
32905068-NumPy-Fundamentals-Solution.ipynb 23.29Кб
32905364-Working-With-Arrays-Template.ipynb 4.28Кб
32905372-Working-With-Arrays-Complete.ipynb 12.38Кб
32905376-Working-With-Arrays-Exercise.ipynb 8.19Кб
32905380-Working-With-Arrays-Solution.ipynb 16.45Кб
32905420-Generating-Data-With-NumPy-Template.ipynb 5.13Кб
32905426-Generating-Data-With-NumPy-Complete.ipynb 22.14Кб
32905436-Generating-Data-With-NumPy-Exercise.ipynb 8.50Кб
32905442-Generating-Data-With-NumPy-Solution.ipynb 19.85Кб
32905472-Statistics-With-NumPy-Template.ipynb 7.66Кб
32905482-Statistics-With-NumPy-Complete.ipynb 29.54Кб
32905490-Statistics-With-NumPy-Exercise.ipynb 10.47Кб
32905494-Statistics-With-NumPy-Solution.ipynb 26.32Кб
32905556-Preprocessing-Data-With-NumPy-Template.ipynb 14.68Кб
32905558-Preprocessing-Data-With-NumPy-Complete.ipynb 80.88Кб
32905618-Lending-company-Numeric.csv 29.54Кб
32905624-Lending-company-Numeric-NAN.csv 28.64Кб
32905628-Preprocessing-Data-With-NumPy-Template.ipynb 14.68Кб
32905630-Preprocessing-Data-With-NumPy-Complete.ipynb 80.88Кб
32905632-Lending-company-Numeric.csv 29.54Кб
32905638-Lending-company-Numeric-NAN.csv 28.64Кб
32905800-A-Loan-Data-Example-with-NumPy-Template.ipynb 23.02Кб
32905806-A-Loan-Data-Example-with-NumPy-Complete.ipynb 68.13Кб
32905808-EUR-USD.csv 964б
32905810-loan-data.csv 1.53Мб
32905812-loan-data-dictionary.xlsx 19.60Кб
32905828-A-Loan-Data-Example-with-NumPy-Template.ipynb 23.02Кб
32905830-A-Loan-Data-Example-with-NumPy-Complete.ipynb 68.13Кб
32905860-EUR-USD.csv 964б
32905864-loan-data.csv 1.53Мб
32905866-loan-data-dictionary.xlsx 19.60Кб
32905886-Absenteeism-data.csv 32.05Кб
32905894-df-cleaned.csv 29.11Кб
32906066-Absenteeism-Exercise-Lectures.ipynb 8.43Мб
32906098-Absenteeism-Exercise-df-cleaned.ipynb 17.95Кб
32906104-Absenteeism-data.csv 32.05Кб
32906108-df-cleaned.csv 29.11Кб
32906114-data-cleaning-homework.pdf 135.74Кб
32906128-Absenteeism-Exercise-Lectures.ipynb 8.43Мб
32906132-Absenteeism-Exercise-df-cleaned.ipynb 17.95Кб
32906136-Absenteeism-data.csv 32.05Кб
32906140-df-cleaned.csv 29.11Кб
32906148-data-cleaning-homework.pdf 135.74Кб
32906196-Data-Viz-Notebook-Template.ipynb 5.44Кб
32906202-Data-Viz-Homework-Notebook.ipynb 11.79Кб
32906208-Data-Visualization-Course-Notes.pdf 1.67Мб
32906548-Data-Viz-Homework-Solution-Notebook.ipynb 687.58Кб
32906550-Data-Viz-Notebook-with-Comments.ipynb 26.15Кб
32906864-APIs-complete-notebook.ipynb 1.16Мб
32906872-15.8.Homework-Setup.ipynb 2.69Кб
32906880-15.8.Homework-Solution.ipynb 485.40Кб
38405832-Sales-products.csv 152.28Кб
external-assets-links.txt 123б
external-assets-links.txt 110б
external-assets-links.txt 130б
external-assets-links.txt 119б
external-assets-links.txt 109б
external-assets-links.txt 240б
external-assets-links.txt 1.13Кб
external-assets-links.txt 119б
external-assets-links.txt 193б
external-assets-links.txt 110б
external-assets-links.txt 114б
external-assets-links.txt 107б
external-assets-links.txt 112б
external-assets-links.txt 116б
external-assets-links.txt 123б
external-assets-links.txt 118б
external-assets-links.txt 116б
external-assets-links.txt 127б
external-assets-links.txt 129б
external-assets-links.txt 133б
external-assets-links.txt 2.00Кб
Статистика распространения по странам
Великобритания (GB) 4
Китай (CN) 1
Турция (TR) 1
Австралия (AU) 1
Всего 7
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент