Общая информация
Название [Udemy] The Data Science Course 2020 Complete Data Science Bootcamp (2021) [En]
Тип
Размер 15.31Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
001 A Practical Example_ What You Will Learn in This Course.en.srt 6.60Кб
001 A Practical Example_ What You Will Learn in This Course.mp4 49.03Мб
002 What Does the Course Cover.en.srt 5.26Кб
002 What Does the Course Cover.mp4 62.25Мб
003 Download All Resources and Important FAQ.html 22.58Кб
003 FAQ-The-Data-Science-Course.pdf 306.10Кб
004 Data Science and Business Buzzwords_ Why are there so Many_.en.srt 6.87Кб
004 Data Science and Business Buzzwords_ Why are there so Many_.mp4 81.41Мб
005 What is the difference between Analysis and Analytics.en.srt 5.28Кб
005 What is the difference between Analysis and Analytics.mp4 53.55Мб
006 365-DataScience-Diagram.pdf 323.08Кб
006 Business Analytics, Data Analytics, and Data Science_ An Introduction.en.srt 11.05Кб
006 Business Analytics, Data Analytics, and Data Science_ An Introduction.mp4 64.51Мб
007 365-DataScience.png 6.92Мб
007 365-DataScience-Diagram.pdf 323.08Кб
007 Continuing with BI, ML, and AI.en.srt 12.32Кб
007 Continuing with BI, ML, and AI.mp4 108.98Мб
008 365-DataScience.png 6.92Мб
008 A Breakdown of our Data Science Infographic.en.srt 5.31Кб
008 A Breakdown of our Data Science Infographic.mp4 67.74Мб
009 Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.en.srt 9.33Кб
009 Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.mp4 126.87Мб
010 The Reason Behind These Disciplines.en.srt 6.75Кб
010 The Reason Behind These Disciplines.mp4 81.18Мб
011 Techniques for Working with Traditional Data.en.srt 11.03Кб
011 Techniques for Working with Traditional Data.mp4 138.30Мб
012 Real Life Examples of Traditional Data.en.srt 2.33Кб
012 Real Life Examples of Traditional Data.mp4 29.93Мб
013 Techniques for Working with Big Data.en.srt 5.89Кб
013 Techniques for Working with Big Data.mp4 75.50Мб
014 Real Life Examples of Big Data.en.srt 1.96Кб
014 Real Life Examples of Big Data.mp4 22.03Мб
015 Business Intelligence (BI) Techniques.en.srt 8.96Кб
015 Business Intelligence (BI) Techniques.mp4 89.94Мб
016 Real Life Examples of Business Intelligence (BI).en.srt 2.21Кб
016 Real Life Examples of Business Intelligence (BI).mp4 29.54Мб
017 Techniques for Working with Traditional Methods.en.srt 11.41Кб
017 Techniques for Working with Traditional Methods.mp4 111.65Мб
018 Real Life Examples of Traditional Methods.en.srt 3.72Кб
018 Real Life Examples of Traditional Methods.mp4 42.78Мб
019 Machine Learning (ML) Techniques.en.srt 9.07Кб
019 Machine Learning (ML) Techniques.mp4 99.32Мб
020 Types of Machine Learning.en.srt 10.91Кб
020 Types of Machine Learning.mp4 125.14Мб
021 Real Life Examples of Machine Learning (ML).en.srt 3.01Кб
021 Real Life Examples of Machine Learning (ML).mp4 36.81Мб
022 Necessary Programming Languages and Software Used in Data Science.en.srt 7.57Кб
022 Necessary Programming Languages and Software Used in Data Science.mp4 103.51Мб
023 Finding the Job - What to Expect and What to Look for.en.srt 4.67Кб
023 Finding the Job - What to Expect and What to Look for.mp4 54.38Мб
024 Debunking Common Misconceptions.en.srt 5.49Кб
024 Debunking Common Misconceptions.mp4 72.85Мб
025 Course-Notes-Basic-Probability.pdf 371.05Кб
025 The Basic Probability Formula.en.srt 9.24Кб
025 The Basic Probability Formula.mp4 85.91Мб
026 Computing Expected Values.en.srt 6.93Кб
026 Computing Expected Values.mp4 75.68Мб
027 Frequency.en.srt 6.65Кб
027 Frequency.mp4 61.73Мб
028 Events and Their Complements.en.srt 6.95Кб
028 Events and Their Complements.mp4 59.15Мб
029 Course-Notes-Combinatorics.pdf 226.12Кб
029 Fundamentals of Combinatorics.en.srt 1.35Кб
029 Fundamentals of Combinatorics.mp4 16.21Мб
030 Permutations and How to Use Them.en.srt 4.22Кб
030 Permutations and How to Use Them.mp4 42.72Мб
031 Simple Operations with Factorials.en.srt 3.38Кб
031 Simple Operations with Factorials.mp4 36.11Мб
032 Solving Variations with Repetition.en.srt 3.59Кб
032 Solving Variations with Repetition.mp4 34.00Мб
033 Solving Variations without Repetition.en.srt 4.70Кб
033 Solving Variations without Repetition.mp4 43.14Мб
034 Combinations-With-Repetition.pdf 207.41Кб
034 Solving Combinations.en.srt 5.80Кб
034 Solving Combinations.mp4 57.34Мб
035 Symmetry-Explained.pdf 85.04Кб
035 Symmetry of Combinations.en.srt 4.46Кб
035 Symmetry of Combinations.mp4 40.30Мб
036 Solving Combinations with Separate Sample Spaces.en.srt 3.87Кб
036 Solving Combinations with Separate Sample Spaces.mp4 33.15Мб
037 Combinatorics in Real-Life_ The Lottery.en.srt 4.31Кб
037 Combinatorics in Real-Life_ The Lottery.mp4 41.29Мб
038 A Recap of Combinatorics.en.srt 3.87Кб
038 A Recap of Combinatorics.mp4 38.49Мб
039 Additional-Exercises-Combinatorics.pdf 106.58Кб
039 Additional-Exercises-Combinatorics-Solutions.pdf 245.67Кб
039 A Practical Example of Combinatorics.en.srt 14.45Кб
039 A Practical Example of Combinatorics.mp4 134.31Мб
040 Course-Notes-Bayesian-Inference.pdf 386.01Кб
040 Sets and Events.en.srt 5.24Кб
040 Sets and Events.mp4 53.46Мб
041 Ways Sets Can Interact.en.srt 4.55Кб
041 Ways Sets Can Interact.mp4 47.42Мб
042 Intersection of Sets.en.srt 2.56Кб
042 Intersection of Sets.mp4 26.96Мб
043 Union of Sets.en.srt 5.71Кб
043 Union of Sets.mp4 57.19Мб
044 Mutually Exclusive Sets.en.srt 2.60Кб
044 Mutually Exclusive Sets.mp4 25.39Мб
045 Dependence and Independence of Sets.en.srt 3.59Кб
045 Dependence and Independence of Sets.mp4 34.78Мб
046 The Conditional Probability Formula.en.srt 5.10Кб
046 The Conditional Probability Formula.mp4 45.86Мб
047 The Law of Total Probability.en.srt 3.61Кб
047 The Law of Total Probability.mp4 34.93Мб
048 The Additive Rule.en.srt 2.83Кб
048 The Additive Rule.mp4 26.97Мб
049 The Multiplication Law.en.srt 4.79Кб
049 The Multiplication Law.mp4 49.02Мб
050 Bayes' Law.en.srt 7.45Кб
050 Bayes' Law.mp4 49.93Мб
051 A Practical Example of Bayesian Inference.en.srt 19.98Кб
051 A Practical Example of Bayesian Inference.mp4 145.12Мб
051 Bayesian-Homework.pdf 27.26Кб
051 Bayesian-Homework-Solutions.pdf 30.35Кб
051 CDS-E7-E8-Hamilton.pdf 845.31Кб
052 Course-Notes-Probability-Distributions.pdf 463.95Кб
052 Fundamentals of Probability Distributions.en.srt 7.80Кб
052 Fundamentals of Probability Distributions.mp4 73.40Мб
053 Types of Probability Distributions.en.srt 9.62Кб
053 Types of Probability Distributions.mp4 71.06Мб
054 Characteristics of Discrete Distributions.en.srt 2.55Кб
054 Characteristics of Discrete Distributions.mp4 22.70Мб
055 Discrete Distributions_ The Uniform Distribution.en.srt 2.83Кб
055 Discrete Distributions_ The Uniform Distribution.mp4 24.39Мб
056 Discrete Distributions_ The Bernoulli Distribution.en.srt 3.97Кб
056 Discrete Distributions_ The Bernoulli Distribution.mp4 34.13Мб
057 Discrete Distributions_ The Binomial Distribution.en.srt 8.59Кб
057 Discrete Distributions_ The Binomial Distribution.mp4 68.83Мб
058 Discrete Distributions_ The Poisson Distribution.en.srt 6.80Кб
058 Discrete Distributions_ The Poisson Distribution.mp4 55.75Мб
058 Poisson-Expected-Value-and-Variance.pdf 145.99Кб
059 Characteristics of Continuous Distributions.en.srt 8.97Кб
059 Characteristics of Continuous Distributions.mp4 84.12Мб
059 Solving-Integrals.pdf 343.85Кб
060 Continuous Distributions_ The Normal Distribution.en.srt 4.94Кб
060 Continuous Distributions_ The Normal Distribution.mp4 48.24Мб
060 Normal-Distribution-Exp-and-Var.pdf 144.08Кб
061 Continuous Distributions_ The Standard Normal Distribution.en.srt 5.46Кб
061 Continuous Distributions_ The Standard Normal Distribution.mp4 47.90Мб
062 Continuous Distributions_ The Students' T Distribution.en.srt 2.87Кб
062 Continuous Distributions_ The Students' T Distribution.mp4 27.18Мб
063 Continuous Distributions_ The Chi-Squared Distribution.en.srt 2.85Кб
063 Continuous Distributions_ The Chi-Squared Distribution.mp4 26.34Мб
064 Continuous Distributions_ The Exponential Distribution.en.srt 4.28Кб
064 Continuous Distributions_ The Exponential Distribution.mp4 40.23Мб
065 Continuous Distributions_ The Logistic Distribution.en.srt 5.20Кб
065 Continuous Distributions_ The Logistic Distribution.mp4 47.05Мб
066 A Practical Example of Probability Distributions.en.srt 20.63Кб
066 A Practical Example of Probability Distributions.mp4 157.82Мб
066 Customers-Membership.xlsx 9.69Кб
066 Customers-Membership-post.xlsx 15.62Кб
066 Daily-Views.xlsx 9.53Кб
066 Daily-Views-post.xlsx 20.21Кб
066 FIFA19.csv 8.64Мб
066 FIFA19-post.csv 8.64Мб
067 Probability in Finance.en.srt 10.18Кб
067 Probability in Finance.mp4 99.06Мб
067 Probability-in-Finance-Homework.pdf 110.68Кб
067 Probability-in-Finance-Solutions.pdf 184.46Кб
068 Probability in Statistics.en.srt 8.73Кб
068 Probability in Statistics.mp4 77.28Мб
069 Probability-Cheat-Sheet.pdf 320.28Кб
069 Probability in Data Science.en.srt 6.89Кб
069 Probability in Data Science.mp4 63.49Мб
070 Course-notes-descriptive-statistics.pdf 482.21Кб
070 Population and Sample.en.srt 5.67Кб
070 Population and Sample.mp4 58.11Мб
070 Statistics-Glossary.xlsx 20.26Кб
071 Course-notes-descriptive-statistics.pdf 482.21Кб
071 Glossary.xlsx 19.97Кб
071 Types of Data.en.srt 6.17Кб
071 Types of Data.mp4 72.52Мб
072 Levels of Measurement.en.srt 4.71Кб
072 Levels of Measurement.mp4 54.38Мб
073 2.3.Categorical-variables.Visualization-techniques-lesson.xlsx 30.77Кб
073 Categorical Variables - Visualization Techniques.en.srt 6.53Кб
073 Categorical Variables - Visualization Techniques.mp4 36.64Мб
074 2.3.Categorical-variables.Visualization-techniques-exercise.xlsx 15.24Кб
074 2.3.Categorical-variables.Visualization-techniques-exercise-solution.xlsx 41.11Кб
074 Categorical Variables Exercise.html 986б
074 Statistics-PDF-with-Excel-Solutions-that-dont-visualize-properly.pdf 289.12Кб
075 2.4.Numerical-variables.Frequency-distribution-table-lesson.xlsx 11.44Кб
075 Numerical Variables - Frequency Distribution Table.en.srt 4.52Кб
075 Numerical Variables - Frequency Distribution Table.mp4 25.85Мб
076 2.4.Numerical-variables.Frequency-distribution-table-exercise-solution.xlsx 13.15Кб
076 Numerical Variables Exercise.html 984б
077 2.5.The-Histogram-lesson.xlsx 18.63Кб
077 The Histogram.en.srt 3.11Кб
077 The Histogram.mp4 13.78Мб
078 2.5.The-Histogram-exercise.xlsx 15.50Кб
078 2.5.The-Histogram-exercise-solution.xlsx 17.10Кб
078 Histogram Exercise.html 974б
078 Statistics-PDF-with-Excel-Solutions-that-dont-visualize-properly.pdf 289.12Кб
079 2.6.Cross-table-and-scatter-plot.xlsx 26.12Кб
079 Cross Tables and Scatter Plots.en.srt 6.93Кб
079 Cross Tables and Scatter Plots.mp4 39.80Мб
080 2.6.Cross-table-and-scatter-plot-exercise.xlsx 16.28Кб
080 2.6.Cross-table-and-scatter-plot-exercise-solution.xlsx 40.44Кб
080 Cross Tables and Scatter Plots Exercise.html 995б
081 2.7.Mean-median-and-mode-lesson.xlsx 10.49Кб
081 Mean, median and mode.en.srt 5.96Кб
081 Mean, median and mode.mp4 37.12Мб
082 2.7.Mean-median-and-mode-exercise.xlsx 10.87Кб
082 2.7.Mean-median-and-mode-exercise-solution.xlsx 11.35Кб
082 Mean, Median and Mode Exercise.html 986б
083 2.8.Skewness-lesson.xlsx 34.63Кб
083 Skewness.en.srt 3.78Кб
083 Skewness.mp4 19.40Мб
084 2.8.Skewness-exercise.xlsx 9.49Кб
084 2.8.Skewness-exercise-solution.xlsx 19.78Кб
084 Skewness Exercise.html 973б
085 2.9.Variance-lesson.xlsx 10.08Кб
085 Variance.en.srt 7.81Кб
085 Variance.mp4 50.95Мб
086 2.9.Variance-exercise.xlsx 10.83Кб
086 2.9.Variance-exercise-solution.xlsx 11.05Кб
086 Variance Exercise.html 1.38Кб
087 2.10.Standard-deviation-and-coefficient-of-variation-lesson.xlsx 10.97Кб
087 Standard Deviation and Coefficient of Variation.en.srt 6.86Кб
087 Standard Deviation and Coefficient of Variation.mp4 45.12Мб
088 2.10.Standard-deviation-and-coefficient-of-variation-exercise.xlsx 11.61Кб
088 2.10.Standard-deviation-and-coefficient-of-variation-exercise-solution.xlsx 12.60Кб
088 Standard Deviation and Coefficient of Variation Exercise.html 1012б
089 2.11.Covariance-lesson.xlsx 24.92Кб
089 Covariance.en.srt 5.11Кб
089 Covariance.mp4 27.48Мб
090 2.11.Covariance-exercise.xlsx 20.23Кб
090 2.11.Covariance-exercise-solution.xlsx 29.51Кб
090 Covariance Exercise.html 975б
091 Correlation Coefficient.en.srt 4.89Кб
091 Correlation Coefficient.mp4 29.38Мб
092 2.12.Correlation-exercise.xlsx 29.30Кб
092 2.12.Correlation-exercise-solution.xlsx 29.48Кб
092 Correlation Coefficient Exercise.html 988б
093 2.13.Practical-example.Descriptive-statistics-lesson.xlsx 146.51Кб
093 Practical Example_ Descriptive Statistics.en.srt 21.61Кб
093 Practical Example_ Descriptive Statistics.mp4 160.46Мб
094 2.13.Practical-example.Descriptive-statistics-exercise.xlsx 120.27Кб
094 2.13.Practical-example.Descriptive-statistics-exercise-solution.xlsx 146.38Кб
094 Practical Example_ Descriptive Statistics Exercise.html 1006б
095 Course-notes-inferential-statistics.pdf 382.32Кб
095 Introduction.en.srt 1.69Кб
095 Introduction.mp4 15.50Мб
096 3.2.What-is-a-distribution-lesson.xlsx 19.46Кб
096 Course-notes-inferential-statistics.pdf 382.32Кб
096 What is a Distribution.en.srt 6.10Кб
096 What is a Distribution.mp4 61.59Мб
097 The Normal Distribution.en.srt 5.08Кб
097 The Normal Distribution.mp4 49.85Мб
098 3.4.Standard-normal-distribution-lesson.xlsx 10.38Кб
098 The Standard Normal Distribution.en.srt 4.09Кб
098 The Standard Normal Distribution.mp4 22.50Мб
099 3.4.Standard-normal-distribution-exercise.xlsx 11.99Кб
099 3.4.Standard-normal-distribution-exercise-solution.xlsx 24.04Кб
099 The Standard Normal Distribution Exercise.html 997б
100 Central Limit Theorem.en.srt 5.85Кб
100 Central Limit Theorem.mp4 62.88Мб
101 Standard error.en.srt 2.11Кб
101 Standard error.mp4 22.77Мб
102 Estimators and Estimates.en.srt 3.85Кб
102 Estimators and Estimates.mp4 47.83Мб
103 What are Confidence Intervals_.en.srt 3.39Кб
103 What are Confidence Intervals_.mp4 49.98Мб
104 3.9.Population-variance-known-z-score-lesson.xlsx 11.21Кб
104 3.9.The-z-table.xlsx 25.58Кб
104 Confidence Intervals; Population Variance Known; Z-score.en.srt 10.15Кб
104 Confidence Intervals; Population Variance Known; Z-score.mp4 78.20Мб
105 3.9.Population-variance-known-z-score-exercise.xlsx 10.83Кб
105 3.9.Population-variance-known-z-score-exercise-solution.xlsx 11.16Кб
105 3.9.The-z-table.xlsx 25.58Кб
105 Confidence Intervals; Population Variance Known; Z-score; Exercise.html 1022б
106 Confidence Interval Clarifications.en.srt 5.59Кб
106 Confidence Interval Clarifications.mp4 57.03Мб
107 Student's T Distribution.en.srt 4.27Кб
107 Student's T Distribution.mp4 35.43Мб
108 3.11.Population-variance-unknown-t-score-lesson.xlsx 10.78Кб
108 3.11.The-t-table.xlsx 15.85Кб
108 Confidence Intervals; Population Variance Unknown; T-score.en.srt 5.93Кб
108 Confidence Intervals; Population Variance Unknown; T-score.mp4 32.20Мб
109 3.11.Population-variance-unknown-t-score-exercise.xlsx 10.62Кб
109 3.11.Population-variance-unknown-t-score-exercise-solution.xlsx 11.10Кб
109 3.11.The-t-table.xlsx 15.85Кб
109 Confidence Intervals; Population Variance Unknown; T-score; Exercise.html 1.00Кб
110 Margin of Error.en.srt 6.38Кб
110 Margin of Error.mp4 47.23Мб
111 3.13.Confidence-intervals.Two-means.Dependent-samples-lesson.xlsx 10.47Кб
111 Confidence intervals. Two means. Dependent samples.en.srt 8.33Кб
111 Confidence intervals. Two means. Dependent samples.mp4 70.47Мб
112 3.13.Confidence-intervals.Two-means.Dependent-samples-exercise.xlsx 13.74Кб
112 3.13.Confidence-intervals.Two-means.Dependent-samples-exercise-solution.xlsx 14.24Кб
112 Confidence intervals. Two means. Dependent samples Exercise.html 1015б
113 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-lesson.xlsx 9.83Кб
113 Confidence intervals. Two means. Independent Samples (Part 1).en.srt 6.30Кб
113 Confidence intervals. Two means. Independent Samples (Part 1).mp4 28.75Мб
114 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-exercise.xlsx 9.83Кб
114 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-exercise-solution.xlsx 10.12Кб
114 Confidence intervals. Two means. Independent Samples (Part 1). Exercise.html 1.00Кб
115 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-lesson.xlsx 9.52Кб
115 Confidence intervals. Two means. Independent Samples (Part 2).en.srt 4.67Кб
115 Confidence intervals. Two means. Independent Samples (Part 2).mp4 26.82Мб
116 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-exercise.xlsx 9.17Кб
116 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-exercise-solution.xlsx 9.79Кб
116 Confidence intervals. Two means. Independent Samples (Part 2). Exercise.html 1.00Кб
117 Confidence intervals. Two means. Independent Samples (Part 3).en.srt 2.03Кб
117 Confidence intervals. Two means. Independent Samples (Part 3).mp4 19.93Мб
118 3.17.Practical-example.Confidence-intervals-lesson.xlsx 1.74Мб
118 Practical Example_ Inferential Statistics.en.srt 14.17Кб
118 Practical Example_ Inferential Statistics.mp4 102.66Мб
119 3.17.Practical-example.Confidence-intervals-exercise.xlsx 1.73Мб
119 3.17.Practical-example.Confidence-intervals-exercise-solution.xlsx 1.82Мб
119 Practical Example_ Inferential Statistics Exercise.html 1006б
120 Course-notes-hypothesis-testing.pdf 656.44Кб
120 Null vs Alternative Hypothesis.en.srt 7.21Кб
120 Null vs Alternative Hypothesis.mp4 92.04Мб
121 Further Reading on Null and Alternative Hypothesis.html 3.19Кб
122 Course-notes-hypothesis-testing.pdf 656.44Кб
122 Rejection Region and Significance Level.en.srt 8.99Кб
122 Rejection Region and Significance Level.mp4 82.61Мб
123 Type I Error and Type II Error.en.srt 5.91Кб
123 Type I Error and Type II Error.mp4 43.93Мб
124 4.4.Test-for-the-mean.Population-variance-known-lesson.xlsx 10.96Кб
124 Test for the Mean. Population Variance Known.en.srt 8.46Кб
124 Test for the Mean. Population Variance Known.mp4 54.22Мб
125 4.4.Test-for-the-mean.Population-variance-known-exercise.xlsx 11.03Кб
125 4.4.Test-for-the-mean.Population-variance-known-exercise-solution.xlsx 11.22Кб
125 Test for the Mean. Population Variance Known Exercise.html 1009б
126 Online-p-value-calculator.pdf 1.15Мб
126 p-value.en.srt 5.21Кб
126 p-value.mp4 55.87Мб
127 4.6.Test-for-the-mean.Population-variance-unknown-lesson.xlsx 14.54Кб
127 Test for the Mean. Population Variance Unknown.en.srt 5.92Кб
127 Test for the Mean. Population Variance Unknown.mp4 40.24Мб
128 4.6.Test-for-the-mean.Population-variance-unknown-exercise.xlsx 11.34Кб
128 4.6.Test-for-the-mean.Population-variance-unknown-exercise-solution.xlsx 12.63Кб
128 Test for the Mean. Population Variance Unknown Exercise.html 1011б
129 4.7.Test-for-the-mean.Dependent-samples-lesson.xlsx 9.79Кб
129 Test for the Mean. Dependent Samples.en.srt 6.47Кб
129 Test for the Mean. Dependent Samples.mp4 50.37Мб
130 4.7.Test-for-the-mean.Dependent-samples-exercise.xlsx 12.80Кб
130 4.7.Test-for-the-mean.Dependent-samples-exercise-solution.xlsx 14.40Кб
130 Test for the Mean. Dependent Samples Exercise.html 1001б
131 4.8.Test-for-the-mean.Independent-samples-Part-1-lesson.xlsx 9.63Кб
131 Test for the mean. Independent Samples (Part 1).en.srt 5.70Кб
131 Test for the mean. Independent Samples (Part 1).mp4 33.94Мб
132 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise.xlsx 10.77Кб
132 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise-solution.xlsx 11.25Кб
132 Test for the mean. Independent Samples (Part 1). Exercise.html 1013б
133 4.9.Test-for-the-mean.Independent-samples-Part-2-lesson.xlsx 9.31Кб
133 Test for the mean. Independent Samples (Part 2).en.srt 5.33Кб
133 Test for the mean. Independent Samples (Part 2).mp4 36.39Мб
134 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2.xlsx 10.54Кб
134 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2-solution.xlsx 11.39Кб
134 Test for the mean. Independent Samples (Part 2). Exercise.html 1013б
135 4.10.Hypothesis-testing-section-practical-example.xlsx 51.90Кб
135 Practical Example_ Hypothesis Testing.en.srt 8.82Кб
135 Practical Example_ Hypothesis Testing.mp4 69.48Мб
136 4.10.Hypothesis-testing-section-practical-example-exercise.xlsx 43.69Кб
136 4.10.Hypothesis-testing-section-practical-example-exercise-solution.xlsx 44.27Кб
136 Practical Example_ Hypothesis Testing Exercise.html 1002б
137 Introduction to Programming.en.srt 7.16Кб
137 Introduction to Programming.mp4 58.54Мб
138 Why Python_.en.srt 7.23Кб
138 Why Python_.mp4 75.07Мб
139 Why Jupyter_.en.srt 4.81Кб
139 Why Jupyter_.mp4 44.31Мб
140 Installing Python and Jupyter.en.srt 9.17Кб
140 Installing Python and Jupyter.mp4 50.99Мб
141 Understanding Jupyter's Interface - the Notebook Dashboard.en.srt 3.88Кб
141 Understanding Jupyter's Interface - the Notebook Dashboard.mp4 13.79Мб
142 Prerequisites for Coding in the Jupyter Notebooks.en.srt 8.10Кб
142 Prerequisites for Coding in the Jupyter Notebooks.mp4 30.58Мб
143 Python-Introduction-Course-Notes.pdf 2.03Мб
143 Variables.en.srt 4.71Кб
143 Variables.mp4 14.08Мб
143 Variables-Exercise-Py3.ipynb 2.23Кб
143 Variables-Lecture-Py3.ipynb 3.61Кб
143 Variables-Solution-Py3.ipynb 3.79Кб
144 Numbers-and-Boolean-Values-Exercise-Py3.ipynb 2.29Кб
144 Numbers and Boolean Values in Python.en.srt 3.85Кб
144 Numbers and Boolean Values in Python.mp4 17.06Мб
144 Numbers-and-Boolean-Values-Lecture-Py3.ipynb 3.36Кб
144 Numbers-and-Boolean-Values-Solution-Py3.ipynb 3.23Кб
145 Python Strings.en.srt 7.37Кб
145 Python Strings.mp4 24.15Мб
145 Strings-Exercise-Py3.ipynb 2.61Кб
145 Strings-Lecture-Py3.ipynb 7.56Кб
145 Strings-Solution-Py3.ipynb 5.45Кб
146 Arithmetic-Operators-Exercise-Py3.ipynb 2.62Кб
146 Arithmetic-Operators-Lecture-Py3.ipynb 3.53Кб
146 Arithmetic-Operators-Solution-Py3.ipynb 4.24Кб
146 Using Arithmetic Operators in Python.en.srt 4.28Кб
146 Using Arithmetic Operators in Python.mp4 18.92Мб
147 The Double Equality Sign.en.srt 1.90Кб
147 The Double Equality Sign.mp4 5.99Мб
147 The-Double-Equality-Sign-Exercise-Py3.ipynb 838б
147 The-Double-Equality-Sign-Lecture-Py3.ipynb 1.45Кб
147 The-Double-Equality-Sign-Solution-Py3.ipynb 1.14Кб
148 How to Reassign Values.en.srt 1.35Кб
148 How to Reassign Values.mp4 4.00Мб
148 Reassign-Values-Exercise-Py3.ipynb 1.67Кб
148 Reassign-Values-Lecture-Py3.ipynb 3.08Кб
148 Reassign-Values-Solution-Py3.ipynb 2.12Кб
149 Add Comments.en.srt 1.87Кб
149 Add Comments.mp4 4.67Мб
149 Add-Comments-Lecture-Py3.ipynb 1.03Кб
150 Line-Continuation-Exercise-Py3.ipynb 1.14Кб
150 Line-Continuation-Lecture-Py3.ipynb 779б
150 Line-Continuation-Solution-Py3.ipynb 1.50Кб
150 Understanding Line Continuation.en.srt 1.18Кб
150 Understanding Line Continuation.mp4 2.35Мб
151 Indexing Elements.en.srt 1.78Кб
151 Indexing Elements.mp4 5.93Мб
151 Indexing-Elements-Exercise-Py3.ipynb 1.35Кб
151 Indexing-Elements-Lecture-Py3.ipynb 1.32Кб
151 Indexing-Elements-Solution-Py3.ipynb 2.17Кб
152 Structure-Your-Code-with-Indentation-Exercise-Py3.ipynb 956б
152 Structure-Your-Code-with-Indentation-Lecture-Py3.ipynb 958б
152 Structure-Your-Code-with-Indentation-Solution-Py3.ipynb 1.50Кб
152 Structuring with Indentation.en.srt 2.26Кб
152 Structuring with Indentation.mp4 5.47Мб
153 Comparison Operators.en.srt 2.57Кб
153 Comparison Operators.mp4 10.17Мб
153 Comparison-Operators-Exercise-Py3.ipynb 1.61Кб
153 Comparison-Operators-Lecture-Py3.ipynb 2.53Кб
153 Comparison-Operators-Solution-Py3.ipynb 2.41Кб
154 Logical and Identity Operators.en.srt 6.02Кб
154 Logical and Identity Operators.mp4 30.05Мб
154 Logical-and-Identity-Operators-Lecture-Py3.ipynb 5.86Кб
154 Logical-and-Identity-Operators-Solution-Py3.ipynb 3.43Кб
155 Introduction-to-the-If-Statement-Exercise-Py3.ipynb 1.53Кб
155 Introduction-to-the-If-Statement-Lecture-Py3.ipynb 1.14Кб
155 Introduction-to-the-If-Statement-Solution-Py3.ipynb 2.19Кб
155 The IF Statement.en.srt 3.67Кб
155 The IF Statement.mp4 10.81Мб
156 Add-an-Else-Statement-Exercise-Py3.ipynb 1.02Кб
156 Add-an-Else-Statement-Lecture-Py3.ipynb 1.76Кб
156 Add-an-Else-Statement-Solution-Py3.ipynb 1.40Кб
156 The ELSE Statement.en.srt 3.23Кб
156 The ELSE Statement.mp4 10.83Мб
157 Else-If-for-Brief-Elif-Exercise-Py3.ipynb 1.75Кб
157 Else-If-for-Brief-Elif-Lecture-Py3.ipynb 3.24Кб
157 Else-If-for-Brief-Elif-Solution-Py3.ipynb 2.40Кб
157 The ELIF Statement.en.srt 6.87Кб
157 The ELIF Statement.mp4 25.07Мб
158 A Note on Boolean Values.en.srt 3.02Кб
158 A Note on Boolean Values.mp4 8.90Мб
158 A-Note-on-Boolean-Values-Lecture-Py3.ipynb 791б
159 Defining a Function in Python.en.srt 2.52Кб
159 Defining a Function in Python.mp4 6.29Мб
159 Defining-a-Function-in-Python-Lecture-Py3.ipynb 868б
160 Creating-a-Function-with-a-Parameter-Exercise-Py3.ipynb 1.16Кб
160 Creating-a-Function-with-a-Parameter-Lecture-Py3.ipynb 1.59Кб
160 Creating-a-Function-with-a-Parameter-Solution-Py3.ipynb 1.79Кб
160 How to Create a Function with a Parameter.en.srt 4.47Кб
160 How to Create a Function with a Parameter.mp4 18.08Мб
161 Another-Way-to-Define-a-Function-Exercise-Py3.ipynb 1.24Кб
161 Another-Way-to-Define-a-Function-Lecture-Py3.ipynb 3.29Кб
161 Another-Way-to-Define-a-Function-Solution-Py3.ipynb 1.98Кб
161 Defining a Function in Python - Part II.en.srt 2.98Кб
161 Defining a Function in Python - Part II.mp4 11.13Мб
162 0.6.4-Using-a-Function-in-another-Function-Exercise-Py3.ipynb 1.04Кб
162 0.6.4-Using-a-Function-in-another-Function-Lecture-Py3.ipynb 1015б
162 0.6.4-Using-a-Function-in-another-Function-Solution-Py3.ipynb 1.60Кб
162 How to Use a Function within a Function.en.srt 2.11Кб
162 How to Use a Function within a Function.mp4 8.13Мб
163 Combining-Conditional-Statements-and-Functions-Exercise-Py3.ipynb 1.06Кб
163 Combining-Conditional-Statements-and-Functions-Lecture-Py3.ipynb 1.29Кб
163 Combining-Conditional-Statements-and-Functions-Solution-Py3.ipynb 1.65Кб
163 Conditional Statements and Functions.en.srt 3.66Кб
163 Conditional Statements and Functions.mp4 15.68Мб
164 Creating-Functions-Containing-a-Few-Arguments-Lecture-Py3.ipynb 1.72Кб
164 Functions Containing a Few Arguments.en.srt 1.39Кб
164 Functions Containing a Few Arguments.mp4 6.01Мб
165 Built-in Functions in Python.en.srt 4.37Кб
165 Built-in Functions in Python.mp4 22.01Мб
165 Notable-Built-In-Functions-in-Python-Exercise-Py3.ipynb 3.66Кб
165 Notable-Built-In-Functions-in-Python-Lecture-Py3.ipynb 4.51Кб
165 Notable-Built-In-Functions-in-Python-Solution-Py3.ipynb 5.52Кб
166 Lists.en.srt 10.22Кб
166 Lists.mp4 37.79Мб
166 Lists-Exercise-Py3.ipynb 2.14Кб
166 Lists-Lecture-Py3.ipynb 2.70Кб
166 Lists-Solution-Py3.ipynb 3.18Кб
167 Help-Yourself-with-Methods-Exercise-Py3.ipynb 1.91Кб
167 Help-Yourself-with-Methods-Lecture-Py3.ipynb 4.39Кб
167 Help-Yourself-with-Methods-Solution-Py3.ipynb 2.83Кб
167 Using Methods.en.srt 8.69Кб
167 Using Methods.mp4 37.59Мб
168 List Slicing.en.srt 5.77Кб
168 List Slicing.mp4 30.76Мб
168 List-Slicing-Exercise-Py3.ipynb 2.79Кб
168 List-Slicing-Lecture-Py3.ipynb 5.02Кб
168 List-Slicing-Solution-Py3.ipynb 4.26Кб
169 Tuples.en.srt 7.17Кб
169 Tuples.mp4 29.49Мб
169 Tuples-Exercise-Py3.ipynb 2.07Кб
169 Tuples-Lecture-Py3.ipynb 2.91Кб
169 Tuples-Solution-Py3.ipynb 4.61Кб
170 Dictionaries.en.srt 8.76Кб
170 Dictionaries.mp4 41.68Мб
170 Dictionaries-Exercise-Py3.ipynb 2.92Кб
170 Dictionaries-Lecture-Py3.ipynb 4.35Кб
170 Dictionaries-Solution-Py3.ipynb 6.16Кб
171 For Loops.en.srt 6.83Кб
171 For Loops.mp4 23.59Мб
171 For-Loops-Exercise-Py3.ipynb 1.28Кб
171 For-Loops-Lecture-Py3.ipynb 1.26Кб
171 For-Loops-Solution-Py3.ipynb 1.80Кб
172 While Loops and Incrementing.en.srt 6.13Кб
172 While Loops and Incrementing.mp4 28.43Мб
172 While-Loops-and-Incrementing-Exercise-Py3.ipynb 1.12Кб
172 While-Loops-and-Incrementing-Lecture-Py3.ipynb 1.08Кб
172 While-Loops-and-Incrementing-Solution-Py3.ipynb 1.75Кб
173 Create-Lists-with-the-range-Function-Exercise-Py3.ipynb 1.45Кб
173 Create-Lists-with-the-range-Function-Lecture-Py3.ipynb 1.34Кб
173 Create-Lists-with-the-range-Function-Solution-Py3.ipynb 2.25Кб
173 Lists with the range() Function.en.srt 7.94Кб
173 Lists with the range() Function.mp4 25.79Мб
174 Conditional Statements and Loops.en.srt 7.74Кб
174 Conditional Statements and Loops.mp4 27.76Мб
174 Use-Conditional-Statements-and-Loops-Together-Exercise-Py3.ipynb 2.10Кб
174 Use-Conditional-Statements-and-Loops-Together-Lecture-Py3.ipynb 1.95Кб
174 Use-Conditional-Statements-and-Loops-Together-Solution-Py3.ipynb 2.96Кб
175 All-In-Exercise-Py3.ipynb 1.30Кб
175 All-In-Lecture-Py3.ipynb 1.62Кб
175 All-In-Solution-Py3.ipynb 1.90Кб
175 Conditional Statements, Functions, and Loops.en.srt 2.51Кб
175 Conditional Statements, Functions, and Loops.mp4 9.48Мб
176 How to Iterate over Dictionaries.en.srt 8.27Кб
176 How to Iterate over Dictionaries.mp4 29.65Мб
176 Iterating-over-Dictionaries-Exercise-Py3.ipynb 2.19Кб
176 Iterating-over-Dictionaries-Lecture-Py3.ipynb 1.08Кб
176 Iterating-over-Dictionaries-Solution-Py3.ipynb 2.87Кб
177 Object Oriented Programming.en.srt 6.34Кб
177 Object Oriented Programming.mp4 33.59Мб
178 Modules and Packages.en.srt 1.30Кб
178 Modules and Packages.mp4 8.50Мб
179 What is the Standard Library_.en.srt 3.70Кб
179 What is the Standard Library_.mp4 18.03Мб
180 Importing Modules in Python.en.srt 5.02Кб
180 Importing Modules in Python.mp4 19.93Мб
181 Course-notes-regression-analysis.pdf 312.18Кб
181 Introduction to Regression Analysis.en.srt 2.29Кб
181 Introduction to Regression Analysis.mp4 17.32Мб
182 Course-notes-regression-analysis.pdf 312.18Кб
182 The Linear Regression Model.en.srt 7.35Кб
182 The Linear Regression Model.mp4 57.37Мб
183 Correlation vs Regression.en.srt 2.19Кб
183 Correlation vs Regression.mp4 14.73Мб
184 Geometrical Representation of the Linear Regression Model.en.srt 1.70Кб
184 Geometrical Representation of the Linear Regression Model.mp4 5.12Мб
185 Python Packages Installation.en.srt 5.85Кб
185 Python Packages Installation.mp4 40.58Мб
186 1.01.Simple-linear-regression.csv 922б
186 First Regression in Python.en.srt 8.22Кб
186 First Regression in Python.mp4 44.56Мб
186 Simple-linear-regression.ipynb 3.79Кб
186 Simple-linear-regression-with-comments.ipynb 4.06Кб
187 First Regression in Python Exercise.html 2.22Кб
187 real-estate-price-size.csv 1.86Кб
187 Simple-Linear-Regression-Exercise.ipynb 2.78Кб
187 Simple-Linear-Regression-Exercise-Solution.ipynb 3.57Кб
188 Using Seaborn for Graphs.en.srt 1.53Кб
188 Using Seaborn for Graphs.mp4 12.24Мб
189 How to Interpret the Regression Table.en.srt 6.56Кб
189 How to Interpret the Regression Table.mp4 44.64Мб
190 Decomposition of Variability.en.srt 4.33Кб
190 Decomposition of Variability.mp4 49.66Мб
191 What is the OLS_.en.srt 3.97Кб
191 What is the OLS_.mp4 28.31Мб
192 R-Squared.en.srt 6.82Кб
192 R-Squared.mp4 41.03Мб
193 Multiple Linear Regression.en.srt 3.48Кб
193 Multiple Linear Regression.mp4 21.52Мб
194 1.02.Multiple-linear-regression.csv 1.09Кб
194 Adjusted R-Squared.en.srt 7.83Кб
194 Adjusted R-Squared.mp4 54.83Мб
194 Multiple-linear-regression-and-Adjusted-R-squared.ipynb 2.15Кб
194 Multiple-linear-regression-and-Adjusted-R-squared-with-comments.ipynb 2.80Кб
195 Multiple Linear Regression Exercise.html 986б
195 Multiple-Linear-Regression-Exercise.ipynb 2.45Кб
195 Multiple-Linear-Regression-Exercise-Solution.ipynb 13.39Кб
195 real-estate-price-size-year.csv 2.35Кб
196 Test for Significance of the Model (F-Test).en.srt 2.66Кб
196 Test for Significance of the Model (F-Test).mp4 16.42Мб
197 OLS Assumptions.en.srt 3.15Кб
197 OLS Assumptions.mp4 21.85Мб
198 A1_ Linearity.en.srt 2.45Кб
198 A1_ Linearity.mp4 12.60Мб
199 A2_ No Endogeneity.en.srt 5.45Кб
199 A2_ No Endogeneity.mp4 35.67Мб
200 A3_ Normality and Homoscedasticity.en.srt 6.94Кб
200 A3_ Normality and Homoscedasticity.mp4 42.70Мб
201 A4_ No Autocorrelation.en.srt 5.10Кб
201 A4_ No Autocorrelation.mp4 31.51Мб
202 A5_ No Multicollinearity.en.srt 4.80Кб
202 A5_ No Multicollinearity.mp4 28.70Мб
203 1.03.Dummies.csv 1.19Кб
203 Dealing with Categorical Data - Dummy Variables.en.srt 8.47Кб
203 Dealing with Categorical Data - Dummy Variables.mp4 55.66Мб
203 Dummy-Variables.ipynb 4.62Кб
203 Dummy-variables-with-comments.ipynb 7.09Кб
204 Dealing with Categorical Data - Dummy Variables.html 998б
204 Multiple-Linear-Regression-with-Dummies-Exercise.ipynb 3.01Кб
204 Multiple-Linear-Regression-with-Dummies-Exercise-Solution.ipynb 18.00Кб
204 real-estate-price-size-year-view.csv 3.39Кб
205 Making-predictions.ipynb 5.77Кб
205 Making-predictions-with-comments.ipynb 9.41Кб
205 Making Predictions with the Linear Regression.en.srt 4.63Кб
205 Making Predictions with the Linear Regression.mp4 24.69Мб
206 What is sklearn and How is it Different from Other Packages.en.srt 3.55Кб
206 What is sklearn and How is it Different from Other Packages.mp4 27.25Мб
207 How are we Going to Approach this Section_.en.srt 3.03Кб
207 How are we Going to Approach this Section_.mp4 19.41Мб
208 1.01.Simple-linear-regression.csv 922б
208 Simple Linear Regression with sklearn.en.srt 7.61Кб
208 Simple Linear Regression with sklearn.mp4 34.77Мб
208 sklearn-Simple-Linear-Regression.ipynb 4.92Кб
208 sklearn-Simple-Linear-Regression-with-comments.ipynb 6.06Кб
209 1.01.Simple-linear-regression.csv 922б
209 Simple Linear Regression with sklearn - A StatsModels-like Summary Table.en.srt 6.95Кб
209 Simple Linear Regression with sklearn - A StatsModels-like Summary Table.mp4 32.00Мб
209 sklearn-Simple-Linear-Regression.ipynb 26.07Кб
209 sklearn-Simple-Linear-Regression-with-comments.ipynb 28.35Кб
210 A Note on Normalization.html 1.59Кб
211 1.01.Simple-linear-regression.csv 922б
211 Simple Linear Regression with sklearn - Exercise.html 999б
211 sklearn-Simple-Linear-Regression.ipynb 26.07Кб
211 sklearn-Simple-Linear-Regression-with-comments.ipynb 28.35Кб
212 1.02.Multiple-linear-regression.csv 1.07Кб
212 Multiple Linear Regression with sklearn.en.srt 4.33Кб
212 Multiple Linear Regression with sklearn.mp4 20.07Мб
212 sklearn-Multiple-Linear-Regression.ipynb 7.79Кб
212 sklearn-Multiple-Linear-Regression-with-comments.ipynb 8.65Кб
213 1.02.Multiple-linear-regression.csv 1.07Кб
213 Calculating the Adjusted R-Squared in sklearn.en.srt 6.50Кб
213 Calculating the Adjusted R-Squared in sklearn.mp4 30.88Мб
213 sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared.ipynb 9.11Кб
213 sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-with-comments.ipynb 10.41Кб
214 1.02.Multiple-linear-regression.csv 1.07Кб
214 Calculating the Adjusted R-Squared in sklearn - Exercise.html 1007б
214 sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-Exercise.ipynb 9.83Кб
214 sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-Exercise-Solution.ipynb 10.31Кб
215 1.02.Multiple-linear-regression.csv 1.07Кб
215 Feature Selection (F-regression).en.srt 6.92Кб
215 Feature Selection (F-regression).mp4 29.51Мб
215 sklearn-Feature-Selection-with-F-regression.ipynb 10.44Кб
215 sklearn-Feature-Selection-with-F-regression-with-comments.ipynb 12.99Кб
216 1.02.Multiple-linear-regression.csv 1.07Кб
216 A Note on Calculation of P-values with sklearn.html 1.26Кб
216 sklearn-How-to-properly-include-p-values.ipynb 12.71Кб
217 1.02.Multiple-linear-regression.csv 1.07Кб
217 Creating a Summary Table with P-values.en.srt 3.13Кб
217 Creating a Summary Table with P-values.mp4 12.30Мб
217 sklearn-Multiple-Linear-Regression-Summary-Table.ipynb 13.71Кб
217 sklearn-Multiple-Linear-Regression-Summary-Table-with-comments.ipynb 16.63Кб
218 Multiple Linear Regression - Exercise.html 988б
218 real-estate-price-size-year.csv 2.35Кб
218 sklearn-Multiple-Linear-Regression-Exercise.ipynb 5.67Кб
218 sklearn-Multiple-Linear-Regression-Exercise-Solution.ipynb 15.44Кб
219 1.02.Multiple-linear-regression.csv 1.07Кб
219 Feature Scaling (Standardization).en.srt 7.96Кб
219 Feature Scaling (Standardization).mp4 39.08Мб
219 sklearn-Feature-Selection-through-Feature-Scaling-Standardization-Part-1.ipynb 11.73Кб
220 1.02.Multiple-linear-regression.csv 1.07Кб
220 Feature Selection through Standardization of Weights.en.srt 7.53Кб
220 Feature Selection through Standardization of Weights.mp4 34.89Мб
220 sklearn-Feature-Selection-through-Feature-Scaling-Standardization-Part-2.ipynb 14.89Кб
221 1.02.Multiple-linear-regression.csv 1.07Кб
221 Predicting with the Standardized Coefficients.en.srt 5.81Кб
221 Predicting with the Standardized Coefficients.mp4 25.96Мб
221 sklearn-Making-Predictions-with-the-Standardized-Coefficients.ipynb 29.75Кб
221 sklearn-Making-Predictions-with-the-Standardized-Coefficients-with-comments.ipynb 22.03Кб
222 Feature Scaling (Standardization) - Exercise.html 995б
222 real-estate-price-size-year.csv 2.35Кб
222 sklearn-Feature-Scaling-Exercise.ipynb 6.07Кб
222 sklearn-Feature-Scaling-Exercise-Solution.ipynb 16.28Кб
223 Underfitting and Overfitting.en.srt 3.58Кб
223 Underfitting and Overfitting.mp4 16.95Мб
224 sklearn-Train-Test-Split.ipynb 7.23Кб
224 sklearn-Train-Test-Split-with-comments.ipynb 9.05Кб
224 Train - Test Split Explained.en.srt 9.98Кб
224 Train - Test Split Explained.mp4 49.17Мб
225 1.04.Real-life-example.csv 219.83Кб
225 Practical Example_ Linear Regression (Part 1).en.srt 15.43Кб
225 Practical Example_ Linear Regression (Part 1).mp4 97.08Мб
225 sklearn-Linear-Regression-Practical-Example-Part-1.ipynb 166.91Кб
225 sklearn-Linear-Regression-Practical-Example-Part-1-with-comments.ipynb 171.38Кб
226 1.04.Real-life-example.csv 219.83Кб
226 Practical Example_ Linear Regression (Part 2).en.srt 8.33Кб
226 Practical Example_ Linear Regression (Part 2).mp4 46.00Мб
226 sklearn-Linear-Regression-Practical-Example-Part-2.ipynb 328.74Кб
226 sklearn-Linear-Regression-Practical-Example-Part-2-with-comments.ipynb 335.63Кб
227 A Note on Multicollinearity.html 1.71Кб
228 Practical Example_ Linear Regression (Part 3).en.srt 4.27Кб
228 Practical Example_ Linear Regression (Part 3).mp4 23.69Мб
228 sklearn-Linear-Regression-Practical-Example-Part-3.ipynb 343.58Кб
228 sklearn-Linear-Regression-Practical-Example-Part-3-with-comments.ipynb 351.47Кб
229 1.04.Real-life-example.csv 219.83Кб
229 Dummies and Variance Inflation Factor - Exercise.html 999б
229 sklearn-Dummies-and-VIF-Exercise.ipynb 344.62Кб
229 sklearn-Dummies-and-VIF-Exercise-Solution.ipynb 370.22Кб
230 1.04.Real-life-example.csv 219.83Кб
230 Practical Example_ Linear Regression (Part 4).en.srt 11.94Кб
230 Practical Example_ Linear Regression (Part 4).mp4 56.04Мб
230 sklearn-Linear-Regression-Practical-Example-Part-4.ipynb 397.23Кб
230 sklearn-Linear-Regression-Practical-Example-Part-4-with-comments.ipynb 407.59Кб
231 Dummy Variables - Exercise.html 1.58Кб
232 1.04.Real-life-example.csv 219.83Кб
232 Practical Example_ Linear Regression (Part 5).en.srt 10.99Кб
232 Practical Example_ Linear Regression (Part 5).mp4 57.88Мб
232 sklearn-Linear-Regression-Practical-Example-Part-5.ipynb 698.36Кб
232 sklearn-Linear-Regression-Practical-Example-Part-5-with-comments.ipynb 711.05Кб
233 Linear Regression - Exercise.html 1.37Кб
234 Course-Notes-Logistic-Regression.pdf 335.17Кб
234 Introduction to Logistic Regression.en.srt 1.67Кб
234 Introduction to Logistic Regression.mp4 27.06Мб
235 2.01.Admittance.csv 1.58Кб
235 Admittance.ipynb 3.54Кб
235 Admittance-with-comments.ipynb 5.32Кб
235 A Simple Example in Python.en.srt 6.02Кб
235 A Simple Example in Python.mp4 34.69Мб
235 Course-Notes-Logistic-Regression.pdf 335.17Кб
236 Logistic vs Logit Function.en.srt 5.07Кб
236 Logistic vs Logit Function.mp4 86.49Мб
237 Admittance-regression.ipynb 2.09Кб
237 Admittance-regression-summary-error.ipynb 2.48Кб
237 Admittance-regression-tables-fixed-error.ipynb 4.11Кб
237 Building a Logistic Regression.en.srt 3.40Кб
237 Building a Logistic Regression.mp4 17.10Мб
238 Building a Logistic Regression - Exercise.html 1003б
238 Building-a-Logistic-Regression-Exercise.ipynb 2.92Кб
238 Building-a-Logistic-Regression-Solution.ipynb 4.44Кб
238 Example-bank-data.csv 6.21Кб
239 An Invaluable Coding Tip.en.srt 3.34Кб
239 An Invaluable Coding Tip.mp4 23.05Мб
240 Understanding Logistic Regression Tables.en.srt 5.78Кб
240 Understanding Logistic Regression Tables.mp4 30.55Мб
241 Bank-data.csv 19.55Кб
241 Understanding Logistic Regression Tables - Exercise.html 1013б
241 Understanding-Logistic-Regression-Tables-Exercise.ipynb 3.16Кб
241 Understanding-Logistic-Regression-Tables-Solution.ipynb 4.79Кб
242 What do the Odds Actually Mean.en.srt 4.98Кб
242 What do the Odds Actually Mean.mp4 32.28Мб
243 2.02.Binary-predictors.csv 2.56Кб
243 Binary-predictors.ipynb 2.41Кб
243 Binary Predictors in a Logistic Regression.en.srt 5.62Кб
243 Binary Predictors in a Logistic Regression.mp4 38.43Мб
244 Bank-data.csv 19.55Кб
244 Binary Predictors in a Logistic Regression - Exercise.html 1015б
244 Binary-Predictors-in-a-Logistic-Regression-Exercise.ipynb 2.54Кб
244 Binary-Predictors-in-a-Logistic-Regression-Solution.ipynb 4.51Кб
245 Accuracy.ipynb 3.63Кб
245 Accuracy-with-comments.ipynb 11.67Кб
245 Calculating the Accuracy of the Model.en.srt 4.29Кб
245 Calculating the Accuracy of the Model.mp4 32.85Мб
246 Bank-data.csv 19.55Кб
246 Calculating the Accuracy of the Model.html 999б
246 Calculating-the-Accuracy-of-the-Model-Exercise.ipynb 5.39Кб
246 Calculating-the-Accuracy-of-the-Model-Solution.ipynb 81.21Кб
247 Underfitting and Overfitting.en.srt 5.16Кб
247 Underfitting and Overfitting.mp4 22.29Мб
248 2.03.Test-dataset.csv 322б
248 Testing the Model.en.srt 6.81Кб
248 Testing-the-model.ipynb 5.77Кб
248 Testing the Model.mp4 32.27Мб
248 Testing-the-model-with-comments.ipynb 7.56Кб
249 Bank-data.csv 19.55Кб
249 Bank-data-testing.csv 8.30Кб
249 Testing the Model - Exercise.html 990б
249 Testing-the-Model-Exercise.ipynb 6.79Кб
249 Testing-the-Model-Solution.ipynb 111.10Кб
250 Course-Notes-Cluster-Analysis.pdf 208.65Кб
250 Introduction to Cluster Analysis.en.srt 4.99Кб
250 Introduction to Cluster Analysis.mp4 53.42Мб
251 Course-Notes-Cluster-Analysis.pdf 208.65Кб
251 Some Examples of Clusters.en.srt 6.49Кб
251 Some Examples of Clusters.mp4 71.53Мб
252 Difference between Classification and Clustering.en.srt 3.40Кб
252 Difference between Classification and Clustering.mp4 36.15Мб
253 Math Prerequisites.en.srt 4.22Кб
253 Math Prerequisites.mp4 14.55Мб
254 K-Means Clustering.en.srt 6.95Кб
254 K-Means Clustering.mp4 27.28Мб
255 3.01.Country-clusters.csv 200б
255 A Simple Example of Clustering.en.srt 9.99Кб
255 A Simple Example of Clustering.mp4 51.82Мб
255 Country-clusters.ipynb 3.31Кб
255 Country-clusters-with-comments.ipynb 5.80Кб
256 A Simple Example of Clustering - Exercise.html 1003б
256 A-Simple-Example-of-Clustering-Exercise.ipynb 3.62Кб
256 A-Simple-Example-of-Clustering-Solution.ipynb 4.65Кб
256 Countries-exercise.csv 8.27Кб
257 Categorical-data.ipynb 3.35Кб
257 Categorical-data-with-comments.ipynb 5.62Кб
257 Clustering Categorical Data.en.srt 3.38Кб
257 Clustering Categorical Data.mp4 21.23Мб
258 Categorical.csv 10.34Кб
258 Clustering Categorical Data - Exercise.html 1000б
258 Clustering-Categorical-Data-Exercise.ipynb 3.78Кб
258 Clustering-Categorical-Data-Solution.ipynb 4.90Кб
259 How to Choose the Number of Clusters.en.srt 7.66Кб
259 How to Choose the Number of Clusters.mp4 44.13Мб
259 Selecting-the-number-of-clusters.ipynb 4.53Кб
259 Selecting-the-number-of-clusters-with-comments.ipynb 7.48Кб
260 Countries-exercise.csv 8.27Кб
260 How to Choose the Number of Clusters - Exercise.html 1009б
260 How-to-Choose-the-Number-of-Clusters-Exercise.ipynb 5.55Кб
260 How-to-Choose-the-Number-of-Clusters-Solution.ipynb 8.49Кб
261 Pros and Cons of K-Means Clustering.en.srt 4.80Кб
261 Pros and Cons of K-Means Clustering.mp4 37.70Мб
262 To Standardize or not to Standardize.en.srt 6.11Кб
262 To Standardize or not to Standardize.mp4 30.10Мб
263 Relationship between Clustering and Regression.en.srt 2.26Кб
263 Relationship between Clustering and Regression.mp4 9.93Мб
264 3.12.Example.csv 283б
264 Market-segmentation-example.ipynb 3.80Кб
264 Market-segmentation-example-with-comments.ipynb 5.90Кб
264 Market Segmentation with Cluster Analysis (Part 1).en.srt 7.84Кб
264 Market Segmentation with Cluster Analysis (Part 1).mp4 43.01Мб
265 Market-segmentation-example-Part2.ipynb 4.68Кб
265 Market-segmentation-example-Part2-with-comments.ipynb 6.81Кб
265 Market Segmentation with Cluster Analysis (Part 2).en.srt 9.57Кб
265 Market Segmentation with Cluster Analysis (Part 2).mp4 56.11Мб
266 How is Clustering Useful_.en.srt 6.63Кб
266 How is Clustering Useful_.mp4 74.45Мб
267 EXERCISE_ Species Segmentation with Cluster Analysis (Part 1).html 1023б
267 iris-dataset.csv 2.40Кб
267 Species-Segmentation-with-Cluster-Analysis-Part-1-Exercise.ipynb 4.46Кб
267 Species-Segmentation-with-Cluster-Analysis-Part-1-Solution.ipynb 7.35Кб
268 EXERCISE_ Species Segmentation with Cluster Analysis (Part 2).html 1023б
268 iris-dataset.csv 2.40Кб
268 iris-with-answers.csv 3.63Кб
268 Species-Segmentation-with-Cluster-Analysis-Part-2-Exercise.ipynb 10.74Кб
268 Species-Segmentation-with-Cluster-Analysis-Part-2-Solution.ipynb 15.30Кб
269 Types of Clustering.en.srt 4.83Кб
269 Types of Clustering.mp4 44.57Мб
270 Dendrogram.en.srt 7.65Кб
270 Dendrogram.mp4 29.06Мб
271 Country-clusters-standardized.csv 244б
271 Heatmaps.en.srt 6.61Кб
271 Heatmaps.ipynb 1.82Кб
271 Heatmaps.mp4 29.62Мб
271 Heatmaps-with-comments.ipynb 17.66Кб
272 What is a Matrix_.en.srt 4.51Кб
272 What is a Matrix_.mp4 33.59Мб
273 Scalars and Vectors.en.srt 3.93Кб
273 Scalars and Vectors.mp4 33.85Мб
274 Linear Algebra and Geometry.en.srt 4.27Кб
274 Linear Algebra and Geometry.mp4 49.79Мб
275 Arrays in Python - A Convenient Way To Represent Matrices.en.srt 6.38Кб
275 Arrays in Python - A Convenient Way To Represent Matrices.mp4 26.67Мб
275 Scalars-Vectors-and-Matrices.ipynb 4.55Кб
276 Tensors.ipynb 2.08Кб
276 What is a Tensor_.en.srt 3.75Кб
276 What is a Tensor_.mp4 22.52Мб
277 Adding-and-subtracting-matrices.ipynb 3.22Кб
277 Addition and Subtraction of Matrices.en.srt 4.22Кб
277 Addition and Subtraction of Matrices.mp4 32.61Мб
278 Errors when Adding Matrices.en.srt 2.67Кб
278 Errors when Adding Matrices.mp4 11.17Мб
278 Errors-when-adding-scalars-vectors-and-matrices-in-Python.ipynb 3.17Кб
279 Tranpose-of-a-matrix.ipynb 2.89Кб
279 Transpose of a Matrix.en.srt 5.58Кб
279 Transpose of a Matrix.mp4 38.07Мб
280 Dot Product.en.srt 4.45Кб
280 Dot-product.ipynb 2.13Кб
280 Dot Product.mp4 23.99Мб
281 Dot Product of Matrices.en.srt 9.92Кб
281 Dot Product of Matrices.mp4 49.43Мб
281 Dot-product-Part-2.ipynb 3.60Кб
282 Why is Linear Algebra Useful_.en.srt 12.24Кб
282 Why is Linear Algebra Useful_.mp4 144.33Мб
283 What to Expect from this Part_.en.srt 4.81Кб
283 What to Expect from this Part_.mp4 31.10Мб
284 Course-Notes-Section-2.pdf 578.08Кб
284 Introduction to Neural Networks.en.srt 6.12Кб
284 Introduction to Neural Networks.mp4 42.92Мб
285 Course-Notes-Section-2.pdf 578.08Кб
285 Training the Model.en.srt 4.43Кб
285 Training the Model.mp4 28.71Мб
286 Types of Machine Learning.en.srt 5.43Кб
286 Types of Machine Learning.mp4 45.10Мб
287 The Linear Model (Linear Algebraic Version).en.srt 4.02Кб
287 The Linear Model (Linear Algebraic Version).mp4 28.44Мб
288 The Linear Model with Multiple Inputs.en.srt 3.21Кб
288 The Linear Model with Multiple Inputs.mp4 25.11Мб
289 The Linear model with Multiple Inputs and Multiple Outputs.en.srt 5.67Кб
289 The Linear model with Multiple Inputs and Multiple Outputs.mp4 38.31Мб
290 Graphical Representation of Simple Neural Networks.en.srt 2.80Кб
290 Graphical Representation of Simple Neural Networks.mp4 22.64Мб
291 What is the Objective Function_.en.srt 2.20Кб
291 What is the Objective Function_.mp4 17.91Мб
292 Common Objective Functions_ L2-norm Loss.en.srt 2.87Кб
292 Common Objective Functions_ L2-norm Loss.mp4 23.27Мб
293 Common Objective Functions_ Cross-Entropy Loss.en.srt 5.47Кб
293 Common Objective Functions_ Cross-Entropy Loss.mp4 37.24Мб
294 GD-function-example.xlsx 42.33Кб
294 Optimization Algorithm_ 1-Parameter Gradient Descent.en.srt 8.79Кб
294 Optimization Algorithm_ 1-Parameter Gradient Descent.mp4 55.62Мб
295 Optimization Algorithm_ n-Parameter Gradient Descent.en.srt 7.81Кб
295 Optimization Algorithm_ n-Parameter Gradient Descent.mp4 39.42Мб
296 Basic NN Example (Part 1).en.srt 4.64Кб
296 Basic NN Example (Part 1).mp4 20.59Мб
296 Minimal-example-Part-1.ipynb 1.19Кб
296 Shortcuts-for-Jupyter.pdf 619.17Кб
297 Basic NN Example (Part 2).en.srt 7.07Кб
297 Basic NN Example (Part 2).mp4 34.94Мб
297 Minimal-example-Part-2.ipynb 3.65Кб
298 Basic NN Example (Part 3).en.srt 4.64Кб
298 Basic NN Example (Part 3).mp4 24.40Мб
298 Minimal-example-Part-3.ipynb 6.79Кб
299 Basic NN Example (Part 4).en.srt 11.29Кб
299 Basic NN Example (Part 4).mp4 61.13Мб
299 Minimal-example-Part-4-Complete.ipynb 11.41Кб
300 Basic NN Example Exercises.html 2.54Кб
300 Minimal-example-All-Exercises.ipynb 12.89Кб
300 Minimal-example-Exercise-1-Solution.ipynb 69.00Кб
300 Minimal-example-Exercise-2-Solution.ipynb 61.41Кб
300 Minimal-example-Exercise-3.a.Solution.ipynb 67.89Кб
300 Minimal-example-Exercise-3.b.Solution.ipynb 67.72Кб
300 Minimal-example-Exercise-3.c.Solution.ipynb 70.13Кб
300 Minimal-example-Exercise-3.d.Solution.ipynb 84.13Кб
300 Minimal-example-Exercise-4-Solution.ipynb 66.52Кб
300 Minimal-example-Exercise-5-Solution.ipynb 68.88Кб
300 Minimal-example-Exercise-6.ipynb 61.76Кб
300 Minimal-example-Exercise-6-Solution.ipynb 61.76Кб
301 How to Install TensorFlow 2.0.en.srt 6.63Кб
301 How to Install TensorFlow 2.0.mp4 38.76Мб
301 Shortcuts-for-Jupyter.pdf 619.17Кб
302 TensorFlow Outline and Comparison with Other Libraries.en.srt 5.44Кб
302 TensorFlow Outline and Comparison with Other Libraries.mp4 33.51Мб
303 TensorFlow 1 vs TensorFlow 2.en.srt 3.77Кб
303 TensorFlow 1 vs TensorFlow 2.mp4 21.99Мб
304 A Note on TensorFlow 2 Syntax.en.srt 1.41Кб
304 A Note on TensorFlow 2 Syntax.mp4 6.75Мб
305 TensorFlow-Minimal-example-Part1.ipynb 1.66Кб
305 Types of File Formats Supporting TensorFlow.en.srt 3.65Кб
305 Types of File Formats Supporting TensorFlow.mp4 16.40Мб
306 Outlining the Model with TensorFlow 2.en.srt 8.13Кб
306 Outlining the Model with TensorFlow 2.mp4 34.69Мб
306 TensorFlow-Minimal-example-Part2.ipynb 9.06Кб
307 Interpreting the Result and Extracting the Weights and Bias.en.srt 6.48Кб
307 Interpreting the Result and Extracting the Weights and Bias.mp4 30.27Мб
307 TensorFlow-Minimal-example-Part3.ipynb 76.52Кб
308 Customizing a TensorFlow 2 Model.en.srt 4.27Кб
308 Customizing a TensorFlow 2 Model.mp4 22.91Мб
308 TensorFlow-Minimal-example-complete.ipynb 76.85Кб
308 TensorFlow-Minimal-example-complete-with-comments.ipynb 82.29Кб
309 Basic NN with TensorFlow_ Exercises.html 2.18Кб
309 TensorFlow-Minimal-example-All-exercises.ipynb 83.62Кб
309 TensorFlow-Minimal-example-Exercise-1-Solution.ipynb 27.96Кб
309 TensorFlow-Minimal-Example-Exercise-2-1-Solution.ipynb 83.68Кб
309 TensorFlow-Minimal-Example-Exercise-2-2-Solution.ipynb 77.52Кб
309 TensorFlow-Minimal-Example-Exercise-3-Solution.ipynb 84.44Кб
310 Course-Notes-Section-6.pdf 936.42Кб
310 What is a Layer_.en.srt 2.47Кб
310 What is a Layer_.mp4 12.50Мб
311 Course-Notes-Section-6.pdf 936.42Кб
311 What is a Deep Net_.en.srt 3.37Кб
311 What is a Deep Net_.mp4 29.53Мб
312 Digging into a Deep Net.en.srt 6.96Кб
312 Digging into a Deep Net.mp4 59.36Мб
313 Non-Linearities and their Purpose.en.srt 4.04Кб
313 Non-Linearities and their Purpose.mp4 27.68Мб
314 Activation Functions.en.srt 5.46Кб
314 Activation Functions.mp4 25.09Мб
315 Activation Functions_ Softmax Activation.en.srt 4.63Кб
315 Activation Functions_ Softmax Activation.mp4 25.92Мб
316 Backpropagation.en.srt 4.64Кб
316 Backpropagation.mp4 34.95Мб
317 Backpropagation Picture.en.srt 4.14Кб
317 Backpropagation Picture.mp4 19.50Мб
318 Backpropagation - A Peek into the Mathematics of Optimization.html 1.44Кб
318 Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf 182.38Кб
319 What is Overfitting_.en.srt 5.78Кб
319 What is Overfitting_.mp4 31.08Мб
320 Underfitting and Overfitting for Classification.en.srt 2.73Кб
320 Underfitting and Overfitting for Classification.mp4 25.07Мб
321 What is Validation_.en.srt 5.10Кб
321 What is Validation_.mp4 32.71Мб
322 Training, Validation, and Test Datasets.en.srt 3.75Кб
322 Training, Validation, and Test Datasets.mp4 25.19Мб
323 N-Fold Cross Validation.en.srt 4.33Кб
323 N-Fold Cross Validation.mp4 20.70Мб
324 Early Stopping or When to Stop Training.en.srt 7.12Кб
324 Early Stopping or When to Stop Training.mp4 24.17Мб
325 What is Initialization_.en.srt 3.64Кб
325 What is Initialization_.mp4 21.76Мб
326 Types of Simple Initializations.en.srt 3.81Кб
326 Types of Simple Initializations.mp4 14.31Мб
327 State-of-the-Art Method - (Xavier) Glorot Initialization.en.srt 3.85Кб
327 State-of-the-Art Method - (Xavier) Glorot Initialization.mp4 17.14Мб
328 Stochastic Gradient Descent.en.srt 5.01Кб
328 Stochastic Gradient Descent.mp4 28.68Мб
329 Problems with Gradient Descent.en.srt 2.93Кб
329 Problems with Gradient Descent.mp4 11.01Мб
330 Momentum.en.srt 3.57Кб
330 Momentum.mp4 16.43Мб
331 Learning Rate Schedules, or How to Choose the Optimal Learning Rate.en.srt 6.16Кб
331 Learning Rate Schedules, or How to Choose the Optimal Learning Rate.mp4 29.08Мб
332 Learning Rate Schedules Visualized.en.srt 2.25Кб
332 Learning Rate Schedules Visualized.mp4 9.11Мб
333 Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).en.srt 5.41Кб
333 Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).mp4 26.35Мб
334 Adam (Adaptive Moment Estimation).en.srt 3.46Кб
334 Adam (Adaptive Moment Estimation).mp4 22.35Мб
335 Preprocessing Introduction.en.srt 4.02Кб
335 Preprocessing Introduction.mp4 27.78Мб
336 Types of Basic Preprocessing.en.srt 1.69Кб
336 Types of Basic Preprocessing.mp4 11.84Мб
337 Standardization.en.srt 6.18Кб
337 Standardization.mp4 50.98Мб
338 Preprocessing Categorical Data.en.srt 2.87Кб
338 Preprocessing Categorical Data.mp4 18.60Мб
339 Binary and One-Hot Encoding.en.srt 5.01Кб
339 Binary and One-Hot Encoding.mp4 28.94Мб
340 MNIST_ The Dataset.en.srt 3.72Кб
340 MNIST_ The Dataset.mp4 13.38Мб
341 MNIST_ How to Tackle the MNIST.en.srt 3.64Кб
341 MNIST_ How to Tackle the MNIST.mp4 18.66Мб
342 MNIST_ Importing the Relevant Packages and Loading the Data.en.srt 3.20Кб
342 MNIST_ Importing the Relevant Packages and Loading the Data.mp4 16.32Мб
342 TensorFlow-MNIST-Part1-with-comments.ipynb 3.97Кб
343 MNIST_ Preprocess the Data - Create a Validation Set and Scale It.en.srt 6.50Кб
343 MNIST_ Preprocess the Data - Create a Validation Set and Scale It.mp4 29.04Мб
344 MNIST_ Preprocess the Data - Scale the Test Data - Exercise.html 1013б
344 TensorFlow-MNIST-Part2-with-comments.ipynb 6.39Кб
345 MNIST_ Preprocess the Data - Shuffle and Batch.en.srt 9.61Кб
345 MNIST_ Preprocess the Data - Shuffle and Batch.mp4 41.52Мб
346 MNIST_ Preprocess the Data - Shuffle and Batch - Exercise.html 1011б
346 TensorFlow-MNIST-Part3-with-comments.ipynb 8.61Кб
347 MNIST_ Outline the Model.en.srt 7.49Кб
347 MNIST_ Outline the Model.mp4 28.23Мб
347 TensorFlow-MNIST-Part4-with-comments.ipynb 10.49Кб
348 MNIST_ Select the Loss and the Optimizer.en.srt 3.14Кб
348 MNIST_ Select the Loss and the Optimizer.mp4 13.90Мб
348 TensorFlow-MNIST-Part5-with-comments.ipynb 10.99Кб
349 MNIST_ Learning.en.srt 8.27Кб
349 MNIST_ Learning.mp4 40.96Мб
349 TensorFlow-MNIST-Part6-with-comments.ipynb 12.54Кб
350 1.TensorFlow-MNIST-Width-Solution.ipynb 14.84Кб
350 2.TensorFlow-MNIST-Depth-Solution.ipynb 15.31Кб
350 3.TensorFlow-MNIST-Width-and-Depth-Solution.ipynb 15.30Кб
350 4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb 15.11Кб
350 5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb 14.74Кб
350 6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb 15.12Кб
350 7.TensorFlow-MNIST-Batch-size-Part-2-Solution.ipynb 15.18Кб
350 8.TensorFlow-MNIST-Learning-rate-Part-1-Solution.ipynb 20.58Кб
350 9.TensorFlow-MNIST-Learning-rate-Part-2-Solution.ipynb 15.80Кб
350 MNIST - Exercises.html 2.85Кб
350 TensorFlow-MNIST-All-Exercises.ipynb 16.65Кб
350 TensorFlow-MNIST-around-98-percent-accuracy.ipynb 15.02Кб
351 MNIST_ Testing the Model.en.srt 6.26Кб
351 MNIST_ Testing the Model.mp4 29.52Мб
351 TensorFlow-MNIST-complete.ipynb 6.78Кб
351 TensorFlow-MNIST-complete-with-comments.ipynb 14.51Кб
352 Audiobooks-data.csv 710.77Кб
352 Business Case_ Exploring the Dataset and Identifying Predictors.en.srt 11.08Кб
352 Business Case_ Exploring the Dataset and Identifying Predictors.mp4 66.27Мб
353 Business Case_ Outlining the Solution.en.srt 2.08Кб
353 Business Case_ Outlining the Solution.mp4 7.30Мб
354 Business Case_ Balancing the Dataset.en.srt 4.67Кб
354 Business Case_ Balancing the Dataset.mp4 30.43Мб
355 Business Case_ Preprocessing the Data.en.srt 12.71Кб
355 Business Case_ Preprocessing the Data.mp4 84.33Мб
355 TensorFlow-Audiobooks-Preprocessing.ipynb 5.58Кб
355 TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb 11.19Кб
356 Business Case_ Preprocessing the Data - Exercise.html 1.26Кб
356 TensorFlow-Audiobooks-Preprocessing-Exercise.ipynb 8.60Кб
356 TensorFlow-Audiobooks-Preprocessing-Exercise-Solution.ipynb 10.04Кб
357 Business Case_ Load the Preprocessed Data.en.srt 4.89Кб
357 Business Case_ Load the Preprocessed Data.mp4 17.57Мб
358 Business Case_ Load the Preprocessed Data - Exercise.html 1006б
358 TensorFlow-Audiobooks-Machine-Learning-Part1-with-comments.ipynb 4.61Кб
359 Business Case_ Learning and Interpreting the Result.en.srt 6.53Кб
359 Business Case_ Learning and Interpreting the Result.mp4 31.18Мб
359 TensorFlow-Audiobooks-Machine-Learning-Part2-with-comments.ipynb 19.69Кб
360 Business Case_ Setting an Early Stopping Mechanism.en.srt 8.11Кб
360 Business Case_ Setting an Early Stopping Mechanism.mp4 49.81Мб
360 TensorFlow-Audiobooks-Machine-Learning-Part3-with-comments.ipynb 10.06Кб
361 Setting an Early Stopping Mechanism - Exercise.html 1.09Кб
362 Business Case_ Testing the Model.en.srt 2.12Кб
362 Business Case_ Testing the Model.mp4 10.79Мб
362 TensorFlow-Audiobooks-Machine-Learning-with-comments.ipynb 11.95Кб
363 Business Case_ Final Exercise.html 1.31Кб
363 TensorFlow-Audiobooks-Machine-Learning-with-comments.ipynb 11.95Кб
364 Summary on What You've Learned.en.srt 5.41Кб
364 Summary on What You've Learned.mp4 39.75Мб
365 What's Further out there in terms of Machine Learning.en.srt 2.64Кб
365 What's Further out there in terms of Machine Learning.mp4 20.12Мб
366 DeepMind and Deep Learning.html 1.93Кб
367 An overview of CNNs.en.srt 6.68Кб
367 An overview of CNNs.mp4 58.79Мб
368 An Overview of RNNs.en.srt 3.83Кб
368 An Overview of RNNs.mp4 25.26Мб
369 An Overview of non-NN Approaches.en.srt 5.29Кб
369 An Overview of non-NN Approaches.mp4 44.77Мб
370 READ ME!!!!.html 1.42Кб
371 How to Install TensorFlow 1.en.srt 3.56Кб
371 How to Install TensorFlow 1.mp4 11.35Мб
372 A Note on Installing Packages in Anaconda.html 3.35Кб
373 TensorFlow Intro.en.srt 5.40Кб
373 TensorFlow Intro.mp4 47.69Мб
374 Actual Introduction to TensorFlow.en.srt 2.25Кб
374 Actual Introduction to TensorFlow.mp4 17.41Мб
374 Shortcuts-for-Jupyter.pdf 619.17Кб
375 5.3.TensorFlow-Minimal-example-Part-1.ipynb 3.36Кб
375 Types of File Formats, supporting Tensors.en.srt 3.59Кб
375 Types of File Formats, supporting Tensors.mp4 20.34Мб
376 5.4.TensorFlow-Minimal-example-Part-2.ipynb 6.17Кб
376 Basic NN Example with TF_ Inputs, Outputs, Targets, Weights, Biases.en.srt 7.63Кб
376 Basic NN Example with TF_ Inputs, Outputs, Targets, Weights, Biases.mp4 38.49Мб
377 5.5.TensorFlow-Minimal-example-Part-3.ipynb 8.65Кб
377 Basic NN Example with TF_ Loss Function and Gradient Descent.en.srt 5.02Кб
377 Basic NN Example with TF_ Loss Function and Gradient Descent.mp4 32.51Мб
378 5.6.TensorFlow-Minimal-example-complete.ipynb 12.15Кб
378 Basic NN Example with TF_ Model Output.en.srt 8.26Кб
378 Basic NN Example with TF_ Model Output.mp4 37.39Мб
379 Basic NN Example with TF Exercises.html 2.47Кб
379 TensorFlow-Minimal-Example-All-Exercises.ipynb 13.97Кб
379 TensorFlow-Minimal-Example-Exercise-1-Solution.ipynb 23.63Кб
379 TensorFlow-Minimal-Example-Exercise-2-1-Solution.ipynb 25.54Кб
379 TensorFlow-Minimal-Example-Exercise-2-2-Solution.ipynb 25.51Кб
379 TensorFlow-Minimal-Example-Exercise-2-3-Solution.ipynb 49.96Кб
379 TensorFlow-Minimal-Example-Exercise-2-4-Solution.ipynb 21.75Кб
379 TensorFlow-Minimal-Example-Exercise-3-Solution.ipynb 26.71Кб
379 TensorFlow-Minimal-Example-Exercise-4-Solution.ipynb 26.98Кб
380 MNIST_ What is the MNIST Dataset_.en.srt 3.63Кб
380 MNIST_ What is the MNIST Dataset_.mp4 17.82Мб
381 MNIST_ How to Tackle the MNIST.en.srt 3.76Кб
381 MNIST_ How to Tackle the MNIST.mp4 22.58Мб
382 12.3.TensorFlow-MNIST-with-comments-Part-1.ipynb 3.89Кб
382 MNIST_ Relevant Packages.en.srt 2.19Кб
382 MNIST_ Relevant Packages.mp4 18.90Мб
383 12.4.TensorFlow-MNIST-with-comments-Part-2.ipynb 6.10Кб
383 MNIST_ Model Outline.en.srt 9.42Кб
383 MNIST_ Model Outline.mp4 56.38Мб
384 12.5.TensorFlow-MNIST-with-comments-Part-3.ipynb 7.31Кб
384 MNIST_ Loss and Optimization Algorithm.en.srt 3.67Кб
384 MNIST_ Loss and Optimization Algorithm.mp4 25.86Мб
385 12.6.TensorFlow-MNIST-with-comments-Part-4.ipynb 7.90Кб
385 Calculating the Accuracy of the Model.en.srt 5.40Кб
385 Calculating the Accuracy of the Model.mp4 43.90Мб
386 12.7.TensorFlow-MNIST-with-comments-Part-5.ipynb 8.53Кб
386 MNIST_ Batching and Early Stopping.en.srt 3.04Кб
386 MNIST_ Batching and Early Stopping.mp4 12.85Мб
387 12.8.TensorFlow-MNIST-with-comments-Part-6.ipynb 11.50Кб
387 MNIST_ Learning.en.srt 10.60Кб
387 MNIST_ Learning.mp4 46.68Мб
388 12.9.TensorFlow-MNIST-with-comments.ipynb 13.03Кб
388 MNIST_ Results and Testing.en.srt 8.49Кб
388 MNIST_ Results and Testing.mp4 62.77Мб
389 MNIST_ Exercises.html 3.00Кб
389 TensorFlow-MNIST-Exercises-All.ipynb 15.47Кб
390 0.TensorFlow-MNIST-take-note-of-time-Solution.ipynb 14.00Кб
390 1.TensorFlow-MNIST-Width-Solution.ipynb 14.01Кб
390 2.TensorFlow-MNIST-Depth-Solution.ipynb 14.87Кб
390 3.TensorFlow-MNIST-Width-and-Depth-Solution.ipynb 16.81Кб
390 4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb 14.35Кб
390 5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb 13.93Кб
390 6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb 14.26Кб
390 7.TensorFlow-MNIST-Batch-size-Part-2-Solution.ipynb 14.16Кб
390 8.TensorFlow-MNIST-Learning-rate-Part-1-Solution.ipynb 14.07Кб
390 9.TensorFlow-MNIST-Learning-rate-Part-2-Solution.ipynb 15.21Кб
390 MNIST_ Solutions.html 3.06Кб
390 TensorFlow-MNIST-around-98-percent-accuracy.ipynb 17.66Кб
391 Audiobooks-data.csv 710.77Кб
391 Business Case_ Getting Acquainted with the Dataset.en.srt 11.22Кб
391 Business Case_ Getting Acquainted with the Dataset.mp4 87.65Мб
392 Business Case_ Outlining the Solution.en.srt 2.62Кб
392 Business Case_ Outlining the Solution.mp4 12.21Мб
393 Audiobooks-data.csv 710.77Кб
393 The Importance of Working with a Balanced Dataset.en.srt 4.66Кб
393 The Importance of Working with a Balanced Dataset.mp4 39.41Мб
394 Audiobooks-data.csv 710.77Кб
394 Business Case_ Preprocessing.en.srt 13.98Кб
394 Business Case_ Preprocessing.mp4 103.41Мб
394 TensorFlow-Audiobooks-Preprocessing.ipynb 5.58Кб
394 TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb 11.19Кб
395 Audiobooks-data.csv 710.77Кб
395 Business Case_ Preprocessing Exercise.html 1.26Кб
395 TensorFlow-Audiobooks-Preprocessing-Exercise.ipynb 8.60Кб
395 TensorFlow-Audiobooks-Preprocessing-Exercise-Solution.ipynb 10.03Кб
396 Creating a Data Provider.en.srt 8.05Кб
396 Creating a Data Provider.mp4 76.34Мб
397 Business Case_ Model Outline.en.srt 7.21Кб
397 Business Case_ Model Outline.mp4 53.12Мб
397 TensorFlow-Audiobooks-Outlining-the-model.ipynb 9.36Кб
397 TensorFlow-Audiobooks-Outlining-the-model-with-comments.ipynb 10.34Кб
398 Business Case_ Optimization.en.srt 6.86Кб
398 Business Case_ Optimization.mp4 41.52Мб
398 TensorFlow-Audiobooks-optimizing-the-algorithm.ipynb 10.64Кб
398 TensorFlow-Audiobooks-optimizing-the-algorithm-with-comments.ipynb 12.73Кб
399 Business Case_ Interpretation.en.srt 3.05Кб
399 Business Case_ Interpretation.mp4 25.74Мб
399 TensorFlow-Audiobooks-optimizing-the-algorithm.ipynb 10.64Кб
399 TensorFlow-Audiobooks-optimizing-the-algorithm-with-comments.ipynb 12.73Кб
400 Business Case_ Testing the Model.en.srt 2.82Кб
400 Business Case_ Testing the Model.mp4 11.20Мб
401 Audiobooks-data.csv 710.77Кб
401 Business Case_ A Comment on the Homework.en.srt 5.50Кб
401 Business Case_ A Comment on the Homework.mp4 36.38Мб
401 TensorFlow-Audiobooks-Machine-learning-Homework.ipynb 14.40Кб
401 TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb 11.19Кб
402 Audiobooks-data.csv 710.77Кб
402 Business Case_ Final Exercise.html 1.31Кб
402 TensorFlow-Audiobooks-Machine-learning-Homework.ipynb 14.40Кб
402 TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb 11.19Кб
403 What are Data, Servers, Clients, Requests, and Responses.en.srt 6.16Кб
403 What are Data, Servers, Clients, Requests, and Responses.mp4 69.03Мб
404 What are Data Connectivity, APIs, and Endpoints_.en.srt 8.85Кб
404 What are Data Connectivity, APIs, and Endpoints_.mp4 104.08Мб
405 Taking a Closer Look at APIs.en.srt 10.77Кб
405 Taking a Closer Look at APIs.mp4 115.59Мб
406 Communication between Software Products through Text Files.en.srt 5.68Кб
406 Communication between Software Products through Text Files.mp4 60.34Мб
407 Software Integration - Explained.en.srt 6.95Кб
407 Software Integration - Explained.mp4 63.69Мб
408 Game Plan for this Python, SQL, and Tableau Business Exercise.en.srt 5.66Кб
408 Game Plan for this Python, SQL, and Tableau Business Exercise.mp4 52.30Мб
409 The Business Task.en.srt 3.88Кб
409 The Business Task.mp4 39.15Мб
410 Introducing the Data Set.en.srt 4.30Кб
410 Introducing the Data Set.mp4 40.86Мб
411 Absenteeism-data.csv 32.05Кб
411 data-preprocessing-homework.pdf 134.47Кб
411 df-preprocessed.csv 29.11Кб
411 What to Expect from the Following Sections_.html 3.38Кб
412 Importing the Absenteeism Data in Python.en.srt 4.15Кб
412 Importing the Absenteeism Data in Python.mp4 23.15Мб
413 Checking the Content of the Data Set.en.srt 7.32Кб
413 Checking the Content of the Data Set.mp4 61.90Мб
414 Introduction to Terms with Multiple Meanings.en.srt 4.20Кб
414 Introduction to Terms with Multiple Meanings.mp4 27.85Мб
415 What's Regression Analysis - a Quick Refresher.html 3.74Кб
416 Using a Statistical Approach towards the Solution to the Exercise.en.srt 2.91Кб
416 Using a Statistical Approach towards the Solution to the Exercise.mp4 20.18Мб
417 Dropping a Column from a DataFrame in Python.en.srt 8.12Кб
417 Dropping a Column from a DataFrame in Python.mp4 61.76Мб
418 EXERCISE - Dropping a Column from a DataFrame in Python.html 1.75Кб
419 SOLUTION - Dropping a Column from a DataFrame in Python.html 1.02Кб
420 Analyzing the Reasons for Absence.en.srt 6.08Кб
420 Analyzing the Reasons for Absence.mp4 40.57Мб
421 Obtaining Dummies from a Single Feature.en.srt 10.59Кб
421 Obtaining Dummies from a Single Feature.mp4 81.11Мб
422 EXERCISE - Obtaining Dummies from a Single Feature.html 1.03Кб
423 SOLUTION - Obtaining Dummies from a Single Feature.html 1.02Кб
424 Dropping a Dummy Variable from the Data Set.html 3.23Кб
425 More on Dummy Variables_ A Statistical Perspective.en.srt 1.76Кб
425 More on Dummy Variables_ A Statistical Perspective.mp4 13.74Мб
426 Classifying the Various Reasons for Absence.en.srt 10.41Кб
426 Classifying the Various Reasons for Absence.mp4 74.60Мб
427 Using .concat() in Python.en.srt 5.27Кб
427 Using .concat() in Python.mp4 38.73Мб
428 EXERCISE - Using .concat() in Python.html 1.07Кб
429 SOLUTION - Using .concat() in Python.html 1.03Кб
430 Reordering Columns in a Pandas DataFrame in Python.en.srt 1.89Кб
430 Reordering Columns in a Pandas DataFrame in Python.mp4 14.01Мб
431 EXERCISE - Reordering Columns in a Pandas DataFrame in Python.html 1.08Кб
432 SOLUTION - Reordering Columns in a Pandas DataFrame in Python.html 1.37Кб
433 Absenteeism-Exercise-Preprocessing-df-reason-mod.ipynb 4.82Кб
433 Creating Checkpoints while Coding in Jupyter.en.srt 3.77Кб
433 Creating Checkpoints while Coding in Jupyter.mp4 25.67Мб
434 EXERCISE - Creating Checkpoints while Coding in Jupyter.html 1.04Кб
435 SOLUTION - Creating Checkpoints while Coding in Jupyter.html 1.02Кб
436 Analyzing the Dates from the Initial Data Set.en.srt 8.73Кб
436 Analyzing the Dates from the Initial Data Set.mp4 57.28Мб
437 Extracting the Month Value from the _Date_ Column.en.srt 8.29Кб
437 Extracting the Month Value from the _Date_ Column.mp4 47.79Мб
438 Extracting the Day of the Week from the _Date_ Column.en.srt 4.65Кб
438 Extracting the Day of the Week from the _Date_ Column.mp4 27.96Мб
439 Absenteeism-Exercise-Preprocessing-ChP-df-date-reason-mod.ipynb 7.33Кб
439 Absenteeism-Exercise-Preprocessing-LECTURES.ipynb 7.60Мб
439 Absenteeism-Exercise-Removing-the-Date-Column-SOLUTION.ipynb 8.33Кб
439 EXERCISE - Removing the _Date_ Column.html 2.10Кб
440 Analyzing Several _Straightforward_ Columns for this Exercise.en.srt 4.50Кб
440 Analyzing Several _Straightforward_ Columns for this Exercise.mp4 29.51Мб
441 Working on _Education_, _Children_, and _Pets_.en.srt 5.89Кб
441 Working on _Education_, _Children_, and _Pets_.mp4 39.59Мб
442 Absenteeism-Exercise-EXERCISES-and-SOLUTIONS.ipynb 4.13Кб
442 Absenteeism-Exercise-Preprocessing-df-preprocessed.ipynb 8.51Кб
442 Final Remarks of this Section.en.srt 2.56Кб
442 Final Remarks of this Section.mp4 21.63Мб
443 A Note on Exporting Your Data as a _.csv File.html 1.76Кб
444 Absenteeism-preprocessed.csv 29.13Кб
444 Exploring the Problem with a Machine Learning Mindset.en.srt 4.76Кб
444 Exploring the Problem with a Machine Learning Mindset.mp4 27.54Мб
445 Creating the Targets for the Logistic Regression.en.srt 8.71Кб
445 Creating the Targets for the Logistic Regression.mp4 45.79Мб
446 Selecting the Inputs for the Logistic Regression.en.srt 3.82Кб
446 Selecting the Inputs for the Logistic Regression.mp4 16.75Мб
447 Standardizing the Data.en.srt 4.36Кб
447 Standardizing the Data.mp4 20.59Мб
448 Splitting the Data for Training and Testing.en.srt 8.42Кб
448 Splitting the Data for Training and Testing.mp4 52.76Мб
449 Fitting the Model and Assessing its Accuracy.en.srt 7.68Кб
449 Fitting the Model and Assessing its Accuracy.mp4 41.62Мб
450 Creating a Summary Table with the Coefficients and Intercept.en.srt 6.88Кб
450 Creating a Summary Table with the Coefficients and Intercept.mp4 38.87Мб
451 Interpreting the Coefficients for Our Problem.en.srt 8.19Кб
451 Interpreting the Coefficients for Our Problem.mp4 52.37Мб
452 Standardizing only the Numerical Variables (Creating a Custom Scaler).en.srt 5.22Кб
452 Standardizing only the Numerical Variables (Creating a Custom Scaler).mp4 41.19Мб
453 Interpreting the Coefficients of the Logistic Regression.en.srt 7.53Кб
453 Interpreting the Coefficients of the Logistic Regression.mp4 40.40Мб
454 Backward Elimination or How to Simplify Your Model.en.srt 5.45Кб
454 Backward Elimination or How to Simplify Your Model.mp4 39.56Мб
455 Testing the Model We Created.en.srt 6.76Кб
455 Testing the Model We Created.mp4 49.06Мб
456 Saving the Model and Preparing it for Deployment.en.srt 5.79Кб
456 Saving the Model and Preparing it for Deployment.mp4 37.45Мб
457 ARTICLE - A Note on 'pickling'.html 3.03Кб
458 EXERCISE - Saving the Model (and Scaler).html 1.17Кб
459 Preparing the Deployment of the Model through a Module.en.srt 5.84Кб
459 Preparing the Deployment of the Model through a Module.mp4 44.48Мб
460 Absenteeism-Exercise-Integration.ipynb 62.35Кб
460 absenteeism-module.py 6.62Кб
460 Absenteeism-new-data.csv 1.87Кб
460 Are You Sure You're All Set_.html 1.39Кб
460 model 1.01Кб
460 scaler 1.86Кб
461 Deploying the 'absenteeism_module' - Part I.en.srt 4.94Кб
461 Deploying the 'absenteeism_module' - Part I.mp4 25.48Мб
462 Deploying the 'absenteeism_module' - Part II.en.srt 7.81Кб
462 Deploying the 'absenteeism_module' - Part II.mp4 54.25Мб
463 Absenteeism-Exercise-Deploying-the-absenteeism-module.ipynb 973б
463 Exporting the Obtained Data Set as a _.csv.html 1.87Кб
464 Absenteeism-predictions.csv 2.10Кб
464 EXERCISE - Age vs Probability.html 1.26Кб
465 Absenteeism-predictions.csv 2.10Кб
465 Analyzing Age vs Probability in Tableau.en.srt 10.41Кб
465 Analyzing Age vs Probability in Tableau.mp4 56.55Мб
466 EXERCISE - Reasons vs Probability.html 1.27Кб
467 Analyzing Reasons vs Probability in Tableau.en.srt 9.91Кб
467 Analyzing Reasons vs Probability in Tableau.mp4 59.33Мб
468 EXERCISE - Transportation Expense vs Probability.html 1.44Кб
469 Analyzing Transportation Expense vs Probability in Tableau.en.srt 7.49Кб
469 Analyzing Transportation Expense vs Probability in Tableau.mp4 40.63Мб
470 Additional-Python-Tools-Exercises.ipynb 11.37Кб
470 Additional-Python-Tools-Lectures.ipynb 13.47Кб
470 Additional-Python-Tools-Solutions.ipynb 25.49Кб
470 Using the .format() Method.en.srt 12.81Кб
470 Using the .format() Method.mp4 47.63Мб
471 Iterating Over Range Objects.en.srt 6.26Кб
471 Iterating Over Range Objects.mp4 22.48Мб
472 Introduction to Nested For Loops.en.srt 8.61Кб
472 Introduction to Nested For Loops.mp4 29.46Мб
473 Triple Nested For Loops.en.srt 8.30Кб
473 Triple Nested For Loops.mp4 46.59Мб
474 List Comprehensions.en.srt 12.81Кб
474 List Comprehensions.mp4 55.45Мб
475 Additional-Python-Tools-Exercises.ipynb 11.37Кб
475 Additional-Python-Tools-Lectures.ipynb 13.47Кб
475 Additional-Python-Tools-Solutions.ipynb 25.49Кб
475 Anonymous (Lambda) Functions.en.srt 10.24Кб
475 Anonymous (Lambda) Functions.mp4 38.53Мб
476 Bonus Lecture_ Next Steps.html 3.41Кб
external-assets-links.txt 105б
external-assets-links.txt 134б
external-assets-links.txt 790б
Статистика распространения по странам
Россия (RU) 3
США (US) 1
Всего 4
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент