Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
эти файлы или скачать torrent-файл.
|
001 A Practical Example_ What You Will Learn in This Course.en.srt |
6.60Кб |
001 A Practical Example_ What You Will Learn in This Course.mp4 |
49.03Мб |
002 What Does the Course Cover.en.srt |
5.26Кб |
002 What Does the Course Cover.mp4 |
62.25Мб |
003 Download All Resources and Important FAQ.html |
22.58Кб |
003 FAQ-The-Data-Science-Course.pdf |
306.10Кб |
004 Data Science and Business Buzzwords_ Why are there so Many_.en.srt |
6.87Кб |
004 Data Science and Business Buzzwords_ Why are there so Many_.mp4 |
81.41Мб |
005 What is the difference between Analysis and Analytics.en.srt |
5.28Кб |
005 What is the difference between Analysis and Analytics.mp4 |
53.55Мб |
006 365-DataScience-Diagram.pdf |
323.08Кб |
006 Business Analytics, Data Analytics, and Data Science_ An Introduction.en.srt |
11.05Кб |
006 Business Analytics, Data Analytics, and Data Science_ An Introduction.mp4 |
64.51Мб |
007 365-DataScience.png |
6.92Мб |
007 365-DataScience-Diagram.pdf |
323.08Кб |
007 Continuing with BI, ML, and AI.en.srt |
12.32Кб |
007 Continuing with BI, ML, and AI.mp4 |
108.98Мб |
008 365-DataScience.png |
6.92Мб |
008 A Breakdown of our Data Science Infographic.en.srt |
5.31Кб |
008 A Breakdown of our Data Science Infographic.mp4 |
67.74Мб |
009 Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.en.srt |
9.33Кб |
009 Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.mp4 |
126.87Мб |
010 The Reason Behind These Disciplines.en.srt |
6.75Кб |
010 The Reason Behind These Disciplines.mp4 |
81.18Мб |
011 Techniques for Working with Traditional Data.en.srt |
11.03Кб |
011 Techniques for Working with Traditional Data.mp4 |
138.30Мб |
012 Real Life Examples of Traditional Data.en.srt |
2.33Кб |
012 Real Life Examples of Traditional Data.mp4 |
29.93Мб |
013 Techniques for Working with Big Data.en.srt |
5.89Кб |
013 Techniques for Working with Big Data.mp4 |
75.50Мб |
014 Real Life Examples of Big Data.en.srt |
1.96Кб |
014 Real Life Examples of Big Data.mp4 |
22.03Мб |
015 Business Intelligence (BI) Techniques.en.srt |
8.96Кб |
015 Business Intelligence (BI) Techniques.mp4 |
89.94Мб |
016 Real Life Examples of Business Intelligence (BI).en.srt |
2.21Кб |
016 Real Life Examples of Business Intelligence (BI).mp4 |
29.54Мб |
017 Techniques for Working with Traditional Methods.en.srt |
11.41Кб |
017 Techniques for Working with Traditional Methods.mp4 |
111.65Мб |
018 Real Life Examples of Traditional Methods.en.srt |
3.72Кб |
018 Real Life Examples of Traditional Methods.mp4 |
42.78Мб |
019 Machine Learning (ML) Techniques.en.srt |
9.07Кб |
019 Machine Learning (ML) Techniques.mp4 |
99.32Мб |
020 Types of Machine Learning.en.srt |
10.91Кб |
020 Types of Machine Learning.mp4 |
125.14Мб |
021 Real Life Examples of Machine Learning (ML).en.srt |
3.01Кб |
021 Real Life Examples of Machine Learning (ML).mp4 |
36.81Мб |
022 Necessary Programming Languages and Software Used in Data Science.en.srt |
7.57Кб |
022 Necessary Programming Languages and Software Used in Data Science.mp4 |
103.51Мб |
023 Finding the Job - What to Expect and What to Look for.en.srt |
4.67Кб |
023 Finding the Job - What to Expect and What to Look for.mp4 |
54.38Мб |
024 Debunking Common Misconceptions.en.srt |
5.49Кб |
024 Debunking Common Misconceptions.mp4 |
72.85Мб |
025 Course-Notes-Basic-Probability.pdf |
371.05Кб |
025 The Basic Probability Formula.en.srt |
9.24Кб |
025 The Basic Probability Formula.mp4 |
85.91Мб |
026 Computing Expected Values.en.srt |
6.93Кб |
026 Computing Expected Values.mp4 |
75.68Мб |
027 Frequency.en.srt |
6.65Кб |
027 Frequency.mp4 |
61.73Мб |
028 Events and Their Complements.en.srt |
6.95Кб |
028 Events and Their Complements.mp4 |
59.15Мб |
029 Course-Notes-Combinatorics.pdf |
226.12Кб |
029 Fundamentals of Combinatorics.en.srt |
1.35Кб |
029 Fundamentals of Combinatorics.mp4 |
16.21Мб |
030 Permutations and How to Use Them.en.srt |
4.22Кб |
030 Permutations and How to Use Them.mp4 |
42.72Мб |
031 Simple Operations with Factorials.en.srt |
3.38Кб |
031 Simple Operations with Factorials.mp4 |
36.11Мб |
032 Solving Variations with Repetition.en.srt |
3.59Кб |
032 Solving Variations with Repetition.mp4 |
34.00Мб |
033 Solving Variations without Repetition.en.srt |
4.70Кб |
033 Solving Variations without Repetition.mp4 |
43.14Мб |
034 Combinations-With-Repetition.pdf |
207.41Кб |
034 Solving Combinations.en.srt |
5.80Кб |
034 Solving Combinations.mp4 |
57.34Мб |
035 Symmetry-Explained.pdf |
85.04Кб |
035 Symmetry of Combinations.en.srt |
4.46Кб |
035 Symmetry of Combinations.mp4 |
40.30Мб |
036 Solving Combinations with Separate Sample Spaces.en.srt |
3.87Кб |
036 Solving Combinations with Separate Sample Spaces.mp4 |
33.15Мб |
037 Combinatorics in Real-Life_ The Lottery.en.srt |
4.31Кб |
037 Combinatorics in Real-Life_ The Lottery.mp4 |
41.29Мб |
038 A Recap of Combinatorics.en.srt |
3.87Кб |
038 A Recap of Combinatorics.mp4 |
38.49Мб |
039 Additional-Exercises-Combinatorics.pdf |
106.58Кб |
039 Additional-Exercises-Combinatorics-Solutions.pdf |
245.67Кб |
039 A Practical Example of Combinatorics.en.srt |
14.45Кб |
039 A Practical Example of Combinatorics.mp4 |
134.31Мб |
040 Course-Notes-Bayesian-Inference.pdf |
386.01Кб |
040 Sets and Events.en.srt |
5.24Кб |
040 Sets and Events.mp4 |
53.46Мб |
041 Ways Sets Can Interact.en.srt |
4.55Кб |
041 Ways Sets Can Interact.mp4 |
47.42Мб |
042 Intersection of Sets.en.srt |
2.56Кб |
042 Intersection of Sets.mp4 |
26.96Мб |
043 Union of Sets.en.srt |
5.71Кб |
043 Union of Sets.mp4 |
57.19Мб |
044 Mutually Exclusive Sets.en.srt |
2.60Кб |
044 Mutually Exclusive Sets.mp4 |
25.39Мб |
045 Dependence and Independence of Sets.en.srt |
3.59Кб |
045 Dependence and Independence of Sets.mp4 |
34.78Мб |
046 The Conditional Probability Formula.en.srt |
5.10Кб |
046 The Conditional Probability Formula.mp4 |
45.86Мб |
047 The Law of Total Probability.en.srt |
3.61Кб |
047 The Law of Total Probability.mp4 |
34.93Мб |
048 The Additive Rule.en.srt |
2.83Кб |
048 The Additive Rule.mp4 |
26.97Мб |
049 The Multiplication Law.en.srt |
4.79Кб |
049 The Multiplication Law.mp4 |
49.02Мб |
050 Bayes' Law.en.srt |
7.45Кб |
050 Bayes' Law.mp4 |
49.93Мб |
051 A Practical Example of Bayesian Inference.en.srt |
19.98Кб |
051 A Practical Example of Bayesian Inference.mp4 |
145.12Мб |
051 Bayesian-Homework.pdf |
27.26Кб |
051 Bayesian-Homework-Solutions.pdf |
30.35Кб |
051 CDS-E7-E8-Hamilton.pdf |
845.31Кб |
052 Course-Notes-Probability-Distributions.pdf |
463.95Кб |
052 Fundamentals of Probability Distributions.en.srt |
7.80Кб |
052 Fundamentals of Probability Distributions.mp4 |
73.40Мб |
053 Types of Probability Distributions.en.srt |
9.62Кб |
053 Types of Probability Distributions.mp4 |
71.06Мб |
054 Characteristics of Discrete Distributions.en.srt |
2.55Кб |
054 Characteristics of Discrete Distributions.mp4 |
22.70Мб |
055 Discrete Distributions_ The Uniform Distribution.en.srt |
2.83Кб |
055 Discrete Distributions_ The Uniform Distribution.mp4 |
24.39Мб |
056 Discrete Distributions_ The Bernoulli Distribution.en.srt |
3.97Кб |
056 Discrete Distributions_ The Bernoulli Distribution.mp4 |
34.13Мб |
057 Discrete Distributions_ The Binomial Distribution.en.srt |
8.59Кб |
057 Discrete Distributions_ The Binomial Distribution.mp4 |
68.83Мб |
058 Discrete Distributions_ The Poisson Distribution.en.srt |
6.80Кб |
058 Discrete Distributions_ The Poisson Distribution.mp4 |
55.75Мб |
058 Poisson-Expected-Value-and-Variance.pdf |
145.99Кб |
059 Characteristics of Continuous Distributions.en.srt |
8.97Кб |
059 Characteristics of Continuous Distributions.mp4 |
84.12Мб |
059 Solving-Integrals.pdf |
343.85Кб |
060 Continuous Distributions_ The Normal Distribution.en.srt |
4.94Кб |
060 Continuous Distributions_ The Normal Distribution.mp4 |
48.24Мб |
060 Normal-Distribution-Exp-and-Var.pdf |
144.08Кб |
061 Continuous Distributions_ The Standard Normal Distribution.en.srt |
5.46Кб |
061 Continuous Distributions_ The Standard Normal Distribution.mp4 |
47.90Мб |
062 Continuous Distributions_ The Students' T Distribution.en.srt |
2.87Кб |
062 Continuous Distributions_ The Students' T Distribution.mp4 |
27.18Мб |
063 Continuous Distributions_ The Chi-Squared Distribution.en.srt |
2.85Кб |
063 Continuous Distributions_ The Chi-Squared Distribution.mp4 |
26.34Мб |
064 Continuous Distributions_ The Exponential Distribution.en.srt |
4.28Кб |
064 Continuous Distributions_ The Exponential Distribution.mp4 |
40.23Мб |
065 Continuous Distributions_ The Logistic Distribution.en.srt |
5.20Кб |
065 Continuous Distributions_ The Logistic Distribution.mp4 |
47.05Мб |
066 A Practical Example of Probability Distributions.en.srt |
20.63Кб |
066 A Practical Example of Probability Distributions.mp4 |
157.82Мб |
066 Customers-Membership.xlsx |
9.69Кб |
066 Customers-Membership-post.xlsx |
15.62Кб |
066 Daily-Views.xlsx |
9.53Кб |
066 Daily-Views-post.xlsx |
20.21Кб |
066 FIFA19.csv |
8.64Мб |
066 FIFA19-post.csv |
8.64Мб |
067 Probability in Finance.en.srt |
10.18Кб |
067 Probability in Finance.mp4 |
99.06Мб |
067 Probability-in-Finance-Homework.pdf |
110.68Кб |
067 Probability-in-Finance-Solutions.pdf |
184.46Кб |
068 Probability in Statistics.en.srt |
8.73Кб |
068 Probability in Statistics.mp4 |
77.28Мб |
069 Probability-Cheat-Sheet.pdf |
320.28Кб |
069 Probability in Data Science.en.srt |
6.89Кб |
069 Probability in Data Science.mp4 |
63.49Мб |
070 Course-notes-descriptive-statistics.pdf |
482.21Кб |
070 Population and Sample.en.srt |
5.67Кб |
070 Population and Sample.mp4 |
58.11Мб |
070 Statistics-Glossary.xlsx |
20.26Кб |
071 Course-notes-descriptive-statistics.pdf |
482.21Кб |
071 Glossary.xlsx |
19.97Кб |
071 Types of Data.en.srt |
6.17Кб |
071 Types of Data.mp4 |
72.52Мб |
072 Levels of Measurement.en.srt |
4.71Кб |
072 Levels of Measurement.mp4 |
54.38Мб |
073 2.3.Categorical-variables.Visualization-techniques-lesson.xlsx |
30.77Кб |
073 Categorical Variables - Visualization Techniques.en.srt |
6.53Кб |
073 Categorical Variables - Visualization Techniques.mp4 |
36.64Мб |
074 2.3.Categorical-variables.Visualization-techniques-exercise.xlsx |
15.24Кб |
074 2.3.Categorical-variables.Visualization-techniques-exercise-solution.xlsx |
41.11Кб |
074 Categorical Variables Exercise.html |
986б |
074 Statistics-PDF-with-Excel-Solutions-that-dont-visualize-properly.pdf |
289.12Кб |
075 2.4.Numerical-variables.Frequency-distribution-table-lesson.xlsx |
11.44Кб |
075 Numerical Variables - Frequency Distribution Table.en.srt |
4.52Кб |
075 Numerical Variables - Frequency Distribution Table.mp4 |
25.85Мб |
076 2.4.Numerical-variables.Frequency-distribution-table-exercise-solution.xlsx |
13.15Кб |
076 Numerical Variables Exercise.html |
984б |
077 2.5.The-Histogram-lesson.xlsx |
18.63Кб |
077 The Histogram.en.srt |
3.11Кб |
077 The Histogram.mp4 |
13.78Мб |
078 2.5.The-Histogram-exercise.xlsx |
15.50Кб |
078 2.5.The-Histogram-exercise-solution.xlsx |
17.10Кб |
078 Histogram Exercise.html |
974б |
078 Statistics-PDF-with-Excel-Solutions-that-dont-visualize-properly.pdf |
289.12Кб |
079 2.6.Cross-table-and-scatter-plot.xlsx |
26.12Кб |
079 Cross Tables and Scatter Plots.en.srt |
6.93Кб |
079 Cross Tables and Scatter Plots.mp4 |
39.80Мб |
080 2.6.Cross-table-and-scatter-plot-exercise.xlsx |
16.28Кб |
080 2.6.Cross-table-and-scatter-plot-exercise-solution.xlsx |
40.44Кб |
080 Cross Tables and Scatter Plots Exercise.html |
995б |
081 2.7.Mean-median-and-mode-lesson.xlsx |
10.49Кб |
081 Mean, median and mode.en.srt |
5.96Кб |
081 Mean, median and mode.mp4 |
37.12Мб |
082 2.7.Mean-median-and-mode-exercise.xlsx |
10.87Кб |
082 2.7.Mean-median-and-mode-exercise-solution.xlsx |
11.35Кб |
082 Mean, Median and Mode Exercise.html |
986б |
083 2.8.Skewness-lesson.xlsx |
34.63Кб |
083 Skewness.en.srt |
3.78Кб |
083 Skewness.mp4 |
19.40Мб |
084 2.8.Skewness-exercise.xlsx |
9.49Кб |
084 2.8.Skewness-exercise-solution.xlsx |
19.78Кб |
084 Skewness Exercise.html |
973б |
085 2.9.Variance-lesson.xlsx |
10.08Кб |
085 Variance.en.srt |
7.81Кб |
085 Variance.mp4 |
50.95Мб |
086 2.9.Variance-exercise.xlsx |
10.83Кб |
086 2.9.Variance-exercise-solution.xlsx |
11.05Кб |
086 Variance Exercise.html |
1.38Кб |
087 2.10.Standard-deviation-and-coefficient-of-variation-lesson.xlsx |
10.97Кб |
087 Standard Deviation and Coefficient of Variation.en.srt |
6.86Кб |
087 Standard Deviation and Coefficient of Variation.mp4 |
45.12Мб |
088 2.10.Standard-deviation-and-coefficient-of-variation-exercise.xlsx |
11.61Кб |
088 2.10.Standard-deviation-and-coefficient-of-variation-exercise-solution.xlsx |
12.60Кб |
088 Standard Deviation and Coefficient of Variation Exercise.html |
1012б |
089 2.11.Covariance-lesson.xlsx |
24.92Кб |
089 Covariance.en.srt |
5.11Кб |
089 Covariance.mp4 |
27.48Мб |
090 2.11.Covariance-exercise.xlsx |
20.23Кб |
090 2.11.Covariance-exercise-solution.xlsx |
29.51Кб |
090 Covariance Exercise.html |
975б |
091 Correlation Coefficient.en.srt |
4.89Кб |
091 Correlation Coefficient.mp4 |
29.38Мб |
092 2.12.Correlation-exercise.xlsx |
29.30Кб |
092 2.12.Correlation-exercise-solution.xlsx |
29.48Кб |
092 Correlation Coefficient Exercise.html |
988б |
093 2.13.Practical-example.Descriptive-statistics-lesson.xlsx |
146.51Кб |
093 Practical Example_ Descriptive Statistics.en.srt |
21.61Кб |
093 Practical Example_ Descriptive Statistics.mp4 |
160.46Мб |
094 2.13.Practical-example.Descriptive-statistics-exercise.xlsx |
120.27Кб |
094 2.13.Practical-example.Descriptive-statistics-exercise-solution.xlsx |
146.38Кб |
094 Practical Example_ Descriptive Statistics Exercise.html |
1006б |
095 Course-notes-inferential-statistics.pdf |
382.32Кб |
095 Introduction.en.srt |
1.69Кб |
095 Introduction.mp4 |
15.50Мб |
096 3.2.What-is-a-distribution-lesson.xlsx |
19.46Кб |
096 Course-notes-inferential-statistics.pdf |
382.32Кб |
096 What is a Distribution.en.srt |
6.10Кб |
096 What is a Distribution.mp4 |
61.59Мб |
097 The Normal Distribution.en.srt |
5.08Кб |
097 The Normal Distribution.mp4 |
49.85Мб |
098 3.4.Standard-normal-distribution-lesson.xlsx |
10.38Кб |
098 The Standard Normal Distribution.en.srt |
4.09Кб |
098 The Standard Normal Distribution.mp4 |
22.50Мб |
099 3.4.Standard-normal-distribution-exercise.xlsx |
11.99Кб |
099 3.4.Standard-normal-distribution-exercise-solution.xlsx |
24.04Кб |
099 The Standard Normal Distribution Exercise.html |
997б |
100 Central Limit Theorem.en.srt |
5.85Кб |
100 Central Limit Theorem.mp4 |
62.88Мб |
101 Standard error.en.srt |
2.11Кб |
101 Standard error.mp4 |
22.77Мб |
102 Estimators and Estimates.en.srt |
3.85Кб |
102 Estimators and Estimates.mp4 |
47.83Мб |
103 What are Confidence Intervals_.en.srt |
3.39Кб |
103 What are Confidence Intervals_.mp4 |
49.98Мб |
104 3.9.Population-variance-known-z-score-lesson.xlsx |
11.21Кб |
104 3.9.The-z-table.xlsx |
25.58Кб |
104 Confidence Intervals; Population Variance Known; Z-score.en.srt |
10.15Кб |
104 Confidence Intervals; Population Variance Known; Z-score.mp4 |
78.20Мб |
105 3.9.Population-variance-known-z-score-exercise.xlsx |
10.83Кб |
105 3.9.Population-variance-known-z-score-exercise-solution.xlsx |
11.16Кб |
105 3.9.The-z-table.xlsx |
25.58Кб |
105 Confidence Intervals; Population Variance Known; Z-score; Exercise.html |
1022б |
106 Confidence Interval Clarifications.en.srt |
5.59Кб |
106 Confidence Interval Clarifications.mp4 |
57.03Мб |
107 Student's T Distribution.en.srt |
4.27Кб |
107 Student's T Distribution.mp4 |
35.43Мб |
108 3.11.Population-variance-unknown-t-score-lesson.xlsx |
10.78Кб |
108 3.11.The-t-table.xlsx |
15.85Кб |
108 Confidence Intervals; Population Variance Unknown; T-score.en.srt |
5.93Кб |
108 Confidence Intervals; Population Variance Unknown; T-score.mp4 |
32.20Мб |
109 3.11.Population-variance-unknown-t-score-exercise.xlsx |
10.62Кб |
109 3.11.Population-variance-unknown-t-score-exercise-solution.xlsx |
11.10Кб |
109 3.11.The-t-table.xlsx |
15.85Кб |
109 Confidence Intervals; Population Variance Unknown; T-score; Exercise.html |
1.00Кб |
110 Margin of Error.en.srt |
6.38Кб |
110 Margin of Error.mp4 |
47.23Мб |
111 3.13.Confidence-intervals.Two-means.Dependent-samples-lesson.xlsx |
10.47Кб |
111 Confidence intervals. Two means. Dependent samples.en.srt |
8.33Кб |
111 Confidence intervals. Two means. Dependent samples.mp4 |
70.47Мб |
112 3.13.Confidence-intervals.Two-means.Dependent-samples-exercise.xlsx |
13.74Кб |
112 3.13.Confidence-intervals.Two-means.Dependent-samples-exercise-solution.xlsx |
14.24Кб |
112 Confidence intervals. Two means. Dependent samples Exercise.html |
1015б |
113 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-lesson.xlsx |
9.83Кб |
113 Confidence intervals. Two means. Independent Samples (Part 1).en.srt |
6.30Кб |
113 Confidence intervals. Two means. Independent Samples (Part 1).mp4 |
28.75Мб |
114 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-exercise.xlsx |
9.83Кб |
114 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-exercise-solution.xlsx |
10.12Кб |
114 Confidence intervals. Two means. Independent Samples (Part 1). Exercise.html |
1.00Кб |
115 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-lesson.xlsx |
9.52Кб |
115 Confidence intervals. Two means. Independent Samples (Part 2).en.srt |
4.67Кб |
115 Confidence intervals. Two means. Independent Samples (Part 2).mp4 |
26.82Мб |
116 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-exercise.xlsx |
9.17Кб |
116 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-exercise-solution.xlsx |
9.79Кб |
116 Confidence intervals. Two means. Independent Samples (Part 2). Exercise.html |
1.00Кб |
117 Confidence intervals. Two means. Independent Samples (Part 3).en.srt |
2.03Кб |
117 Confidence intervals. Two means. Independent Samples (Part 3).mp4 |
19.93Мб |
118 3.17.Practical-example.Confidence-intervals-lesson.xlsx |
1.74Мб |
118 Practical Example_ Inferential Statistics.en.srt |
14.17Кб |
118 Practical Example_ Inferential Statistics.mp4 |
102.66Мб |
119 3.17.Practical-example.Confidence-intervals-exercise.xlsx |
1.73Мб |
119 3.17.Practical-example.Confidence-intervals-exercise-solution.xlsx |
1.82Мб |
119 Practical Example_ Inferential Statistics Exercise.html |
1006б |
120 Course-notes-hypothesis-testing.pdf |
656.44Кб |
120 Null vs Alternative Hypothesis.en.srt |
7.21Кб |
120 Null vs Alternative Hypothesis.mp4 |
92.04Мб |
121 Further Reading on Null and Alternative Hypothesis.html |
3.19Кб |
122 Course-notes-hypothesis-testing.pdf |
656.44Кб |
122 Rejection Region and Significance Level.en.srt |
8.99Кб |
122 Rejection Region and Significance Level.mp4 |
82.61Мб |
123 Type I Error and Type II Error.en.srt |
5.91Кб |
123 Type I Error and Type II Error.mp4 |
43.93Мб |
124 4.4.Test-for-the-mean.Population-variance-known-lesson.xlsx |
10.96Кб |
124 Test for the Mean. Population Variance Known.en.srt |
8.46Кб |
124 Test for the Mean. Population Variance Known.mp4 |
54.22Мб |
125 4.4.Test-for-the-mean.Population-variance-known-exercise.xlsx |
11.03Кб |
125 4.4.Test-for-the-mean.Population-variance-known-exercise-solution.xlsx |
11.22Кб |
125 Test for the Mean. Population Variance Known Exercise.html |
1009б |
126 Online-p-value-calculator.pdf |
1.15Мб |
126 p-value.en.srt |
5.21Кб |
126 p-value.mp4 |
55.87Мб |
127 4.6.Test-for-the-mean.Population-variance-unknown-lesson.xlsx |
14.54Кб |
127 Test for the Mean. Population Variance Unknown.en.srt |
5.92Кб |
127 Test for the Mean. Population Variance Unknown.mp4 |
40.24Мб |
128 4.6.Test-for-the-mean.Population-variance-unknown-exercise.xlsx |
11.34Кб |
128 4.6.Test-for-the-mean.Population-variance-unknown-exercise-solution.xlsx |
12.63Кб |
128 Test for the Mean. Population Variance Unknown Exercise.html |
1011б |
129 4.7.Test-for-the-mean.Dependent-samples-lesson.xlsx |
9.79Кб |
129 Test for the Mean. Dependent Samples.en.srt |
6.47Кб |
129 Test for the Mean. Dependent Samples.mp4 |
50.37Мб |
130 4.7.Test-for-the-mean.Dependent-samples-exercise.xlsx |
12.80Кб |
130 4.7.Test-for-the-mean.Dependent-samples-exercise-solution.xlsx |
14.40Кб |
130 Test for the Mean. Dependent Samples Exercise.html |
1001б |
131 4.8.Test-for-the-mean.Independent-samples-Part-1-lesson.xlsx |
9.63Кб |
131 Test for the mean. Independent Samples (Part 1).en.srt |
5.70Кб |
131 Test for the mean. Independent Samples (Part 1).mp4 |
33.94Мб |
132 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise.xlsx |
10.77Кб |
132 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise-solution.xlsx |
11.25Кб |
132 Test for the mean. Independent Samples (Part 1). Exercise.html |
1013б |
133 4.9.Test-for-the-mean.Independent-samples-Part-2-lesson.xlsx |
9.31Кб |
133 Test for the mean. Independent Samples (Part 2).en.srt |
5.33Кб |
133 Test for the mean. Independent Samples (Part 2).mp4 |
36.39Мб |
134 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2.xlsx |
10.54Кб |
134 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2-solution.xlsx |
11.39Кб |
134 Test for the mean. Independent Samples (Part 2). Exercise.html |
1013б |
135 4.10.Hypothesis-testing-section-practical-example.xlsx |
51.90Кб |
135 Practical Example_ Hypothesis Testing.en.srt |
8.82Кб |
135 Practical Example_ Hypothesis Testing.mp4 |
69.48Мб |
136 4.10.Hypothesis-testing-section-practical-example-exercise.xlsx |
43.69Кб |
136 4.10.Hypothesis-testing-section-practical-example-exercise-solution.xlsx |
44.27Кб |
136 Practical Example_ Hypothesis Testing Exercise.html |
1002б |
137 Introduction to Programming.en.srt |
7.16Кб |
137 Introduction to Programming.mp4 |
58.54Мб |
138 Why Python_.en.srt |
7.23Кб |
138 Why Python_.mp4 |
75.07Мб |
139 Why Jupyter_.en.srt |
4.81Кб |
139 Why Jupyter_.mp4 |
44.31Мб |
140 Installing Python and Jupyter.en.srt |
9.17Кб |
140 Installing Python and Jupyter.mp4 |
50.99Мб |
141 Understanding Jupyter's Interface - the Notebook Dashboard.en.srt |
3.88Кб |
141 Understanding Jupyter's Interface - the Notebook Dashboard.mp4 |
13.79Мб |
142 Prerequisites for Coding in the Jupyter Notebooks.en.srt |
8.10Кб |
142 Prerequisites for Coding in the Jupyter Notebooks.mp4 |
30.58Мб |
143 Python-Introduction-Course-Notes.pdf |
2.03Мб |
143 Variables.en.srt |
4.71Кб |
143 Variables.mp4 |
14.08Мб |
143 Variables-Exercise-Py3.ipynb |
2.23Кб |
143 Variables-Lecture-Py3.ipynb |
3.61Кб |
143 Variables-Solution-Py3.ipynb |
3.79Кб |
144 Numbers-and-Boolean-Values-Exercise-Py3.ipynb |
2.29Кб |
144 Numbers and Boolean Values in Python.en.srt |
3.85Кб |
144 Numbers and Boolean Values in Python.mp4 |
17.06Мб |
144 Numbers-and-Boolean-Values-Lecture-Py3.ipynb |
3.36Кб |
144 Numbers-and-Boolean-Values-Solution-Py3.ipynb |
3.23Кб |
145 Python Strings.en.srt |
7.37Кб |
145 Python Strings.mp4 |
24.15Мб |
145 Strings-Exercise-Py3.ipynb |
2.61Кб |
145 Strings-Lecture-Py3.ipynb |
7.56Кб |
145 Strings-Solution-Py3.ipynb |
5.45Кб |
146 Arithmetic-Operators-Exercise-Py3.ipynb |
2.62Кб |
146 Arithmetic-Operators-Lecture-Py3.ipynb |
3.53Кб |
146 Arithmetic-Operators-Solution-Py3.ipynb |
4.24Кб |
146 Using Arithmetic Operators in Python.en.srt |
4.28Кб |
146 Using Arithmetic Operators in Python.mp4 |
18.92Мб |
147 The Double Equality Sign.en.srt |
1.90Кб |
147 The Double Equality Sign.mp4 |
5.99Мб |
147 The-Double-Equality-Sign-Exercise-Py3.ipynb |
838б |
147 The-Double-Equality-Sign-Lecture-Py3.ipynb |
1.45Кб |
147 The-Double-Equality-Sign-Solution-Py3.ipynb |
1.14Кб |
148 How to Reassign Values.en.srt |
1.35Кб |
148 How to Reassign Values.mp4 |
4.00Мб |
148 Reassign-Values-Exercise-Py3.ipynb |
1.67Кб |
148 Reassign-Values-Lecture-Py3.ipynb |
3.08Кб |
148 Reassign-Values-Solution-Py3.ipynb |
2.12Кб |
149 Add Comments.en.srt |
1.87Кб |
149 Add Comments.mp4 |
4.67Мб |
149 Add-Comments-Lecture-Py3.ipynb |
1.03Кб |
150 Line-Continuation-Exercise-Py3.ipynb |
1.14Кб |
150 Line-Continuation-Lecture-Py3.ipynb |
779б |
150 Line-Continuation-Solution-Py3.ipynb |
1.50Кб |
150 Understanding Line Continuation.en.srt |
1.18Кб |
150 Understanding Line Continuation.mp4 |
2.35Мб |
151 Indexing Elements.en.srt |
1.78Кб |
151 Indexing Elements.mp4 |
5.93Мб |
151 Indexing-Elements-Exercise-Py3.ipynb |
1.35Кб |
151 Indexing-Elements-Lecture-Py3.ipynb |
1.32Кб |
151 Indexing-Elements-Solution-Py3.ipynb |
2.17Кб |
152 Structure-Your-Code-with-Indentation-Exercise-Py3.ipynb |
956б |
152 Structure-Your-Code-with-Indentation-Lecture-Py3.ipynb |
958б |
152 Structure-Your-Code-with-Indentation-Solution-Py3.ipynb |
1.50Кб |
152 Structuring with Indentation.en.srt |
2.26Кб |
152 Structuring with Indentation.mp4 |
5.47Мб |
153 Comparison Operators.en.srt |
2.57Кб |
153 Comparison Operators.mp4 |
10.17Мб |
153 Comparison-Operators-Exercise-Py3.ipynb |
1.61Кб |
153 Comparison-Operators-Lecture-Py3.ipynb |
2.53Кб |
153 Comparison-Operators-Solution-Py3.ipynb |
2.41Кб |
154 Logical and Identity Operators.en.srt |
6.02Кб |
154 Logical and Identity Operators.mp4 |
30.05Мб |
154 Logical-and-Identity-Operators-Lecture-Py3.ipynb |
5.86Кб |
154 Logical-and-Identity-Operators-Solution-Py3.ipynb |
3.43Кб |
155 Introduction-to-the-If-Statement-Exercise-Py3.ipynb |
1.53Кб |
155 Introduction-to-the-If-Statement-Lecture-Py3.ipynb |
1.14Кб |
155 Introduction-to-the-If-Statement-Solution-Py3.ipynb |
2.19Кб |
155 The IF Statement.en.srt |
3.67Кб |
155 The IF Statement.mp4 |
10.81Мб |
156 Add-an-Else-Statement-Exercise-Py3.ipynb |
1.02Кб |
156 Add-an-Else-Statement-Lecture-Py3.ipynb |
1.76Кб |
156 Add-an-Else-Statement-Solution-Py3.ipynb |
1.40Кб |
156 The ELSE Statement.en.srt |
3.23Кб |
156 The ELSE Statement.mp4 |
10.83Мб |
157 Else-If-for-Brief-Elif-Exercise-Py3.ipynb |
1.75Кб |
157 Else-If-for-Brief-Elif-Lecture-Py3.ipynb |
3.24Кб |
157 Else-If-for-Brief-Elif-Solution-Py3.ipynb |
2.40Кб |
157 The ELIF Statement.en.srt |
6.87Кб |
157 The ELIF Statement.mp4 |
25.07Мб |
158 A Note on Boolean Values.en.srt |
3.02Кб |
158 A Note on Boolean Values.mp4 |
8.90Мб |
158 A-Note-on-Boolean-Values-Lecture-Py3.ipynb |
791б |
159 Defining a Function in Python.en.srt |
2.52Кб |
159 Defining a Function in Python.mp4 |
6.29Мб |
159 Defining-a-Function-in-Python-Lecture-Py3.ipynb |
868б |
160 Creating-a-Function-with-a-Parameter-Exercise-Py3.ipynb |
1.16Кб |
160 Creating-a-Function-with-a-Parameter-Lecture-Py3.ipynb |
1.59Кб |
160 Creating-a-Function-with-a-Parameter-Solution-Py3.ipynb |
1.79Кб |
160 How to Create a Function with a Parameter.en.srt |
4.47Кб |
160 How to Create a Function with a Parameter.mp4 |
18.08Мб |
161 Another-Way-to-Define-a-Function-Exercise-Py3.ipynb |
1.24Кб |
161 Another-Way-to-Define-a-Function-Lecture-Py3.ipynb |
3.29Кб |
161 Another-Way-to-Define-a-Function-Solution-Py3.ipynb |
1.98Кб |
161 Defining a Function in Python - Part II.en.srt |
2.98Кб |
161 Defining a Function in Python - Part II.mp4 |
11.13Мб |
162 0.6.4-Using-a-Function-in-another-Function-Exercise-Py3.ipynb |
1.04Кб |
162 0.6.4-Using-a-Function-in-another-Function-Lecture-Py3.ipynb |
1015б |
162 0.6.4-Using-a-Function-in-another-Function-Solution-Py3.ipynb |
1.60Кб |
162 How to Use a Function within a Function.en.srt |
2.11Кб |
162 How to Use a Function within a Function.mp4 |
8.13Мб |
163 Combining-Conditional-Statements-and-Functions-Exercise-Py3.ipynb |
1.06Кб |
163 Combining-Conditional-Statements-and-Functions-Lecture-Py3.ipynb |
1.29Кб |
163 Combining-Conditional-Statements-and-Functions-Solution-Py3.ipynb |
1.65Кб |
163 Conditional Statements and Functions.en.srt |
3.66Кб |
163 Conditional Statements and Functions.mp4 |
15.68Мб |
164 Creating-Functions-Containing-a-Few-Arguments-Lecture-Py3.ipynb |
1.72Кб |
164 Functions Containing a Few Arguments.en.srt |
1.39Кб |
164 Functions Containing a Few Arguments.mp4 |
6.01Мб |
165 Built-in Functions in Python.en.srt |
4.37Кб |
165 Built-in Functions in Python.mp4 |
22.01Мб |
165 Notable-Built-In-Functions-in-Python-Exercise-Py3.ipynb |
3.66Кб |
165 Notable-Built-In-Functions-in-Python-Lecture-Py3.ipynb |
4.51Кб |
165 Notable-Built-In-Functions-in-Python-Solution-Py3.ipynb |
5.52Кб |
166 Lists.en.srt |
10.22Кб |
166 Lists.mp4 |
37.79Мб |
166 Lists-Exercise-Py3.ipynb |
2.14Кб |
166 Lists-Lecture-Py3.ipynb |
2.70Кб |
166 Lists-Solution-Py3.ipynb |
3.18Кб |
167 Help-Yourself-with-Methods-Exercise-Py3.ipynb |
1.91Кб |
167 Help-Yourself-with-Methods-Lecture-Py3.ipynb |
4.39Кб |
167 Help-Yourself-with-Methods-Solution-Py3.ipynb |
2.83Кб |
167 Using Methods.en.srt |
8.69Кб |
167 Using Methods.mp4 |
37.59Мб |
168 List Slicing.en.srt |
5.77Кб |
168 List Slicing.mp4 |
30.76Мб |
168 List-Slicing-Exercise-Py3.ipynb |
2.79Кб |
168 List-Slicing-Lecture-Py3.ipynb |
5.02Кб |
168 List-Slicing-Solution-Py3.ipynb |
4.26Кб |
169 Tuples.en.srt |
7.17Кб |
169 Tuples.mp4 |
29.49Мб |
169 Tuples-Exercise-Py3.ipynb |
2.07Кб |
169 Tuples-Lecture-Py3.ipynb |
2.91Кб |
169 Tuples-Solution-Py3.ipynb |
4.61Кб |
170 Dictionaries.en.srt |
8.76Кб |
170 Dictionaries.mp4 |
41.68Мб |
170 Dictionaries-Exercise-Py3.ipynb |
2.92Кб |
170 Dictionaries-Lecture-Py3.ipynb |
4.35Кб |
170 Dictionaries-Solution-Py3.ipynb |
6.16Кб |
171 For Loops.en.srt |
6.83Кб |
171 For Loops.mp4 |
23.59Мб |
171 For-Loops-Exercise-Py3.ipynb |
1.28Кб |
171 For-Loops-Lecture-Py3.ipynb |
1.26Кб |
171 For-Loops-Solution-Py3.ipynb |
1.80Кб |
172 While Loops and Incrementing.en.srt |
6.13Кб |
172 While Loops and Incrementing.mp4 |
28.43Мб |
172 While-Loops-and-Incrementing-Exercise-Py3.ipynb |
1.12Кб |
172 While-Loops-and-Incrementing-Lecture-Py3.ipynb |
1.08Кб |
172 While-Loops-and-Incrementing-Solution-Py3.ipynb |
1.75Кб |
173 Create-Lists-with-the-range-Function-Exercise-Py3.ipynb |
1.45Кб |
173 Create-Lists-with-the-range-Function-Lecture-Py3.ipynb |
1.34Кб |
173 Create-Lists-with-the-range-Function-Solution-Py3.ipynb |
2.25Кб |
173 Lists with the range() Function.en.srt |
7.94Кб |
173 Lists with the range() Function.mp4 |
25.79Мб |
174 Conditional Statements and Loops.en.srt |
7.74Кб |
174 Conditional Statements and Loops.mp4 |
27.76Мб |
174 Use-Conditional-Statements-and-Loops-Together-Exercise-Py3.ipynb |
2.10Кб |
174 Use-Conditional-Statements-and-Loops-Together-Lecture-Py3.ipynb |
1.95Кб |
174 Use-Conditional-Statements-and-Loops-Together-Solution-Py3.ipynb |
2.96Кб |
175 All-In-Exercise-Py3.ipynb |
1.30Кб |
175 All-In-Lecture-Py3.ipynb |
1.62Кб |
175 All-In-Solution-Py3.ipynb |
1.90Кб |
175 Conditional Statements, Functions, and Loops.en.srt |
2.51Кб |
175 Conditional Statements, Functions, and Loops.mp4 |
9.48Мб |
176 How to Iterate over Dictionaries.en.srt |
8.27Кб |
176 How to Iterate over Dictionaries.mp4 |
29.65Мб |
176 Iterating-over-Dictionaries-Exercise-Py3.ipynb |
2.19Кб |
176 Iterating-over-Dictionaries-Lecture-Py3.ipynb |
1.08Кб |
176 Iterating-over-Dictionaries-Solution-Py3.ipynb |
2.87Кб |
177 Object Oriented Programming.en.srt |
6.34Кб |
177 Object Oriented Programming.mp4 |
33.59Мб |
178 Modules and Packages.en.srt |
1.30Кб |
178 Modules and Packages.mp4 |
8.50Мб |
179 What is the Standard Library_.en.srt |
3.70Кб |
179 What is the Standard Library_.mp4 |
18.03Мб |
180 Importing Modules in Python.en.srt |
5.02Кб |
180 Importing Modules in Python.mp4 |
19.93Мб |
181 Course-notes-regression-analysis.pdf |
312.18Кб |
181 Introduction to Regression Analysis.en.srt |
2.29Кб |
181 Introduction to Regression Analysis.mp4 |
17.32Мб |
182 Course-notes-regression-analysis.pdf |
312.18Кб |
182 The Linear Regression Model.en.srt |
7.35Кб |
182 The Linear Regression Model.mp4 |
57.37Мб |
183 Correlation vs Regression.en.srt |
2.19Кб |
183 Correlation vs Regression.mp4 |
14.73Мб |
184 Geometrical Representation of the Linear Regression Model.en.srt |
1.70Кб |
184 Geometrical Representation of the Linear Regression Model.mp4 |
5.12Мб |
185 Python Packages Installation.en.srt |
5.85Кб |
185 Python Packages Installation.mp4 |
40.58Мб |
186 1.01.Simple-linear-regression.csv |
922б |
186 First Regression in Python.en.srt |
8.22Кб |
186 First Regression in Python.mp4 |
44.56Мб |
186 Simple-linear-regression.ipynb |
3.79Кб |
186 Simple-linear-regression-with-comments.ipynb |
4.06Кб |
187 First Regression in Python Exercise.html |
2.22Кб |
187 real-estate-price-size.csv |
1.86Кб |
187 Simple-Linear-Regression-Exercise.ipynb |
2.78Кб |
187 Simple-Linear-Regression-Exercise-Solution.ipynb |
3.57Кб |
188 Using Seaborn for Graphs.en.srt |
1.53Кб |
188 Using Seaborn for Graphs.mp4 |
12.24Мб |
189 How to Interpret the Regression Table.en.srt |
6.56Кб |
189 How to Interpret the Regression Table.mp4 |
44.64Мб |
190 Decomposition of Variability.en.srt |
4.33Кб |
190 Decomposition of Variability.mp4 |
49.66Мб |
191 What is the OLS_.en.srt |
3.97Кб |
191 What is the OLS_.mp4 |
28.31Мб |
192 R-Squared.en.srt |
6.82Кб |
192 R-Squared.mp4 |
41.03Мб |
193 Multiple Linear Regression.en.srt |
3.48Кб |
193 Multiple Linear Regression.mp4 |
21.52Мб |
194 1.02.Multiple-linear-regression.csv |
1.09Кб |
194 Adjusted R-Squared.en.srt |
7.83Кб |
194 Adjusted R-Squared.mp4 |
54.83Мб |
194 Multiple-linear-regression-and-Adjusted-R-squared.ipynb |
2.15Кб |
194 Multiple-linear-regression-and-Adjusted-R-squared-with-comments.ipynb |
2.80Кб |
195 Multiple Linear Regression Exercise.html |
986б |
195 Multiple-Linear-Regression-Exercise.ipynb |
2.45Кб |
195 Multiple-Linear-Regression-Exercise-Solution.ipynb |
13.39Кб |
195 real-estate-price-size-year.csv |
2.35Кб |
196 Test for Significance of the Model (F-Test).en.srt |
2.66Кб |
196 Test for Significance of the Model (F-Test).mp4 |
16.42Мб |
197 OLS Assumptions.en.srt |
3.15Кб |
197 OLS Assumptions.mp4 |
21.85Мб |
198 A1_ Linearity.en.srt |
2.45Кб |
198 A1_ Linearity.mp4 |
12.60Мб |
199 A2_ No Endogeneity.en.srt |
5.45Кб |
199 A2_ No Endogeneity.mp4 |
35.67Мб |
200 A3_ Normality and Homoscedasticity.en.srt |
6.94Кб |
200 A3_ Normality and Homoscedasticity.mp4 |
42.70Мб |
201 A4_ No Autocorrelation.en.srt |
5.10Кб |
201 A4_ No Autocorrelation.mp4 |
31.51Мб |
202 A5_ No Multicollinearity.en.srt |
4.80Кб |
202 A5_ No Multicollinearity.mp4 |
28.70Мб |
203 1.03.Dummies.csv |
1.19Кб |
203 Dealing with Categorical Data - Dummy Variables.en.srt |
8.47Кб |
203 Dealing with Categorical Data - Dummy Variables.mp4 |
55.66Мб |
203 Dummy-Variables.ipynb |
4.62Кб |
203 Dummy-variables-with-comments.ipynb |
7.09Кб |
204 Dealing with Categorical Data - Dummy Variables.html |
998б |
204 Multiple-Linear-Regression-with-Dummies-Exercise.ipynb |
3.01Кб |
204 Multiple-Linear-Regression-with-Dummies-Exercise-Solution.ipynb |
18.00Кб |
204 real-estate-price-size-year-view.csv |
3.39Кб |
205 Making-predictions.ipynb |
5.77Кб |
205 Making-predictions-with-comments.ipynb |
9.41Кб |
205 Making Predictions with the Linear Regression.en.srt |
4.63Кб |
205 Making Predictions with the Linear Regression.mp4 |
24.69Мб |
206 What is sklearn and How is it Different from Other Packages.en.srt |
3.55Кб |
206 What is sklearn and How is it Different from Other Packages.mp4 |
27.25Мб |
207 How are we Going to Approach this Section_.en.srt |
3.03Кб |
207 How are we Going to Approach this Section_.mp4 |
19.41Мб |
208 1.01.Simple-linear-regression.csv |
922б |
208 Simple Linear Regression with sklearn.en.srt |
7.61Кб |
208 Simple Linear Regression with sklearn.mp4 |
34.77Мб |
208 sklearn-Simple-Linear-Regression.ipynb |
4.92Кб |
208 sklearn-Simple-Linear-Regression-with-comments.ipynb |
6.06Кб |
209 1.01.Simple-linear-regression.csv |
922б |
209 Simple Linear Regression with sklearn - A StatsModels-like Summary Table.en.srt |
6.95Кб |
209 Simple Linear Regression with sklearn - A StatsModels-like Summary Table.mp4 |
32.00Мб |
209 sklearn-Simple-Linear-Regression.ipynb |
26.07Кб |
209 sklearn-Simple-Linear-Regression-with-comments.ipynb |
28.35Кб |
210 A Note on Normalization.html |
1.59Кб |
211 1.01.Simple-linear-regression.csv |
922б |
211 Simple Linear Regression with sklearn - Exercise.html |
999б |
211 sklearn-Simple-Linear-Regression.ipynb |
26.07Кб |
211 sklearn-Simple-Linear-Regression-with-comments.ipynb |
28.35Кб |
212 1.02.Multiple-linear-regression.csv |
1.07Кб |
212 Multiple Linear Regression with sklearn.en.srt |
4.33Кб |
212 Multiple Linear Regression with sklearn.mp4 |
20.07Мб |
212 sklearn-Multiple-Linear-Regression.ipynb |
7.79Кб |
212 sklearn-Multiple-Linear-Regression-with-comments.ipynb |
8.65Кб |
213 1.02.Multiple-linear-regression.csv |
1.07Кб |
213 Calculating the Adjusted R-Squared in sklearn.en.srt |
6.50Кб |
213 Calculating the Adjusted R-Squared in sklearn.mp4 |
30.88Мб |
213 sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared.ipynb |
9.11Кб |
213 sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-with-comments.ipynb |
10.41Кб |
214 1.02.Multiple-linear-regression.csv |
1.07Кб |
214 Calculating the Adjusted R-Squared in sklearn - Exercise.html |
1007б |
214 sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-Exercise.ipynb |
9.83Кб |
214 sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-Exercise-Solution.ipynb |
10.31Кб |
215 1.02.Multiple-linear-regression.csv |
1.07Кб |
215 Feature Selection (F-regression).en.srt |
6.92Кб |
215 Feature Selection (F-regression).mp4 |
29.51Мб |
215 sklearn-Feature-Selection-with-F-regression.ipynb |
10.44Кб |
215 sklearn-Feature-Selection-with-F-regression-with-comments.ipynb |
12.99Кб |
216 1.02.Multiple-linear-regression.csv |
1.07Кб |
216 A Note on Calculation of P-values with sklearn.html |
1.26Кб |
216 sklearn-How-to-properly-include-p-values.ipynb |
12.71Кб |
217 1.02.Multiple-linear-regression.csv |
1.07Кб |
217 Creating a Summary Table with P-values.en.srt |
3.13Кб |
217 Creating a Summary Table with P-values.mp4 |
12.30Мб |
217 sklearn-Multiple-Linear-Regression-Summary-Table.ipynb |
13.71Кб |
217 sklearn-Multiple-Linear-Regression-Summary-Table-with-comments.ipynb |
16.63Кб |
218 Multiple Linear Regression - Exercise.html |
988б |
218 real-estate-price-size-year.csv |
2.35Кб |
218 sklearn-Multiple-Linear-Regression-Exercise.ipynb |
5.67Кб |
218 sklearn-Multiple-Linear-Regression-Exercise-Solution.ipynb |
15.44Кб |
219 1.02.Multiple-linear-regression.csv |
1.07Кб |
219 Feature Scaling (Standardization).en.srt |
7.96Кб |
219 Feature Scaling (Standardization).mp4 |
39.08Мб |
219 sklearn-Feature-Selection-through-Feature-Scaling-Standardization-Part-1.ipynb |
11.73Кб |
220 1.02.Multiple-linear-regression.csv |
1.07Кб |
220 Feature Selection through Standardization of Weights.en.srt |
7.53Кб |
220 Feature Selection through Standardization of Weights.mp4 |
34.89Мб |
220 sklearn-Feature-Selection-through-Feature-Scaling-Standardization-Part-2.ipynb |
14.89Кб |
221 1.02.Multiple-linear-regression.csv |
1.07Кб |
221 Predicting with the Standardized Coefficients.en.srt |
5.81Кб |
221 Predicting with the Standardized Coefficients.mp4 |
25.96Мб |
221 sklearn-Making-Predictions-with-the-Standardized-Coefficients.ipynb |
29.75Кб |
221 sklearn-Making-Predictions-with-the-Standardized-Coefficients-with-comments.ipynb |
22.03Кб |
222 Feature Scaling (Standardization) - Exercise.html |
995б |
222 real-estate-price-size-year.csv |
2.35Кб |
222 sklearn-Feature-Scaling-Exercise.ipynb |
6.07Кб |
222 sklearn-Feature-Scaling-Exercise-Solution.ipynb |
16.28Кб |
223 Underfitting and Overfitting.en.srt |
3.58Кб |
223 Underfitting and Overfitting.mp4 |
16.95Мб |
224 sklearn-Train-Test-Split.ipynb |
7.23Кб |
224 sklearn-Train-Test-Split-with-comments.ipynb |
9.05Кб |
224 Train - Test Split Explained.en.srt |
9.98Кб |
224 Train - Test Split Explained.mp4 |
49.17Мб |
225 1.04.Real-life-example.csv |
219.83Кб |
225 Practical Example_ Linear Regression (Part 1).en.srt |
15.43Кб |
225 Practical Example_ Linear Regression (Part 1).mp4 |
97.08Мб |
225 sklearn-Linear-Regression-Practical-Example-Part-1.ipynb |
166.91Кб |
225 sklearn-Linear-Regression-Practical-Example-Part-1-with-comments.ipynb |
171.38Кб |
226 1.04.Real-life-example.csv |
219.83Кб |
226 Practical Example_ Linear Regression (Part 2).en.srt |
8.33Кб |
226 Practical Example_ Linear Regression (Part 2).mp4 |
46.00Мб |
226 sklearn-Linear-Regression-Practical-Example-Part-2.ipynb |
328.74Кб |
226 sklearn-Linear-Regression-Practical-Example-Part-2-with-comments.ipynb |
335.63Кб |
227 A Note on Multicollinearity.html |
1.71Кб |
228 Practical Example_ Linear Regression (Part 3).en.srt |
4.27Кб |
228 Practical Example_ Linear Regression (Part 3).mp4 |
23.69Мб |
228 sklearn-Linear-Regression-Practical-Example-Part-3.ipynb |
343.58Кб |
228 sklearn-Linear-Regression-Practical-Example-Part-3-with-comments.ipynb |
351.47Кб |
229 1.04.Real-life-example.csv |
219.83Кб |
229 Dummies and Variance Inflation Factor - Exercise.html |
999б |
229 sklearn-Dummies-and-VIF-Exercise.ipynb |
344.62Кб |
229 sklearn-Dummies-and-VIF-Exercise-Solution.ipynb |
370.22Кб |
230 1.04.Real-life-example.csv |
219.83Кб |
230 Practical Example_ Linear Regression (Part 4).en.srt |
11.94Кб |
230 Practical Example_ Linear Regression (Part 4).mp4 |
56.04Мб |
230 sklearn-Linear-Regression-Practical-Example-Part-4.ipynb |
397.23Кб |
230 sklearn-Linear-Regression-Practical-Example-Part-4-with-comments.ipynb |
407.59Кб |
231 Dummy Variables - Exercise.html |
1.58Кб |
232 1.04.Real-life-example.csv |
219.83Кб |
232 Practical Example_ Linear Regression (Part 5).en.srt |
10.99Кб |
232 Practical Example_ Linear Regression (Part 5).mp4 |
57.88Мб |
232 sklearn-Linear-Regression-Practical-Example-Part-5.ipynb |
698.36Кб |
232 sklearn-Linear-Regression-Practical-Example-Part-5-with-comments.ipynb |
711.05Кб |
233 Linear Regression - Exercise.html |
1.37Кб |
234 Course-Notes-Logistic-Regression.pdf |
335.17Кб |
234 Introduction to Logistic Regression.en.srt |
1.67Кб |
234 Introduction to Logistic Regression.mp4 |
27.06Мб |
235 2.01.Admittance.csv |
1.58Кб |
235 Admittance.ipynb |
3.54Кб |
235 Admittance-with-comments.ipynb |
5.32Кб |
235 A Simple Example in Python.en.srt |
6.02Кб |
235 A Simple Example in Python.mp4 |
34.69Мб |
235 Course-Notes-Logistic-Regression.pdf |
335.17Кб |
236 Logistic vs Logit Function.en.srt |
5.07Кб |
236 Logistic vs Logit Function.mp4 |
86.49Мб |
237 Admittance-regression.ipynb |
2.09Кб |
237 Admittance-regression-summary-error.ipynb |
2.48Кб |
237 Admittance-regression-tables-fixed-error.ipynb |
4.11Кб |
237 Building a Logistic Regression.en.srt |
3.40Кб |
237 Building a Logistic Regression.mp4 |
17.10Мб |
238 Building a Logistic Regression - Exercise.html |
1003б |
238 Building-a-Logistic-Regression-Exercise.ipynb |
2.92Кб |
238 Building-a-Logistic-Regression-Solution.ipynb |
4.44Кб |
238 Example-bank-data.csv |
6.21Кб |
239 An Invaluable Coding Tip.en.srt |
3.34Кб |
239 An Invaluable Coding Tip.mp4 |
23.05Мб |
240 Understanding Logistic Regression Tables.en.srt |
5.78Кб |
240 Understanding Logistic Regression Tables.mp4 |
30.55Мб |
241 Bank-data.csv |
19.55Кб |
241 Understanding Logistic Regression Tables - Exercise.html |
1013б |
241 Understanding-Logistic-Regression-Tables-Exercise.ipynb |
3.16Кб |
241 Understanding-Logistic-Regression-Tables-Solution.ipynb |
4.79Кб |
242 What do the Odds Actually Mean.en.srt |
4.98Кб |
242 What do the Odds Actually Mean.mp4 |
32.28Мб |
243 2.02.Binary-predictors.csv |
2.56Кб |
243 Binary-predictors.ipynb |
2.41Кб |
243 Binary Predictors in a Logistic Regression.en.srt |
5.62Кб |
243 Binary Predictors in a Logistic Regression.mp4 |
38.43Мб |
244 Bank-data.csv |
19.55Кб |
244 Binary Predictors in a Logistic Regression - Exercise.html |
1015б |
244 Binary-Predictors-in-a-Logistic-Regression-Exercise.ipynb |
2.54Кб |
244 Binary-Predictors-in-a-Logistic-Regression-Solution.ipynb |
4.51Кб |
245 Accuracy.ipynb |
3.63Кб |
245 Accuracy-with-comments.ipynb |
11.67Кб |
245 Calculating the Accuracy of the Model.en.srt |
4.29Кб |
245 Calculating the Accuracy of the Model.mp4 |
32.85Мб |
246 Bank-data.csv |
19.55Кб |
246 Calculating the Accuracy of the Model.html |
999б |
246 Calculating-the-Accuracy-of-the-Model-Exercise.ipynb |
5.39Кб |
246 Calculating-the-Accuracy-of-the-Model-Solution.ipynb |
81.21Кб |
247 Underfitting and Overfitting.en.srt |
5.16Кб |
247 Underfitting and Overfitting.mp4 |
22.29Мб |
248 2.03.Test-dataset.csv |
322б |
248 Testing the Model.en.srt |
6.81Кб |
248 Testing-the-model.ipynb |
5.77Кб |
248 Testing the Model.mp4 |
32.27Мб |
248 Testing-the-model-with-comments.ipynb |
7.56Кб |
249 Bank-data.csv |
19.55Кб |
249 Bank-data-testing.csv |
8.30Кб |
249 Testing the Model - Exercise.html |
990б |
249 Testing-the-Model-Exercise.ipynb |
6.79Кб |
249 Testing-the-Model-Solution.ipynb |
111.10Кб |
250 Course-Notes-Cluster-Analysis.pdf |
208.65Кб |
250 Introduction to Cluster Analysis.en.srt |
4.99Кб |
250 Introduction to Cluster Analysis.mp4 |
53.42Мб |
251 Course-Notes-Cluster-Analysis.pdf |
208.65Кб |
251 Some Examples of Clusters.en.srt |
6.49Кб |
251 Some Examples of Clusters.mp4 |
71.53Мб |
252 Difference between Classification and Clustering.en.srt |
3.40Кб |
252 Difference between Classification and Clustering.mp4 |
36.15Мб |
253 Math Prerequisites.en.srt |
4.22Кб |
253 Math Prerequisites.mp4 |
14.55Мб |
254 K-Means Clustering.en.srt |
6.95Кб |
254 K-Means Clustering.mp4 |
27.28Мб |
255 3.01.Country-clusters.csv |
200б |
255 A Simple Example of Clustering.en.srt |
9.99Кб |
255 A Simple Example of Clustering.mp4 |
51.82Мб |
255 Country-clusters.ipynb |
3.31Кб |
255 Country-clusters-with-comments.ipynb |
5.80Кб |
256 A Simple Example of Clustering - Exercise.html |
1003б |
256 A-Simple-Example-of-Clustering-Exercise.ipynb |
3.62Кб |
256 A-Simple-Example-of-Clustering-Solution.ipynb |
4.65Кб |
256 Countries-exercise.csv |
8.27Кб |
257 Categorical-data.ipynb |
3.35Кб |
257 Categorical-data-with-comments.ipynb |
5.62Кб |
257 Clustering Categorical Data.en.srt |
3.38Кб |
257 Clustering Categorical Data.mp4 |
21.23Мб |
258 Categorical.csv |
10.34Кб |
258 Clustering Categorical Data - Exercise.html |
1000б |
258 Clustering-Categorical-Data-Exercise.ipynb |
3.78Кб |
258 Clustering-Categorical-Data-Solution.ipynb |
4.90Кб |
259 How to Choose the Number of Clusters.en.srt |
7.66Кб |
259 How to Choose the Number of Clusters.mp4 |
44.13Мб |
259 Selecting-the-number-of-clusters.ipynb |
4.53Кб |
259 Selecting-the-number-of-clusters-with-comments.ipynb |
7.48Кб |
260 Countries-exercise.csv |
8.27Кб |
260 How to Choose the Number of Clusters - Exercise.html |
1009б |
260 How-to-Choose-the-Number-of-Clusters-Exercise.ipynb |
5.55Кб |
260 How-to-Choose-the-Number-of-Clusters-Solution.ipynb |
8.49Кб |
261 Pros and Cons of K-Means Clustering.en.srt |
4.80Кб |
261 Pros and Cons of K-Means Clustering.mp4 |
37.70Мб |
262 To Standardize or not to Standardize.en.srt |
6.11Кб |
262 To Standardize or not to Standardize.mp4 |
30.10Мб |
263 Relationship between Clustering and Regression.en.srt |
2.26Кб |
263 Relationship between Clustering and Regression.mp4 |
9.93Мб |
264 3.12.Example.csv |
283б |
264 Market-segmentation-example.ipynb |
3.80Кб |
264 Market-segmentation-example-with-comments.ipynb |
5.90Кб |
264 Market Segmentation with Cluster Analysis (Part 1).en.srt |
7.84Кб |
264 Market Segmentation with Cluster Analysis (Part 1).mp4 |
43.01Мб |
265 Market-segmentation-example-Part2.ipynb |
4.68Кб |
265 Market-segmentation-example-Part2-with-comments.ipynb |
6.81Кб |
265 Market Segmentation with Cluster Analysis (Part 2).en.srt |
9.57Кб |
265 Market Segmentation with Cluster Analysis (Part 2).mp4 |
56.11Мб |
266 How is Clustering Useful_.en.srt |
6.63Кб |
266 How is Clustering Useful_.mp4 |
74.45Мб |
267 EXERCISE_ Species Segmentation with Cluster Analysis (Part 1).html |
1023б |
267 iris-dataset.csv |
2.40Кб |
267 Species-Segmentation-with-Cluster-Analysis-Part-1-Exercise.ipynb |
4.46Кб |
267 Species-Segmentation-with-Cluster-Analysis-Part-1-Solution.ipynb |
7.35Кб |
268 EXERCISE_ Species Segmentation with Cluster Analysis (Part 2).html |
1023б |
268 iris-dataset.csv |
2.40Кб |
268 iris-with-answers.csv |
3.63Кб |
268 Species-Segmentation-with-Cluster-Analysis-Part-2-Exercise.ipynb |
10.74Кб |
268 Species-Segmentation-with-Cluster-Analysis-Part-2-Solution.ipynb |
15.30Кб |
269 Types of Clustering.en.srt |
4.83Кб |
269 Types of Clustering.mp4 |
44.57Мб |
270 Dendrogram.en.srt |
7.65Кб |
270 Dendrogram.mp4 |
29.06Мб |
271 Country-clusters-standardized.csv |
244б |
271 Heatmaps.en.srt |
6.61Кб |
271 Heatmaps.ipynb |
1.82Кб |
271 Heatmaps.mp4 |
29.62Мб |
271 Heatmaps-with-comments.ipynb |
17.66Кб |
272 What is a Matrix_.en.srt |
4.51Кб |
272 What is a Matrix_.mp4 |
33.59Мб |
273 Scalars and Vectors.en.srt |
3.93Кб |
273 Scalars and Vectors.mp4 |
33.85Мб |
274 Linear Algebra and Geometry.en.srt |
4.27Кб |
274 Linear Algebra and Geometry.mp4 |
49.79Мб |
275 Arrays in Python - A Convenient Way To Represent Matrices.en.srt |
6.38Кб |
275 Arrays in Python - A Convenient Way To Represent Matrices.mp4 |
26.67Мб |
275 Scalars-Vectors-and-Matrices.ipynb |
4.55Кб |
276 Tensors.ipynb |
2.08Кб |
276 What is a Tensor_.en.srt |
3.75Кб |
276 What is a Tensor_.mp4 |
22.52Мб |
277 Adding-and-subtracting-matrices.ipynb |
3.22Кб |
277 Addition and Subtraction of Matrices.en.srt |
4.22Кб |
277 Addition and Subtraction of Matrices.mp4 |
32.61Мб |
278 Errors when Adding Matrices.en.srt |
2.67Кб |
278 Errors when Adding Matrices.mp4 |
11.17Мб |
278 Errors-when-adding-scalars-vectors-and-matrices-in-Python.ipynb |
3.17Кб |
279 Tranpose-of-a-matrix.ipynb |
2.89Кб |
279 Transpose of a Matrix.en.srt |
5.58Кб |
279 Transpose of a Matrix.mp4 |
38.07Мб |
280 Dot Product.en.srt |
4.45Кб |
280 Dot-product.ipynb |
2.13Кб |
280 Dot Product.mp4 |
23.99Мб |
281 Dot Product of Matrices.en.srt |
9.92Кб |
281 Dot Product of Matrices.mp4 |
49.43Мб |
281 Dot-product-Part-2.ipynb |
3.60Кб |
282 Why is Linear Algebra Useful_.en.srt |
12.24Кб |
282 Why is Linear Algebra Useful_.mp4 |
144.33Мб |
283 What to Expect from this Part_.en.srt |
4.81Кб |
283 What to Expect from this Part_.mp4 |
31.10Мб |
284 Course-Notes-Section-2.pdf |
578.08Кб |
284 Introduction to Neural Networks.en.srt |
6.12Кб |
284 Introduction to Neural Networks.mp4 |
42.92Мб |
285 Course-Notes-Section-2.pdf |
578.08Кб |
285 Training the Model.en.srt |
4.43Кб |
285 Training the Model.mp4 |
28.71Мб |
286 Types of Machine Learning.en.srt |
5.43Кб |
286 Types of Machine Learning.mp4 |
45.10Мб |
287 The Linear Model (Linear Algebraic Version).en.srt |
4.02Кб |
287 The Linear Model (Linear Algebraic Version).mp4 |
28.44Мб |
288 The Linear Model with Multiple Inputs.en.srt |
3.21Кб |
288 The Linear Model with Multiple Inputs.mp4 |
25.11Мб |
289 The Linear model with Multiple Inputs and Multiple Outputs.en.srt |
5.67Кб |
289 The Linear model with Multiple Inputs and Multiple Outputs.mp4 |
38.31Мб |
290 Graphical Representation of Simple Neural Networks.en.srt |
2.80Кб |
290 Graphical Representation of Simple Neural Networks.mp4 |
22.64Мб |
291 What is the Objective Function_.en.srt |
2.20Кб |
291 What is the Objective Function_.mp4 |
17.91Мб |
292 Common Objective Functions_ L2-norm Loss.en.srt |
2.87Кб |
292 Common Objective Functions_ L2-norm Loss.mp4 |
23.27Мб |
293 Common Objective Functions_ Cross-Entropy Loss.en.srt |
5.47Кб |
293 Common Objective Functions_ Cross-Entropy Loss.mp4 |
37.24Мб |
294 GD-function-example.xlsx |
42.33Кб |
294 Optimization Algorithm_ 1-Parameter Gradient Descent.en.srt |
8.79Кб |
294 Optimization Algorithm_ 1-Parameter Gradient Descent.mp4 |
55.62Мб |
295 Optimization Algorithm_ n-Parameter Gradient Descent.en.srt |
7.81Кб |
295 Optimization Algorithm_ n-Parameter Gradient Descent.mp4 |
39.42Мб |
296 Basic NN Example (Part 1).en.srt |
4.64Кб |
296 Basic NN Example (Part 1).mp4 |
20.59Мб |
296 Minimal-example-Part-1.ipynb |
1.19Кб |
296 Shortcuts-for-Jupyter.pdf |
619.17Кб |
297 Basic NN Example (Part 2).en.srt |
7.07Кб |
297 Basic NN Example (Part 2).mp4 |
34.94Мб |
297 Minimal-example-Part-2.ipynb |
3.65Кб |
298 Basic NN Example (Part 3).en.srt |
4.64Кб |
298 Basic NN Example (Part 3).mp4 |
24.40Мб |
298 Minimal-example-Part-3.ipynb |
6.79Кб |
299 Basic NN Example (Part 4).en.srt |
11.29Кб |
299 Basic NN Example (Part 4).mp4 |
61.13Мб |
299 Minimal-example-Part-4-Complete.ipynb |
11.41Кб |
300 Basic NN Example Exercises.html |
2.54Кб |
300 Minimal-example-All-Exercises.ipynb |
12.89Кб |
300 Minimal-example-Exercise-1-Solution.ipynb |
69.00Кб |
300 Minimal-example-Exercise-2-Solution.ipynb |
61.41Кб |
300 Minimal-example-Exercise-3.a.Solution.ipynb |
67.89Кб |
300 Minimal-example-Exercise-3.b.Solution.ipynb |
67.72Кб |
300 Minimal-example-Exercise-3.c.Solution.ipynb |
70.13Кб |
300 Minimal-example-Exercise-3.d.Solution.ipynb |
84.13Кб |
300 Minimal-example-Exercise-4-Solution.ipynb |
66.52Кб |
300 Minimal-example-Exercise-5-Solution.ipynb |
68.88Кб |
300 Minimal-example-Exercise-6.ipynb |
61.76Кб |
300 Minimal-example-Exercise-6-Solution.ipynb |
61.76Кб |
301 How to Install TensorFlow 2.0.en.srt |
6.63Кб |
301 How to Install TensorFlow 2.0.mp4 |
38.76Мб |
301 Shortcuts-for-Jupyter.pdf |
619.17Кб |
302 TensorFlow Outline and Comparison with Other Libraries.en.srt |
5.44Кб |
302 TensorFlow Outline and Comparison with Other Libraries.mp4 |
33.51Мб |
303 TensorFlow 1 vs TensorFlow 2.en.srt |
3.77Кб |
303 TensorFlow 1 vs TensorFlow 2.mp4 |
21.99Мб |
304 A Note on TensorFlow 2 Syntax.en.srt |
1.41Кб |
304 A Note on TensorFlow 2 Syntax.mp4 |
6.75Мб |
305 TensorFlow-Minimal-example-Part1.ipynb |
1.66Кб |
305 Types of File Formats Supporting TensorFlow.en.srt |
3.65Кб |
305 Types of File Formats Supporting TensorFlow.mp4 |
16.40Мб |
306 Outlining the Model with TensorFlow 2.en.srt |
8.13Кб |
306 Outlining the Model with TensorFlow 2.mp4 |
34.69Мб |
306 TensorFlow-Minimal-example-Part2.ipynb |
9.06Кб |
307 Interpreting the Result and Extracting the Weights and Bias.en.srt |
6.48Кб |
307 Interpreting the Result and Extracting the Weights and Bias.mp4 |
30.27Мб |
307 TensorFlow-Minimal-example-Part3.ipynb |
76.52Кб |
308 Customizing a TensorFlow 2 Model.en.srt |
4.27Кб |
308 Customizing a TensorFlow 2 Model.mp4 |
22.91Мб |
308 TensorFlow-Minimal-example-complete.ipynb |
76.85Кб |
308 TensorFlow-Minimal-example-complete-with-comments.ipynb |
82.29Кб |
309 Basic NN with TensorFlow_ Exercises.html |
2.18Кб |
309 TensorFlow-Minimal-example-All-exercises.ipynb |
83.62Кб |
309 TensorFlow-Minimal-example-Exercise-1-Solution.ipynb |
27.96Кб |
309 TensorFlow-Minimal-Example-Exercise-2-1-Solution.ipynb |
83.68Кб |
309 TensorFlow-Minimal-Example-Exercise-2-2-Solution.ipynb |
77.52Кб |
309 TensorFlow-Minimal-Example-Exercise-3-Solution.ipynb |
84.44Кб |
310 Course-Notes-Section-6.pdf |
936.42Кб |
310 What is a Layer_.en.srt |
2.47Кб |
310 What is a Layer_.mp4 |
12.50Мб |
311 Course-Notes-Section-6.pdf |
936.42Кб |
311 What is a Deep Net_.en.srt |
3.37Кб |
311 What is a Deep Net_.mp4 |
29.53Мб |
312 Digging into a Deep Net.en.srt |
6.96Кб |
312 Digging into a Deep Net.mp4 |
59.36Мб |
313 Non-Linearities and their Purpose.en.srt |
4.04Кб |
313 Non-Linearities and their Purpose.mp4 |
27.68Мб |
314 Activation Functions.en.srt |
5.46Кб |
314 Activation Functions.mp4 |
25.09Мб |
315 Activation Functions_ Softmax Activation.en.srt |
4.63Кб |
315 Activation Functions_ Softmax Activation.mp4 |
25.92Мб |
316 Backpropagation.en.srt |
4.64Кб |
316 Backpropagation.mp4 |
34.95Мб |
317 Backpropagation Picture.en.srt |
4.14Кб |
317 Backpropagation Picture.mp4 |
19.50Мб |
318 Backpropagation - A Peek into the Mathematics of Optimization.html |
1.44Кб |
318 Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf |
182.38Кб |
319 What is Overfitting_.en.srt |
5.78Кб |
319 What is Overfitting_.mp4 |
31.08Мб |
320 Underfitting and Overfitting for Classification.en.srt |
2.73Кб |
320 Underfitting and Overfitting for Classification.mp4 |
25.07Мб |
321 What is Validation_.en.srt |
5.10Кб |
321 What is Validation_.mp4 |
32.71Мб |
322 Training, Validation, and Test Datasets.en.srt |
3.75Кб |
322 Training, Validation, and Test Datasets.mp4 |
25.19Мб |
323 N-Fold Cross Validation.en.srt |
4.33Кб |
323 N-Fold Cross Validation.mp4 |
20.70Мб |
324 Early Stopping or When to Stop Training.en.srt |
7.12Кб |
324 Early Stopping or When to Stop Training.mp4 |
24.17Мб |
325 What is Initialization_.en.srt |
3.64Кб |
325 What is Initialization_.mp4 |
21.76Мб |
326 Types of Simple Initializations.en.srt |
3.81Кб |
326 Types of Simple Initializations.mp4 |
14.31Мб |
327 State-of-the-Art Method - (Xavier) Glorot Initialization.en.srt |
3.85Кб |
327 State-of-the-Art Method - (Xavier) Glorot Initialization.mp4 |
17.14Мб |
328 Stochastic Gradient Descent.en.srt |
5.01Кб |
328 Stochastic Gradient Descent.mp4 |
28.68Мб |
329 Problems with Gradient Descent.en.srt |
2.93Кб |
329 Problems with Gradient Descent.mp4 |
11.01Мб |
330 Momentum.en.srt |
3.57Кб |
330 Momentum.mp4 |
16.43Мб |
331 Learning Rate Schedules, or How to Choose the Optimal Learning Rate.en.srt |
6.16Кб |
331 Learning Rate Schedules, or How to Choose the Optimal Learning Rate.mp4 |
29.08Мб |
332 Learning Rate Schedules Visualized.en.srt |
2.25Кб |
332 Learning Rate Schedules Visualized.mp4 |
9.11Мб |
333 Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).en.srt |
5.41Кб |
333 Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).mp4 |
26.35Мб |
334 Adam (Adaptive Moment Estimation).en.srt |
3.46Кб |
334 Adam (Adaptive Moment Estimation).mp4 |
22.35Мб |
335 Preprocessing Introduction.en.srt |
4.02Кб |
335 Preprocessing Introduction.mp4 |
27.78Мб |
336 Types of Basic Preprocessing.en.srt |
1.69Кб |
336 Types of Basic Preprocessing.mp4 |
11.84Мб |
337 Standardization.en.srt |
6.18Кб |
337 Standardization.mp4 |
50.98Мб |
338 Preprocessing Categorical Data.en.srt |
2.87Кб |
338 Preprocessing Categorical Data.mp4 |
18.60Мб |
339 Binary and One-Hot Encoding.en.srt |
5.01Кб |
339 Binary and One-Hot Encoding.mp4 |
28.94Мб |
340 MNIST_ The Dataset.en.srt |
3.72Кб |
340 MNIST_ The Dataset.mp4 |
13.38Мб |
341 MNIST_ How to Tackle the MNIST.en.srt |
3.64Кб |
341 MNIST_ How to Tackle the MNIST.mp4 |
18.66Мб |
342 MNIST_ Importing the Relevant Packages and Loading the Data.en.srt |
3.20Кб |
342 MNIST_ Importing the Relevant Packages and Loading the Data.mp4 |
16.32Мб |
342 TensorFlow-MNIST-Part1-with-comments.ipynb |
3.97Кб |
343 MNIST_ Preprocess the Data - Create a Validation Set and Scale It.en.srt |
6.50Кб |
343 MNIST_ Preprocess the Data - Create a Validation Set and Scale It.mp4 |
29.04Мб |
344 MNIST_ Preprocess the Data - Scale the Test Data - Exercise.html |
1013б |
344 TensorFlow-MNIST-Part2-with-comments.ipynb |
6.39Кб |
345 MNIST_ Preprocess the Data - Shuffle and Batch.en.srt |
9.61Кб |
345 MNIST_ Preprocess the Data - Shuffle and Batch.mp4 |
41.52Мб |
346 MNIST_ Preprocess the Data - Shuffle and Batch - Exercise.html |
1011б |
346 TensorFlow-MNIST-Part3-with-comments.ipynb |
8.61Кб |
347 MNIST_ Outline the Model.en.srt |
7.49Кб |
347 MNIST_ Outline the Model.mp4 |
28.23Мб |
347 TensorFlow-MNIST-Part4-with-comments.ipynb |
10.49Кб |
348 MNIST_ Select the Loss and the Optimizer.en.srt |
3.14Кб |
348 MNIST_ Select the Loss and the Optimizer.mp4 |
13.90Мб |
348 TensorFlow-MNIST-Part5-with-comments.ipynb |
10.99Кб |
349 MNIST_ Learning.en.srt |
8.27Кб |
349 MNIST_ Learning.mp4 |
40.96Мб |
349 TensorFlow-MNIST-Part6-with-comments.ipynb |
12.54Кб |
350 1.TensorFlow-MNIST-Width-Solution.ipynb |
14.84Кб |
350 2.TensorFlow-MNIST-Depth-Solution.ipynb |
15.31Кб |
350 3.TensorFlow-MNIST-Width-and-Depth-Solution.ipynb |
15.30Кб |
350 4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb |
15.11Кб |
350 5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb |
14.74Кб |
350 6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb |
15.12Кб |
350 7.TensorFlow-MNIST-Batch-size-Part-2-Solution.ipynb |
15.18Кб |
350 8.TensorFlow-MNIST-Learning-rate-Part-1-Solution.ipynb |
20.58Кб |
350 9.TensorFlow-MNIST-Learning-rate-Part-2-Solution.ipynb |
15.80Кб |
350 MNIST - Exercises.html |
2.85Кб |
350 TensorFlow-MNIST-All-Exercises.ipynb |
16.65Кб |
350 TensorFlow-MNIST-around-98-percent-accuracy.ipynb |
15.02Кб |
351 MNIST_ Testing the Model.en.srt |
6.26Кб |
351 MNIST_ Testing the Model.mp4 |
29.52Мб |
351 TensorFlow-MNIST-complete.ipynb |
6.78Кб |
351 TensorFlow-MNIST-complete-with-comments.ipynb |
14.51Кб |
352 Audiobooks-data.csv |
710.77Кб |
352 Business Case_ Exploring the Dataset and Identifying Predictors.en.srt |
11.08Кб |
352 Business Case_ Exploring the Dataset and Identifying Predictors.mp4 |
66.27Мб |
353 Business Case_ Outlining the Solution.en.srt |
2.08Кб |
353 Business Case_ Outlining the Solution.mp4 |
7.30Мб |
354 Business Case_ Balancing the Dataset.en.srt |
4.67Кб |
354 Business Case_ Balancing the Dataset.mp4 |
30.43Мб |
355 Business Case_ Preprocessing the Data.en.srt |
12.71Кб |
355 Business Case_ Preprocessing the Data.mp4 |
84.33Мб |
355 TensorFlow-Audiobooks-Preprocessing.ipynb |
5.58Кб |
355 TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb |
11.19Кб |
356 Business Case_ Preprocessing the Data - Exercise.html |
1.26Кб |
356 TensorFlow-Audiobooks-Preprocessing-Exercise.ipynb |
8.60Кб |
356 TensorFlow-Audiobooks-Preprocessing-Exercise-Solution.ipynb |
10.04Кб |
357 Business Case_ Load the Preprocessed Data.en.srt |
4.89Кб |
357 Business Case_ Load the Preprocessed Data.mp4 |
17.57Мб |
358 Business Case_ Load the Preprocessed Data - Exercise.html |
1006б |
358 TensorFlow-Audiobooks-Machine-Learning-Part1-with-comments.ipynb |
4.61Кб |
359 Business Case_ Learning and Interpreting the Result.en.srt |
6.53Кб |
359 Business Case_ Learning and Interpreting the Result.mp4 |
31.18Мб |
359 TensorFlow-Audiobooks-Machine-Learning-Part2-with-comments.ipynb |
19.69Кб |
360 Business Case_ Setting an Early Stopping Mechanism.en.srt |
8.11Кб |
360 Business Case_ Setting an Early Stopping Mechanism.mp4 |
49.81Мб |
360 TensorFlow-Audiobooks-Machine-Learning-Part3-with-comments.ipynb |
10.06Кб |
361 Setting an Early Stopping Mechanism - Exercise.html |
1.09Кб |
362 Business Case_ Testing the Model.en.srt |
2.12Кб |
362 Business Case_ Testing the Model.mp4 |
10.79Мб |
362 TensorFlow-Audiobooks-Machine-Learning-with-comments.ipynb |
11.95Кб |
363 Business Case_ Final Exercise.html |
1.31Кб |
363 TensorFlow-Audiobooks-Machine-Learning-with-comments.ipynb |
11.95Кб |
364 Summary on What You've Learned.en.srt |
5.41Кб |
364 Summary on What You've Learned.mp4 |
39.75Мб |
365 What's Further out there in terms of Machine Learning.en.srt |
2.64Кб |
365 What's Further out there in terms of Machine Learning.mp4 |
20.12Мб |
366 DeepMind and Deep Learning.html |
1.93Кб |
367 An overview of CNNs.en.srt |
6.68Кб |
367 An overview of CNNs.mp4 |
58.79Мб |
368 An Overview of RNNs.en.srt |
3.83Кб |
368 An Overview of RNNs.mp4 |
25.26Мб |
369 An Overview of non-NN Approaches.en.srt |
5.29Кб |
369 An Overview of non-NN Approaches.mp4 |
44.77Мб |
370 READ ME!!!!.html |
1.42Кб |
371 How to Install TensorFlow 1.en.srt |
3.56Кб |
371 How to Install TensorFlow 1.mp4 |
11.35Мб |
372 A Note on Installing Packages in Anaconda.html |
3.35Кб |
373 TensorFlow Intro.en.srt |
5.40Кб |
373 TensorFlow Intro.mp4 |
47.69Мб |
374 Actual Introduction to TensorFlow.en.srt |
2.25Кб |
374 Actual Introduction to TensorFlow.mp4 |
17.41Мб |
374 Shortcuts-for-Jupyter.pdf |
619.17Кб |
375 5.3.TensorFlow-Minimal-example-Part-1.ipynb |
3.36Кб |
375 Types of File Formats, supporting Tensors.en.srt |
3.59Кб |
375 Types of File Formats, supporting Tensors.mp4 |
20.34Мб |
376 5.4.TensorFlow-Minimal-example-Part-2.ipynb |
6.17Кб |
376 Basic NN Example with TF_ Inputs, Outputs, Targets, Weights, Biases.en.srt |
7.63Кб |
376 Basic NN Example with TF_ Inputs, Outputs, Targets, Weights, Biases.mp4 |
38.49Мб |
377 5.5.TensorFlow-Minimal-example-Part-3.ipynb |
8.65Кб |
377 Basic NN Example with TF_ Loss Function and Gradient Descent.en.srt |
5.02Кб |
377 Basic NN Example with TF_ Loss Function and Gradient Descent.mp4 |
32.51Мб |
378 5.6.TensorFlow-Minimal-example-complete.ipynb |
12.15Кб |
378 Basic NN Example with TF_ Model Output.en.srt |
8.26Кб |
378 Basic NN Example with TF_ Model Output.mp4 |
37.39Мб |
379 Basic NN Example with TF Exercises.html |
2.47Кб |
379 TensorFlow-Minimal-Example-All-Exercises.ipynb |
13.97Кб |
379 TensorFlow-Minimal-Example-Exercise-1-Solution.ipynb |
23.63Кб |
379 TensorFlow-Minimal-Example-Exercise-2-1-Solution.ipynb |
25.54Кб |
379 TensorFlow-Minimal-Example-Exercise-2-2-Solution.ipynb |
25.51Кб |
379 TensorFlow-Minimal-Example-Exercise-2-3-Solution.ipynb |
49.96Кб |
379 TensorFlow-Minimal-Example-Exercise-2-4-Solution.ipynb |
21.75Кб |
379 TensorFlow-Minimal-Example-Exercise-3-Solution.ipynb |
26.71Кб |
379 TensorFlow-Minimal-Example-Exercise-4-Solution.ipynb |
26.98Кб |
380 MNIST_ What is the MNIST Dataset_.en.srt |
3.63Кб |
380 MNIST_ What is the MNIST Dataset_.mp4 |
17.82Мб |
381 MNIST_ How to Tackle the MNIST.en.srt |
3.76Кб |
381 MNIST_ How to Tackle the MNIST.mp4 |
22.58Мб |
382 12.3.TensorFlow-MNIST-with-comments-Part-1.ipynb |
3.89Кб |
382 MNIST_ Relevant Packages.en.srt |
2.19Кб |
382 MNIST_ Relevant Packages.mp4 |
18.90Мб |
383 12.4.TensorFlow-MNIST-with-comments-Part-2.ipynb |
6.10Кб |
383 MNIST_ Model Outline.en.srt |
9.42Кб |
383 MNIST_ Model Outline.mp4 |
56.38Мб |
384 12.5.TensorFlow-MNIST-with-comments-Part-3.ipynb |
7.31Кб |
384 MNIST_ Loss and Optimization Algorithm.en.srt |
3.67Кб |
384 MNIST_ Loss and Optimization Algorithm.mp4 |
25.86Мб |
385 12.6.TensorFlow-MNIST-with-comments-Part-4.ipynb |
7.90Кб |
385 Calculating the Accuracy of the Model.en.srt |
5.40Кб |
385 Calculating the Accuracy of the Model.mp4 |
43.90Мб |
386 12.7.TensorFlow-MNIST-with-comments-Part-5.ipynb |
8.53Кб |
386 MNIST_ Batching and Early Stopping.en.srt |
3.04Кб |
386 MNIST_ Batching and Early Stopping.mp4 |
12.85Мб |
387 12.8.TensorFlow-MNIST-with-comments-Part-6.ipynb |
11.50Кб |
387 MNIST_ Learning.en.srt |
10.60Кб |
387 MNIST_ Learning.mp4 |
46.68Мб |
388 12.9.TensorFlow-MNIST-with-comments.ipynb |
13.03Кб |
388 MNIST_ Results and Testing.en.srt |
8.49Кб |
388 MNIST_ Results and Testing.mp4 |
62.77Мб |
389 MNIST_ Exercises.html |
3.00Кб |
389 TensorFlow-MNIST-Exercises-All.ipynb |
15.47Кб |
390 0.TensorFlow-MNIST-take-note-of-time-Solution.ipynb |
14.00Кб |
390 1.TensorFlow-MNIST-Width-Solution.ipynb |
14.01Кб |
390 2.TensorFlow-MNIST-Depth-Solution.ipynb |
14.87Кб |
390 3.TensorFlow-MNIST-Width-and-Depth-Solution.ipynb |
16.81Кб |
390 4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb |
14.35Кб |
390 5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb |
13.93Кб |
390 6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb |
14.26Кб |
390 7.TensorFlow-MNIST-Batch-size-Part-2-Solution.ipynb |
14.16Кб |
390 8.TensorFlow-MNIST-Learning-rate-Part-1-Solution.ipynb |
14.07Кб |
390 9.TensorFlow-MNIST-Learning-rate-Part-2-Solution.ipynb |
15.21Кб |
390 MNIST_ Solutions.html |
3.06Кб |
390 TensorFlow-MNIST-around-98-percent-accuracy.ipynb |
17.66Кб |
391 Audiobooks-data.csv |
710.77Кб |
391 Business Case_ Getting Acquainted with the Dataset.en.srt |
11.22Кб |
391 Business Case_ Getting Acquainted with the Dataset.mp4 |
87.65Мб |
392 Business Case_ Outlining the Solution.en.srt |
2.62Кб |
392 Business Case_ Outlining the Solution.mp4 |
12.21Мб |
393 Audiobooks-data.csv |
710.77Кб |
393 The Importance of Working with a Balanced Dataset.en.srt |
4.66Кб |
393 The Importance of Working with a Balanced Dataset.mp4 |
39.41Мб |
394 Audiobooks-data.csv |
710.77Кб |
394 Business Case_ Preprocessing.en.srt |
13.98Кб |
394 Business Case_ Preprocessing.mp4 |
103.41Мб |
394 TensorFlow-Audiobooks-Preprocessing.ipynb |
5.58Кб |
394 TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb |
11.19Кб |
395 Audiobooks-data.csv |
710.77Кб |
395 Business Case_ Preprocessing Exercise.html |
1.26Кб |
395 TensorFlow-Audiobooks-Preprocessing-Exercise.ipynb |
8.60Кб |
395 TensorFlow-Audiobooks-Preprocessing-Exercise-Solution.ipynb |
10.03Кб |
396 Creating a Data Provider.en.srt |
8.05Кб |
396 Creating a Data Provider.mp4 |
76.34Мб |
397 Business Case_ Model Outline.en.srt |
7.21Кб |
397 Business Case_ Model Outline.mp4 |
53.12Мб |
397 TensorFlow-Audiobooks-Outlining-the-model.ipynb |
9.36Кб |
397 TensorFlow-Audiobooks-Outlining-the-model-with-comments.ipynb |
10.34Кб |
398 Business Case_ Optimization.en.srt |
6.86Кб |
398 Business Case_ Optimization.mp4 |
41.52Мб |
398 TensorFlow-Audiobooks-optimizing-the-algorithm.ipynb |
10.64Кб |
398 TensorFlow-Audiobooks-optimizing-the-algorithm-with-comments.ipynb |
12.73Кб |
399 Business Case_ Interpretation.en.srt |
3.05Кб |
399 Business Case_ Interpretation.mp4 |
25.74Мб |
399 TensorFlow-Audiobooks-optimizing-the-algorithm.ipynb |
10.64Кб |
399 TensorFlow-Audiobooks-optimizing-the-algorithm-with-comments.ipynb |
12.73Кб |
400 Business Case_ Testing the Model.en.srt |
2.82Кб |
400 Business Case_ Testing the Model.mp4 |
11.20Мб |
401 Audiobooks-data.csv |
710.77Кб |
401 Business Case_ A Comment on the Homework.en.srt |
5.50Кб |
401 Business Case_ A Comment on the Homework.mp4 |
36.38Мб |
401 TensorFlow-Audiobooks-Machine-learning-Homework.ipynb |
14.40Кб |
401 TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb |
11.19Кб |
402 Audiobooks-data.csv |
710.77Кб |
402 Business Case_ Final Exercise.html |
1.31Кб |
402 TensorFlow-Audiobooks-Machine-learning-Homework.ipynb |
14.40Кб |
402 TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb |
11.19Кб |
403 What are Data, Servers, Clients, Requests, and Responses.en.srt |
6.16Кб |
403 What are Data, Servers, Clients, Requests, and Responses.mp4 |
69.03Мб |
404 What are Data Connectivity, APIs, and Endpoints_.en.srt |
8.85Кб |
404 What are Data Connectivity, APIs, and Endpoints_.mp4 |
104.08Мб |
405 Taking a Closer Look at APIs.en.srt |
10.77Кб |
405 Taking a Closer Look at APIs.mp4 |
115.59Мб |
406 Communication between Software Products through Text Files.en.srt |
5.68Кб |
406 Communication between Software Products through Text Files.mp4 |
60.34Мб |
407 Software Integration - Explained.en.srt |
6.95Кб |
407 Software Integration - Explained.mp4 |
63.69Мб |
408 Game Plan for this Python, SQL, and Tableau Business Exercise.en.srt |
5.66Кб |
408 Game Plan for this Python, SQL, and Tableau Business Exercise.mp4 |
52.30Мб |
409 The Business Task.en.srt |
3.88Кб |
409 The Business Task.mp4 |
39.15Мб |
410 Introducing the Data Set.en.srt |
4.30Кб |
410 Introducing the Data Set.mp4 |
40.86Мб |
411 Absenteeism-data.csv |
32.05Кб |
411 data-preprocessing-homework.pdf |
134.47Кб |
411 df-preprocessed.csv |
29.11Кб |
411 What to Expect from the Following Sections_.html |
3.38Кб |
412 Importing the Absenteeism Data in Python.en.srt |
4.15Кб |
412 Importing the Absenteeism Data in Python.mp4 |
23.15Мб |
413 Checking the Content of the Data Set.en.srt |
7.32Кб |
413 Checking the Content of the Data Set.mp4 |
61.90Мб |
414 Introduction to Terms with Multiple Meanings.en.srt |
4.20Кб |
414 Introduction to Terms with Multiple Meanings.mp4 |
27.85Мб |
415 What's Regression Analysis - a Quick Refresher.html |
3.74Кб |
416 Using a Statistical Approach towards the Solution to the Exercise.en.srt |
2.91Кб |
416 Using a Statistical Approach towards the Solution to the Exercise.mp4 |
20.18Мб |
417 Dropping a Column from a DataFrame in Python.en.srt |
8.12Кб |
417 Dropping a Column from a DataFrame in Python.mp4 |
61.76Мб |
418 EXERCISE - Dropping a Column from a DataFrame in Python.html |
1.75Кб |
419 SOLUTION - Dropping a Column from a DataFrame in Python.html |
1.02Кб |
420 Analyzing the Reasons for Absence.en.srt |
6.08Кб |
420 Analyzing the Reasons for Absence.mp4 |
40.57Мб |
421 Obtaining Dummies from a Single Feature.en.srt |
10.59Кб |
421 Obtaining Dummies from a Single Feature.mp4 |
81.11Мб |
422 EXERCISE - Obtaining Dummies from a Single Feature.html |
1.03Кб |
423 SOLUTION - Obtaining Dummies from a Single Feature.html |
1.02Кб |
424 Dropping a Dummy Variable from the Data Set.html |
3.23Кб |
425 More on Dummy Variables_ A Statistical Perspective.en.srt |
1.76Кб |
425 More on Dummy Variables_ A Statistical Perspective.mp4 |
13.74Мб |
426 Classifying the Various Reasons for Absence.en.srt |
10.41Кб |
426 Classifying the Various Reasons for Absence.mp4 |
74.60Мб |
427 Using .concat() in Python.en.srt |
5.27Кб |
427 Using .concat() in Python.mp4 |
38.73Мб |
428 EXERCISE - Using .concat() in Python.html |
1.07Кб |
429 SOLUTION - Using .concat() in Python.html |
1.03Кб |
430 Reordering Columns in a Pandas DataFrame in Python.en.srt |
1.89Кб |
430 Reordering Columns in a Pandas DataFrame in Python.mp4 |
14.01Мб |
431 EXERCISE - Reordering Columns in a Pandas DataFrame in Python.html |
1.08Кб |
432 SOLUTION - Reordering Columns in a Pandas DataFrame in Python.html |
1.37Кб |
433 Absenteeism-Exercise-Preprocessing-df-reason-mod.ipynb |
4.82Кб |
433 Creating Checkpoints while Coding in Jupyter.en.srt |
3.77Кб |
433 Creating Checkpoints while Coding in Jupyter.mp4 |
25.67Мб |
434 EXERCISE - Creating Checkpoints while Coding in Jupyter.html |
1.04Кб |
435 SOLUTION - Creating Checkpoints while Coding in Jupyter.html |
1.02Кб |
436 Analyzing the Dates from the Initial Data Set.en.srt |
8.73Кб |
436 Analyzing the Dates from the Initial Data Set.mp4 |
57.28Мб |
437 Extracting the Month Value from the _Date_ Column.en.srt |
8.29Кб |
437 Extracting the Month Value from the _Date_ Column.mp4 |
47.79Мб |
438 Extracting the Day of the Week from the _Date_ Column.en.srt |
4.65Кб |
438 Extracting the Day of the Week from the _Date_ Column.mp4 |
27.96Мб |
439 Absenteeism-Exercise-Preprocessing-ChP-df-date-reason-mod.ipynb |
7.33Кб |
439 Absenteeism-Exercise-Preprocessing-LECTURES.ipynb |
7.60Мб |
439 Absenteeism-Exercise-Removing-the-Date-Column-SOLUTION.ipynb |
8.33Кб |
439 EXERCISE - Removing the _Date_ Column.html |
2.10Кб |
440 Analyzing Several _Straightforward_ Columns for this Exercise.en.srt |
4.50Кб |
440 Analyzing Several _Straightforward_ Columns for this Exercise.mp4 |
29.51Мб |
441 Working on _Education_, _Children_, and _Pets_.en.srt |
5.89Кб |
441 Working on _Education_, _Children_, and _Pets_.mp4 |
39.59Мб |
442 Absenteeism-Exercise-EXERCISES-and-SOLUTIONS.ipynb |
4.13Кб |
442 Absenteeism-Exercise-Preprocessing-df-preprocessed.ipynb |
8.51Кб |
442 Final Remarks of this Section.en.srt |
2.56Кб |
442 Final Remarks of this Section.mp4 |
21.63Мб |
443 A Note on Exporting Your Data as a _.csv File.html |
1.76Кб |
444 Absenteeism-preprocessed.csv |
29.13Кб |
444 Exploring the Problem with a Machine Learning Mindset.en.srt |
4.76Кб |
444 Exploring the Problem with a Machine Learning Mindset.mp4 |
27.54Мб |
445 Creating the Targets for the Logistic Regression.en.srt |
8.71Кб |
445 Creating the Targets for the Logistic Regression.mp4 |
45.79Мб |
446 Selecting the Inputs for the Logistic Regression.en.srt |
3.82Кб |
446 Selecting the Inputs for the Logistic Regression.mp4 |
16.75Мб |
447 Standardizing the Data.en.srt |
4.36Кб |
447 Standardizing the Data.mp4 |
20.59Мб |
448 Splitting the Data for Training and Testing.en.srt |
8.42Кб |
448 Splitting the Data for Training and Testing.mp4 |
52.76Мб |
449 Fitting the Model and Assessing its Accuracy.en.srt |
7.68Кб |
449 Fitting the Model and Assessing its Accuracy.mp4 |
41.62Мб |
450 Creating a Summary Table with the Coefficients and Intercept.en.srt |
6.88Кб |
450 Creating a Summary Table with the Coefficients and Intercept.mp4 |
38.87Мб |
451 Interpreting the Coefficients for Our Problem.en.srt |
8.19Кб |
451 Interpreting the Coefficients for Our Problem.mp4 |
52.37Мб |
452 Standardizing only the Numerical Variables (Creating a Custom Scaler).en.srt |
5.22Кб |
452 Standardizing only the Numerical Variables (Creating a Custom Scaler).mp4 |
41.19Мб |
453 Interpreting the Coefficients of the Logistic Regression.en.srt |
7.53Кб |
453 Interpreting the Coefficients of the Logistic Regression.mp4 |
40.40Мб |
454 Backward Elimination or How to Simplify Your Model.en.srt |
5.45Кб |
454 Backward Elimination or How to Simplify Your Model.mp4 |
39.56Мб |
455 Testing the Model We Created.en.srt |
6.76Кб |
455 Testing the Model We Created.mp4 |
49.06Мб |
456 Saving the Model and Preparing it for Deployment.en.srt |
5.79Кб |
456 Saving the Model and Preparing it for Deployment.mp4 |
37.45Мб |
457 ARTICLE - A Note on 'pickling'.html |
3.03Кб |
458 EXERCISE - Saving the Model (and Scaler).html |
1.17Кб |
459 Preparing the Deployment of the Model through a Module.en.srt |
5.84Кб |
459 Preparing the Deployment of the Model through a Module.mp4 |
44.48Мб |
460 Absenteeism-Exercise-Integration.ipynb |
62.35Кб |
460 absenteeism-module.py |
6.62Кб |
460 Absenteeism-new-data.csv |
1.87Кб |
460 Are You Sure You're All Set_.html |
1.39Кб |
460 model |
1.01Кб |
460 scaler |
1.86Кб |
461 Deploying the 'absenteeism_module' - Part I.en.srt |
4.94Кб |
461 Deploying the 'absenteeism_module' - Part I.mp4 |
25.48Мб |
462 Deploying the 'absenteeism_module' - Part II.en.srt |
7.81Кб |
462 Deploying the 'absenteeism_module' - Part II.mp4 |
54.25Мб |
463 Absenteeism-Exercise-Deploying-the-absenteeism-module.ipynb |
973б |
463 Exporting the Obtained Data Set as a _.csv.html |
1.87Кб |
464 Absenteeism-predictions.csv |
2.10Кб |
464 EXERCISE - Age vs Probability.html |
1.26Кб |
465 Absenteeism-predictions.csv |
2.10Кб |
465 Analyzing Age vs Probability in Tableau.en.srt |
10.41Кб |
465 Analyzing Age vs Probability in Tableau.mp4 |
56.55Мб |
466 EXERCISE - Reasons vs Probability.html |
1.27Кб |
467 Analyzing Reasons vs Probability in Tableau.en.srt |
9.91Кб |
467 Analyzing Reasons vs Probability in Tableau.mp4 |
59.33Мб |
468 EXERCISE - Transportation Expense vs Probability.html |
1.44Кб |
469 Analyzing Transportation Expense vs Probability in Tableau.en.srt |
7.49Кб |
469 Analyzing Transportation Expense vs Probability in Tableau.mp4 |
40.63Мб |
470 Additional-Python-Tools-Exercises.ipynb |
11.37Кб |
470 Additional-Python-Tools-Lectures.ipynb |
13.47Кб |
470 Additional-Python-Tools-Solutions.ipynb |
25.49Кб |
470 Using the .format() Method.en.srt |
12.81Кб |
470 Using the .format() Method.mp4 |
47.63Мб |
471 Iterating Over Range Objects.en.srt |
6.26Кб |
471 Iterating Over Range Objects.mp4 |
22.48Мб |
472 Introduction to Nested For Loops.en.srt |
8.61Кб |
472 Introduction to Nested For Loops.mp4 |
29.46Мб |
473 Triple Nested For Loops.en.srt |
8.30Кб |
473 Triple Nested For Loops.mp4 |
46.59Мб |
474 List Comprehensions.en.srt |
12.81Кб |
474 List Comprehensions.mp4 |
55.45Мб |
475 Additional-Python-Tools-Exercises.ipynb |
11.37Кб |
475 Additional-Python-Tools-Lectures.ipynb |
13.47Кб |
475 Additional-Python-Tools-Solutions.ipynb |
25.49Кб |
475 Anonymous (Lambda) Functions.en.srt |
10.24Кб |
475 Anonymous (Lambda) Functions.mp4 |
38.53Мб |
476 Bonus Lecture_ Next Steps.html |
3.41Кб |
external-assets-links.txt |
105б |
external-assets-links.txt |
134б |
external-assets-links.txt |
790б |