Общая информация
Название Modern Artificial Intelligence Masterclass Build 6 Projects
Тип
Размер 8.45Гб
Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[TGx]Downloaded from torrentgalaxy.to.txt 585б
1.1 AI In Business (Finance) & AutoML Google Colab.html 146б
1.1 AI in Business (Marketing) Google Colab.html 146б
1.1 AI in Healthcare Google Colab.html 146б
1.1 Emotion AI Slides.pdf 3.07Мб
1.2 Creative AI.pdf 4.83Мб
1.2 Emotion AI Google Colab Notebook.html 146б
1.2 Healthcare AI Slides.pdf 4.34Мб
1.2 UCI_Credit_Card.csv 2.73Мб
1.3 AI in Finance.pdf 6.20Мб
1.3 AI in Marketing Slides.pdf 1.57Мб
1.3 Creative AI Google Colab.html 146б
1.4 AI in Finance - SageMaker AutoPilot.pdf 1.03Мб
1. Introduction and Welcome Message.mp4 69.17Мб
1. Introduction and Welcome Message.srt 4.68Кб
1. Link to Bonus Materials.html 1.65Кб
1. Project Introduction and Welcome Message.mp4 58.01Мб
1. Project Introduction and Welcome Message.mp4 56.98Мб
1. Project Introduction and Welcome Message.mp4 37.07Мб
1. Project Introduction and Welcome Message.mp4 39.61Мб
1. Project Introduction and Welcome Message.mp4 61.40Мб
1. Project Introduction and Welcome Message.mp4 46.85Мб
1. Project Introduction and Welcome Message.srt 3.24Кб
1. Project Introduction and Welcome Message.srt 3.01Кб
1. Project Introduction and Welcome Message.srt 1.91Кб
1. Project Introduction and Welcome Message.srt 2.35Кб
1. Project Introduction and Welcome Message.srt 3.56Кб
1. Project Introduction and Welcome Message.srt 2.62Кб
1. What is AWS and Cloud Computing.mp4 68.06Мб
1. What is AWS and Cloud Computing.srt 11.78Кб
10. AWS SageMaker Studio Walk-through.mp4 51.51Мб
10. AWS SageMaker Studio Walk-through.srt 10.71Кб
10. Task #8 - Perform Grid Search and Hyper-parameters Optimization.mp4 65.70Мб
10. Task #8 - Perform Grid Search and Hyper-parameters Optimization.srt 10.59Кб
10. Task #9 - Apply DeepDream Algorithm to Generate Images.mp4 66.90Мб
10. Task #9 - Apply DeepDream Algorithm to Generate Images.srt 11.10Кб
10. Task #9 - Build a Segmentation Model to Localize Brain Tumors.mp4 136.71Мб
10. Task #9 - Build a Segmentation Model to Localize Brain Tumors.srt 21.62Кб
10. Task #9 - Build ResNet to Detect Key Facial Points.mp4 131.85Мб
10. Task #9 - Build ResNet to Detect Key Facial Points.srt 19.60Кб
10. Task #9 - Understand the Theory and Intuition Behind Auto-encoders.mp4 83.04Мб
10. Task #9 - Understand the Theory and Intuition Behind Auto-encoders.srt 12.50Кб
11. AWS SageMaker Model Deployment.mp4 110.86Мб
11. AWS SageMaker Model Deployment.srt 15.16Кб
11. Task #10 - Apply Auto-encoders and Perform Clustering.mp4 135.32Мб
11. Task #10 - Apply Auto-encoders and Perform Clustering.srt 19.27Кб
11. Task #10 - Compile and Train Facial Key Points Detector Model.mp4 68.11Мб
11. Task #10 - Compile and Train Facial Key Points Detector Model.srt 11.49Кб
11. Task #10 - Generate DeepDream Video.mp4 77.81Мб
11. Task #10 - Generate DeepDream Video.srt 10.87Кб
11. Task #10 - Train ResUnet Segmentation Model.mp4 38.29Мб
11. Task #10 - Train ResUnet Segmentation Model.srt 5.93Кб
11. Task #9 - Understand XG-Boost in AWS SageMaker.mp4 77.68Мб
11. Task #9 - Understand XG-Boost in AWS SageMaker.srt 11.04Кб
12. Task #10 - Train XG-Boost in AWS SageMaker.mp4 140.40Мб
12. Task #10 - Train XG-Boost in AWS SageMaker.srt 23.06Кб
12. Task #11 - Assess Trained ResNet Model Performance.mp4 42.91Мб
12. Task #11 - Assess Trained ResNet Model Performance.srt 7.28Кб
12. Task #11 - Assess Trained ResUNet Segmentation Model Performance.mp4 128.67Мб
12. Task #11 - Assess Trained ResUNet Segmentation Model Performance.srt 18.78Кб
13. Task #11 - Deploy Model and Make Inference.mp4 107.90Мб
13. Task #11 - Deploy Model and Make Inference.srt 15.30Кб
13. Task #12 - Import and Explore Facial Expressions (Emotions) Datasets.mp4 94.82Мб
13. Task #12 - Import and Explore Facial Expressions (Emotions) Datasets.srt 17.63Кб
14. Task #12 - Train and Deploy Model Using AWS AutoPilot (Minimal Coding Required!).mp4 122.81Мб
14. Task #12 - Train and Deploy Model Using AWS AutoPilot (Minimal Coding Required!).srt 22.04Кб
14. Task #13 - Visualize Images for Facial Expression Detection.mp4 55.97Мб
14. Task #13 - Visualize Images for Facial Expression Detection.srt 11.21Кб
15. Task #14 - Perform Image Augmentation.mp4 109.35Мб
15. Task #14 - Perform Image Augmentation.srt 19.99Кб
16. Task #15 - Build & Train a Facial Expression Classifier Model.mp4 138.26Мб
16. Task #15 - Build & Train a Facial Expression Classifier Model.srt 22.69Кб
17. Task #16 - Understand Classifiers Key Performance Indicators (KPIs).mp4 135.26Мб
17. Task #16 - Understand Classifiers Key Performance Indicators (KPIs).srt 21.42Кб
18. Task #17 - Assess Facial Expression Classifier Model.mp4 104.52Мб
18. Task #17 - Assess Facial Expression Classifier Model.srt 21.09Кб
19. Task #18 - Make Predictions from Both Models 1. Key Facial Points & 2. Emotion.mp4 60.04Мб
19. Task #18 - Make Predictions from Both Models 1. Key Facial Points & 2. Emotion.srt 11.36Кб
2. Introduction, Key Tips and Best Practices.mp4 108.49Мб
2. Introduction, Key Tips and Best Practices.srt 14.99Кб
2. Introduction and Welcome Message.html 65б
2. Key Machine Learning Components and AWS Tour.mp4 60.76Мб
2. Key Machine Learning Components and AWS Tour.srt 13.63Кб
2. Notes on Amazon Web Services (AWS).html 787б
2. Task #1 - Understand AI Applications in Marketing.mp4 73.74Мб
2. Task #1 - Understand AI Applications in Marketing.srt 10.07Кб
2. Task #1 - Understand the Problem Statement & Business Case.mp4 136.85Мб
2. Task #1 - Understand the Problem Statement & Business Case.mp4 118.88Мб
2. Task #1 - Understand the Problem Statement & Business Case.srt 13.63Кб
2. Task #1 - Understand the Problem Statement & Business Case.srt 15.89Кб
2. Task #1 - Understand the Problem Statement and Business Case.mp4 175.95Мб
2. Task #1 - Understand the Problem Statement and Business Case.srt 24.04Кб
20. Task #19 - Save Trained Model for Deployment.mp4 101.84Мб
20. Task #19 - Save Trained Model for Deployment.srt 14.61Кб
21. Task #20 - Serve Trained Model in TensorFlow 2.0 Serving.mp4 41.17Мб
21. Task #20 - Serve Trained Model in TensorFlow 2.0 Serving.srt 7.05Кб
22. Task #21 - Deploy Both Models and Make Inference.mp4 88.50Мб
22. Task #21 - Deploy Both Models and Make Inference.srt 12.05Кб
3. Course Outline and Key Learning Outcomes.mp4 174.78Мб
3. Course Outline and Key Learning Outcomes.srt 24.27Кб
3. Regions and Availability Zones.mp4 52.94Мб
3. Regions and Availability Zones.srt 8.81Кб
3. Task #1 - Understand the Problem Statement & Business Case.mp4 105.46Мб
3. Task #1 - Understand the Problem Statement & Business Case.srt 16.78Кб
3. Task #2 - Import Libraries and Datasets.mp4 107.07Мб
3. Task #2 - Import Libraries and Datasets.mp4 102.22Мб
3. Task #2 - Import Libraries and Datasets.mp4 106.54Мб
3. Task #2 - Import Libraries and Datasets.srt 17.08Кб
3. Task #2 - Import Libraries and Datasets.srt 18.83Кб
3. Task #2 - Import Libraries and Datasets.srt 21.28Кб
3. Task #2 - Import Model with Pre-trained Weights.mp4 53.87Мб
3. Task #2 - Import Model with Pre-trained Weights.srt 11.38Кб
4. Amazon S3.mp4 111.36Мб
4. Amazon S3.srt 20.97Кб
4. Get the Materials.html 384б
4. Task #2 - Import Libraries and Datasets.mp4 51.86Мб
4. Task #2 - Import Libraries and Datasets.srt 7.48Кб
4. Task #3 - Import and Merge Images.mp4 67.98Мб
4. Task #3 - Import and Merge Images.srt 14.32Кб
4. Task #3 - Perform Exploratory Data Analysis (Part #1).mp4 132.99Мб
4. Task #3 - Perform Exploratory Data Analysis (Part #1).srt 25.61Кб
4. Task #3 - Perform Image Visualizations.mp4 87.34Мб
4. Task #3 - Perform Image Visualizations.srt 14.84Кб
4. Task #3 - Visualize and Explore Datasets.mp4 164.87Мб
4. Task #3 - Visualize and Explore Datasets.srt 32.64Кб
5. EC2 and Identity and Access Management (IAM).mp4 108.29Мб
5. EC2 and Identity and Access Management (IAM).srt 18.66Кб
5. Task #3 - Visualize and Explore Dataset.mp4 199.67Мб
5. Task #3 - Visualize and Explore Dataset.srt 31.28Кб
5. Task #4 - Perform Exploratory Data Analysis (Part #2).mp4 182.96Мб
5. Task #4 - Perform Exploratory Data Analysis (Part #2).srt 30.12Кб
5. Task #4 - Perform Images Augmentation.mp4 141.82Мб
5. Task #4 - Perform Images Augmentation.srt 26.99Кб
5. Task #4 - Run the Pre-trained Model and Explore Activations.mp4 85.05Мб
5. Task #4 - Run the Pre-trained Model and Explore Activations.srt 15.37Кб
5. Task #4 - Understand the Intuition behind ResNet and CNNs.mp4 122.27Мб
5. Task #4 - Understand the Intuition behind ResNet and CNNs.srt 16.56Кб
6. AWS Free Tier Account Setup and Overview.mp4 38.11Мб
6. AWS Free Tier Account Setup and Overview.srt 8.57Кб
6. Task #4 - Clean Up the Data.mp4 55.60Мб
6. Task #4 - Clean Up the Data.srt 9.08Кб
6. Task #5 - Perform Data Normalization and Scaling.mp4 59.34Мб
6. Task #5 - Perform Data Normalization and Scaling.srt 11.68Кб
6. Task #5 - Understand Theory and Intuition Behind K-Means Clustering Algorithm.mp4 165.30Мб
6. Task #5 - Understand Theory and Intuition Behind K-Means Clustering Algorithm.srt 27.29Кб
6. Task #5 - Understand Theory and Intuition Behind Transfer Learning.mp4 120.68Мб
6. Task #5 - Understand Theory and Intuition Behind Transfer Learning.srt 17.95Кб
6. Task #5 - Understand the Theory & Intuition Behind Deep Dream Algorithm.mp4 195.03Мб
6. Task #5 - Understand the Theory & Intuition Behind Deep Dream Algorithm.srt 30.62Кб
7. Apply Elbow Method to Find the Optimal Number of Clusters.mp4 72.65Мб
7. Apply Elbow Method to Find the Optimal Number of Clusters.srt 12.89Кб
7. AWS SageMaker Overview.mp4 64.64Мб
7. AWS SageMaker Overview.srt 13.34Кб
7. Task #5 - Understand the Theory & Intuition Behind XG-Boost Algorithm.mp4 212.63Мб
7. Task #5 - Understand the Theory & Intuition Behind XG-Boost Algorithm.srt 32.56Кб
7. Task #6 - Train a Classifier Model To Detect Brain Tumors.mp4 201.36Мб
7. Task #6 - Train a Classifier Model To Detect Brain Tumors.srt 33.42Кб
7. Task #6 - Understand Artificial Neural Networks (ANNs) Theory & Intuition.mp4 219.47Мб
7. Task #6 - Understand Artificial Neural Networks (ANNs) Theory & Intuition.srt 31.15Кб
7. Task #6 - Understand The Gradient Operations in TF 2.0.mp4 37.47Мб
7. Task #6 - Understand The Gradient Operations in TF 2.0.srt 8.70Кб
8. AWS SageMaker Walk-through.mp4 81.60Мб
8. AWS SageMaker Walk-through.srt 16.22Кб
8. Task #6 - Understand XG-Boost Algorithm Key Steps.mp4 205.48Мб
8. Task #6 - Understand XG-Boost Algorithm Key Steps.srt 31.99Кб
8. Task #7 - Apply K-Means Clustering Algorithm.mp4 145.46Мб
8. Task #7 - Apply K-Means Clustering Algorithm.srt 24.43Кб
8. Task #7 - Assess Trained Classifier Model Performance.mp4 79.19Мб
8. Task #7 - Assess Trained Classifier Model Performance.srt 13.72Кб
8. Task #7 - Implement Deep Dream Algorithm Part #1.mp4 83.08Мб
8. Task #7 - Implement Deep Dream Algorithm Part #1.srt 15.01Кб
8. Task #7 - Understand ANNs Training & Gradient Descent Algorithm.mp4 160.52Мб
8. Task #7 - Understand ANNs Training & Gradient Descent Algorithm.srt 27.06Кб
9. AWS SageMaker Studio Overview.mp4 66.93Мб
9. AWS SageMaker Studio Overview.srt 12.55Кб
9. Task #7 - Train XG-Boost Algorithm Using Scikit-Learn.mp4 71.48Мб
9. Task #7 - Train XG-Boost Algorithm Using Scikit-Learn.srt 12.16Кб
9. Task #8 - Implement Deep Dream Algorithm Part #2.mp4 120.75Мб
9. Task #8 - Implement Deep Dream Algorithm Part #2.srt 17.67Кб
9. Task #8 - Understand Convolutional Neural Networks and ResNets.mp4 127.04Мб
9. Task #8 - Understand Convolutional Neural Networks and ResNets.srt 19.19Кб
9. Task #8 - Understand Intuition Behind Principal Component Analysis (PCA).mp4 100.97Мб
9. Task #8 - Understand Intuition Behind Principal Component Analysis (PCA).srt 15.63Кб
9. Task #8 - Understand ResUnet Segmentation Models Intuition.mp4 150.52Мб
9. Task #8 - Understand ResUnet Segmentation Models Intuition.srt 20.82Кб
Download More Courses.html 225б
Important !! Course Resources Files.html 225б
Статистика распространения по странам
Всего 0
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент