Общая информация
Название [CourseClub.NET] Packtpub - Building Recommender Systems with Machine Learning and AI
Тип
Размер 2.89Гб
Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[CourseClub.NET].url 123б
[DesireCourse.Com].url 51б
0101.Install Anaconda, course materials, and create movie recommendations!.mp4 88.13Мб
0102.Course Roadmap.mp4 69.27Мб
0103.Types of Recommenders.mp4 14.11Мб
0104.Understanding You through Implicit and Explicit Ratings.mp4 9.20Мб
0105.Top-N Recommender Architecture.mp4 15.32Мб
0106.Review the basics of recommender systems..mp4 11.16Мб
0201.The Basics of Python.mp4 42.00Мб
0202.Data Structures in Python.mp4 11.59Мб
0203.Functions in Python.mp4 5.85Мб
0204.Booleans, loops, and a hands-on challenge.mp4 7.33Мб
0301.TrainTest and Cross Validation.mp4 23.17Мб
0302.Accuracy Metrics (RMSE, MAE).mp4 46.73Мб
0303.Top-N Hit Rate - Many Ways.mp4 12.16Мб
0304.Coverage, Diversity, and Novelty.mp4 7.94Мб
0305.Churn, Responsiveness, and AB Tests.mp4 82.68Мб
0306.Review ways to measure your recommender..mp4 8.26Мб
0307.Walkthrough of RecommenderMetrics.py.mp4 38.78Мб
0308.Walkthrough of TestMetrics.py.mp4 25.34Мб
0309.Measure the Performance of SVD Recommendations.mp4 12.05Мб
0401.Our Recommender Engine Architecture.mp4 18.17Мб
0402.Recommender Engine Walkthrough, Part 1.mp4 18.55Мб
0403.Recommender Engine Walkthrough, Part 2.mp4 18.57Мб
0404.Review the Results of our Algorithm Evaluation..mp4 14.30Мб
0501.Content-Based Recommendations, and the Cosine Similarity Metric.mp4 38.47Мб
0502.K-Nearest-Neighbors and Content Recs.mp4 11.84Мб
0503.Producing and Evaluating Content-Based Movie Recommendations.mp4 27.89Мб
0504.Bleeding Edge Alert! Mise en Scene Recommendations.mp4 33.71Мб
0505.Dive Deeper into Content-Based Recommendations.mp4 10.66Мб
0601.Measuring Similarity, and Sparsity.mp4 69.75Мб
0602.Similarity Metrics.mp4 15.45Мб
0603.User-based Collaborative Filtering.mp4 19.99Мб
0604.User-based Collaborative Filtering, Hands-On.mp4 24.56Мб
0605.Item-based Collaborative Filtering.mp4 61.59Мб
0606.Item-based Collaborative Filtering, Hands-On.mp4 18.12Мб
0607.Tuning Collaborative Filtering Algorithms.mp4 10.06Мб
0608.Evaluating Collaborative Filtering Systems Offline.mp4 10.57Мб
0609.Measure the Hit Rate of Item-Based Collaborative Filtering.mp4 4.43Мб
0610.KNN Recommenders.mp4 21.88Мб
0611.Running User and Item-Based KNN on MovieLens.mp4 19.63Мб
0612.Experiment with different KNN parameters..mp4 38.78Мб
0613.Bleeding Edge Alert! Translation-Based Recommendations.mp4 19.64Мб
0701.Principal Component Analysis (PCA).mp4 64.98Мб
0702.Singular Value Decomposition.mp4 12.98Мб
0703.Running SVD and SVD++ on MovieLens.mp4 23.12Мб
0704.Improving on SVD.mp4 9.69Мб
0705.Tune the hyperparameters on SVD.mp4 8.02Мб
0706.Bleeding Edge Alert! Sparse Linear Methods (SLIM).mp4 21.08Мб
0801.Deep Learning Introduction.mp4 22.80Мб
0802.Deep Learning Pre-Requisites.mp4 20.12Мб
0803.History of Artificial Neural Networks.mp4 40.44Мб
0804.[Activity] Playing with Tensorflow.mp4 116.91Мб
0805.Training Neural Networks.mp4 18.84Мб
0806.Tuning Neural Networks.mp4 13.11Мб
0807.Introduction to Tensorflow.mp4 43.00Мб
0808.[Activity] Handwriting Recognition with Tensorflow, part 1.mp4 92.89Мб
0809.[Activity] Handwriting Recognition with Tensorflow, part 2.mp4 27.40Мб
0810.Introduction to Keras.mp4 6.67Мб
0811.[Activity] Handwriting Recognition with Keras.mp4 46.94Мб
0812.Classifier Patterns with Keras.mp4 13.12Мб
0813.[Exercise] Predict Political Parties of Politicians with Keras.mp4 53.70Мб
0814.Intro to Convolutional Neural Networks (CNN_s).mp4 36.40Мб
0815.CNN Architectures.mp4 9.65Мб
0816.[Activity] Handwriting Recognition with Convolutional Neural Networks (CNNs).mp4 42.41Мб
0817.Intro to Recurrent Neural Networks (RNN_s).mp4 22.49Мб
0818.Training Recurrent Neural Networks.mp4 10.10Мб
0819.[Activity] Sentiment Analysis of Movie Reviews using RNN_s and Keras.mp4 73.37Мб
0901.Intro to Deep Learning for Recommenders.mp4 55.99Мб
0902.Restricted Boltzmann Machines (RBM_s).mp4 15.93Мб
0903.[Activity] Recommendations with RBM_s, part 1.mp4 50.52Мб
0904.[Activity] Recommendations with RBM_s, part 2.mp4 26.41Мб
0905.[Activity] Evaluating the RBM Recommender.mp4 19.85Мб
0906.[Exercise] Tuning Restricted Boltzmann Machines.mp4 53.71Мб
0907.Exercise Results Tuning a RBM Recommender.mp4 6.63Мб
0908.Auto-Encoders for Recommendations Deep Learning for Recs.mp4 11.82Мб
0909.[Activity] Recommendations with Deep Neural Networks.mp4 37.22Мб
0910.Clickstream Recommendations with RNN_s.mp4 24.84Мб
0911.[Exercise] Get GRU4Rec Working on your Desktop.mp4 3.88Мб
0912.Exercise Results GRU4Rec in Action.mp4 41.06Мб
0913.Bleeding Edge Alert! Deep Factorization Machines.mp4 44.31Мб
0914.More Emerging Tech to Watch.mp4 14.16Мб
1001.[Activity] Introduction and Installation of Apache Spark.mp4 40.04Мб
1002.Apache Spark Architecture.mp4 9.37Мб
1003.[Activity] Movie Recommendations with Spark, Matrix Factorization, and ALS.mp4 23.76Мб
1004.[Activity] Recommendations from 20 million ratings with Spark.mp4 26.92Мб
1005.Amazon DSSTNE.mp4 41.35Мб
1006.DSSTNE in Action.mp4 61.12Мб
1007.Scaling Up DSSTNE.mp4 4.82Мб
1008.AWS SageMaker and Factorization Machines.mp4 7.95Мб
1009.SageMaker in Action Factorization Machines on one million ratings, in the cloud.mp4 44.20Мб
1101.The Cold Start Problem (and solutions).mp4 11.80Мб
1102.[Exercise] Implement Random Exploration.mp4 1.19Мб
1103.Exercise Solution Random Exploration.mp4 15.43Мб
1104.Stoplists.mp4 8.67Мб
1105.[Exercise] Implement a Stoplist.mp4 761.82Кб
1106.Exercise Solution Implement a Stoplist.mp4 15.07Мб
1107.Filter Bubbles, Trust, and Outliers.mp4 21.76Мб
1108.[Exercise] Identify and Eliminate Outlier Users.mp4 1020.31Кб
1109.Exercise Solution Outlier Removal.mp4 16.61Мб
1110.Fraud, the Perils of Clickstream, and International Concerns.mp4 72.79Мб
1111.Temporal Effects, and Value-Aware Recommendations.mp4 81.63Мб
1201.Case Study YouTube, Part 1.mp4 12.79Мб
1202.Case Study YouTube, Part 2.mp4 12.47Мб
1203.Case Study Netflix, Part 1.mp4 13.85Мб
1204.Case Study Netflix, Part 2.mp4 9.84Мб
1301.Hybrid Recommenders and Exercise.mp4 8.82Мб
1302.Exercise Solution Hybrid Recommenders.mp4 20.42Мб
1401.More to Explore.mp4 61.91Мб
exercise_files.zip 1.70Мб
Статистика распространения по странам
Всего 0
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент