Общая информация
Название [08-2020] python-data-science-machine-learning-bootcamp
Тип
Размер 23.25Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
001 What is Machine Learning_.en_US.srt 6.41Кб
001 What is Machine Learning_.mp4 32.37Мб
002 What is Data Science_.en_US.srt 5.33Кб
002 What is Data Science_.mp4 71.61Мб
003 Download the Syllabus.html 2.14Кб
003 ML-Data-Science-Syllabus.pdf 103.97Кб
004 App-Brewery-Cornell-Notes-Template.txt 81б
004 Top Tips for Succeeding on this Course.html 2.72Кб
005 Course Resources List.html 1.76Кб
006 Course-Resources.txt 62б
006 Introduction to Linear Regression & Specifying the Problem.en_US.srt 8.08Кб
006 Introduction to Linear Regression & Specifying the Problem.mp4 38.77Мб
007 cost-revenue-dirty.csv 374.68Кб
007 Gather & Clean the Data.en_US.srt 12.93Кб
007 Gather & Clean the Data.mp4 69.03Мб
007 The-Numbers-Movie-Budgets.txt 42б
008 cost-revenue-clean.csv 90.82Кб
008 Explore & Visualise the Data with Python.en_US.srt 28.64Кб
008 Explore & Visualise the Data with Python.mp4 188.77Мб
008 Try-Jupyter-in-your-Browser.txt 25б
009 01-Linear-Regression-checkpoint.ipynb.zip 37.64Кб
009 The Intuition behind the Linear Regression Model.en_US.srt 10.05Кб
009 The Intuition behind the Linear Regression Model.mp4 19.46Мб
010 Analyse and Evaluate the Results.en_US.srt 20.75Кб
010 Analyse and Evaluate the Results.mp4 142.22Мб
011 01-Linear-Regression-complete.ipynb.zip 75.28Кб
011 Download the Complete Notebook Here.html 727б
012 Join the Student Community.html 1.34Кб
013 Any Feedback on this Section_.html 997б
014 Course-Resources.txt 62б
014 Windows Users - Install Anaconda.en_US.srt 8.17Кб
014 Windows Users - Install Anaconda.mp4 58.18Мб
015 Course-Resources.txt 62б
015 Mac Users - Install Anaconda.en_US.srt 7.49Кб
015 Mac Users - Install Anaconda.mp4 81.31Мб
016 Does LSD Make You Better at Maths_.en_US.srt 6.82Кб
016 Does LSD Make You Better at Maths_.mp4 66.90Мб
017 12-Rules-to-Learn-to-Code.pdf 2.25Мб
017 Download the 12 Rules to Learn to Code.html 1.77Кб
018 [Python] - Variables and Types.en_US.srt 15.36Кб
018 [Python] - Variables and Types.mp4 84.28Мб
019 [exercise_info] Python Variable Coding Exercise.html 1.85Кб
019 [exercise_solution] Python Variable Coding Exercise.zip 173б
019 [exercise] Python Variable Coding Exercise.zip 241б
019 [Python] - Lists and Arrays.en_US.srt 11.23Кб
019 [Python] - Lists and Arrays.mp4 60.90Мб
020 [exercise_info] Python Lists Coding Exercise.html 1.92Кб
020 [exercise_solution] Python Lists Coding Exercise.zip 228б
020 [exercise] Python Lists Coding Exercise.zip 246б
020 [Python & Pandas] - Dataframes and Series.en_US.srt 25.94Кб
020 [Python & Pandas] - Dataframes and Series.mp4 203.61Мб
020 lsd-math-score-data.csv 155б
021 [Python] - Module Imports.en_US.srt 33.36Кб
021 [Python] - Module Imports.mp4 349.51Мб
022 [Python] - Functions - Part 1_ Defining and Calling Functions.en_US.srt 9.72Кб
022 [Python] - Functions - Part 1_ Defining and Calling Functions.mp4 46.99Мб
023 [exercise_info] Python Functions Coding Exercise - Part 1.html 1.64Кб
023 [exercise_solution] Python Functions Coding Exercise - Part 1.zip 269б
023 [exercise] Python Functions Coding Exercise - Part 1.zip 285б
023 [Python] - Functions - Part 2_ Arguments & Parameters.en_US.srt 19.25Кб
023 [Python] - Functions - Part 2_ Arguments & Parameters.mp4 189.68Мб
024 [exercise_info] Python Functions Coding Exercise - Part 2.html 1.36Кб
024 [exercise_solution] Python Functions Coding Exercise - Part 2.zip 253б
024 [exercise] Python Functions Coding Exercise - Part 2.zip 276б
024 [Python] - Functions - Part 3_ Results & Return Values.en_US.srt 15.34Кб
024 [Python] - Functions - Part 3_ Results & Return Values.mp4 94.36Мб
025 [exercise_info] Python Functions Coding Exercise - Part 3.html 1.42Кб
025 [exercise_solution] Python Functions Coding Exercise - Part 3.zip 190б
025 [exercise] Python Functions Coding Exercise - Part 3.zip 210б
025 [Python] - Objects - Understanding Attributes and Methods.en_US.srt 27.54Кб
025 [Python] - Objects - Understanding Attributes and Methods.mp4 234.49Мб
026 How to Make Sense of Python Documentation for Data Visualisation.en_US.srt 24.48Кб
026 How to Make Sense of Python Documentation for Data Visualisation.mp4 265.05Мб
027 Working with Python Objects to Analyse Data.en_US.srt 25.09Кб
027 Working with Python Objects to Analyse Data.mp4 258.83Мб
028 [Python] - Tips, Code Style and Naming Conventions.en_US.srt 15.53Кб
028 [Python] - Tips, Code Style and Naming Conventions.mp4 130.73Мб
029 02-Python-Intro.ipynb.zip 36.44Кб
029 Download the Complete Notebook Here.html 727б
030 Any Feedback on this Section_.html 998б
031 Course-Resources.txt 62б
031 What's Coming Up_.en_US.srt 3.56Кб
031 What's Coming Up_.mp4 24.59Мб
032 How a Machine Learns.en_US.srt 6.71Кб
032 How a Machine Learns.mp4 16.56Мб
033 Introduction to Cost Functions.en_US.srt 8.75Кб
033 Introduction to Cost Functions.mp4 76.86Мб
034 LaTeX Markdown and Generating Data with Numpy.en_US.srt 15.85Кб
034 LaTeX Markdown and Generating Data with Numpy.mp4 77.24Мб
035 Understanding the Power Rule & Creating Charts with Subplots.en_US.srt 16.63Кб
035 Understanding the Power Rule & Creating Charts with Subplots.mp4 104.46Мб
036 [Python] - Loops and the Gradient Descent Algorithm.en_US.srt 40.23Кб
036 [Python] - Loops and the Gradient Descent Algorithm.mp4 449.20Мб
037 [exercise_info] Python Loops Coding Exercise.html 15.48Кб
037 [exercise_solution] Python Loops Coding Exercise.zip 288б
037 [exercise] Python Loops Coding Exercise.zip 260б
037 [Python] - Advanced Functions and the Pitfalls of Optimisation (Part 1).en_US.srt 39.58Кб
037 [Python] - Advanced Functions and the Pitfalls of Optimisation (Part 1).mp4 446.84Мб
038 [Python] - Tuples and the Pitfalls of Optimisation (Part 2).en_US.srt 30.87Кб
038 [Python] - Tuples and the Pitfalls of Optimisation (Part 2).mp4 302.32Мб
039 Understanding the Learning Rate.en_US.srt 34.67Кб
039 Understanding the Learning Rate.mp4 280.53Мб
040 How to Create 3-Dimensional Charts.en_US.srt 24.04Кб
040 How to Create 3-Dimensional Charts.mp4 294.27Мб
041 Understanding Partial Derivatives and How to use SymPy.en_US.srt 18.71Кб
041 Understanding Partial Derivatives and How to use SymPy.mp4 193.33Мб
042 Implementing Batch Gradient Descent with SymPy.en_US.srt 11.97Кб
042 Implementing Batch Gradient Descent with SymPy.mp4 117.53Мб
043 [Python] - Loops and Performance Considerations.en_US.srt 16.67Кб
043 [Python] - Loops and Performance Considerations.mp4 205.61Мб
044 Reshaping and Slicing N-Dimensional Arrays.en_US.srt 21.21Кб
044 Reshaping and Slicing N-Dimensional Arrays.mp4 168.28Мб
045 Concatenating Numpy Arrays.en_US.srt 8.28Кб
045 Concatenating Numpy Arrays.mp4 85.15Мб
046 Introduction to the Mean Squared Error (MSE).en_US.srt 11.70Кб
046 Introduction to the Mean Squared Error (MSE).mp4 75.17Мб
047 Transposing and Reshaping Arrays.en_US.srt 12.46Кб
047 Transposing and Reshaping Arrays.mp4 101.68Мб
048 Implementing a MSE Cost Function.en_US.srt 12.51Кб
048 Implementing a MSE Cost Function.mp4 97.47Мб
049 Understanding Nested Loops and Plotting the MSE Function (Part 1).en_US.srt 12.89Кб
049 Understanding Nested Loops and Plotting the MSE Function (Part 1).mp4 83.37Мб
050 Plotting the Mean Squared Error (MSE) on a Surface (Part 2).en_US.srt 16.01Кб
050 Plotting the Mean Squared Error (MSE) on a Surface (Part 2).mp4 68.86Мб
051 Running Gradient Descent with a MSE Cost Function.en_US.srt 20.52Кб
051 Running Gradient Descent with a MSE Cost Function.mp4 129.83Мб
052 Visualising the Optimisation on a 3D Surface.en_US.srt 9.94Кб
052 Visualising the Optimisation on a 3D Surface.mp4 88.19Мб
053 03-Gradient-Descent.ipynb.zip 1.14Мб
053 Download the Complete Notebook Here.html 727б
054 Any Feedback on this Section_.html 1005б
055 Course-Resources.txt 62б
055 Defining the Problem.en_US.srt 5.98Кб
055 Defining the Problem.mp4 57.82Мб
056 Gathering the Boston House Price Data.en_US.srt 8.03Кб
056 Gathering the Boston House Price Data.mp4 91.05Мб
057 Clean and Explore the Data (Part 1)_ Understand the Nature of the Dataset.en_US.srt 14.47Кб
057 Clean and Explore the Data (Part 1)_ Understand the Nature of the Dataset.mp4 99.37Мб
058 Clean and Explore the Data (Part 2)_ Find Missing Values.en_US.srt 17.24Кб
058 Clean and Explore the Data (Part 2)_ Find Missing Values.mp4 207.91Мб
059 Visualising Data (Part 1)_ Historams, Distributions & Outliers.en_US.srt 13.17Кб
059 Visualising Data (Part 1)_ Historams, Distributions & Outliers.mp4 71.94Мб
060 Visualising Data (Part 2)_ Seaborn and Probability Density Functions.en_US.srt 8.33Кб
060 Visualising Data (Part 2)_ Seaborn and Probability Density Functions.mp4 66.18Мб
061 Working with Index Data, Pandas Series, and Dummy Variables.en_US.srt 19.11Кб
061 Working with Index Data, Pandas Series, and Dummy Variables.mp4 195.59Мб
062 Understanding Descriptive Statistics_ the Mean vs the Median.en_US.srt 11.28Кб
062 Understanding Descriptive Statistics_ the Mean vs the Median.mp4 72.50Мб
063 Introduction to Correlation_ Understanding Strength & Direction.en_US.srt 7.81Кб
063 Introduction to Correlation_ Understanding Strength & Direction.mp4 20.40Мб
064 Calculating Correlations and the Problem posed by Multicollinearity.en_US.srt 16.46Кб
064 Calculating Correlations and the Problem posed by Multicollinearity.mp4 154.88Мб
065 Visualising Correlations with a Heatmap.en_US.srt 22.52Кб
065 Visualising Correlations with a Heatmap.mp4 191.50Мб
066 Techniques to Style Scatter Plots.en_US.srt 19.09Кб
066 Techniques to Style Scatter Plots.mp4 149.97Мб
067 A Note for the Next Lesson.html 961б
068 Working with Seaborn Pairplots & Jupyter Microbenchmarking Techniques.en_US.srt 26.52Кб
068 Working with Seaborn Pairplots & Jupyter Microbenchmarking Techniques.mp4 334.45Мб
069 Understanding Multivariable Regression.en_US.srt 6.98Кб
069 Understanding Multivariable Regression.mp4 61.60Мб
070 How to Shuffle and Split Training & Testing Data.en_US.srt 10.65Кб
070 How to Shuffle and Split Training & Testing Data.mp4 83.32Мб
071 Running a Multivariable Regression.en_US.srt 9.06Кб
071 Running a Multivariable Regression.mp4 74.05Мб
072 How to Calculate the Model Fit with R-Squared.en_US.srt 4.09Кб
072 How to Calculate the Model Fit with R-Squared.mp4 38.56Мб
073 Introduction to Model Evaluation.en_US.srt 3.53Кб
073 Introduction to Model Evaluation.mp4 12.03Мб
074 Improving the Model by Transforming the Data.en_US.srt 19.95Кб
074 Improving the Model by Transforming the Data.mp4 142.49Мб
075 How to Interpret Coefficients using p-Values and Statistical Significance.en_US.srt 10.04Кб
075 How to Interpret Coefficients using p-Values and Statistical Significance.mp4 89.12Мб
076 Understanding VIF & Testing for Multicollinearity.en_US.srt 23.67Кб
076 Understanding VIF & Testing for Multicollinearity.mp4 164.60Мб
077 Model Simplification & Baysian Information Criterion.en_US.srt 21.41Кб
077 Model Simplification & Baysian Information Criterion.mp4 229.47Мб
078 How to Analyse and Plot Regression Residuals.en_US.srt 13.66Кб
078 How to Analyse and Plot Regression Residuals.mp4 46.63Мб
079 Residual Analysis (Part 1)_ Predicted vs Actual Values.en_US.srt 16.78Кб
079 Residual Analysis (Part 1)_ Predicted vs Actual Values.mp4 146.46Мб
080 Residual Analysis (Part 2)_ Graphing and Comparing Regression Residuals.en_US.srt 20.96Кб
080 Residual Analysis (Part 2)_ Graphing and Comparing Regression Residuals.mp4 178.21Мб
081 Making Predictions (Part 1)_ MSE & R-Squared.en_US.srt 21.83Кб
081 Making Predictions (Part 1)_ MSE & R-Squared.mp4 217.80Мб
082 Making Predictions (Part 2)_ Standard Deviation, RMSE, and Prediction Intervals.en_US.srt 13.67Кб
082 Making Predictions (Part 2)_ Standard Deviation, RMSE, and Prediction Intervals.mp4 116.49Мб
083 Build a Valuation Tool (Part 1)_ Working with Pandas Series & Numpy ndarrays.en_US.srt 19.09Кб
083 Build a Valuation Tool (Part 1)_ Working with Pandas Series & Numpy ndarrays.mp4 198.42Мб
084 [Python] - Conditional Statements - Build a Valuation Tool (Part 2).en_US.srt 19.66Кб
084 [Python] - Conditional Statements - Build a Valuation Tool (Part 2).mp4 159.88Мб
085 [exercise_info] Python Conditional Statement Coding Exercise.html 2.54Кб
085 [exercise_solution] Python Conditional Statement Coding Exercise.zip 200б
085 [exercise] Python Conditional Statement Coding Exercise.zip 167б
085 Build a Valuation Tool (Part 3)_ Docstrings & Creating your own Python Module.en_US.srt 26.12Кб
085 Build a Valuation Tool (Part 3)_ Docstrings & Creating your own Python Module.mp4 167.92Мб
086 04-Multivariable-Regression.ipynb.zip 3.54Мб
086 04-Valuation-Tool.ipynb.zip 2.93Кб
086 boston-valuation.py 3.05Кб
086 Download the Complete Notebook Here.html 727б
087 Any Feedback on this Section_.html 997б
088 Course-Resources.txt 62б
088 How to Translate a Business Problem into a Machine Learning Problem.en_US.srt 8.99Кб
088 How to Translate a Business Problem into a Machine Learning Problem.mp4 57.44Мб
089 Gathering Email Data and Working with Archives & Text Editors.en_US.srt 13.05Кб
089 Gathering Email Data and Working with Archives & Text Editors.mp4 186.87Мб
089 SpamData.zip 21.28Мб
090 How to Add the Lesson Resources to the Project.en_US.srt 4.55Кб
090 How to Add the Lesson Resources to the Project.mp4 35.07Мб
091 The Naive Bayes Algorithm and the Decision Boundary for a Classifier.en_US.srt 5.67Кб
091 The Naive Bayes Algorithm and the Decision Boundary for a Classifier.mp4 57.15Мб
092 Basic Probability.en_US.srt 4.90Кб
092 Basic Probability.mp4 15.52Мб
093 Joint & Conditional Probability.en_US.srt 18.34Кб
093 Joint & Conditional Probability.mp4 169.32Мб
094 Bayes Theorem.en_US.srt 14.02Кб
094 Bayes Theorem.mp4 94.54Мб
095 Reading Files (Part 1)_ Absolute Paths and Relative Paths.en_US.srt 10.90Кб
095 Reading Files (Part 1)_ Absolute Paths and Relative Paths.mp4 71.15Мб
096 Reading Files (Part 2)_ Stream Objects and Email Structure.en_US.srt 13.52Кб
096 Reading Files (Part 2)_ Stream Objects and Email Structure.mp4 167.33Мб
097 Extracting the Text in the Email Body.en_US.srt 5.54Кб
097 Extracting the Text in the Email Body.mp4 55.23Мб
098 [Python] - Generator Functions & the yield Keyword.en_US.srt 20.66Кб
098 [Python] - Generator Functions & the yield Keyword.mp4 197.71Мб
099 Create a Pandas DataFrame of Email Bodies.en_US.srt 6.67Кб
099 Create a Pandas DataFrame of Email Bodies.mp4 67.91Мб
100 Cleaning Data (Part 1)_ Check for Empty Emails & Null Entries.en_US.srt 16.54Кб
100 Cleaning Data (Part 1)_ Check for Empty Emails & Null Entries.mp4 191.89Мб
101 Cleaning Data (Part 2)_ Working with a DataFrame Index.en_US.srt 8.50Кб
101 Cleaning Data (Part 2)_ Working with a DataFrame Index.mp4 84.91Мб
102 Saving a JSON File with Pandas.en_US.srt 6.45Кб
102 Saving a JSON File with Pandas.mp4 81.28Мб
103 Data Visualisation (Part 1)_ Pie Charts.en_US.srt 14.93Кб
103 Data Visualisation (Part 1)_ Pie Charts.mp4 131.08Мб
104 Data Visualisation (Part 2)_ Donut Charts.en_US.srt 8.85Кб
104 Data Visualisation (Part 2)_ Donut Charts.mp4 73.40Мб
105 Introduction to Natural Language Processing (NLP).en_US.srt 7.64Кб
105 Introduction to Natural Language Processing (NLP).mp4 58.19Мб
106 Tokenizing, Removing Stop Words and the Python Set Data Structure.en_US.srt 17.62Кб
106 Tokenizing, Removing Stop Words and the Python Set Data Structure.mp4 138.05Мб
107 Word Stemming & Removing Punctuation.en_US.srt 9.89Кб
107 Word Stemming & Removing Punctuation.mp4 83.68Мб
108 Removing HTML tags with BeautifulSoup.en_US.srt 10.28Кб
108 Removing HTML tags with BeautifulSoup.mp4 167.47Мб
109 Creating a Function for Text Processing.en_US.srt 8.04Кб
109 Creating a Function for Text Processing.mp4 44.76Мб
110 A Note for the Next Lesson.html 961б
111 Advanced Subsetting on DataFrames_ the apply() Function.en_US.srt 12.53Кб
111 Advanced Subsetting on DataFrames_ the apply() Function.mp4 97.91Мб
112 [Python] - Logical Operators to Create Subsets and Indices.en_US.srt 14.87Кб
112 [Python] - Logical Operators to Create Subsets and Indices.mp4 101.30Мб
113 Word Clouds & How to install Additional Python Packages.en_US.srt 11.12Кб
113 Word Clouds & How to install Additional Python Packages.mp4 92.38Мб
114 Creating your First Word Cloud.en_US.srt 12.72Кб
114 Creating your First Word Cloud.mp4 152.62Мб
115 Styling the Word Cloud with a Mask.en_US.srt 15.43Кб
115 Styling the Word Cloud with a Mask.mp4 184.63Мб
116 Solving the Hamlet Challenge.en_US.srt 5.55Кб
116 Solving the Hamlet Challenge.mp4 92.62Мб
117 Styling Word Clouds with Custom Fonts.en_US.srt 13.68Кб
117 Styling Word Clouds with Custom Fonts.mp4 184.20Мб
118 Create the Vocabulary for the Spam Classifier.en_US.srt 16.40Кб
118 Create the Vocabulary for the Spam Classifier.mp4 124.04Мб
119 Coding Challenge_ Check for Membership in a Collection.en_US.srt 5.64Кб
119 Coding Challenge_ Check for Membership in a Collection.mp4 19.91Мб
120 Coding Challenge_ Find the Longest Email.en_US.srt 6.97Кб
120 Coding Challenge_ Find the Longest Email.mp4 76.59Мб
121 Sparse Matrix (Part 1)_ Split the Training and Testing Data.en_US.srt 14.05Кб
121 Sparse Matrix (Part 1)_ Split the Training and Testing Data.mp4 119.49Мб
122 Sparse Matrix (Part 2)_ Data Munging with Nested Loops.en_US.srt 20.62Кб
122 Sparse Matrix (Part 2)_ Data Munging with Nested Loops.mp4 160.46Мб
123 Sparse Matrix (Part 3)_ Using groupby() and Saving .txt Files.en_US.srt 11.19Кб
123 Sparse Matrix (Part 3)_ Using groupby() and Saving .txt Files.mp4 110.82Мб
124 Coding Challenge Solution_ Preparing the Test Data.en_US.srt 4.18Кб
124 Coding Challenge Solution_ Preparing the Test Data.mp4 37.54Мб
125 Checkpoint_ Understanding the Data.en_US.srt 12.63Кб
125 Checkpoint_ Understanding the Data.mp4 134.39Мб
126 06-Bayes-Classifier-Pre-Processing.ipynb.zip 978.02Кб
126 Download the Complete Notebook Here.html 727б
127 Any Feedback on this Section_.html 1004б
128 Course-Resources.txt 62б
128 Setting up the Notebook and Understanding Delimiters in a Dataset.en_US.srt 10.75Кб
128 Setting up the Notebook and Understanding Delimiters in a Dataset.mp4 99.17Мб
128 SpamData.zip 22.31Мб
129 Create a Full Matrix.en_US.srt 20.86Кб
129 Create a Full Matrix.mp4 200.50Мб
130 Count the Tokens to Train the Naive Bayes Model.en_US.srt 17.66Кб
130 Count the Tokens to Train the Naive Bayes Model.mp4 111.37Мб
131 Sum the Tokens across the Spam and Ham Subsets.en_US.srt 7.49Кб
131 Sum the Tokens across the Spam and Ham Subsets.mp4 39.64Мб
132 Calculate the Token Probabilities and Save the Trained Model.en_US.srt 9.07Кб
132 Calculate the Token Probabilities and Save the Trained Model.mp4 70.53Мб
133 Coding Challenge_ Prepare the Test Data.en_US.srt 4.95Кб
133 Coding Challenge_ Prepare the Test Data.mp4 53.69Мб
134 07-Bayes-Classifier-Training.ipynb.zip 5.82Кб
134 Download the Complete Notebook Here.html 727б
135 Any Feedback on this Section_.html 1012б
136 Course-Resources.txt 62б
136 Set up the Testing Notebook.en_US.srt 3.67Кб
136 Set up the Testing Notebook.mp4 36.94Мб
136 SpamData.zip 22.83Мб
137 Joint Conditional Probability (Part 1)_ Dot Product.en_US.srt 12.24Кб
137 Joint Conditional Probability (Part 1)_ Dot Product.mp4 84.72Мб
138 Joint Conditional Probablity (Part 2)_ Priors.en_US.srt 10.17Кб
138 Joint Conditional Probablity (Part 2)_ Priors.mp4 90.70Мб
139 Making Predictions_ Comparing Joint Probabilities.en_US.srt 9.31Кб
139 Making Predictions_ Comparing Joint Probabilities.mp4 68.14Мб
140 The Accuracy Metric.en_US.srt 7.35Кб
140 The Accuracy Metric.mp4 46.42Мб
141 Visualising the Decision Boundary.en_US.srt 32.20Кб
141 Visualising the Decision Boundary.mp4 277.29Мб
142 False Positive vs False Negatives.en_US.srt 12.32Кб
142 False Positive vs False Negatives.mp4 71.62Мб
143 The Recall Metric.en_US.srt 6.29Кб
143 The Recall Metric.mp4 31.99Мб
144 The Precision Metric.en_US.srt 9.13Кб
144 The Precision Metric.mp4 61.48Мб
145 The F-score or F1 Metric.en_US.srt 4.33Кб
145 The F-score or F1 Metric.mp4 28.68Мб
146 A Naive Bayes Implementation using SciKit Learn.en_US.srt 32.36Кб
146 A Naive Bayes Implementation using SciKit Learn.mp4 270.52Мб
147 07-Bayes-Classifier-Testing-Inference-Evaluation.ipynb.zip 243.05Кб
147 08-Naive-Bayes-with-scikit-learn.ipynb.zip 13.26Кб
147 Download the Complete Notebook Here.html 727б
148 Any Feedback on this Section_.html 994б
149 Course-Resources.txt 62б
149 The Human Brain and the Inspiration for Artificial Neural Networks.en_US.srt 10.48Кб
149 The Human Brain and the Inspiration for Artificial Neural Networks.mp4 60.54Мб
150 Layers, Feature Generation and Learning.en_US.srt 26.75Кб
150 Layers, Feature Generation and Learning.mp4 237.20Мб
151 Costs and Disadvantages of Neural Networks.en_US.srt 18.52Кб
151 Costs and Disadvantages of Neural Networks.mp4 145.87Мб
152 Preprocessing Image Data and How RGB Works.en_US.srt 15.54Кб
152 Preprocessing Image Data and How RGB Works.mp4 129.57Мб
152 TF-Keras-Classification-Images.zip 501.10Кб
153 Importing Keras Models and the Tensorflow Graph.en_US.srt 11.03Кб
153 Importing Keras Models and the Tensorflow Graph.mp4 73.36Мб
154 Making Predictions using InceptionResNet.en_US.srt 18.18Кб
154 Making Predictions using InceptionResNet.mp4 181.21Мб
155 Coding Challenge Solution_ Using other Keras Models.en_US.srt 12.47Кб
155 Coding Challenge Solution_ Using other Keras Models.mp4 154.95Мб
156 09-Neural-Nets-Pretrained-Image-Classification.ipynb.zip 571.83Кб
156 Download the Complete Notebook Here.html 749б
157 Any Feedback on this Section_.html 1011б
158 Course-Resources.txt 62б
158 Solving a Business Problem with Image Classification.en_US.srt 4.79Кб
158 Solving a Business Problem with Image Classification.mp4 37.55Мб
159 Installing Tensorflow and Keras for Jupyter.en_US.srt 6.20Кб
159 Installing Tensorflow and Keras for Jupyter.mp4 58.44Мб
160 Gathering the CIFAR 10 Dataset.en_US.srt 5.88Кб
160 Gathering the CIFAR 10 Dataset.mp4 35.34Мб
161 Exploring the CIFAR Data.en_US.srt 17.51Кб
161 Exploring the CIFAR Data.mp4 151.05Мб
162 Pre-processing_ Scaling Inputs and Creating a Validation Dataset.en_US.srt 19.17Кб
162 Pre-processing_ Scaling Inputs and Creating a Validation Dataset.mp4 103.65Мб
163 Compiling a Keras Model and Understanding the Cross Entropy Loss Function.en_US.srt 17.94Кб
163 Compiling a Keras Model and Understanding the Cross Entropy Loss Function.mp4 139.62Мб
164 Interacting with the Operating System and the Python Try-Catch Block.en_US.srt 22.83Кб
164 Interacting with the Operating System and the Python Try-Catch Block.mp4 193.73Мб
165 Fit a Keras Model and Use Tensorboard to Visualise Learning and Spot Problems.en_US.srt 13.57Кб
165 Fit a Keras Model and Use Tensorboard to Visualise Learning and Spot Problems.mp4 145.59Мб
166 Use Regularisation to Prevent Overfitting_ Early Stopping & Dropout Techniques.en_US.srt 27.21Кб
166 Use Regularisation to Prevent Overfitting_ Early Stopping & Dropout Techniques.mp4 287.09Мб
167 Use the Model to Make Predictions.en_US.srt 31.77Кб
167 Use the Model to Make Predictions.mp4 300.05Мб
168 Model Evaluation and the Confusion Matrix.en_US.srt 10.37Кб
168 Model Evaluation and the Confusion Matrix.mp4 81.83Мб
169 Model Evaluation and the Confusion Matrix.en_US.srt 38.94Кб
169 Model Evaluation and the Confusion Matrix.mp4 366.42Мб
170 10-Neural-Nets-Keras-CIFAR10-Classification.ipynb.zip 120.11Кб
170 Download the Complete Notebook Here.html 727б
171 Any Feedback on this Section_.html 1006б
172 Course-Resources.txt 62б
172 What's coming up_.en_US.srt 2.40Кб
172 What's coming up_.mp4 7.62Мб
173 Getting the Data and Loading it into Numpy Arrays.en_US.srt 8.67Кб
173 Getting the Data and Loading it into Numpy Arrays.mp4 75.07Мб
173 MNIST.zip 14.77Мб
174 Data Exploration and Understanding the Structure of the Input Data.en_US.srt 6.26Кб
174 Data Exploration and Understanding the Structure of the Input Data.mp4 35.65Мб
175 Data Preprocessing_ One-Hot Encoding and Creating the Validation Dataset.en_US.srt 12.20Кб
175 Data Preprocessing_ One-Hot Encoding and Creating the Validation Dataset.mp4 88.53Мб
176 What is a Tensor_.en_US.srt 8.66Кб
176 What is a Tensor_.mp4 69.70Мб
177 Creating Tensors and Setting up the Neural Network Architecture.en_US.srt 27.97Кб
177 Creating Tensors and Setting up the Neural Network Architecture.mp4 205.12Мб
178 Defining the Cross Entropy Loss Function, the Optimizer and the Metrics.en_US.srt 13.62Кб
178 Defining the Cross Entropy Loss Function, the Optimizer and the Metrics.mp4 84.85Мб
179 TensorFlow Sessions and Batching Data.en_US.srt 19.71Кб
179 TensorFlow Sessions and Batching Data.mp4 128.85Мб
180 Tensorboard Summaries and the Filewriter.en_US.srt 22.36Кб
180 Tensorboard Summaries and the Filewriter.mp4 186.50Мб
181 Understanding the Tensorflow Graph_ Nodes and Edges.en_US.srt 20.45Кб
181 Understanding the Tensorflow Graph_ Nodes and Edges.mp4 167.36Мб
182 Name Scoping and Image Visualisation in Tensorboard.en_US.srt 25.29Кб
182 Name Scoping and Image Visualisation in Tensorboard.mp4 88.68Мб
183 Different Model Architectures_ Experimenting with Dropout.en_US.srt 29.00Кб
183 Different Model Architectures_ Experimenting with Dropout.mp4 335.83Мб
184 Prediction and Model Evaluation.en_US.srt 18.19Кб
184 Prediction and Model Evaluation.mp4 162.28Мб
185 11-Neural-Networks-TF-Handwriting-Recognition.ipynb.zip 6.60Кб
185 Download the Complete Notebook Here.html 727б
186 Any Feedback on this Section_.html 984б
187 What you'll make.en_US.srt 9.39Кб
187 What you'll make.mp4 64.36Мб
188 11-Neural-Networks-TF-Handwriting-Recognition.ipynb.zip 6.39Кб
188 Saving Tensorflow Models.en_US.srt 20.45Кб
188 Saving Tensorflow Models.mp4 191.76Мб
189 12-TF-SavedModel-Export-Completed.ipynb.zip 6.13Кб
189 Loading a SavedModel.en_US.srt 25.16Кб
189 Loading a SavedModel.mp4 144.86Мб
189 MNIST-Model-Load-Files.zip 2.84Мб
190 Converting a Model to Tensorflow.js.en_US.srt 20.34Кб
190 Converting a Model to Tensorflow.js.mp4 171.61Мб
190 TFJS.zip 1.54Мб
191 Introducing the Website Project and Tooling.en_US.srt 16.60Кб
191 Introducing the Website Project and Tooling.mp4 125.38Мб
191 math-garden-stub.zip 44.03Кб
192 HTML and CSS Styling.en_US.srt 36.48Кб
192 HTML and CSS Styling.mp4 244.58Мб
193 Loading a Tensorflow.js Model and Starting your own Server.en_US.srt 35.83Кб
193 Loading a Tensorflow.js Model and Starting your own Server.mp4 321.34Мб
193 x-test0-ylabel7.txt 4.59Кб
193 x-test1-ylabel2.txt 4.59Кб
193 x-test2-ylabel1.txt 4.59Кб
194 Adding a Favicon.en_US.srt 7.11Кб
194 Adding a Favicon.mp4 42.12Мб
195 Styling an HTML Canvas.en_US.srt 37.97Кб
195 Styling an HTML Canvas.mp4 312.41Мб
196 Drawing on an HTML Canvas.en_US.srt 36.32Кб
196 Drawing on an HTML Canvas.mp4 290.97Мб
197 Data Pre-Processing for Tensorflow.js.en_US.srt 11.49Кб
197 Data Pre-Processing for Tensorflow.js.mp4 42.36Мб
198 Introduction to OpenCV.en_US.srt 36.93Кб
198 Introduction to OpenCV.mp4 432.34Мб
198 math-garden-stub-12.12-checkpoint.zip 4.09Мб
199 Resizing and Adding Padding to Images.en_US.srt 25.81Кб
199 Resizing and Adding Padding to Images.mp4 286.25Мб
200 Calculating the Centre of Mass and Shifting the Image.en_US.srt 34.09Кб
200 Calculating the Centre of Mass and Shifting the Image.mp4 405.91Мб
201 Making a Prediction from a Digit drawn on the HTML Canvas.en_US.srt 16.40Кб
201 Making a Prediction from a Digit drawn on the HTML Canvas.mp4 181.80Мб
202 Adding the Game Logic.en_US.srt 36.55Кб
202 Adding the Game Logic.mp4 286.00Мб
202 math-garden-stub-complete.zip 4.09Мб
203 Publish and Share your Website!.en_US.srt 9.14Кб
203 Publish and Share your Website!.mp4 59.48Мб
204 Any Feedback on this Section_.html 985б
205 Where next_.html 4.56Кб
206 What Modules Do You Want to See_.html 916б
207 Stay in Touch!.html 1.52Кб
Статистика распространения по странам
Россия (RU) 4
Греция (GR) 1
Южная Корея (KR) 1
Всего 6
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент